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Pólya fields and Pólya numbers
Amandine Leriche

Abstract
A number field K, with ring of integers OK , is said to be a Pólya field if the OK-algebra

formed by the integer-valued polynomials on OK admits a regular basis. In a first part,
we focus on fields with degree less than six which are Pólya fields. It is known that a field
K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical
embedding problem, we consider the embedding of K in a Pólya field. We give a positive
answer to this embedding problem by showing that the Hilbert class field HK of K is a Pólya
field. Finally, we give upper bounds for the minimal degree poK of a Pólya field containing
K, namely the Pólya number of K.

1. Introduction: Pólya fields and the embedding problem

In this paper, we state main results from our thesis1[9].

Let K be an algebraic number field and denote by OK its ring of integers. Consider the ring of
integer-valued polynomials on OK , that is,

Int (OK) = {P ∈ K [X] |P (OK) ⊆ OK} .

One knows that Int (OK) is a free OK-module [1, Rem. II.3.7], but, describing a basis often
constitutes an arduous task. After the seminal work of Pólya [12] and Ostrowski, [11], where
they tried to characterize the fields K such that Int (OK) admits a “regular basis", Zantema [14]
introduced the following definition:

Definition 1.1. [14] A number field K is said to be a Pólya field if the OK-module Int (OK)
admits a regular basis, that is, a basis (fn)n∈N such that, for each n, the polynomial fn has degree
n.

For instance, every cyclotomic field is a Pólya field (see [14]).

For each n ∈ N, we denote by In (K) the subset of K formed by 0 and the leading coefficients of
the polynomials in Int (OK) with degree n. This is a fractional ideal of OK called the characteristic
ideal of index n of K [1, Prop I.3.I]. Recall that K is a Pólya field if and only if the characteristic
ideals In (K) are principal [1, II.1.4]. In particular, if OK is a principal ideal domain, then K is
a Pólya field. The converse, however, is false. Thus, the condition “K is a Pólya field" is weaker
than the condition “K has a class number equal to one".

One knows the classical embedding problem:
Is every number field contained in a field with class number one?

Golod and Schafarevitch [8] gave a negative answer to this question in 1964. With a weaker
hypothesis, however, a natural question arises:

Is every number field contained in a Pólya field?
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The counter-example given by Golod and Schafarevitch is not a counter-example for this new
embedding problem.
We undertook the study of this question in [10] and pursued it in our thesis [9]. As mentioned,
we wish to state here some results contained in this thesis. We start by determining number fields
which are already themselves Pólya fields. Quadratic Pólya fields were completely characterized
[1], we do the same for several families of fields with degree less than six. Then we give a positive
answer to our “new embedding problem": the Hilbert class field HK of any number field K is a
Pólya field. It is not, however, generally the smallest Pólya field containing K. Thus, we try to
give upper bounds for the minimal degree poK of a Pólya field containing K, that we call the Pólya
number of K.

2. Families of Pólya fields with small degree

2.1. Presentation. We recall the notion of Pólya group which can be considered as a measure
of the obstruction for a field K to be a Pólya field. The class group of OK is the quotient
Cl(K) = I(K)/P (K) of the group of fractional ideals I(K) of K by the group P (K) of nonzero
principal ideals.

Definition 2.1. [1] The Pólya group of K is the subgroup Po (K) of Cl(K) generated by the
classes of the characteristic ideals In (K) of K.

Notation. For each q ≥ 2, let Πq (K) be the product of all the maximal ideals of OK with norm
q :

Πq (K) =
∏

m∈Max(OK)
N(m)=q

m.

If q is not the norm of an ideal, then Πq (K) = OK .

In fact we know that Po (K) is also the subgroup of Cl(K) generated by the classes of the ideals
Πq (K). We can thus characterize the Pólya fields in several ways:

Proposition 2.2. The field K is a Pólya field if and only if one of the following assertions is
satisfied:

(1) Int (OK) has a regular basis;
(2) for each n ∈ N, the ideal In (K) is principal;
(3) for each q ≥ 2, Πq (K) is principal;
(4) Po (K) = {1}.

