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An overview of some recent developments
on integer-valued polynomials:

Answers and Questions
Jean-Luc Chabert

Abstract
The purpose of my talk is to give an overview of some more or less recent developments

on integer-valued polynomials and, doing so, to emphasize that integer-valued polynomials
really occur in different areas: combinatorics, arithmetic, number theory, commutative and
non-commutative algebra, topology, ultrametric analysis, and dynamics. I will show that
several answers were given to open problems, and I will raise also some new questions.

1. Introduction

First introduced in algebraic number theory at the beginning of the 20th century, the theory
of integer-valued polynomials has been developed in the context of commutative algebra from the
1970s (cf. [67, Historical Introduction]). Shortly before the Second Meeting on Integer-Valued Poly-
nomials [68], held in Marseille in 2000, Manjul Bhargava [9] introduced the notion of P -ordering,
so useful for both the study of integer-valued polynomials and the construction of normal bases
of ultrametric spaces of continuous functions. Once more, shortly before this Third Meeting [69],
Bhargava [12] gave ingenious extensions of this notion in order to construct polynomial normal
bases of several spaces of regular ultrametric functions. I will speak about these results and also
about several other recent results, specially those that will not be considered by other participants.

In fact, the real aim of my talk is to show that integer-valued polynomials really occur in very
different areas: combinatorics, arithmetic, number theory, commutative and non-commutative al-
gebra, topology, ultrametric analysis, and dynamics. Without forgetting that the topic of integer-
valued polynomials interests some mathematicians specialized in constructive mathematics (cf.
Lombardi’s contribution in these Proceedings) and others who initiate a category-theoretic ap-
proach to the subject (cf. Elliott’s contribution in these Proceedings). I will take the opportunity
of this overview to recall some questions (numbered from A to K) raised a few years ago in Cor-
tona [31] and to speak about answers that were made during these last years. Of course, new
questions appeared and some answers are already given by the participants during this meeting.

Notation. Recall that, if D is an integral domain with quotient field K and E is a subset of K,
then Int(E,D) denotes the D-algebra of integer-valued polynomials on E:

Int(E,D) = {f ∈ K[X] | f(E) ⊆ D}.

Usually, we write Int(D) instead of Int(D,D).

Text presented during the meeting “Third International Meeting on Integer-Valued Polynomials” organized by
Sabine Evrard. 29 novembre-3 décembre 2010, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 13F20.
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2. Algebraic Number Theory: Pólya fields

In the field of algebraic number theory, I just want to recall the notion of Pólya field and some
related questions. It is well known that the notion of integer-valued polynomials goes back to
works of Pólya [57] and Ostrowski [53] that they published in 1919 in the Journal für die Reine
und Angewandte Mathematik.

Let us recall that, for any fixed number field K with ring of integers OK , they considered the
integer-valued polynomials on K, that is, the polynomials with coefficients in K which take integral
values on the integers of K. These polynomials form an OK-algebra that now, following Robert
Gilmer [42], we denote by Int(OK) :

Int(OK) = {f ∈ K[X] | f(OK) ⊆ OK}.
It is well known that the binomial polynomials:(

X

n

)
= X(X − 1) . . . (X − n+ 1)

n! (n ∈ N)

form a basis of the Z-module:
Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z}.

Although Pólya and Ostrowski did not know whether this OK-module is free or not, they asked
whether this OK-module admits or not a regular basis, that is, a basis formed by a sequence of
polynomials with one and only one polynomial of each degree, as in the classical case of Int(Z).

After these seminal works, nothing was done on this question of regular bases for sixty years
until Zantema’s work in 1982. He introduced the name of Pólya field for the number fields K such
that the OK-module Int(OK) admits a regular basis, proved, for instance, that every cyclotomic
field is a Pólya field, and characterized the quadratic number fields which are Pólya fields. In 1988,
Van der Linden [61] began a similar study for function fields, largely completed only recently, in
2008 by David Adam [4] with respect to the analogs in positive characteristic of cyclotomic fields
and of totally imaginary cyclic extensions.

Going back to characteristic zero, very recent works by Amandine Leriche extend Zantema’s
results [48] and answer positively [49] to the following question (cf. Leriche’s contribution in these
Proceedings):
Question I. Is every number field contained in a Pólya field?
This question, in some sense, is similar to the embedding problem of a number field in another
number field with class number one. From my point of view, there is still an interesting question:
Question I*. Is there a natural definition for what could be called the Pólya closure of a number
field?
Of course, both questions may be raised in positive characteristic. In the context of algebraic
number theory, let us recall another question which in some sense is linked to the previous one:
Question F. Are there number fields (distinct from Q) which are Newtonian fields?

