

## Déviations pour les temps locaux d'auto-intersections

Rencontre organisée par : Amine Asselah

06-10 décembre 2010

Bálint Tóth and Benedek Valkó

Superdiffusive bounds on self-repellent precesses in d=2 — extended abstract Vol. 2, n° 1 (2010), p. 39-41.

<a href="http://acirm.cedram.org/item?id=ACIRM\_2010\_\_2\_1\_39\_0">http://acirm.cedram.org/item?id=ACIRM\_2010\_\_2\_1\_39\_0</a>

Centre international de rencontres mathématiques U.M.S. 822 C.N.R.S./S.M.F. Luminy (Marseille) France

## cedram

Texte mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

# Superdiffusive bounds on self-repellent precesses in d=2 — extended abstract

### Bálint TÓTH and Benedek VALKÓ

#### Abstract

We prove superdiffusivity with multiplicative logarithmic corrections for a class of models of random walks and diffusions with long memory. The family of models includes the "true" (or "myopic") self-avoiding random walk, self-repelling Durrett-Rogers polymer model and diffusion in the curl-field of (mollified) massless free Gaussian field in 2D. We adapt methods developed in the context of bulk diffusion of ASEP by Landim-Quastel-Salmhofer-Yau (2004).

We study the long time asymptotics of the self repelling Brownian polymer process (SRBP) in  $\mathbb{R}^d$  defined by the SDE

(0.1) 
$$dX_t = dB_t(\eta_0 - \operatorname{grad} V * l_t)(X(t))dt,$$

where  $B_t$  is standard Brownian motion in  $\mathbb{R}^d$ ,  $\eta_0 : \mathbb{R}^d \to \mathbb{R}^d$  is a gradient vector field with sufficient regularity,

$$l_t(A) := |\{s \in [0, t] : X_s \in A\}|$$

is the occupation time measure of the process  $X_t$  and  $V: \mathbb{R}^d \to [0, \infty)$  is a  $C^{\infty}$ , spherically symmetric approximate identity with sufficiently fast decay at infinity. It is assumed that  $V(\cdot)$  is positive definite:

$$\hat{V}(p) = \int_{\mathbb{R}^2} e^{ip \cdot x} V(x) dx \ge 0.$$

The process is pushed by the negative gradient of its own local time, mollified by convoluting with V. The process was introduced by Durrett and Rogers in [2] and further investigated in a series of probability papers. For a survey and complete list of references see [6]. It is phenomenologically similar to the so-called  $true\ self$ -avoiding  $random\ walk\ (TSAW)$  which arose in the physics literature initiated by Amit, Parisi and Peliti in [1] and further investigated in a series of physics papers. For a survey and complete list of references see [10].

Conjectures based on scaling and renormalization group arguments regarding this family of models are the following (see e.g. [1]):

- In d=1:  $X(t) \sim t^{2/3}$  with intricate, non-Gaussian scaling limit.
- In d=2:  $X(t)\sim t^{1/2}(\log t)^{1/4}$  and Gaussian (that is Wiener) scaling limit expected.
- In  $d \geq 3$ :  $X(t) \sim t^{1/2}$  with Gaussian (i.e. Wiener) scaling limit expected.

Some if these conjectures had been proven or at least partially settled. For results in d = 1 see [9], [13], [12], [8] and the survey [10]. For results in  $d \ge 3$  see [3]. The present lecture concentrates on recent results on the d = 2 case. The complete results and proofs will appear in [11].

The natural framework of formulation of the problem and results is the environment seen by the random walker. Let

$$\eta_t(x) := (\eta_0 - \operatorname{grad} V * l_t)(X(t)).$$

Then  $t \mapsto \eta_t$  is a Markov process with continuous sample paths in the function space

$$\Omega = \left\{ \omega \in C^{\infty}(\mathbb{R}^2 \to \mathbb{R}^2) \, : \, \operatorname{rot} \omega \equiv 0, \|\omega\|_{k,m,r} < \infty \right\}$$

Text presented during the meeting "Excess Self-Intersections & Related Topics" organized by Amine Asselah. 06-10 décembre 2010, C.I.R.M. (Luminy).

The work of BT was partially supported by OTKA (Hungarian National Research Fund) grant K 60708.

where  $\|\omega\|_{k,m,r}$  are the seminorms

$$\|\omega\|_{k,m,r} = \sup_{x \in \mathbb{R}^d} \left(1 + |x|\right)^{-1/r} \left|\partial_{m_1,\dots,m_d}^{|m|} \omega_k(x)\right|$$

defined for k = 1, 2, multiindices  $m = (m_1, \ldots, m_d), m_j \ge 0$ , and  $r \ge 1$ .

