Dieter Wolke

Farey fractions with prime denominator and the large sieve
Mémoires de la S. M. F., tome 25 (1971), p. 183-188
http://www.numdam.org/item?id=MSMF_1971__25__183_0
© Mémoires de la S. M. F., 1971, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F.» (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Colloque Th. Nombres [1969, Bordeaux]
Bull. Soc. math. France,
Mémoire 25, 1971, p. 183 à 188
FAREY FRACTIONS WITH PRIME DENOMINATOR AND THE LARGE SIEVE

by
Dieter WOLKE
-:-:-:-

An interesting problem which arises in connection with the "large sieve" is the following one.

Let Q and N be positive numbers, let M be a real number let a_{n} ($\mathrm{M}<\mathrm{n} \leqslant \mathrm{M}+\mathrm{N}$) be any complex numbers. Write

$$
\begin{array}{ll}
S(\alpha)=\sum_{n} a_{n} e(n \alpha) & \left(e(\beta)=e^{2 \pi i \beta}\right), \\
A=\sum_{n} a_{n}, \quad A(p, b)=\sum_{n \equiv b \bmod p} a_{n} \quad \text { (p prime) }, \\
Z=\left.\sum_{n} a_{n}\right|^{2} . &
\end{array}
$$

We wish an upper bound for the sum

$$
\begin{equation*}
\sum_{p S Q} \sum_{b=1}^{p-1}\left|S\left(\frac{b}{p}\right)\right|^{2}=\sum_{p \leq Q} p \sum_{b=1}^{p}\left|\frac{A}{p}-A(p, b)\right|^{2}, \tag{P}
\end{equation*}
$$

which is a measure for the distribution of the $a_{n}^{\prime} s$ over the residue classes $\bmod p$.

Instead of (P) all authors who worked in this subject estimated the larger sum
(R)

$$
\sum_{r \leq Q} \sum_{\substack{b=1 \\(b, r)=1}}^{r}\left|S\left(\frac{b}{r}\right)\right|^{2},
$$

in which r runs over all positive integers $\leq Q$. The result, which in general, and except the value of the constant, is best possible, is
(I)
$(R) \ll\left(Q^{2}+N\right) Z$.
(see Bombieri, Davenport-Halberstam, Gallagher).
It is natural to ask whether by passing from (P) to (R) one looses a factor $(\ln Q)^{-1}$. Compared with (I), this would mean

$$
(C L) \quad(P) \ll \frac{Q^{2}+N}{\ln Q} Z
$$

A discussion of this conjecture is the object of my talk. Before giving some results I will describe an example which shows how important an inequality of type (CL) may be .

Let $\eta(p)$ be the least positive quadratic non-residue mod p. A famous conjecture of Vinogradov is
(CV)

$$
\eta(p)<p_{\varepsilon} \quad \text { for every } \quad \varepsilon>0
$$

(The best result known at the present time is $\varepsilon>\frac{1}{4} \mathrm{e}^{-\frac{1}{2}}$).
One of the first and still most interesting applications of the large sieve is the following due to Linnik.

Let

$$
N(x, \varepsilon)=\sum_{p \leq x} 1
$$

Then
(Li) $N(x, \varepsilon) \leq c(\varepsilon) \quad(c(\varepsilon)$ is a constant which depends on ε only).
(Li) is proved with the help of the following inequality.

$$
\text { Write } \quad n=x^{\varepsilon^{2}} \quad, \quad \Psi=\sum_{n \leq Q^{2}} 1
$$

then

$$
N(x, \varepsilon) \leq 4 \Psi^{-2} \sum_{p \leq Q} p \sum_{b=1}^{p}\left(\Psi(p, b)-\frac{\psi}{p}\right)^{2}
$$

$(\Psi(\mathrm{p}, \mathrm{b})$ is defined like $\mathrm{A}(\mathrm{p}, \mathrm{b}))$. Using (I) and a lower estimation for Ψ, one gets (Li).