Recall that the notion of Newtonian field is stronger than those of Pólya field: not only there
are regular bases {fn}n≥0, but also bases of a particular type since the fn’s are of the form
αn
∏n−1
k=0(X − uk) for some sequence {un}n≥0 of integers of K (analogously to the sequence of

integers for Z). More generally, about the determination of Newtonian sequences in number fields
or function fields, see [3], [4], [20], [63] and Adam and Cahen’s contribution in these Proceedings.

3. Commutative algebra: counterexamples

Introduced in number theory, the study of integer-valued polynomials has greatly flourished
and developed in the context of commutative algebra. Now, I just want to show that rings of
integer-valued polynomials are a great source of counterexamples.

Clearly, a domain which is the intersection of rank-one valuation domains is completely integrally
closed. Krull raised the question of the converse and, in 1942, Nakayama answered negatively, yet
with an ad hoc counterexample rather complicated. There is a more natural example: for every
prime number p, the ring

Int(Zp) = {f ∈ Qp[X] | f(Zp) ⊆ Zp}
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of integer-valued polynomials on the p-adic integers is a completely integrally closed domain, which
is not an intersection of rank-one valuation domains [26].

Along the line of simple or natural examples, the case of Int(Z) is exemplary. Indeed, in
algebra the natural constructions lead most often to Noetherian rings, as is generally the case with
polynomial rings, unlike functional spaces in analysis. However, the ring Int(Z) provides a natural
algebraic example of non-Noetherian ring.

Being non-Noetherian, the ring Int(Z) is not a Dedekind domain, but it is a two-dimensional
Prüfer domain. More generally, for every number field K, the ring Int(OK) is a Prüfer domain
([26] and [17]). As new examples of Prüfer domains, the rings of integer-valued polynomials were
used in 2002 by Brewer and Klinger [16] to test whether every two-dimensional Prüfer domain has
the stacked basis property, and in particular raised the following question:
Question K. Does the two-dimensional Prüfer domain Int(Z) have the stacked basis property?

Let us explain why this question is interesting. It is well known that the structure theorem
for finitely generated abelian groups may be extended to free finitely generated module over a
principal ideal domain, and more generally, to modules over a Dedekind domain. One may ask
whether there exists such a generalization for modules over Prüfer domains.

Definition 3.1. [41, V§4] The Prüfer domain D is said to have the stacked basis property if, for
every free D-moduleM with finite rankm and for every finitely generated submodule N ofM with
rank n ≤ m, there exist rank-one projective D-modules P1, . . . , Pm and nonzero ideals I1, . . . ,In
of D such that:

M = P1 ⊕ · · · ⊕ Pm , N = I1P1 ⊕ · · · ⊕ InPn

and
Ij+1 ⊆ Ij for 1 ≤ j ≤ n− 1.

One knows that the one-dimensional Prüfer domains have the stacked basis property. Brewer
and Klinger proved that, for every prime p, the two-dimensional Prüfer domain Int(Zp) has the
stacked basis property, but they could not conclude in the global case. This question is both ways
interesting: if the answer is no, then Int(Z) would be the first example of a Prüfer domain which
does not have the stacked basis property, if it yes, it would then be another interesting property
of this strange ring Int(Z).

This problem may be translated in terms of matrices [41, V.Thm 4.8] and was recently reduced
to a question concerning matrices with only two columns [29]:
Question K*. Does there exists, for every matrix B ∈Mm×2(Int(Z)) with unit content, a matrix
C ∈M2×2(Int(Z)) such that BC has unit content and all 2× 2 minors of BC are zero.

There are other conjectures in commutative algebra concerning the rings of integer-valued poly-
nomials. For instance, with respect to Prüfer domains, one knows that, if V is a rank-one valuation
domain with quotient field K, then the ring Int(E, V ) = {f ∈ K[X] | f(E) ⊆ V } is a Prüfer do-
main provided E is a precompact subset of K (that is, the completion Ê of E is compact) [23,
Thm. 4.1]. But does the converse hold [23]? More precisely,
Question L. Let V be a rank-one valuation domain and E be a subset of V . To what extend is
the precompactness of E necessary for Int(E, V ) to be Prüfer?

