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ON VINOGRADOV^ ESTIMATE OF TRIGONCMBTRIE SUMS

AND THE GOLDBACH-VINOGRADOV THEOREM

^y

Stephen WAINGER

The purpose of this lecture is to give an expository account of the principle

ideas involved in Vinogradov^ estimate for

3^(9) = i e2^9

p ^n

(in the above summation and throughout p is a prime).

However, before we begin to estimate S (9) , we indicate why the estimates for

for S (o ) are so important for the proof of the Goldbach - Vinogradov theorem.

THEOREM. (Goldbach-Vinogradov). - Every sufficiently large odd integer is the sum

of three primes.

We define r(n) to be the number of ways to write n as a sum. of three primes.

Then the first step of the proof is to observe

1) r(n) = J^e-2"1116 (3^6 )]3 ^

To see l), observe

^V9"^ I I I e2711^!^-^6

p^ssn p^<sn p^n

so interchanging the order of summation and integration, we observe that the right

hand side of l) , is

I I I ! 1 e-2^11-^!^1^^
p^n p^n p^ n 0

The above integral is 1 if n = p-,+pp+p^ and 0 otherwise. So the triple sum

above just counts the number of ways to write n as P-i+pp+p^ . This is r(n) ,

and the proof of l) is complete.

The idea of (essentially) Hardy and Littlewood is that
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r ( n ) = J y e-2""9^^)]3 d6

+ ^ e-2^9^)^^^.
Vn

U is the union of some very small disjoint intervals which we shall describe later.

What is important for us now is that for every 6 in V ,

9 = a. + -j. ^th (a,q)=.l , |e| ^ 1
q.

and what is very important

2) (log n)^ q5£ ——2——.-
(log n)u

where u is some fixed large integer like 100.

Now one may show that

2en3) M >
n (log n)3

for n>N and n odd. (We give some indication of this at the end of our lecture).

The main difficulty in the proof is to prove

U) E =o(__ l———) .
n (log n)3

Formulas 3) and 4) of course give the Goldhach-Vinogradov Theorem.

The method of Hardy and Littlewood also dictates the general approach of estima-

ting \ . Namely

5) |E | <s sup |s (e ) | r | s_ (e ) | 2 de .
n e^v n "o n

By Pavseva^s equality the integral in 5) is 7r(n) (the number of primes equal to or

less than n ). So using the simple estimate

Tr(n)2s L^ n ' we have

6) ^ ^-fohr ̂  l^9)! -
n

Notice then to prove h) , we need to show

7) [ S ^ ( 9 ) | = o(——1-) .
log n

Of course trivially
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l8^9)! ^-f^ .
so we need. only a very modest improvement of the trivial estimate, but this small

improvement was very difficult. Vinogradov^ method proves the following :

THEOREM. - If 9 is in V , then—_—, ———— ^ _______

8) |S^(9)| ^ c n(log n)^2 {(^ + ̂ )1/2 + e-0^ n },

for 9 = f + £? with (s-^) = 1 » l -=a<q , |e| ^ 1 .
q.

Recall that for 9 ^ Vn

(log nP ss q ^ ——n——^
(log n)

Thus Vinogradov^ estimate for |s (9 ) | gives 7) and the Goldbach-Vinogradov

Theorem.

We begin by isolating one of Vinogradov1 s basic ideas. Namely in a double sum

I I ^ ̂  e2———6 .
n m

there must be a lot of cancellation for most 9*s , even if the a and b are
n m

quite irregular (like say a = number of divisors of n and b = p(m) where un m
is the MDebius function). To fix ideas consider

9) s - ? a, 1 ^ e2^ ,
n=l m=l

with (a,q) = 1 . If we neglect the cancellation due to exp(2i•^•nma•) .,

we may trivially use Schwarz^s inequality to obtain

Is! ^ ^J ? 1^ ^ A B
n=l m==l

where A = ( ^ |a l2)1^2 and
n=l n

B = ( 1 M2)172 .
m=l

However, this estimate may be improved Namely

10) |s| <; /q' A B .

We now prove (10) (a la Vinogradov). Using Schwarz^ inequality on the outer sum in

(9), we see
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l 2 ^ A2 I | ^q ^e2^!2

n=l in=l
q q q

= A2 i ^ ^ b F" e2^"^!-^^
- =1 m-1 •"I ^n=l m- =1 m^

<1 q q.
= A2 I i b ^ T e^111^!-"^ •

n̂ l m l̂ "l^ n=l

Now since (a,q) = 1 , one sees that the inner sum (which is the sum of a geometric
progression) is q if m = m? and 0 otherwise. So we have

|s|2 ^ qA^2 ,

which is (10) .