Recall that if K is a galoisian extension of Q, for each prime number p, the gp maximal ideals of
OK over p have the same ramification index ep and the same residue degree fp and that we have
epfpgp = [K : Q] then

pOK =
∏
M|p

Mep = Πq (K)ep where q = pfp .

Thus we obtain the following result due to Ostrowski:

Proposition 2.3. [11] Let K be a finite galoisian extension of Q. The group Po(K) is generated
by the classes of the ideals Πq (K) where q = pf and the prime number p is ramified in K/Q

If K is a galoisian extension of Q, then Po(K) is the subgroup of Cl(K) generated by the classes
of the ambiguous ideals of K, where an ambiguous ideal of K is an ideal which is invariant under
the action of the Galois group Gal(K/Q). Hilbert [7, §75] described this subgroup in the case
where K is a quadratic field and from this description, Zantema [14] deduced the characterization
of the quadratic Pólya fields (see [1, Cor. II.4.5]):

Proposition 2.4. A quadratic field Q[
√
d] is a Pólya field if and only if d is of one of the following

forms (p and q denote two distinct odd prime numbers):
(1) d = 2,
(2) d = −1,
(3) d = −2,
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(4) d = −p with p ≡ 3 (mod 4),
(5) d = p,
(6) d = 2p and if p ≡ 1 (mod 4) then the fundamental unit has norm 1,
(7) d = pq with pq ≡ 1 (mod 4) and if p ≡ 1 (mod 4) then the fundamental unit has norm 1.

We believe this is the only characterization of Pólya fields of a given degree to be found in the
literature. We would like to give similar results for number fields of higher degrees.

2.2. Cyclic number fields. Recall a result which gives explicitly the cardinality of the Pólya
group of a cyclic field:

Proposition 2.5. [2, Cor. 3.11] Let K/Q be a cyclic extension of degree n. Then:
(1) If K is real and the norm of every unit is 1, then |Po (K)| = 1

2n ×
∏
p ep.

(2) In all other cases, |Po (K)| = 1
n ×

∏
p ep.

Thus, one deduces easily the following property:

Proposition 2.6. Let K/Q be a cyclic extension of degree q, with q an odd prime number. Then
|Po (K)| = qs−1 where s is the number of primes which are ramified in K/Q. In particular, K is
a Pólya field if and only if there is exactly one prime which ramifies in K/Q.

First, we apply this proposition to cubic cyclic fields. Following the description of such fields given
in [3, Lemma 6.4.5], we have:

Proposition 2.7. Let K be a cubic cyclic field. Then K is a Pólya field if and only if K = Q(θ)
where θ is a root of a polynomial P such that :

P = X3 − 3X + 1

or,
P = X3 − 3pX − pu

where p is a prime such that p = u2+27w3

4 with u ≡ 2 (mod 3) and w ∈ N∗.

Next, we carry on the study with quartic cyclic fields. We find a complete description of quartic
cyclic fields in [6] and their discriminants are computed in [13]. Using Proposition 2.5, we may
prove the following result:

Proposition 2.8. Let K = Q
(√

A(D +B
√
D)
)

be a quartic cyclic field where A, B, C, D

are integers such that A is squarefree and odd, D = B2 + C2 is squarefree, B > 0, C > 0, and
gcd(A,D) = 1. Then K is a Pólya field if and only if one of the following conditions is satisfied
(p and q denote distinct odd prime numbers):

(1) K = Q
(√

2 +
√

2)
)
or K = Q

(
i
√

2 +
√

2)
)
.

(2) K = Q
(√

q(2 +
√

2)
)

and the norm of every unit is 1.

(3) K = Q
(√

p+B
√
p
)
with p ≡ 1 (mod 4), B ≡ 0 (mod 4), and p = B2 + C2.

