

Déviations pour les temps locaux d'auto-intersections

Rencontre organisée par : Amine Asselah

06-10 décembre 2010

Dmitry Ioffe and Yvan Velenik

Random Walks in Attractive Potentials: The Case of Critical Drifts Vol. 2, n° 1 (2010), p. 11-13.

http://acirm.cedram.org/item?id=ACIRM_2010__2_1_11_0

Centre international de rencontres mathématiques U.M.S. 822 C.N.R.S./S.M.F. Luminy (Marseille) France

cedram

Texte mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Random Walks in Attractive Potentials: The Case of Critical Drifts

Dmitry Ioffe and Yvan Velenik

Abstract

We consider random walks in attractive potentials - sub-additive functions of their local times. An application of a drift to such random walks leads to a phase transition: If the drift is small than the walk is still sub-ballistic, whereas the walk is ballistic if the drift is strong enough. The set of sub-critical drifts is convex with non-empty interior and can be described in terms of Lyapunov exponents (Sznitman, Zerner). Recently it was shown that super-critical drifts lead to a limiting speed. We shall explain that in dimensions $d \geq 2$ the transition is always of the first order. (Joint work with Y.Velenik)

1. Class of Models and Results

We consider nearest neighbour paths $\gamma = (\gamma(0), \dots, \gamma(n))$ on \mathbb{Z}^d . The length of the path is denoted as $|\gamma| = n$ and its displacement is denoted as $X(\gamma) = \gamma(n) - \gamma(0)$. Unless mentioned otherwise all the paths start at the origin, $\gamma(0) = 0$.

Paths γ are subject to a self-interacting potential $\Phi(\gamma)$ and to a drift $(h, \mathsf{X}(\gamma))$; $h \in \mathbb{R}^d$. The potential Φ is of the form:

$$\Phi(\gamma) = \sum_{x \in \mathbb{Z}^d} \phi\left(\ell_{\gamma}(x)\right),\,$$

where $\ell_{\gamma}(x)$ is the local time of γ at x. Here are our assumptions on ϕ :

A1. $\phi(1) > 0$ and $\phi(\ell)$ is non-decreasing in ℓ .

A2. $\phi(\ell + m) \le \phi(\ell) + \phi(m)$.

A3. $\lim_{\ell\to\infty} \phi(\ell)/\ell = 0$.

The assumption A2 means that Φ is a self-attractive potential. Assumption A3 is just a normalization. Assumption A1 ensures positivity of Lyapunov exponents (see below). The main example we have in mind is that of annealed random walks in random potentials,

$$\phi(\ell) = -\log \mathbb{E} e^{-\ell V}$$

where V is a non-negative random variable with $0 \in \text{supp}(V) \subseteq [0, \infty]$. Drifted Wiener sausage is a particular example. The n-step partition function is then given by

$$A_n^h = \sum_{|\gamma| = n} \left(\frac{1}{2d}\right)^{|\gamma|} e^{-\Phi(\gamma) + (h, \mathsf{X}(\gamma))}.$$

Let \mathbb{A}_n^h to denote the corresponding path measure. There are two competing contributions to \mathbb{A}_n^h : Because of the attractive nature of Φ paths prefer to collapse, whereas the drift h pulls them away. The following is known [2, 1]: Whichever h one chooses, the mean displacement $\mathsf{X}(\gamma)/n$ satisfies a large deviation principle under \mathbb{A}_n^h with a convex rate function J^h . Moreover, there exists a critical set of drifts \mathbf{K}_0 - a compact convex subset of \mathbb{R}^d with non-empty interiour $0 \in \mathsf{int}(\mathbf{K}_0)$, such that:

Text presented during the meeting "Excess Self-Intersections & Related Topics" organized by Amine Asselah. 06-10 décembre 2010, C.I.R.M. (Luminy).

Sub-ballistic drifts. If $h \in \text{int}(\mathbf{K}_0)$, then J^h has a unique minimum at 0. In particular,

$$\lim_{n\to\infty}\mathbb{A}_n^h\left(\frac{\mathsf{X}(\gamma)}{n}\right)=0.$$

Ballistic drifts. If $h \notin K_0$ then J^h has a unique minimum at some $v(h) \neq 0$. In particular,

$$\lim_{n \to \infty} \mathbb{A}_n^h \left(\frac{\mathsf{X}(\gamma)}{n} \right) = v(h).$$

Critical drifts. If $h \in \partial \mathbf{K}_0$, then $J^h(0) = 0$.

