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Colloque Th. Nombres [1969, Bordeaux]
Bull. Soc. math. France,
Memoire 25, 1971, P. l83 a l88

FAREY FRACTIONS WITH PRIME DENOMINATOR AND THE LARGE SIEVE

by
Dieter WOLKE

An interesting problem which arises in connection with the "large sieve" is
the following one.

Let Q and. N be positive numbers, let M be a real number let a
( M < n ^ M + N ) be any complex numbers. Write

S(a) = i a^ e(n o) (e(B) = e2"6) ,
n

A = I a^ , A (p,b) = I a^ (p prime) ,
n - ,n=b mod p

z = I^ |2 .
n n

We wis:h an upper bound for the sum

(P) i P! \^\2- i p i i^-A(p.b) i2 ,
p^Q b=l p p^Q b=l p

which is a measure for the distribution of the a • s over the residue classesn
mod p .

Instead of (P) all authors who worked in this subject estimated the larger sum

(R) I 1 |s(^)|2 .
r^Q b=l

(b,r)=l

in which r runs over all positive integers ^ Q . The result, which in general,
and except the value of the constant, is best possible, is

(I) (R) «(Q2 + N ) Z .

(see Bombieri, Davenport-Halberstam, Gallagher).

It is natural to ask whether by passing from (P) to (R) one looses a factor

(lnQ)~ • Compared with (l) , this would mean

(CD (P) « A- z
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A discussion of this conjecture is the object of my talk. Before giving some

results I will describe an example which shows how important an inequality of type
(CL) may be •

Let n (p ) be the least positive quadratic non-residue mod p . A famous conjec-
ture of Vinogradov is

((?7) n(p) « p£ for every e>0 .

(The best result known at the present time is e > -3- e ~ ^ ) .

One of the first and still most interesting applications of the large sieve is

the following due to Linnik.

Let N ( x , c ) = ^ 1 .
p^-x

r}W>xe

Then

(L!) N ( x , e ) ^ c (e ) ( c ( e ) is a constant which depends on

e only) .

(Li) is proved with the help of the following inequality.
p

Write n = Xs , T = 1 . 1
n^Q

p|n =^ p^ n

then p
N ( x . e ) ^ l^-2 ^ p ^ (y(p,b)-1)2

p ^Q b=l p

(^(p ,b) is defined like A ( p , b ) ) . Using (l) and a lower estimation for ^ , one
gets (Li).

If (CL) or only

(P) = o(Q^) (Q -^ °°) .

were true in this special case we would get

I 1 < 1 for Q ^ Q f e ) .
P ^ Q °

n(p)>Q

This is equivalent to (CL) .

Unfortunately, (CL) is not true in general. Elliott showed that for Q = N2 -

which indeed is the most interesting part of the Q-N region - one can find complex

numbers a so that

(P) K (R) H Q2 Z
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(f K g means, as usual,

c^g <. f <c^g ) .

The numbers â  are rather artificial. So one can hope that for simple a ' s , .
for example a^ = 0 or 1 , a bit of (CL) can be saved. Indeed, Erd6s, and Renyi

showed by probabilistic arguments that (CL) is true for "almost all" sequences a
n

"with a = 0 or 1 if we assumen

Q s: N^ .

(I will not give the exact formulation of their theorem. All questions mentioned

in this talk will be discussed in detail in a forthcoming monograph of Halberstam
and Richer! on sieve methods).

As I am going to show now (CL) is almost fulfilled in the complementary part

of the Q-N region.

THEOREM. Let Q :> 10 , 0 < 5 < 1 , N <. Q14'5 .

Then we have, with an absolute constant C ,

l ? i^)i2^ '̂-S^ z -p^ Q 13=1 P l~6 In Q

It is easy to see that this is better than (l) if

3, C.
Q ss NS 0-n N)

is assumed. It is perhaps possible to modify my method as to come near to the

point Q = N2 , but I am sure one cannot reach it in this way. Nevertheless there

are some applications to the theorem which make it worth while talking about it.

I will now give a short idea of the proof.

In all proofs to (l) one uses the simple fact that the distance between two dif-

ferent Farey fractions of order Q is bigger than 1/Q2 . I use an upper estimattai

for the number of Farey fractions of order Q and prime denominator which lie in
a small interval.