To prove 8) of course we must also consider irrational Q^s but this same

slightly tricky use of Schwarz^ inequality can still be used to obtain cancellation

in that case.

To prove 8) we must use the well known M-obius function TJ . We recall

P(l) = 1

y(p^,...,p^) = (-I)11 if p^ ^ p_

and u(n) = 0 if p divides n

for some prime p .

We recall without proof the fundamental property of y that we need :

(1 if a = 1
II) I P(d) =

d|a 0 if a > 1

Let R = ~ | [ ~ p . Then
P ^ /n

s^(e) = o( /H) + I e27^9

,^n ^p^ n

= o ( /IT) + ^ 27Tim9e
/h <m :sn

(R,m) = 1

= 0( /T) + I 27rim9

1 <£m^ n
(R,m) =1

= 0(^n) + ^ ^ p(d) e27'11116

1̂  m^ n d| (R,m)
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by II). [(x,y) = greatest common divisor of x and y]. Interchanging the order of

summation, one sees

S (6) =0(/n) + Y p(d) ^ e2"1119 .
d]R 1 ̂  m^ n

d|m

Now setting m = dr , we have

12) S (9) =0(/^i) + V p(d) 1 ^Tridre ^
dFR !<: r^Sa

Now at first glance things may apprear very nice "because the inner sum above is a

geometric progession. However u(d) is not zero for more than 0(n)

values of d , so we are very far from the proof. What we must do is replace the

double sum in 12) by another double sum with shorter ranges of summation. However,

we are willing to pay a price. Namely we do not need to have such regular coef-

ficies as a = 1 (a is the coefficient of exp 2TTidr9 ) in the sum 12) if we

use the idea of the proof of 10).

There are several methods of "shortening" the double sum at the price of intro-

ducing rough coefficients. We shall outline here the method given in Prachar

Primzahlverteilung, where the complete details may be found.

Note : When we use the words relatively easy the reader should not try to stop and

fill in the gaps as they are only really easy for people who are quite familiar

with certain special methods of number theory. For complete details one should

consult Prachar Primzahlverteilung.

Interchanging the order of summation in 12), we have

13) S . ( 6 ) = 0(/-n) + I I p(d) e2711^ L + F
n l<s r^ n d|R n n

iJd^
where

L = I n— 1 ^w e2^9
n l^e^10^ d|R

and
F ^ O ^ . I I ̂ e2^9

-^"^r^n d|R
l<=d<:^

Now F is relatively easy to dispose 6f because in thie double sum above

, , n „ __nd ^ — ^ —7=s=s
r vTo

This range of summation on d is sufficiently small that one may interchange the

order of summation in F and use the fact that the sum on r is a geometric



lr^8 . S. WAINGER

progression. Thus we must consider L . Instead of considering L , we consider

^= I r.— I ^ e2^n !<: r^ e 1 ^g n d|r
1 ̂  d <s n/r <——

d has at least one prime factors e °^

Thus G differs from L in that now we are not summing over any d*s all of
whose prime factors are less than e v °6 n . A well known theorem of Rank in
implies that there are so few such d^ that

x.L.̂  Ii, ——c^.
1 <. d ̂  n/r

d has all prime factors <- e2^106 n

Thus it suffices to consider G * In G we now write d as p.j where p is aQ y-i n n ____—
prime e^ g <-p ^ ^/rT (since p|d , d [R and R = | [ p ).

P^^T
Define

H"-^/^ l^^r. tin u(j""iI"
l^PJ^

H is not equal to G because we have not taken into account the number of ways
d may be written as jp . However, it is not too difficult to see that it suffices
to consider Hn

Note that in H all the sums are much shorter than n .n

( j ^—^ n (since p> e27 log n ) ) .
^ e2^10^ n

But H is a triple sum instead of a double sum.

Now to change this to a double sum we set Z = pr , and we have

^/To^n^ yiog-n ^ " ' J l R ^
1<-^•Z

where d (z) is the number of ways of writing Z = pr . d- (Z) is of course very
irregular ; but ^ ( d - ( Z ) ) ^ d ( Z ) (the number of divisors of Z ) , and very ffood
estimates for ^ [ d ( Z ) | are known

Z=l M
( ^ ^(Z)!2)^!^ (log M)3} ) .
Z=l

Notice in the last expression for H both sums are much shorter than n
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( J ^ 2 ^log i" since <3 ^ n/z and Z s e^106 n ) . Thus we have achieved our

objective : we have a double sum with shortened ranges of summation and of course

have paid the stated price. If we now break the Z-sum in H into a most log n

dyadic blocs and use Shwarz^ inequality as in the proof of 10) , we may obtain 8) .