Another question concerns the dimension of Int(D) whereD denotes any integral domain. Recall
that, for every integral domain D, we have ([18] and [37]):

dim(D[X])− 1 ≤ dim(Int(D)) ≤ dimv(D) + 1,
where dimv(D) denotes the valuative dimension of D, that is,

dimv(D) = sup {dimV | D ⊆ V ⊆ K, V valuation domain},
or equivalently,

dimv(D) = lim
n→+∞

dim(D[X1, . . . , Xn])− n.

It is conjectured that the answer to the following question is positive.
Question M. Does the following inequality hold

dim(Int(D)) ≤ dimD[X] ?
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For many references on this question, see [38].

4. Non-commutative Algebras: Quaternions and Matrices

Integer-valued polynomials have been introduced also in non-commutative algebra. G. Gerboud
was the first one to consider integer-valued polynomials on quaternions. He begun his study in the
1990’s for the ring H formed by the Hurwitz quaternions. But things seems to be really difficult
and the most interesting results that he obtained are about factorials (factorials will be defined in
the next section) like this one:

n!H 6= (1)⇔ n ≥ 4 and 4!H =
(

1 + i

2

)
.

Thus, we raised the question:
Question A. Describe the integer-valued polynomials on quaternions.

Very recently, Nicholas Werner [62] published a fine and extensive study on this topic, but far
from being complete. Let us recall some of his results. For every subring D of R, let QD denote
the ring of quaternions with coefficients in D :

QD = {a+ bi+ cj + dk | a, b, c, d ∈ D}.

He considers the set:
Int(QZ) = {f ∈ QQ[X] | f(QZ) ⊆ QZ}.

Obviously, this set is a left and right QZ-module. In fact, Werner shows that this a ring and this
is not obvious because generally :

f(w)g(w) 6= (fg)(w) for f, g ∈ QQ[X], w ∈ QZ.

In the case of integers, the Fermat polynomial:

Fp(X) = 1
p

(Xp −X)

is clearly integer-valued on Z. The analogous result for quaternions is that the quaternionic Fermat
polynomial:

QFp(X) = 1
p

(Xp2
−X)(Xp −X)

belongs to Int(QZ). Although Werner proved that it is not possible to have p in the denominator
of an integer-valued polynomial on QZ with degree less than the degree of QFp, the following
question remains open:
Question A∗. Find a system of generators of the QZ-module Int(QZ).

Let us look now at the spectrum. In the case of Int(Z), one knows [26] that the prime ideals
lying over a prime number p are the ideals

pα = {f ∈ Int(Z) | f(α) ∈ pZp} where α ∈ Zp.

Very few is known for Int(QZ). For instance, following Werner, for an odd prime number p and
for an element a of QZ, the subset

pa = {f ∈ Int(QZ) | f(a), f(−iai), f(−jaj), f(−kak) ∈ pQZ}

is an ideal, but the fact that pa is a prime ideal depends on a. So that, the following question is
wide open:
Question A∗∗. Characterize the spectrum of Int(QZ).

And also:
Question A∗∗∗. Same questions than Questions A∗ and A∗∗ replacing QZ by the ring H of Hurwitz
quaternions.

There are other possible studies in the non-commutative case: for instance, the integer-valued
polynomials on matrices whose study has been undertaken by Sophie Frisch [40] (cf. Frisch’s
related contribution in these Proceedings).
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5. Combinatorics: Bhargava’s factorials

Bhargava’s factorials associated to a subset of Z lead us to combinatorics. He introduced these
factorials at the end of the last century [11]. One way to define them is the following: if

Int(S,Z) = {f ∈ Q[X] | f(S) ⊆ Z}

denotes the ring of integer-valued polynomials on S, then the n-th factorial ideal of S is the
generator of the ideal formed be the denominators of the integer-valued polynomials on S with
degree n, that is,

(n!S) = {d ∈ Z | df ∈ Z[X] ∀f ∈ Int(S,Z),deg(f) = n}.

For the subset Z itself, we get the classical factorials:

n!Z = n!.

For the subset P formed by the prime numbers, we have [32]:

n!P =
∏
p∈P

p

∑
k≥0

[
n−1

(p−1)pk

]
(n > 0)

and the sequence of factorials {n!P}n≥1 begins with

1, 2, 24, 48, 5760, 11520, ...