If (CL) or only

$$
(P)=o\left(Q^{2} \Psi\right) \quad(Q \rightarrow \infty) .
$$

were true in this special case we would get

$$
\sum_{\substack{P \leq Q \\ \eta(p)>Q^{\varepsilon}}} 1<1 \text { for } Q \geq Q_{O}(\varepsilon)
$$

This is equivalent to (CL) .
Unfortunately, (CL) is not true in general. Elliott showed that for $Q=N^{2}$ which indeed is the most interesting part of the $Q-N$ region - one can find complex numbers a_{n} so that
(P) $\times(R) \times Q^{2} Z$
($\mathrm{f} \times \mathrm{g}$ means, as usual,

$$
\left.c_{1} g \leq f \leq c_{2} g\right) .
$$

The numbers a_{n} are rather artificial. So one can hope that for simple a_{n} 's, for example $a_{n}=0$ or l, a bit of (CL) can be saved. Indeed, Erdos, and Renyi showed by probabilistic arguments that (CL) is true for "almost all" sequences a_{n} with $a_{n}=0$ or l if we assume

$$
Q \leq N^{\frac{1}{2}} .
$$

(I will not give the exact formulation of their theorem. All questions mentioned in this talk will be discussed in detail in a forthcoming monograph of Halberstam and Richert on sieve methods).

As I am going to show now (CL) is almost fulfilled in the complementary part of the $Q-\mathbb{N}$ region.
theorem. Let $Q \geq 10,0<\delta<1, N \leq Q^{1+\delta}$.
Then we have, with an absolute constant C,

$$
\sum_{P \leq Q} \sum_{b=1}^{p-1}\left|S\left(\frac{b}{p}\right)\right|^{2} \leqslant \frac{C}{1-\delta} Q^{2} \frac{\ln \cdot \ln Q}{\ln Q} z .
$$

It is easy to see that this is better than (I) if

$$
Q \geq N^{\frac{1}{2}}(\ln N)^{C_{1}}
$$

is assumed. It is perhaps possible to modify my method as to come near to the point $Q=N^{\frac{1}{2}}$, but I am sure one cannot reach it in this way. Nevertheless there are some applications to the theorem which make it worth while talking about it.

I will now give a short idea of the proof.
In all proofs to (I) one uses the simple fact that the distance between two different Farey fractions of order Q is bigger than I / Q^{2}. I use an upper estimation for the number of Farey fractions of order Q and prime denominator which lie in a small interval.

LEMMA. Let $Q \geq 10,0<\delta \leq 1-\frac{4 \ln \ln Q}{\ln Q}$,

$$
\begin{aligned}
& \Delta=Q^{-1-\delta}, \alpha \text { real }, I(\alpha)=[\alpha-\Delta, \alpha+\Delta], \\
& P(\alpha)=\sum^{\left[\frac{p}{p} \leq Q^{[},(b, p)^{l}=1\right.} .
\end{aligned}
$$

Then we have

$$
P(\alpha) \leq \frac{C}{1-\delta} \frac{Q^{2} \ln \ln Q}{\ln Q} \Delta .
$$

The theorem easily follows from the Lemma and a general large sieve inequality due to Davenport and Halberstam.
I. In the case

$$
1-\frac{4 \ln \ln Q}{\ln Q}<\delta<1
$$

the Theorem is not better than (I), so there is nothing to prove.
2. For δ as supposed in the Lemma we use the following theorem.

Let $\|\mathbf{x}\|$ denote the distance betwen \mathbf{x} and the mearest integer, i.e.

$$
\|x\|=\min (x-[x],[x]+1-x)
$$

Let x_{1}, \ldots, x_{R} be any real numbers for which

$$
\left\|x_{r}-x_{s}\right\| \geq n \quad\left(\text { if } r \neq s \quad, \quad 0<n \leq \frac{1}{2}\right)
$$

holds. Then we have

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2}>2 \max \left(N, n^{-1}\right) z \tag{DH}
\end{equation*}
$$

(In the original paper (DH) is proved with 2.2 instead of 2 , in the monograph mentioned above it will appear in this form).

Because of our Lemma the set $\left\{\frac{b}{p} ; P \leq Q ; b=1, \ldots, p-1\right\}$
can be split up into at most

$$
\frac{C}{1-\delta} \frac{Q^{2} \ln \ln Q}{\ln Q} \Delta
$$

classes K_{i}, so that for every i

$$
\left\|\frac{b_{1}}{p_{1}}-\frac{b_{2}}{p_{2}}\right\| \geq \Delta \quad \text { if } \quad \frac{b_{1}}{p_{1}} \neq \frac{b_{2}}{p_{2}} \text { and } \frac{b_{1}}{p_{1}}, \frac{b_{2}}{p_{2}} \in K_{i}
$$

holds.
For fixed i , (DH) gives

$$
\sum_{\frac{b}{p} \in K_{i}}\left|S\left(\frac{b}{p}\right)\right|^{2} \leq 2 \Delta^{-l} z .
$$

Summation over i implies the Theorem.
Because of the short time I will only give a rough idea of the proof to the Lemma, which is the most important part of the Theorem.