At this point you basically understand the idea of the proof of 4). However, we
shall proceed a little farther for completeness. (Note that the trivial estimate
for H isn

| H | <s n V r-——— d(Z) / Z
' nl Z^e-^^

and this last quantity is > n log n ).

We divide H into dyadic blocks K(u) where

2irijZQK(u) = ^ d^(Z) . ^ ( j )
u^ Z ^ u 1 j j R1^4

with u* <s 2u . We must consider at most log n such blocks K(u) . ( A factor of

log n at this point makes little difference since one may just choose u a little
larger in 5) to obtain T) ).

Then

| K ( u ) | 2 ^ i |d (z ) | 2 ^ | ^ p ( j ) e2^9!2

u < Z < u 1 u< Z< u1 ' J-|R n
1^ J<s Z

^c u(log u)3 ^ ^ ^
u < Z < u * j^ |R ^ J ^ I R

^l^-Z ^ ^2^-Z
. u(Ji) P(JJ e2^^^J^ / h» \ J ^ /

s c u(log u)3 I I \ I ^iTiZCj^-jgte
n - n 1 - I

•s c u(log uj- ^ ^ ^ e

1^!^ ^^t

.cu(logu)3 I I î ,̂ .̂

^l^u ^^u u<z<:ul

la ̂  t ^^ t

If one now observes that for any integer Jl , the fractional parts of the numbers
m9

are of the form

A q - - ^ < m < J l q + ^

t^-li
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with X^ arbitrary and |e | ^ 1 and with each s arising from only one value of

m , the completion of the proof of 8) is then a matter of arithmetic.

To make the above observation note that

m 9 = A q 6 + (m-& q)6

= ^ + J 6 with - j. < j< -j. .

Hence we must just observe that

3! f ^ ̂  f (mod 1) for Ji 5^ J2 •

If j^ a - j^ a = q s for s an integer, the q|a(j -j ) . But (a,q) = 1 and
i • • i|j-.-j^|< q so this is impossible.

As our main objective was to indicate the proof of 8) (and hence 4 ) , we shall give

only a short summary of 3).

First we shall give the definition of un

u = U j
n q ^ (log n)^ a'^

(a,^)=l , 0<a< q

j = {e | le-^l ^ JJ^JL)̂ }
a,q ' ' q' n

One sees easily that the intervals J are disjoint for n large.a,q °

Then V^ = [0,1]- U^ . The theorem of Dirichilet on approximations of irrationals

by rationals implies that each 6 € V has the formn

9 = Q- + £ (log n)^ a^ ^ ̂
q q n ' q 2

with I e * | <i\£\<. 1 , (log n)^ q<s — — 2 — — ^ and (a,q) = 1 as required aboye.
(log n)

To prove 3) we need information on 7r(n,q;a) = the number of primes less than or

equal to n which are congruent to a modulo g .

The main tool for the estimate 3) is the following.

THEOREM. ̂  (a,q) = 1

lk) w(n'^ = ̂ J ^ &T ̂  (n e-0710^)

uniformly for 1 ̂  q <. (log n) , where <(?(q) is the number of integers relatively

prime to q . Here and in the following c > 0 .
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We shall not go into the proof of this difficult theorem [See Prachar]. (The

original proof of' the Goldbach-Vinogradov Theorem had much extra complication be-

cause the uniformity q was not as large as in the above theorem).

The first step in the above proof is the following.

LB4MA. - For 0^ a <q , (a,q) = 1 , and 1 sSq ^(log n^ ,

15) ^'^^ ^OCne--/^.

To prove 15) observe

S^) = ^ e2^ = I e^Pf + I e21^
p^ n p<s n p i q

n ^ma p^11

= ^ e 1T1 q 7r(n,q,m) + 0 (log q) .
, m=l
^m,q;=l

Now one finishes the proof of I$7 essentially by using ih) . The next step is the

following.

LEMMA. - Let q ^(log n^ , (a,q) = 1 , 0^ a <q and 0^ 1 8 1 <s ^ .

Then

16) ^^^U.M S ^{N(N1^1)0-^1°]

To prove l6) observe

s.^- .l62^^-5.-^'
<] —

One then sums by parts, uses 15) and completes the proof by another summation by

parts.

The remainder of the proof of 3) is now relatively straightforward. One needs

to substitute l6) into the integral for U. and keep tract of the error terms.
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