In 2000, Bhargava [11] noticed that there are strong links between this sequence and products of
the denominators δn of Bn

n where Bn denotes the n-th Bernoulli number:

(2m+ 1)!P = 22m
∏

1≤k≤m
δk and (2m+ 2)!P = 2(2m+ 1)!P.

Question B. Explain these links between the n!P’s and the Bn’s.
In a recent paper [27], we prove the following formula:(

− ln(1− x)
x

)m
= 1 + m

2 x+ m(3m+ 5)
24 x2 + m(m2 + 5m+ 6)

48 x3 + . . .

which shows links between n!P and the denominators of the Bernoulli polynomials. For other
formulas using n!P and the Bernoulli numbers, see Bencherif’s contribution in these Proceedings.

Moreover, looking at The On-Line Encyclopedia of Integer Sequences, we see that (n + 1)!P is
also the least common multiple of the orders of all finite subgroups of GLn(Q) (cf. Minkovski [52]
(1887) and Schur [58] (1905)). And, following Johnson [44], this sequence also occurs in Algebraic
Topology: as the denominators of the Laurent polynomials forming a regular basis for K*K, the
Hopf algebroid of stable cooperations for complex K-theory. For other links to algebraic topology,
see for instance [59] and Clarke’s contribution in these Proceedings.

For other computations in combinatorics concerning Bhargava’s factorials, see [15], [45], [46], and
Johnson’s contribution in these Proceedings. Here is another interesting result due to Mingarelli
generalizing a property of the number e.
Proposition 5.1. [51, Theorem 3.3] For every infinite subset S of Z, denoting by eS the sum

eS =
∞∑
k=0

1
k!S

,

then eS is an irrational number.

Let us end this section with another elementary question:
Question M. Characterize the sequences of integers {kn}n≥0 which are sequences of factorials
{n!S}n≥0 for some subsets S of Z.
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6. Topology: the polynomial closure

Let D be an integral domain with quotient field K. Let us recall:

Definition 6.1. [19] Let S be a subset of K.
(1) The D-polynomial closure of S is the largest subset S of K such that:

∀f ∈ K[X] f(S) ⊆ D ⇒ f(S) ⊆ D.

(2) The subset S is said D-polynomially closed if S = S.

The most recent works on polynomial closure are due to M.H. Park [55] and F. Tartarone [60].
It is but natural to ask the following:
Question N. Is the polynomial closure a topological closure?

In other words, when are the D-polynomially closed subsets of K the closed subsets for some
topology on K?

As noticed by P.-J.Cahen [19], if such a polynomial topology exists, then the domain D has
to be local. In view of our question, let us recall the p-adic analog of the Stone-Weierstrass
approximation theorem:

Proposition 6.2. [47] Let K be a valued field, that is, a field endowed with a rank-one valuation
v. For every compact subset S of K, K[X] is dense in the Banach space C(S,K) of continuous
functions from S to K for the uniform convergence topology.

It follows from this proposition that the compact subsets of K are polynomially closed. More-
over, it is easy to verify that the polynomially closed subsets are topologically closed and that the
polynomial closure of every non-bounded subset is K. As a consequence, if the valued field K is
locally compact (namely, if K is a local field, that is, a field K endowed with a discrete valuation v
which is complete for the corresponding topology and with a finite residue field), the polynomially
closed subsets are K itself and the compact subsets of K, and hence, the polynomial closure is a
topological closure (which corresponds to the topology of the Alexandrov compactification of K).
It was then a natural question to ask whether this is also true for any valued field K.

S. Frisch [39] proved that the polynomial closure correspond to a topology when the valuation
of the valued field K is discrete whatever the cardinality of the residue field. Very recently, by
means of a generalization of the notion of pseudo-convergence introduced by Ostrowski [54], we
were able to extend the result to all valued fields:
Proposition 6.3. [28] In any valued field, the polynomial closure (corresponding to the valu-
ation domain) is a topological closure. This polynomial topology is the topology spanned by the
complements of the closed balls.

7. Entire functions: Pólya’s theorem in characteristic p

In 1915, Pólya [56] proved that every entire function f on C such that

f(N) ⊆ Z and lim sup
r→+∞

ln |f |r
r

< ln 2 , where |f |r = sup
|z|≤r

|(f(z)|,

is a polynomial (and hence, belongs to Int(Z).) Morever, the fonction 2z shows that the bound
ln 2 is sharp.