(4) K = Q
(
i
√
p+B

√
p
)
with p ≡ 1 (mod 4), B ≡ 2 (mod 4), and p = B2 + C2.

(5) K = Q
(√

p+B
√
p
)
with p ≡ 1 (mod 4), B ≡ 1, 2, 3 (mod 4), p = B2 +C2 and the norm

of every unit is 1.
(6) K = Q

(√
q(p+B

√
p)
)
with p ≡ 1 (mod 4), p = B2 + C2, q + B ≡ 1 (mod 4), and the

norm of every unit is 1.

2.3. Compositum of linearly disjoined galoisian extensions.

Notation. For every finite finite extension L/K, the injective morphism defined by:

jLK : I ∈ I (K) 7→ IOL ∈ I (L)

induces a morphism
εLK : I ∈ Cl (K) 7→ IOL ∈ Cl (L) .
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Proposition 2.9. [10, Prop. 4.2] Let K, K1 and K2 be galoisian extensions of Q such that
K1 ∩K2 = K and denote by L = K1K2 the compositum of K1 and K2. If, for each prime ideal p
of the ring of integers OK of K, the indices of ramification eK1/K(p) and eK2/K(p) are coprime,
then:

εLK1
(Po (K1)) .εLK2

(Po (K2)) = Po (L) .
In particular, if K1 et K2 are Pólya fields, L is a Pólya field too.

Consequently, we are able to prove that some fields obtained by composition are Pólya fields. For
instance:

Proposition 2.10. Sextic cyclic Pólya fields are exactly those which are the compositum of a
quadratic Pólya field and a cubic cyclic Pólya field.

The case of biquadratic fields, compositum of two quadratic extension K1/K and K2/K, is
more difficult to study because the indices of ramification eK1/K(p) and eK2/K(p) of some prime
p may not be coprime (both being equal to 2). We may however prove the following result:

Theorem 2.11. Let m and n be two squarefree integers such that Q [
√
m] and Q [

√
n] are quadratic

Pólya fields. The biquadratic field Q[
√
m,
√
n] is a Pólya field except for the following fields, where

p and q are odd primes such that p ≡ 3 (mod 4):
(1) Q[i

√
2,√p] is not a Pólya field;

(2) Q[i,
√

2q] is not a Pólya field;
(3) If Q[√p,

√
2q] is a Pólya field, then :

(a) either p ≡ −1 (mod 8) and q ≡ 1,−1 (mod 8)
(b) or p ≡ 3 (mod 8) and q ≡ 1, 3 (mod 8).

Remark. The conditions given in (3) are necessary but not sufficient. For example, the fields
Q[
√

7,
√

62], Q[
√

7,
√

82] and Q[
√

3,
√

34] are not Pólya fields. However, there are no such examples
for p, q ≡ 3 (mod 8): one may compute that, for p, q < 100, Q[√p,

√
2q] is always a Pólya field.

3. The Pólya number poK of a number field

3.1. The answer to the embedding problem: the Hilbert class field. We come back to
the embedding problem in a Pólya field. The question of embedding every algebraic number field
in a Pólya field is equivalent to the following one:

Is there a field L containing K such that all the ideals In (OL) are principal?
Recall that the Hilbert class field of an algebraic number field K is the maximal unramified abelian
extension of K. We denote it by HK . We know that the Galois group of the extension HK/K is
isomorphic to Cl(K), the class group of K. Consequently, the degree [HK : K] is equal to the class
number hK of K. We also know that the ideals of OK become principal by extension to OHK (the
capitulation theorem). In other words, for every ideal I of OK , IOHK is principal. But, the ring
OHK itself is not necessarily a principal ideal domain. By analogy, we have the following notion:

Definition 3.1. [10] An extension L/K is said to be a Pólya extension if the following equivalent
assertions are satisfied:

(1) The extension of every characteristic ideals In (K) to OL is principal.
(2) The ring of integer-valued polynomials on OK relatively to OL, that is,

Int (OK ,OL) = {P ∈ L [X] |P (OK) ⊆ OL} admits a regular basis as an OL-module.