It was proved in [8] (for d=1) and [3] (for arbitrary d) that the Gaussian measure  $\pi$  on  $\Omega$  defined by the covariances

$$\int_{\Omega} \omega_k(x) d\pi(\omega) = 0, \quad K_{kl}(x - y), \quad \text{with} \quad \hat{K}_{kl}(p) = \frac{p_k p_l}{|p|^2} \hat{V}(p)$$

is stationary and ergodic for the Markov process  $\eta_t$ .

The random vector field  $\omega$  distributed according to  $\pi$  the gradient of the massless free Gaussian field smeared out by convolution with U, where U \* U = V.

Let

$$\hat{E}(\lambda) := \int_0^\infty e^{-\lambda t} \mathbf{E}\left(|X_t|^2\right) dt.$$

The main result of [11], reported in this lecture is the following theorem.

**Theorem 1.** Consider the process defined by the stochastic differential equation (0.1) in  $\mathbb{R}^2$  and let the initial vector field  $\eta_0$  be sampled from the stationary distribution  $\pi$ . Then there exist constants  $0 < C_1, C_2 < \infty$  such that for  $0 < \lambda < 1$  the following bounds hold

$$C_1 \log |\log \lambda| \le \lambda^2 \hat{E}(\lambda) \le C_2 |\log \lambda|$$

Remarks: (1) Modulo Tauberian inversion, these bounds mean in real time

$$C_3 t \log \log t \le \mathbf{E} \left( |X(t)|^2 \right) \le C_4 t \log t,$$

with  $0 < C_3, C_4 < \infty$  and for t sufficiently large.

(2) The upper bound is straightforward, it follows directly form estimates on diffusion in random scenery. The superdiffusive lower bound is the main result.

The proof of Theorem 1 follows the main lines of [5]. See also [4]. However on the computational level there are notable differences. For similar recent results referring to second class particle motion in various asymmetric exclusion processes see also [7].

Full proofs are available in [11].

### References

- D. Amit, G. Parisi, L. Peliti: Asymptotic behavior of the 'true' self-avoiding walk. Physical Reviews B 27: 1635–1645 (1983)
- [2] R.T. Durrett, L.C.G.Rogers: Asymptotic behavior of Brownian polymers. Probability Theory and Related Fields 92: 337–349 (1992)
- [3] I. Horváth, B. Tóth, B. Vető: Diffusive limits for "true" (or myopic) self-avoiding random walks and self-repellent Brownian polymers in three and more dimensions. http://arxiv.org/abs/1009.0401 (submitted, 2010)
- [4] C. Landim, A. Ramirez, H-T. Yau: Superdiffusivity of two dimensional lattice gas models. *Journal of Statistical Physics* 119: 963–995 (2005)
- [5] C. Landim, J. Quastel, M. Salmhofer, H-T. Yau: Superdiffusivity of one and two dimentsional asymmetric simple exclusion processes. Communications in Mathematical Physics 244: 455–481 (2004)
- [6] T. S. Mountford, P. Tarrès: An asymptotic result for Brownian polymers. Ann. Inst. H. Poincaré Probab. Stat. 44: 29–46 (2008)
- [7] J. Quastel, B. Valkó: in preparation (2010)
- [8] P. Tarrès, B. Tóth, B. Valkó: Diffusivity bounds for 1d Brownian polymers. Annals of Probability (to appear 2010+) http://arxiv.org/abs/0911.2356
- [9] B. Tóth: 'True' self-avoiding walk with bond repulsion on Z: limit theorems. Ann. Probab., 23: 1523-1556 (1995)
- [10] B. Tóth: Self-interacting random motions. In: Proceedings of the 3rd European Congress of Mathematics, Barcelona 2000, vol. 1, pp. 555-565, Birkhauser, 2001.
- [11] P. Tarrès, B. Tóth, B. Valkó: Superdiffusive bounds on self-repellent Brownian polymers and diffusion in the curl of the free Gaussian field in d = 2. (2010, in preparation)
- [12] B. Tóth, B. Vető: Continuous time 'true' self-avoiding random walk on Z. ALEA Latin Amrican Journal of Probability (2010, to appear) http://arxiv.org/abs/0909.3863
- [13] B. Tóth, W. Werner: The true self-repelling motion. Probab. Theory Rel. Fields, 111: 375-452 (1998)
- [14] H-T. Yau:  $(\log t)^{2/3}$  law of the two dimensional asymmetric simple exclusion process. Annals of Mathematics 159: 377–105 (2004)

Institute of Mathematics, Budapest University of Technology, Egry József u. 1, Budapest 1111, Hungary • balint@math.bme.hu

Department of Mathematics, University of Wisconsin Madison, 480 Lincoln Drive, Madison WI 53706  $\, \bullet \,$  valko@math.wisc.edu