Our main result implies that in any dimension $d \geq 2$ the transition is of the first order:

Theorem A. Let $h \in \partial \mathbf{K}_0$. Then, there exists $v(h) \neq 0$, such that the rate function J^h is zero on the segment [0, v(h)] and strictly positive otherwise. Furthermore,

$$\lim_{n \to \infty} \mathbb{A}_n^h \left(\frac{\mathsf{X}(\gamma)}{n} \right) = v(h).$$

Actually our proof of this result implies accompanying laws under \mathbb{A}_n^h :

Theorem B. The set of critical drifts is regular. Namely, $\partial \mathbf{K}_0$ is locally analytic and has a uniformly positive Gaussian curvature. Let $h \in \partial \mathbf{K}_0$ and let $v(h) \neq 0$ be as above. Then,

$$\lim_{n \to \infty} \mathbb{A}_n^h \left(\left| \frac{\mathsf{X}(\gamma)}{n} - v(h) \right| > \epsilon \right) = 0$$

for any $\epsilon > 0$. Moreover, there exists a non-degenerate covariance matrix Ξ , such that

$$\frac{\mathsf{X}(\gamma) - nv(h)}{\sqrt{n}} \Rightarrow \mathcal{N}(0,\Xi).$$

2. Lyapunov Exponents

The geometry of the problem is encoded in Lyapunov exponents: Given $x \in \mathbb{Z}^d$ and $\lambda \geq 0$ define

$$A_{\lambda}^{x} = \sum_{\mathbf{X}(\gamma) = x} \left(\frac{1}{2d}\right)^{|\gamma|} e^{-\Phi(\gamma) - \lambda|\gamma|}.$$

Then,

$$a_{\lambda}(x) = -\lim_{N \to \infty} \frac{1}{N} \log A_{\lambda}^{\lfloor Nx \rfloor}.$$

It is easy to check that the limit is well defined for any $x \in \mathbb{R}^d$ and $\lambda \geq 0$. Moreover $a_{\lambda}(\cdot)$ is an equivalent norm;

$$0 < \frac{1}{c_{\lambda}} \le \min_{x \neq 0} \frac{a_{\lambda}(x)}{|x|} \le \max_{x \neq 0} \frac{a_{\lambda}(x)}{|x|} \le c_{\lambda},$$

for any $\lambda \geq 0$.

The set of critical drifts is related to a_0 as follows:

$$\mathbf{K}_0 = \{h : (h, x) < a_0(x) \ \forall x\}.$$

Alternatively, one can describe \mathbf{K}_0 as the closure of the domain of convergences of the series

$$h \mapsto \sum_{x \in \mathbb{Z}^d} e^{(h,x)} A_0^x.$$

For any $x \in \mathbb{R}^d$ one can choose $h \in \partial \mathbf{K}_0$ such that

$$(h,x) = a_0(x) = \max_{g \in \partial \mathbf{K}_0} (g,x).$$

In the sequel we shall fix a small number $\delta > 0$ and use it in order to quantify the cone of good directions $\mathcal{C}_{\delta}(h)$ which is associated with a critical drift $h \in \partial \mathbf{K}_0$. Namely,

$$C_{\delta}(h) = \left\{ x \in \mathbb{R}^d : (h, x) \ge (1 - \delta)a_0(x) \right\}.$$

3. Notes on the Proof

Let $h \in \partial \mathbf{K}_0$, $x \in \mathbb{Z}^d$ and let $\gamma = (\gamma(0), \dots, \gamma(k), \dots, \gamma(m))$ be a path from 0 to x. We shall say that a point $u = \gamma(k)$ is an h-cone point of γ if

$$\gamma \subseteq (u - \mathcal{C}_{\delta}(h)) \cup (u + \mathcal{C}_{\delta}(h)).$$

Here is the crucial result:

The Mass Gap Estimate. There exist $\delta, \eta, \nu > 0$ such that

$$e^{(h,x)}A_0^x$$
 (γ has no h-cone points) $\leq e^{-\nu|x|}$

uniformly in $h \in \partial \mathbf{K}_0$ and in all $x \in \mathcal{C}_{\eta}(h)$ sufficiently large.

The Mass-Gap estimates sets up in motion the Ornstein-Zernike machinery developed in [1] and in references therein. An important new ingredient needed for the proof of the mass-gap is the following Lemma, which is used for controlling massless hairs of renormalized skeletons:

Lemma. Let B_K be a Euclidean ball of radius K. Consider simple random walk paths $\gamma = (\gamma(0), \ldots, \gamma(\tau_K))$ which are run up to the first exit time from B_K . This gives rise to a probability distribution \mathbb{Q}_K . For any path γ as above define $R_K = R_K(\gamma)$ to be the size of its range (number of different points visited by γ before τ_K). Then for every $c_1 > 0$ there exists $c_2 > 0$ such that

$$\mathbb{Q}_K (R_K \le c_1 K) \le e^{-c_2 K}$$

for all K sufficiently large.

References

- [1] Dmitry Ioffe and Yvan Velenik. Ballistic phase of self-interacting random walks. In Analysis and stochastics of growth processes and interface models, pages 55–79. Oxford Univ. Press, Oxford, 2008.
- [2] Martin P. W. Zerner. Directional decay of the Green's function for a random nonnegative potential on Z^d.
 Ann. Appl. Probab., 8(1):246–280, 1998.

Technion and Université de Genève