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On the binary expansion of irrational algebraic
numbers
Tanguy Rivoal

These notes correspond to my talk given during the conference “Numeration: Mathematics and
Computer Science” at the CIRM (23 to 27 March 2009). I warmly thank the organisers Boris
Adamczewski, Anne Siegel and Wolfgang Steiner for their invitation.

1. Introduction

My talk was centered on some recent results concerning the number of occurences of the digit 1
in the binary expansion of a real number x up to the n-th digits. I first need to introduce some nota-
tion. For any non-negative integer m, let B(m) be the number of 1 in the (finite) binary expansion
of m. For any non-negative real number x written in base 2 as x = (x−px−p+1 · · ·x0, x1x2x3 . . .)2,
let Bn(x) = #{j ≤ n : xj = 1}. Of course, the counting function Bn(x) is not well defined when
x = n/2k (n, k non-negative integers), which has two possible binary expansions, a “finite” one
(ending with infinitely many 0s) and an “infinite” one with (ending with infinitely many 1s). We
choose the finite expansion, in which case we have

Bn(x) = B0(x) = B(x)
for any non-negative integer x.

A classical problem is to estimate the asymptotic behavior of Bn(x) as n → +∞, given x.
Obviously, Bn(x) → +∞ for any irrational number. But at what speed? Since digits of a real
number can be viewed as the realisation of independent Bernoulli random variables with respect
to Lebesgue measure, the law of large numbers shows that

(1.1) Bn(x) = n
2

+ o(n)

for almost all real numbers. This point of view was first developed by Borel in his celebrated
paper [4], where he coined the expression “simple normal number in base 2” for those real numbers
x which satisfy (1.1). (Normal numbers in base 2 are those for which any block of digits of length
q ≥ 1 appears asymptotically with the frequency 2−q and absolutely normal are those for which
any block of digits of length q ≥ 1 in base b appears asymptotically with the frequency b−q for any
base b ≥ 2.)

Proving the simple normality of a given number in a given base, let alone its absolute normality,
is a notoriously difficult problem, except for uninteresting numbers like 2/3 = (0.1010101010 . . .)2.
Champernowne was the first to construct an explicit irrational number, namely C := 0.123456789101112 . . .,
normal in base 10 –the integers written in base 10 are concatenated. For any given b ≥ 2, an ob-
vious change in the definition of C provides a normal number in base b. Sierpiński provided an
algorithm to construct an absolutely normal number, even though a simpler number is yet to be
found. It is unfortunate that, so far, even the simple normality in base 2 of classical numbers like
e, log(2), π, ζ(3) or algebraic irrational numbers is still unknown.

However, very recently, some progresses have been made on these questions in the case of
algebraic irrational numbers and I now describe them.
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2. Results using diophantine tools

Let us start with some easy remarks. An irrational number x is said to have a finite irrationality
exponent µ if the equation

(2.1)
∣∣∣∣x− pq

∣∣∣∣ ≥ 1
qµ

holds for all p, q ∈ Z, q � 1. The irrationality exponent of x, noted µ(x), is the infimum of such
µ if there exist some, and is set to +∞ otherwise. Using the pigeon principle, Dirichlet proved
that for any irrational numbers, we have µ(x) ≥ 2, but this is also a consequence of the theory of
continued fractions. Furthermore, for almost all real numbers x, we have µ(x) = 2.

Proposition 1. For any ε > 0 and any irrational number x > 0, we have

(2.2) Bn(x) ≥
log(n)

log(µ(x) + ε)
+O(1).

This Proposition holds even if µ(x) = +∞, in which case one must understand that Bn(x)� 1
which is plain. The proof is simple and instructive.