Replacing the subset N by Z, Pólya obtained also the same result with the bound ln
(

3+
√

5
2

)
instead of ln 2. In 1933, Gel’fond gave an analogous result for the subset {qn | n ∈ N} where q is
an integer ≥ 2. In 1980, Gramain [43] extended Pólya’s theorem to entire functions f such that
f(OK) ⊆ OK where K denotes an imaginary quadratic field. Very recently, Ably [1] generalized
Gramain’s result. But the recent results in which we are interested here concern analogs in positive
characteristic.

Let us first fix some notation. Let Fq[T ] be a finite field with q elements. Let Fq((T−1)) be the
completion of Fq(T ) for the 1

T -adic valuation and let Ω be the completion of an algebraic closure
of Fq((T−1)) for the extension v of the 1

T -adic valuation to this algebraic closure. We know that Ω

8
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is not only complete but also algebraically closed. The degree with respect to 1
T which is defined

on Fq(T ) extends to Ω letting deg(z) = −v(z).
The ring Fq[T ] is the analog of the ring Z, the field Fq(T ) is the analog of Q, Fq((T−1)) the

analog of R, and Ω the analog of C.
A first result along that line was given in 1997 by Mireille Car [24] for the set Fq[T ]. Car’s

bound was improved first in 2003 by Delamette [35], then in 2004 by David Adam whose bound is
known to be optimal thanks to an example previously given by Car.

Proposition 7.1. [2] Let f be an entire function on Ω such that

f(Fq[T ]) ⊆ Fq[T ] and lim sup
r→+∞

M(f, r)
qr

<
1

e ln q
where

M(f, r) = sup
deg(z)≤r

deg(f(z)).

Then, f is a polynomial, and hence, f belongs to Int(Fq[T ]). Moreover, the bound 1
e ln q is sharp.

Replacing Fq[T ] by the subset S formed by the powers of a non-constant polynomial, Adam [2]
obtained also an optimal result. It is worth noticing the proofs are obtained thanks to a good
choice of bases for the Fq[T ]-modules Int(Fq[T ]) and Int(S,Fq[T ]) (cf. [25]).

Pólya’s theorem was extended in 1946 by Pisot to almost integer-valued functions. Analogous
results were obtained in positive characteristic by Adam and Hirata-Kohno [6] in 2006.

8. Ultrametric analysis (1st part):
polynomial approximation of continuous functions

In this section, we still talk about power series, but more specifically about p-adic power se-
ries. Mahler gave an explicit description of the p-adic approximation of continuous functions by
polynomials (see Proposition 6.2) when K = Qp and S = Zp :

Proposition 8.1. [50] Every continuous function ϕ ∈ C(Zp,Qp) may be written as a binomial
series:

ϕ(x) =
∑
n≥0

an

(
x

n

)
where an ∈ Qp and vp(an)→∞.

Moreover,
inf
x∈Zp

vp(ϕ(x)) = inf
n∈N

vp(an)

One says that the sequence formed by the binomial polynomials
{(

x
n

)
| n ≥ 0

}
is a normal basis of

the Banach space C(Zp,Qp).
Mahlher’s result has been extended by replacing the field Qp by any local field K, so that

K is locally compact, and Zp by a compact subset S of K. The first extension was made by
Amice [7] but with a condition on the compact subset (it must be regular in some sense defined
by her). It was then proved by Bhargava and Kedlaya [14] for any compact subset S of K, thanks
to Bhargava’s notion of v-ordering. Finally, Bhagarva and Kedlaya’s result was extended [22] to
every compact subset S of any valued field K (the valuation needs not be discrete, nor the residue
field be finite).

In order to explain these extensions of Mahler’s result, let us recall the notion of v-ordering
introduced by Bhargava:

Definition 8.2. [9] A v-ordering of S is any sequence {an}n≥0 of elements of S such that:

∀n ≥ 1 v

(
n−1∏
k=0

(an − ak)
)

= inf
x∈S

v

(
n−1∏
k=0

(x− ak)
)
.

Such a sequence always exists when v is discrete or when S is compact and may be contructed
inductively (the first element being arbitrarily choosen).

9
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Assuming that {an}n≥0 is a v-ordering of S, we define the generalized binomials on S, as follows:(
X

n

)
S

=
n−1∏
k=0

X − ak
an − ak

(n ≥ 0).