Remarks. (1) If K is a Pólya field, then every extension L/K is a Pólya extension.
(2) If L/K is a Pólya extension, then every extension M of L is a Pólya extension of K.
(3) For every number field K, HK/K is a Pólya extension.

When we work with galoisian extensions of Q, the Pólya groups behave nicely with respect to
morphisms introduced in §2.3:

Proposition 3.2. [2] If K and L are two galoisian extensions of Q such that K ⊆ L then
εLK (Po (K)) ⊆ Po (L)

Corollary 3.3. Let K and L be two galoisian extensions of Q such that K ⊆ L.
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(1) The extension L/K is a Pólya extension if and only if the image εLK (Po (K)) is trivial in
Po (L).

(2) If L is a Pólya field, then L/K is a Pólya extension.

Notice that a Pólya extension is not necessarily a Pólya field. For instance, Q[
√
−5,
√

2]/Q[
√
−10]

is a Pólya extension but Q[
√
−5,
√

2] is not a Pólya field (see Theorem 2.11). We have however a
partial converse assertion:

Proposition 3.4. Assume K/Q and L/Q are two galoisian extensions such that K ⊆ L. If L/K
is a Pólya extension such that all finite places are unramified, then L is a Pólya field.

In the particular case L = HK , thanks to the capitulation theorem, we can forget the hypothesis
“K/Q is a galoisian extension" and we obtain the following theorem:

Theorem 3.5. Let K be a number field. Then the Hilbert class field HK of K is a Pólya field.

Consequently, the embedding problem in a Pólya field has a positive answer :
Every number field may be embedded in a Pólya field, namely its Hilbert class field.

Remark. We know that a positive answer to the classical embedding problem is equivalent to a
finite Hilbert class field tower. Although we have defined the notion of Pólya extension following
the capitulation property of Hilbert class fields and we have answered positively the new embedding
problem, we are able to construct infinite Pólya extensions towers.

3.2. The genus field. We are interested in the genus field because, under particular conditions,
some ideals of K become principal by extension to the genus field ΓK of K. First, recall the
definition of the genus field:

Definition 3.6. Assume that K is an abelian number field. The genus field ΓK of K is the
maximal abelian extension of Q containing K such that ΓK/K is unramified.

Obviously, ΓK ⊆ HK .

Proposition 3.7. [4] Let K be an abelian extension of Q. The extension of every ambiguous ideal
of OK is principal in the genus field ΓK of K.

Corollary 3.8. If K is an abelian number field then the genus field ΓK of K is a Pólya extension
of K.

It then follows from Proposition 3.4 that:

Proposition 3.9. The genus field of an abelian number field is a Pólya field.

Now, we know that HK and ΓK are both Pólya fields and Pólya extensions of each abelian field K.
Moreover, we have the inclusion ΓK ⊆ HK . Consequently we are interested in the determination
of minimal Pólya fields.

3.3. The Pólya number of a number field.

Definition 3.10. Let K be an algebraic number field.
(1) A minimal Pólya field over K is a finite extension L of K which is a Pólya field and such

that no intermediate extension K ⊆M ( L is Pólya field.
(2) The Pólya number of K is the following integer

poK = min
K⊆L
{ [L : K] | K ⊆ L, L Pólya field}.

There are several questions about minimal Pólya field over K. For example, we can prove that
there is no uniqueness for such minimal extension. However we do not know whether they all have
the same degree. Now, we will see some upper bounds for the minimal degree of these minimal
extensions.
From Theorem 3.5 we deduce that

poK ≤ hK .
For an abelian number field K, since the genus field of K is a Pólya field, we have

poK ≤ gK where gK = [ΓK : K].
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For a non abelian number field K, one may also define a genus field. In this case however the
genus field is not generally a minimal Pólya field over K.
Finally, the following proposition shows that the genus field is not generally a minimal Pólya field
over an abelian field.

