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MICROLOCALIZATION OF SUBANALYTIC SHEAVES

Luca Prelli

Abstract. — We define the specialization and microlocalization functors for suban-
alytic sheaves. Applying these tools to the sheaves of tempered and Whitney holo-
morphic functions, we generalize some classical constructions. We also prove that
the microlocalizations of tempered and Whitney holomorphic functions have a nat-
ural structure of module over the ring of microdifferential operators, and are locally
invariant under contact transformations.

Résumé (Microlocalisation des faisceaux sous-analytiques). — On définit la spéciali-
sation et la microlocalisation pour les faisceaux sous-analytiques. En appliquant ces
outils aux faisceaux des fonctions holomorphes tempérées et de Whitney, on géné-
ralise des constructions classiques. On démontre aussi que les microlocalisations des
fonctions holomorphes tempérées et de Whitney ont une structure naturelle de mo-
dule sur 'anneau des opérateurs microdifférentiels, et sont localement invariants par
transformations de contact.
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INTRODUCTION

After the fundamental works of Sato on hyperfunctions and microfunctions and
the development of algebraic analysis, the methods of cohomological theory of sheaves
became very useful for studying systems of PDE on real or complex analytic man-
ifolds. Motivated by the study of solutions with growth conditions of a system
of PDE (Riemann-Hilbert correspondence, Laplace transform, etc.), Kashiwara and
Schapira in [16] introduced the notion of ind-sheaf, and defined the formalism of six
Grothendieck operations in this framework. They defined the subanalytic site (a site
whose open sets are subanalytic and the coverings are locally finite) and obtained the
ind-sheaves of tempered and Whitney holomorphic functions (which are objects of
the derived category of sheaves on this site) by including subanalytic sheaves into the
category of ind-sheaves. Then, in [28], a direct, self-contained and elementary con-
struction of the six Grothendieck operations for subanalytic sheaves was established.
Important examples of applications of subanalytic sheaves to D-modules can be found
in [24] and [25].

The microlocalization functor for sheaves on a real analytic manifold was originally
introduced by Sato to perform a microlocal analysis of the singularities of hyperfunc-
tion solutions of systems of linear PDE on complex manifolds. It was generalized to
the framework of ind-sheaves in [19]. It is natural to ask if it is possible to develop mi-
crolocalization on the subanalytic site avoiding the heavy theory of ind-sheaves. The
aim of this work is to extend some classical constructions for sheaves, as the functors
of specialization and microlocalization, to the framework of subanalytic sheaves.

We introduce first the category of conic subanalytic sheaves on an analytic manifold
endowed with an action of R™. In order to do that we have to choose a suitable defini-
tion: indeed there are several definitions, which are equivalent in the classical case but
not in the framework of subanalytic sheaves. We choose the one which satisfies some
desirable properties, as the equivalence with sheaves on the conic topology associated
to the action. Thanks to this equivalence we can also represent conic sheaves as limits



2 INTRODUCTION

of conic R-constructible sheaves. Then we extend the Fourier-Sato transform to the
category of conic subanalytic sheaves on a vector bundle. This construction was also
motivated by the sheaf theoretical interpretation given in [31] of the Laplace isomor-
phisms of Kashiwara and Schapira. At this point we can start studying subanalytic
sheaves from a microlocal point of view by introducing the functors of specialization
and microlocalization along a submanifold of a real analytic manifold. As an inter-
esting application, the specialization is the key tool used in order to give a functorial
construction of asymptotically developable functions (see also the recent developments
in [11]). We give an estimate of the support of microlocalization using the subanalytic
analogue of the notion of ind-microsupport of [17] and its functorial properties devel-
oped in [23]. We also show that the functor of microlocalization is related with the
functor of ind-microlocalization defined in [19]. Then, applying specialization (resp.
microlocalization) to the subanalytic sheaves of tempered and Whitney holomorphic
functions, we generalize tempered and formal specialization (resp. microlocalization).
In this way we get a unifying description of Andronikof’s [1] and Colin’s [6] “ad hoc”
constructions.

As an application, we prove that the microlocalizations of O and O™ have (in co-
homology) a natural structure of £-module and that locally they are invariant under
contact transformations. Only in the case of O these results were proven in [1]. Fur-
thermore, using DG-methods and ind-microlocalization, in [10] the author proved that
the microlocalization of tempered holomorphic functions is an object of the derived
category of £-modules. The £-module structure, combined with the estimate for the
support of microlocalization, was essential for the proof of a Cauchy-Kowalevskaya-
Kashiwara theorem with growth conditions given in [29].

In more details the contents of this work are as follows.

In Chapter 1 we recall the results on subanalytic sheaves of [16] and [28].

In Chapter 2 we construct the category of conic sheaves on a subanalytic site
endowed with an action of R*.

In Chapter 3 we consider a vector bundle E over a real analytic manifold and
its dual E* endowed with the natural action of RT. We define the Fourier-Sato
transform which gives an equivalence between conic subanalytic sheaves on E and
conic subanalytic sheaves on E*.

Then we define the functor v3} of specialization along a submanifold M of a real
analytic manifold X (Chapter 4) and its Fourier-Sato transform, the functor g%}
of microlocalization (Chapter 5). We introduce the functor phom®* for subanalytic
sheaves and we give an estimate of its support using the notion of microsupport of
[17]. Then we study its relation with the functor of ind-microlocalization of [19].