One first shows that

$$
\frac{b}{p} \in I(\alpha), \quad p \in J
$$

(J is a certain not too long interval) implies $p \equiv k \bmod n$ where k and n are certain numbers which depend on the Farey arc on which α lies. Now the Brun-Titchmarsh Theorem and some calculation lead to the Lemma.

I will now give some applications to the Theorem which are - roughly spoken average value theorems like Erdös's Theorem about the least positive quadratic non-residue or Burgess-Elliott's Theorem on the average of the least primitive root $\bmod p$.

Let us consider a sequence a of different positive integers with the following properties.

$$
\begin{equation*}
C_{1} \frac{N}{(\ln N)^{\gamma}} \leq A(N)=\sum_{\substack{n \leq N \\ n \in a}} \quad l \leq C_{2} \frac{N}{(\ln N)^{\gamma}} \tag{i}
\end{equation*}
$$

$\left(\gamma_{1}, C_{1}, C_{2}, \ldots\right.$ are constante which depend on a only).
Let

$$
\begin{aligned}
& m(p, b)=\min _{n \in a} n \quad(b=1, \ldots, p-1) \\
& \begin{array}{l}
n \in a \\
n \equiv b \bmod p
\end{array}
\end{aligned}
$$

and assume

$$
\begin{equation*}
m(p, b) \leq C_{3 p} C_{4} \tag{ii}
\end{equation*}
$$

Then, with a modified form of the Theorem, one can prove

$$
\begin{align*}
& \sum_{P S_{Q}} \sum_{b=1}^{p-1} m^{\alpha}(p, b) \leq C_{5}(\alpha, a) \pi(Q) Q\left(Q(\ln Q)^{\gamma} \ln _{3} Q\right)^{\alpha} \tag{M}\\
& \text { if } 0<\alpha<\min \left(1, \frac{1}{C_{4-1}}\right) .
\end{align*}
$$

Except the factor $\ln _{3}{ }^{\alpha} Q$ this is what one would expect.
In some special cases it is possible to show a bit more.
I. - Let $S(p, b)$ be the least squarefree number $\equiv b \bmod p$,

$$
S(p, b)=\min _{n \equiv b \bmod p} \quad .
$$

Pracher showed

$$
S(p, b) \ll \underline{p}^{\frac{3}{2}+\varepsilon} \quad \text { for every } \quad \varepsilon>0
$$

which implies (M) in this special case. Using some special properties of the squarefree numbers, one can show, for $0<\alpha<1$

$$
\begin{equation*}
\sum_{P \leq Q} \sum_{b=1}^{p-1} S^{\alpha}(p, b)=(C(\alpha)+O(1)) \pi(Q) Q^{1+\alpha} . \tag{S}
\end{equation*}
$$

II. - Let $q(p, b)=\min p \quad$.

Linnik's famous theorem says $q(p, b) \ll p^{L}$ for some fixed $L>2$. Again one can show a bit more than (M), namely

$$
\sum_{P \leq Q} \sum_{b=1}^{p-1} q^{\alpha}(p, b) \gamma \pi(Q) Q(Q \ln Q)^{\alpha}
$$

I hope I can prove an asymptotic formula such as (S) in this case too, but I am not sure whether I will succeed.

Questions at the end.

1. Estimate the corresponding sum

$$
\sum_{n \leq Q} \sum_{\substack{b=1 \\(b, n)=1}}^{n} m^{\alpha}(n, b)
$$

(Difficulties which arise).
2. The distribution function ($c>0$)

$$
\begin{gathered}
F(Q, c)=\frac{1}{\pi(Q) Q} \quad \sum_{p \leq i} ; \quad 1 \\
\frac{q(p, b)}{Q \ln Q}<c
\end{gathered}
$$

Does this tend to a limit for $Q \rightarrow \infty$ and every c ? (The limit exists for S(p,b)).
3. The main problem is the region near $Q^{2}=N$. Can you find conditions on the a_{n} 's, so that
(CL) holds in a certain form ? Surely one must find a new type of proof for the large sieve because in all known methods no special properties of the a_{n} 's are used.

> Mathematisches Institut der Universität Marburg
> Universitätsstraße 24 - Fernruf 693727
> 355 Marburg-Lahn (Allemagne)