Proposition 3.11. Let K = Q[
√
d] (where d ∈ Z is a squarefree integer) a quadratic number

field. Denote by σ (resp. τ) the number of odd prime divisors of d congruent to 3 (mod 4) (resp.
1 (mod 4)). We have the following bounds:

(1) If d ≡ 1 (mod 4), poK ≤ 2σ2 +τ−1 if d > 0 and 2σ−1
2 +τ if d < 0.

(2) If d ≡ 3 (mod 4), poK ≤ 2σ−1
2 +τ if d > 0 and 2σ2 +τ if d < 0.

(3) If d ≡ 2 (mod 8), poK ≤ 2σ2 +τ if d > 0 and 2σ−1
2 +τ+1 if d < 0.

(4) If d ≡ 6 (mod 8), poK ≤ 2σ−1
2 +τ if d > 0 and 2σ2 +τ if d < 0.

Comparing this bounds with the genus number of quadratic fields [5, §4.2.9], we obtain:

Corollary 3.12. Let K = Q[
√
d] (where d ∈ Z is a squarefree integer) a quadratic number field.

Denote by σ the number of primes p ≡ 3 (mod 4) which are ramified in K/Q, then:
gK
poK

≥ 2σ2−2 if d is even,

gK
poK

≥ 2
σ+1

2 −2 if d is odd .

It follows that, for σ ≥ 4, ΓK is not a minimal Pólya field over K.

References
[1] P.J. Cahen, J.L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol 48, Amer.

Math. Soc., Providence (1997).
[2] J.L Chabert, Factorial Groups and Pólya groups in Galoisian Extension of Q, Proceedings of the fourth inter-

national conference on commutative ring theory and applications (2002), 77-86.
[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 2000.
[4] H. Furuya, Principal ideal theorem in the genus field for absolutely abelian extensions, J. Number Theory 9

(1977), 4-15.
[5] G. Gras, Class Field Theory, Springer, 2005.
[6] K. Hardy, R.H. Hudson, D. Richman, K.S. Williams and N.M. Holtz, Calculation of Class Numbers of Imaginary

Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series 7 (1986), 201 pp.
[7] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung

4 (1894-95), 175-546.
[8] E.S. Golod, I.R. Shafarevich, On the class field tower, Izv. Akad. Nauk 28 (1964), 261-272.
[9] A. Leriche, Groupes, Corps et Extensions de Pólya : une question de capitulation, PhD thesis, Université de

Picardie Jules Verne (Décembre 2010).
[10] A. Leriche, Pólya fields, Pólya groups and Pólya extensions: a question of capitulation, Journal de Théorie des

Nombres de Bordeaux, 23, (2011), 235-249.
[11] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpren, J. Reine Angew. Math. 149 (1919),

117-124.
[12] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math. 149 (1919), 97-116.
[13] K.S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526.
[14] H. Zantema, Integer valued polynomials over a number field, Manusc. Math. 40 (1982), 155-203.

LAMFA, CNRS UMR 6140
Université de Picardie Jules Verne
33, rue Saint-Leu
80039 Amiens
& École Centrale de Lille
Cité Scientifique
59650 Villeneuve d’Ascq
France • amandine.leriche@ec-lille.fr

26

mailto:amandine.leriche@ec-lille.fr

	1. Introduction: Pólya fields and the embedding problem
	2. Families of Pólya fields with small degree 
	2.1. Presentation
	2.2. Cyclic number fields
	2.3. Compositum of linearly disjoined galoisian extensions

	3. The Pólya number poK of a number field
	3.1. The answer to the embedding problem: the Hilbert class field
	3.2. The genus field
	3.3. The Pólya number of a number field

	References

