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Ising fog drip: the shallow puddle, o(N) deep
Dima Ioffe and Senya Shlosman

Abstract
This is an abstract of a work in progress. The first part – Ising model fog drip: the

first two droplets – is published in “In and Out of Equilibrium 2”, Progress in Probability,
Birkhauser, 2008.

We study the model of the stalagmite formation. It is a result of the dew-fall effect,
when the concentration of the vapor exceeds the saturation point. It turns out that the
growth process has discontinuities, when a new atomic monolayer is created spontaneously.
An interesting feature of the process is that the size of each newly born monolayer has to
exceed some critical size CcrN , where N is the linear size of our 3D system. The study
boils down to the investigation of the ensemble of the nested random loops in 2D, which are
under the influence of two competing mechanisms: entropic repulsion and weak attraction.

Consider the Ising spins

σt = ±1
at low temperature β−1, occupying a d-dimensional box V dN of the linear size N with (+) boundary
conditions. We want to study the sum

SN =
∑
t∈V d

N

σt

under the Gibbs distribution µ+
N .

Let EN ≈ m∗Nd be the expectation of SN , DN be its variance, and let us look at the proba-
bilities

Pr (SN = bN )
for bN < EN .

In the Small Deviation Case:
lim
N→∞

|bN − EN |
(Nd)2/3 = 0

we have
PN (bN ) = qN (bN ) (1 + oN (1)) ,

where

qN (bN ) = 2√
2πDN

exp

{
−1

2
(bN − EN )2

DN

}
.

In the Moderate Deviation Case

lim
N→∞

|bN − EN |
Nd

= 0

consider first the case when
lim
N→∞

|bN − EN |
(Nd)k/k+1 = 0

with k ≤ d.
Then
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PN (bN ) = qN (bN )

× exp

−
k∑
j=3

KjN
j!

(
EN − bN
DN

)j (1 + oN (1))

K3 = −G3, K4 = −G4 + 3(G3)2

D , ..., G
j - semi-invariants; G3 = 〈ξ3〉 − 3〈ξ2〉〈ξ〉+ 2〈ξ〉3, ...

In the remaining case
lnPN (bN ) ∼ c (EN − bN )(d−1)/d

.

The reason is that we have reached the condensation threshold, or dew-point, which is located
at
(
Nd
)d/d+1.

It is argued in the paper by Bodineau, Schonmann and Shlosman (3D crystal: how flat its flat
facets are? http://fr.arxiv.org/pdf/math-ph/0401010, Communications in Math. Physics. v. 255,
n. 3, pp. 747 - 766, 2005.) on heuristic level, that in the low-temperature 3D Ising model in the
regime when bN is already of the volume order, i.e.

bN ∼ νN3,

the sequence of condensations happens. In such regime one expects to find in the box V 3
N a droplet

Γ of (−)-phase, of linear size of the order of N, having the approximate shape of the Wulff crystal,
which crystal at low temperatures has 6 flat facets. One expects furthermore that the surface Γ
itself has 6 flat facets.

However, when one further increases the “supersaturation parameter” bN , by an increment of the
order of N2, one expects to observe the condensation of extra (−)-particles on one of the flat facets
of Γ (randomly chosen), forming a monolayer m of thickness of one lattice spacing. So one expects
to see here the condensation of the supersaturated gas of (−)-particles into a monolayer which is
of “visible”size. (Indeed, such monolayers were observed in the experiments of condensation of the
Pb.)

Figure 1: Monolayer of lead.

Suppose we are looking at the Ising spins σt = ±1 at low temperature β−1 in a 3D box VN of
the linear sizes RN ×RN ×N.

We consider the Dobrushin boundary conditions, i.e. we impose (+)-boundary conditions in
the upper half-space (z > 0), and (−)-boundary conditions in the lower half-space (z < 0). These
(±)-boundary conditions force an interface Γ between the (+) and the (−) phases in VN ,

The interface Γ is rigid. The rigidity means that at any location, with probability going to 1
as the temperature β−1 → 0, the interface Γ coincides with the plane z = 0. If we impose the
canonical ensemble restriction, fixing the sum SN to be zero, then the properties of Γ stay the
same.

We will now put more −1 particles into VN ; that is, we fix SN to be
SN = bN = −δN2,
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and we will describe the evolution of the surface Γ as the parameter δ > 0 grows.
0.

0 ≤ δ < δ1

Nothing is changed in the above picture – namely, the interface Γ stays rigid. It is essentially
flat at z = 0; the local fluctuations of Γ are rare and do not exceed K lnN in linear size.

Figure 2: Dry land.

I.
δ1 < δ < δ2

The monolayer m1 appears on Γ. This is a random outgrowth on Γ, of height one. Inside m1
the height of Γ is mostly z = 1, while outside it we have mostly z = 0. For δ close to δ1 the shape
of m1 is the Wulff shape, given by the Wulff construction.

Figure 3: The first droplet is born.