The sequence of the generalized binomials is then a basis of the V -module Int(S, V ) of integer-
valued polynomials on S. In fact it is a normal basis of the Banach space of continuous functions
C(S,K) :
Proposition 8.3. [22] Let S be any compact subset of any valued field K and assume that {an}n≥0
is a v-ordering of S. Then, every ϕ ∈ C(S,K) can uniquely be expanded in the form:

ϕ =
∑
n≥0

bn

(
X

n

)
S

with bn ∈ K and v(bn)→∞.

Moreover,
inf
v∈V

v(ϕ(x)) = inf
n∈N

v(bn).

I recalled the previous results (essentially from the end of the last century) in order to introduce
the next section.

9. Ultrametric analysis (2nd part):
polynomial approximation of regular functions

During the second meeting on integer-valued polynomials which held in Marseille in 2000,
Manjul Bhargava suggested possible extensions of the notion of v-ordering in order to study some
spaces of analytic functions. However, it is only shortly before this third meeting that he published
in the Journal of the American Mathematical Society a very interesting paper entitled On p-
orderings, integer-valued polynomials and ultrametric analysis where he gave ingenious extensions
of the notion of v-ordering.

He is interested in two kinds of regular functions on a compact subset S of a local field K. First,
the Banach space of locally analytic functions of order h, that is, functions whose restrictions on
balls of radius e−h may be written as power series. Julie Yeramian ([64] and [65]) begun this
study in the case where S is the valuation domain V of K. Bhargava studied the general case of
a compact subset S.

In fact, I will talk on the second kind of regular functions as it seems to me to be the more
interesting one: the Banach space Cr(S,K) of r-times continuously differentiable functions on S.
Before doing that, I have to precise what is a r-times continuously differentiable function in the
ultrametric case.

For every f : S → K, define
Φ(f) : S × S \∆→ K where ∆ = {(x, x) | x ∈ S}

by

Φ(f)(x, y) = f(x)− f(y)
x− y

.

One says that f ∈ C1(S,K) if Φ(f) may be extended continuously to S × S. Then, in particular,
f ′(x) = Φ(f)(x, x) for every x ∈ S. More generally, one defines finite differences of order r, Φr(f),
by induction on r. For instance,

Φ2(f)(x, y, z) = Φ(f)(x, y)− Φ(f)(x, z)
y − z

(Φ2(f) is defined on S3 \∆ where ∆ = {(x, y, z) | x = y or y = z or z = x}.) Then, f ∈ C2(S,K)
means that Φ2(f) may be extended continuously to S3. And so on.

If we restrict to polynomials, we obtain polynomials that are integer-valued together with their
finite differences, and may define the following sets (in fact rings):

Int{1}(S, V ) = {f ∈ Int(S, V ) | Φ(f) ∈ Int(S2, V )}

Int{2}(S, V ) = {f ∈ Int{1}(S, V ) | Φ2(f) ∈ Int(S3, V )}
ad so on ...

10
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Barsky [8] gave bases of the V -module Int{1}(V ). But, we did not have any formulas for bases
of Int{r}(S, V ) for r ≥ 2 or S 6= V .

With respect to this notion, we must notice that we considered here finite differences instead
of divided differences [as Barsky], and that the corresponding rings of integer-valued polynomials
differ for r ≥ 2 [13].

Bhargava had the brilliant idea of introducing the following notion:

Definition 9.1. (Bhargava [12]). A r-removed v-ordering of S is a sequence {an}n≥0 of elements
of S such that : the first r + 1 elements a0, a1, . . . , ar being arbitrarily chosen, an is recursively
defined, for n > r, by the condition

inf0≤i1<...<ir<n v
(∏

0≤k<n, k 6=i1,...,ir (an − ak)
)

=

infx∈S inf0≤i1<...<ir<n v
(∏

0≤k<n, k 6=i1,...,ir (x− ak)
)
.

Such a sequence is not unique but, as for v-orderings, at each step, this minimum does not
depend on the elements a0, a1, . . . , an−1. We denote this minimum by w

{r}
S (n). If we choose an

element π such that v(π) = 1, we define the r-removed factorials by

n!{r}S = πw
{r}
S

(n) (n ≥ 0).

Finally, if {an} is an r-removed v-ordering, we may define an r-removed generalized binomial
polynomial by (

X

n

){r}
S

= (X − a0)(X − a1) . . . (X − an−1)
n!{r}S

.

Proposition 9.2. [12, Theorems 7 and 17] Let S be a compact subset of a local field K. If
{an}n≥0 is an r-removed v-ordering of S, then the corresponding r-removed generalized binomial
polynomials

(
X
n

){r}
S

form:
– a basis of the V -module Int{r}(S, V ),
– a normal basis of the Banach space Cr(S,K).