Proof. We assume that x ∈ (0, 1) and that µ(x) < +∞. We have

x =
∞∑
k=1

1
2mk

= pn
qn

+
∞∑

k=n+1

1
2mk
,

where qn = 2mn and (mk)k≥1 is a strictly increasing sequence of positive integers.
On the one hand,

(2.3)
∣∣∣∣x− pnqn

∣∣∣∣ ≤ 1
2mn+1−1

because mk+1 > mk.
On the other hand, by hypothesis, for any ε > 0, we get

(2.4)
∣∣∣∣x− pnqn

∣∣∣∣ ≥ 1
q
µ(x)+ε
n

= 1
2mn(µ(x)+ε)

for n�ε,x 1.
Comparing (2.3) and (2.4), we immediately get mn+1 ≤ (µ(x) + ε)mn + 1 for n�ε,x 1, hence

mn ≤ c(ε, x)(µ(x) + ε)n

for some constant c(ε, x) > 0.
To conclude, it remains to see that

Bn(x) = #{k : mk ≤ n}

≥ #{k : c(ε, x)(µ(x) + ε)k ≤ n}

≥ log(n)
log(µ(x) + ε)

+O(1).

�

It is known that the numbers e, π, log(2), ζ(3) all have finite irrationality exponent and thus
Proposition 1 can be applied to them: it is sad to observe that this is the best known result
concerning the asymptotic behavior of their binary digits, up to the value of the constant dividing
log(n).

The reader can see that (2.4) does not really use the specific form of qn = 2mn , which is not
“detected” when we use the irrationality exponent. Hence a first improvement over (2.2) would
occur if it was possible to decrease µ(x). (Of course, the resulting irrationality measure would hold
only for some denominators q with specific arithmetic properties.) This turns out to be possible
for algebraic irrational numbers, by means of a deep theorem due to Ridout [8].
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Theorem 1 (Ridout). Let ξ be a real number and S1, S2 two finite set of prime numbers (possibly
empty). Let us assume that there exists ε > 0 such that the inequality∏

w1∈S1

|p|w1 ·
∏
w2∈S2

|q|w2 ·
∣∣∣∣ξ − pq

∣∣∣∣ < 1
q2+ε

has infinitely many solutions p/q, with (p, q) = 1. Then ξ is transcendental over Q.

Here, |n|w = w−vw(n). When S1 = S2 = ∅, the statement reduces to the famous Roth’s
Theorem [11] that µ(α) = 2 for all algebraic irrational numbers α.

As an application, we immediately see that for any algebraic irrational number α and for any
ε > 0, the inequality

(2.5)
∣∣∣α− p2m ∣∣∣ ≥ 1

2m(1+ε)

holds for all p,m ∈ Z, m�ε 1. Using (2.5) instead of (2.4) during the proof of Proposition 1, we
get the following

Proposition 2. For any algebraic irrational number α > 0 and any ε > 0, we have

(2.6) Bn(α) ≥ log(n)
log(1 + ε)

+O(1).

Eq. (2.6) is not such a big improvement over Eq. (2.2) because only the constant is affected
and not log(n). We see that if it was possible to replace qε by any function of slower growth, like
a power of log(q), then the same argument would now improve the term log(n). Unfortunately,
an improvement of Ridout’s Theorem is not yet available for even at least one algebraic number.
Proving a Ridout-type theorem for transcendental number is even more elusive, even though results
in this direction were recently obtained by the author [10] for the numbers log(r) with r ∈ Q close
to 1.

However, we will see in the next section that an argument of a different nature provides a
dramatic improvement of Proposition 2. Before this, let us conclude the present section with
the following remark. Roth and Ridout’s Theorems have been generalised by Schmidt and then
Schlickewei, culminating with the Subspace Theorem. We won’t state it here but will quote one
very important consequence of it.

Theorem 2 (Adamczewski-Bugeaud [1]). Given a real number x = (0.a1a2a3 . . .)b written in base
b ≥ 2, let us define the complexity function p(x, b, n) := #{(aj , aj+1, . . . , aj+n−1), j ≥ 1}. Then
for any algebraic irrational number α, we have

lim
n→+∞

p(α, b, n)
n

= +∞.