The surface tension function τ̃2D (n) , n ∈ S1, given by

τ̃ (n) = d
dn
τ3D (m)

∣∣∣
m=(0,0,1)

.

Here τ3D (m) , m ∈ S2 is the surface tension function of the 3D Ising model, the derivatives are
taken at the point (0, 0, 1) ∈ S2 along all the tangents n ∈ S1 to the sphere S2. The “radius” of
m1 is of the order of N, i.e. it equals to r1 (δ)N, and as δ ↘ δ1 we have r1 (δ) ↘ rcr > 0. In
particular, we never see a monolayer m of radius smaller than rcrN.

The size rcr scales like R2/3. In particular, it is possible to choose R in such a fashion that
R > 2rcr or, in other words, for values of R sufficiently large the critical droplet fits into BN .
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As δ increases, the monolayer m1 grows in size, and at a certain moment δ = δ1.5 it touches
the faces of the box BN . After that moment the shape of m1 is different from the Wulff shape.
Namely, it is the Wulff plaquette , made from four segments on the four sides of the RN × RN
square, connected together by the four quarters of the Wulff shape of radius r̃1 (δ)N. We have
evidently r̃1

(
δ1.5
)

= R/2. As δ ↗ δ2, the radius r̃1 (δ) decreases to some value r̃1
(
δ2
)
N, with

r̃1
(
δ2
)
> 0.

Figure 4: The first droplet meets the wall.

Figure 5: The first droplet is pressed against the wall.

II.
δ2< δ < δ2.5

The second monolayer m2 is formed on the top of m1. Asymptotically it is of Wulff shape with
the radius r2 (δ)N, with r2 (δ)↘ r+2

(
δ2
)

as δ ↘ δ2, with r+2
(
δ2
)
> 0. The first monolayer m1 has

a shape of Wulff plaquette with radius r̃1 (δ) , which satisfies
r̃1 (δ) = r2 (δ) .

A somewhat curious relation is:
r+2
(
δ2
)

is strictly bigger than r̃1
(
δ2
)
.

In other words, the Wulff-plaquette-shaped monolayer m1 undergoes a jump in its size and shape
as the supersaturation parameter δ crosses the value δ2. In fact, the monolayer m1 shrinks in size:
the radius r̃1 (δ) increases as δ grows past δ2.

II.5
δ2.5< δ < δ3
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Figure 6: The first droplet is pressed more.

Figure 7: The second droplet is born.

Figure 8: The second droplet is growing, the first is shrinking.

At the value δ = δ2.5 the growing monolayer m2 meets the shrinking monolayer m1, i.e.
r2
(
δ2.5
)

= r̃1
(
δ2.5
)

= R/2. Past the value δ2.5 the two monolayers m2 ⊂ m1 are in fact asymp-
totically equal, both having the shape of the Wulff plaquette with the same radius r̃1 (δ) = r̃2 (δ) ,
decreasing to the value r̃1

(
δ3
)

= r̃2
(
δ3
)

as δ increases up to δ3.
III.
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δ3< δ < δ4

The third monolayer m3 is formed, of the asymptotic radius r3 (δ)N, with r3 (δ) ↘ r+3
(
δ3
)

as
δ ↘ δ3, with r+3

(
δ3
)
> 0.

The radii of two bottom Wulff plaquettes r̃1 (δ) = r̃2 (δ) = r3 (δ) decrease to the value r+3
(
δ3
)

as δ decreases down to δ3, with r+3
(
δ3
)
> r̃i
(
δ3
)
, so the two Wulff plaquettes m1,m2 shrink,

jumping to a smaller area, as δ passes the threshold value δ3.

...

X.
At a certain step k the structure of the jump changes. The newly born monolayer is a Wulff

plaquette, having the same size as all the lower lying Wulff plaquettes. They grow together until
the moment when the k+ 1-th layer is born, at which moment all k Wulff plaquettes shrink a bit.

In the language of the interacting random walks our problem looks as follows. We have a
collection of random loops γi, i = 1, 2, ..., k, with the total area A(γ1) + ...+A(γk) = S, k = k(S).
The loops pay heavily if they intersect, or if they have excess length. Therefore they do not want
to come too close to each other because of the entropic repulsion. But on the other hand there is
an attractive interaction between the paths.

The weight w of the family Gk = {γi} is given by

w (Gk) =
∑
Γn

exp

{
−β

k∑
i=1
|γi|+

∑
Λ⊂Z2

Φ (Λ)N (Λ, Gk)

}
.

The interaction part satisfies
|Φ (Λ)| ≤ exp {−βdiam (Λ)} .

Here N (Λ, Gk) is the number of the paths γi in Gk which intersect Λ, lessen by 1.
It turns out that if the number k of loops in Gk growth slower than N , i.e. is k = o(N), then

the entropic repulsion wins over. The loops do not interact too much, except that they have to
remain nested. The area inside the loops is the same on the scale N2. So macroscopically the
loops are indistinguishable, i.e. from far away one sees just a single contour.

Figure 9: o(N) nested loops.
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