LEMMA. Let Q Ss 10 , 0 < 6 <. 1 - h ln ln -Q ,

A = Q"1"6 , a real , l(a) =[ a -A, a+A], .

P(a ) = ^ 1
P 5SQ ,('b,p)=l
^ C K a )
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Then we have

p(a)^ —— q'ln 1° ^ A .
1-6 In Q

The theorem easily follows from the Lemma and. a general large sieve inequality due
to Davenport and Halberstam.

1. In the case

1 - kln \ Q < 6 < 1
In Q

the Theorem is not "better than (l) , so there is nothing to prove.

2. For 6 as supposed, in the Lemma we use the following theorem.

Let || x|| denote the distance betwen x and the nearest integer, i.e.

||x|| = min (x-[x] , [x]+ 1 - x ) .

Let x, , . . . ,Xp be any real numbers for which

||x^-xj|;> n (if r + s , 0 < n^ ^ )

holds. Then we have
•p

(DH) ^ |S(x^)|2 > 2 max(N, rT1) Z .
r=l

(in the original paper (DH) is proved with 2.2 instead of 2 , in the monograph
mentioned above it will appear in this form).

Because of our Lemma the set { — ; P ^Q ; b = 1 , . . ., p-1 }

can be split up into at most

C ^ In In Q .
1^" In Q——— A

classes K. , so that for every i

l^-^ll^ ^ \^JL ̂  ^i,^, K.
"PI Pa" PI Pa p^ ' p^ fe 1

holds.

For fixed i , (DH) gives

I |S(^)|2^ 2 A-1 Z .

P- î

Summation over i implies the Theorem.

Because of the short time I will only give a rough idea of the proof to the
Lemma, which is the most important part of the Theorem.
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One first shows that

^ € I(a) , p € J

( J is a certain not too long interval) implies p = k mod. n where k and n

are certain numbers which depend, on the Farey arc on which a lies. Now the
Brun-Titchmarsh Theorem and some calculation lead to the Lemma.

I will now give some applications to the Theorem which are - roughly spoken -

average value theorems like Erdos^ Theorem about the least positive quadratic

non-residue' or Burgess-Elliott^ Theorem on the average of the least primitive

root mod p .

Let us consider a sequence G of different positive integers with the following

properties.

(i) C- ————.- ^ A(N) = ^ 1 ^ C. —————
(in N) • n^N " (in N) '

n € 0

(y-i » C*-, , C^ , ... are constants which depend on Q only).

Let

m(p,b) = min n ("b = l,...,p-l)
n € 0
n ^b mod p

and assume

(ii) m(p,b) ^ C C^ .

Then, with a modified form of the Theorem, one can prove

p-1
(M) I I m^p.b) ^ C (a, 0) 7r(Q) Q(QQn (̂  In Q)"

P ^ Q b=l " :>

if 0 < a<min (l , ———) .
°U-1

Except the factor In,. Q this is what one would expect.

In some special cases it is possible to show a bit more.

I. - Let S(p,b) be the least square free number = b mod p ,

S,(p,b) = min n
n=b mod p

^(n) = 1

Prachar showed _3

S (p ,b) « p ' for every e > 0 ,
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which implies (M) in this special case. Using some special properties of the
squarefree numbers, one can show, for 0 < a <1

p-1
(s) I I S01 (p,b) = (C(a) + 0(1) ) TT(Q) Q1-'01 .

P ̂  Q b=l

II. - Let q(p,b) = min p
p^b mod. q

Linnî s famouB theorem says ^p,'b)«pL for some fixed L >2 . Again one can
show a bit more than (M) , namely

p-1

I I ^(P^W 7r(Q) Q(Qln Q)01 .
P ̂  Q b=l

I hope I can prove an asymptotic formula such as (S) in this case too, but I am
not sure whether I will succeed.

Questions at the end.

1. Estimate the corresponding sum
n

I I m" (n,b)
n ^Q b=l

Cb,n)=l

(Difficulties which arise).

2. The distribution function (c>0)

F(Q,c) = ^) Q I 1
p s s Q ; b=l,...,q-l

<1(P^) < ^
Q In Q

Does this tend to a limit for Q ->•«> and every c ? (The limit exists for

S(p,b)).

3. The main problem is the region near Q2 = N . Can you find conditions on the
a *s , so that

(CL) holds in a certain form ? Surely one must find a new type of proof for the

large sieve because in all known methods no special properties of the a 's are
n

used.
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