Since the complexity of a sequence of digits generated by a finite automaton does not grow
faster than linearly, this result implies that the digits of an algebraic irrational number cannot be
generated by a finite automaton. This is the first qualitative result beyond the non-periodicity of
digits, which is not specific to algebraicity but to irrationality. Finally, note that if x is normal in
base b, then p(x, b, n) = bn, but the converse is not necessarily true.

3. A combinatorial approach

In 2004, Bailey, Borwein, Crandall and Pomerance [3] proved the following theorem, which is a
major improvement over Proposition 2.

Theorem 3 (BBCP). For any irrational algebraic number α > 0, we have

(3.1) Bn(α) ≥ (2ad)−1/dn1/d(1 + o(1))

as n→ +∞, where d is the degree of the minimal polynomial P of α and ad ≥ 1 is the dominant
term of P (with coefficients relatively prime in their set).
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In particular, we get the lower bound Bn(
√

2) ≥
√
n
2 (1 + o(1)). The proof of (3.1) given in [3]

is rather involved and will not be reproduced here. Given the binary expansion α =
∑
n an2−n,

the problem is to control the carries when one tries to transform the identity

αk =
∑
n

( ∑
i1+···+ik=n

ai1 · · · aik

)
1
2n

into a valid binary expansion for αk. This is obviously a difficult problem, which they succeed to
solve (partially) by elementary arguments, except at one point where Roth’s Theorem is used to
get the inequality (2.4) with µ(x) = 2. It seems that using Ridout’s Theorem instead of Roth’s
Theorem enables one to increase the constant (2ad)−1/d to a−1/d

d in (3.1). In the other direction,
it is also possible to use Liouville’s Theorem (i.e., that (2.4) holds with d instead of µ(x) = 2) to
get the worse constant (dad)−1/d; this presents the advantage that the whole proof of the lower
bound analogous to (3.1) is completely elementary (1).

In the rest of these notes, I present a sketch of the proof of a slightly better inequality than (3.1)
but which holds for a smaller class of algebraic numbers.

Theorem 4. Let α > 0 be an irrational algebraic of degree d whose minimal polynomial P (X) =∑d
j=0 ajX

j is such that a0 ≤ 0 and aj ≥ 0 for j ≥ 1. Then,

(3.2) Bn(α) ≥ B(ad)−1/dn1/d(1 + o(1)).

Sketch of proof. In [3], the following inequalities are used: for any integers n,m ≥ 0,

B(m+ n) ≤ B(m) +B(n)(3.3)
B(m · n) ≤ B(m) ·B(n).(3.4)

They are very simple but seem to have been unnoticed before [3]. Their proofs are based on the
even simpler equalities: for any positive integer m = (mk · · ·m1m0)2,

B(m+ 2j) = B(m) + 1− Lj (≤ B(m) + 1)(3.5)
B(2jm) = B(m),(3.6)

where Lj is the number of consecutive digits equal to 1 from mj to mk. Eq. (3.6) is obvious while
Eq. (3.5) is proved by the usual “add with carry” algorithm. The proof of (3.3) follow from (3.5)
by induction on the bits of n and for (3.6), we see that

B(mn) = B(m
s∑
`=1

2j`)
(3.3)
≤

s∑
`=1
B(m2j`) (3.6)=

s∑
`=1
B(m) = B(m)B(n).

We want to extend (3.3) and (3.4) to real numbers. The following inequalities will be enough.

Proposition 3. Let x and y be positive irrational numbers.
(i) If x+ y is irrational, then

Bn(x+ y) ≤ Bn(x) +Bn(y) + 1.

This also holds if y is a positive integer.
(ii) If xy is irrational, then

Bn(x · y) ≤ Bn(x) ·Bn(y) + cp(x, y),

where cp(x, y) > 0 is independent of n. That inequality also holds if y is a positive integer.
(iii) Let A be a positive integer. We have

Bn(x) ·Bn(A/x) ≥ n− ci(x, y),

where ci(x, y) > 0 is independent of n.