Question O. For particular subsets of valued fields, are there explicit formulas that give the r-
removed factorials?
For instance, are there formulas like Legendre’s formula for the r-removed factorials of Zp? More-
over, if there are such formulas, are there global formulas for the r-removed factorials of Z :

n!{r}Z =
∏
p∈P

pw
{r}
p (n) ?

For a quick answer concerning Zp, see Johnson’s contribution in these Proceedings. For a partial
answer to Question O, see [33].

10. Dynamical systems

First, I will show the links between dynamical systems, v-orderings and ergodicity. For every
prime p, the successor function σ on Z :

σ : k ∈ Z 7→ k + 1 ∈ Z

may be extended by continuity to the ring of p-adic integers Zp and this extension σp : Zp → Zp
is an isometry of Zp for the p-adic valuation vp. This isometry σp is ergodic with respect to the
Haar measure µp on Zp. Recall that µp is characterized by µp(B(x, p−r)) = 1

pr . Recall also that
to say that σp is ergodic for µp means first that the map σp preserves µp:

∀S ⊂ Zp [µp(σp(S)) = µp(S)]

and secondly that
∀S ⊂ Zp [(σp(S) = S)⇒ (µp(S) = 0 or 1)] .
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Moreover, one knows (for instance, see [34]) that every isometry τ of Zp which is ergodic with
respect to the Haar measure µp is conjugate to σp, that is, there exists an isometry h : Zp → Zp
such that the following diagram is commutative:

Zp
σp−−→ Zp

h

y yh
Zp

τ−−→ Zp
These results may be generalized by replacing the field Qp of p-adic numbers by a local field or,

more generally, by any complete valued field K. We may also replace the ring Zp of p-adic integers
by a compact subset S of K whose factorial ideals satisfy a formula very similar to the Legendre’s
formula for classical factorials:

(∗) v(n!S) = nγ0 +
∑
k≥1

[
n

qγk

]
(γk − γk−1)

where {γk}k≥0 denotes the increasing sequences or real numbers γ such that γ = v(x−y) for some
x, y ∈ S, and where qγk

denotes the cardinality of the set of residue classes of S modulo the ideal
{x | v(x) ≥ γ}. This sets generalize the Legendre sets introduced by Evrard and Fares [36], which
themselves generalize Amice’s regular compact sets [7]. We then have the following assertions:

Proposition 10.1. [30] For every compact subset S of a complete valued field K which satisfies
(∗), there exist:
– a measure µ on S characterized by

∀x ∈ S ∀k ≥ 0 µ({y ∈ S | v(x− y) ≥ γk}) = 1
qγk

– sequences b = {bn}n≥0 of elements of S such that, for each k ≥ 0, the sequence {bn}n≥k is a
v-ordering of S.

Such a sequence b = {bn} may be considered as defining a successor function in S that can be
extended to an isometry σb of S. Then,
1- the isometry σb is ergodic for the measure µ of S,
2- every isometry of S which is ergodic for µ is associated to such a sequence,
3- all these isometries are conjugate.

Now, I end with a curious example. First recall the following (and last) question:
Question E. Find natural subsets of Z which admit simultaneous orderings, that is, sequences
which are p-orderings for every prime p.

One knows the following examples:

Z, {n}n≥k, {n}n≤k, {qn}n≥0, {n2}n≥0,

{
n(n+ 1)

2

}
n≥0

and all the subsets that one can deduce from them by a linear function. I ask for natural subsets
because it is always possible to construct ad hoc subsets by a recursive choice of the elements.
Dynamical systems provide an answer:

Proposition 10.2. [5] Let f ∈ Int(Z) and consider the dynamical system (Z, f). Then, for every
x ∈ Z, the orbit {x, f(x), f(f(x)), . . . , fn(x), . . .} admits a simultaneous ordering, namely, the
sequence {fn(x)}n≥0 itself, equivalently:

∀n ≤ m
n−1∏
j=0

fm(X)− f j(X)
fn(X)− f j(X) ∈ Int(Z).

Application. The orbit of 3 under the iteration of the quadratic polynomial f(X) = X2 − 2X + 2
admits a simultaneous ordering. This orbit is the set

{Fn = 22n

+ 1 | n ≥ 0}
formed by the Fermat numbers.
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