1I am indebted to B. Adamczewski for this remark.
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All these inequalities are sharp, up to multiplicative and additive constants. The constants cp
and ci can be made explicit but this not necessary here. We omit the proof of this lemma, which
can be found in [9].

We now complete the proof of Theorem 4. By hypothesis, we have
|a0|
α

= a1 + a2α+ · · ·+ adαd−1.

Using Proposition 3(i), iteratively on the right hand side (2), we get the first inequality in

Bn(a1 + a2α+ · · ·+ adαd−1) ≤
d∑
j=1
Bn(adαj−1)(1 + o(1)) ≤

d∑
j=1
B(ad)Bn(α)j−1(1 + o(1)),

where the second inequality holds using Proposition 3(ii). On the other hand, Proposition 3(iii)
implies that

Bn(α)Bn
(
|a0|
α

)
≥ n− c,

for some c independent of n. Hence, since Bn(α)→ +∞, we deduce that

n− c ≤ B(α)
d∑
j=1
B(ad)Bn(α)j−1(1 + o(1)) = B(ad)Bn(α)d.

This completes the sketch of the proof. �

It would be interesting to obtain a complete proof of Theorem 3 in the spirit of that of Theorem 4.
For this, it would be desirable to have a good control of Bn(x − y) in terms of Bn(x) and Bn(y)
or a control of B(m − n) in terms of B(m) and B(n). Unfortunately, this does not seem to be
easy when one considers the examples m = (1000000)2, n = (1)2: we have B(m) = B(n) = 1 but
B(m−n) = B((111111)2) = 6. Another approach would be to split the positive coefficients of the
minimal polynomial of α from the negative ones to get an identity like∑

i∈I
bkiα

ki =
∑
i∈J
bkiα

ki

where I and J form a partition of 0, 1, . . . , d and all bk ≥ 0. But it is not clear how to get a proof
of Theorem 4 very different from that of [3].

Needless to say, it would be even more desirable to increase the exponent 1/d in n1/d to a
value closer to 1 (which would be a result very close to normality). By analogy with diophantine
approximation, we can say that BBCP Theorem is to simple normality in base 2 what Liouville’s
Theorem is to Roth’s Theorem.

4. Applications to transcendental numbers

As mentioned in [3], Theorem 3 can be used to prove the transcendence of real numbers,
sometimes for numbers not amenable to more classical methods.

Theorem 5 (BBCP). Let ξ be a real irrational number such that for some d ≥ 2 we have

lim inf
n→+∞

Bn(ξ)
n1/d = 0

Then ξ is not an algebraic number of degree ≤ d. If this holds for all d ≥ 2, then ξ is transcendental.

This is an immediate consequence of Theorem 3. For example, this shows the transcendence of
the number

ξφ =
∞∑
n=0

1
2φ(n)

for any φ such that

lim sup
n→+∞

φ(n)
nk

2For k = 2, . . . , d, the numbers akαk−1 and
∑d

j=k+1 adα
j−1 are irrational numbers
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for any k > 0. This applies to φ(n) = bnlog log(n+3)c: for that φ, the transcendence of ξφ was not
known before [3].

One also gets a new proof of the transcendence of the number K =
∑
n≥0 2−2n , first obtained

by Kempner [6]. (Another proof in the digital spirit of [3] was also given by Knight [7]; see [2]
for a presentation of many distinct proofs). This number is interesting for other reasons as well.
Indeed, clearly Bn(K) ∼ log2(n) and it is not difficult to prove that

Bn(K2) ∼ 1
2

log2(n)2

as n → +∞ (see [9]). This shows that Proposition 3(ii) is optimal. The same proposition also
shows that Bn(Kj) � log2(n)j for any integer j ≥ 1 with the consequence that we thus have an
example of a transcendental number for which none of its powers are simply normal in base 2. It
seems likely that

Bn(Kj) ∼ kj log2(n)j

as n→ +∞ for some kj > 0. Is it true that kj = 1
j! for any integer j ≥ 1?
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