We apply these results in Chapter 6. We study the connection between special-
ization and microlocalization for subanalytic sheaves and the classical ones. Special-
ization of subanalytic sheaves generalizes tempered and formal specialization of [1]
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and [6], in particular when we specialize Whitney holomorphic functions we obtain the
sheaves of functions asymptotically developable of [22] and [36]. Moreover, thanks
to the functor of microlocalization, we are able to generalize tempered and formal
microlocalization introduced by Andronikof in [1] and Colin in [5] respectively.

Chapter 7 is dedicated to the study of the microlocalization of tempered and Whit-
ney holomorphic functions. We prove that the microlocalization of O and O% have
(in cohomology) a natural structure of £-module and that locally they are invariant
under contact transformations.

We end this work with a short Appendix in which we recall the definitions and
we collect some properties of subanalytic subsets and ind-sheaves, then we study
the inverse image of the subanalytic sheaves of tempered and Whitney holomorphic
functions.

Acknowledgments

We would like to thank Pierre Schapira who encouraged us to develop specializa-
tion and microlocalizaiton of subanalytic sheaves and A. D’Agnolo, S. Guillermou,
S. Yamazaki for their many useful remarks. We thank E. Bierstone, M. Coste and
M. Edmundo for their expertise in o-minimal and subanalytic geometry.

SOCIETE MATHEMATIQUE DE FRANCE 2013






CHAPTER 1

REVIEW ON SHEAVES ON SUBANALYTIC SITES

In the following X will be a real analytic manifold and %k a field. References are
made to [18] and [37] for a complete exposition on sheaves on Grothendieck topologies,
to [16] and [28] for an introduction to sheaves on subanalytic sites. We refer to [3]
for the theory of subanalytic sets.

1.1. Sheaves on subanalytic sites

Let us recall some results of [16] and [28].

Denote by Op(Xsa) (resp. Op®(Xsa)) the category of open (resp. open relatively
compact) subanalytic subsets of X. One endows Op(Xs,) with the following topology:
S C Op(Xsa) is a covering of U € Op(Xs,) if for any compact K of X there exists a
finite subset Sy C S such that

Kn |JV=EKnU.
VeSy

We will call X, the subanalytic site, and for U € Op(Xs,) we denote by Ux,, the
category Op(Xsa) NU with the topology induced by Xg,.

Let Mod(kx,,) denote the category of sheaves on Xg,.

Then Mod(kx,,) is a Grothendieck category, i.e. it admits a generator and small
inductive limits, and small filtrant inductive limits are exact. In particular as a
Grothendieck category, Mod(kx_,) has enough injective objects.

Let Modg.¢(kx) be the abelian category of R-constructible sheaves on X, and
consider its subcategory Modp . (kx) consisting of sheaves whose support is compact.

We denote by p: X — X, the natural morphism of sites. We have functors

P
R 4
Mod (kx ) «—p'—— Mod(kx..)-
P!
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The functors p~! and p, are the functors of inverse image and direct image respec-
tively. The sheaf pF is the sheaf associated with the presheaf Op(Xg,) > U — F(U).
In particular, for U € Op(X) let ky be the sheaf associated to the presheaf whose

sections on V' € Op(X) are = k if V C U and = 0 otherwise. One has

pky ~ E}n pkyv,
Veu
where V' € Op(Xs,). Let us summarize the properties of these functors:
> the functor p, is fully faithful and left exact, the restriction of p, to Modg_¢(kx)
is exact;

> the functor p~!

is exact;
> the functor p is fully faithful and exact;

> (p~ 1, ps) and (p1, p~ 1) are pairs of adjoint functors.

NOTATIONS 1.1.1. Since the functor p, is fully faithful and exact on Modg..(kx),
we can identify Modg (kx) with its image in Mod(kyx_, ). When there is no risk of
confusion we will write F instead of p.F', for F' € Modg.c(kx).

Let F € Mod(kx_,). There exists a filtrant inductive system { F; };cs in Modg . (kx)
such that F' ~ h_r)n p«Fi.

i
Let X, Y be two real analytic manifolds, and let f : X — Y be a real analytic map.
We have a commutative diagram

(1.1.1) x— 1y

f
XSEI }/Sﬂ

We get external operations f~! and f,, which are always defined for sheaves on
Grothendieck topologies. For subanalytic sheaves we can also define the functor of
proper direct image

fu:Mod(kx,,) — Mod(ky,,), F+— h_n;f*FU o~ 1£>n Tk F
U K

where U ranges trough the family of relatively compact open subanalytic subsets of X
and K ranges trough the family of subanalytic compact subsets of X. The notation fi
follows from the fact that fu o p, % ps o fi in general. If f is proper on supp(F) then
f«F ~ fuF, in this case fi commutes with p.. While functors f~! and ® are exact,
the functors Hom, f. and fi are left exact and admit right derived functors.

To derive these functors we use the category of quasi-injective objects. An ob-
ject F € Mod(kx,,) is quasi-injective if for U,V € Op®(Xs,) with V' C U the re-
striction morphism I'(U; F) — I'(V; F) is surjective or, equivalently, if the functor
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1.2. MODULES OVER A kx,,-ALGEBRA 7

Homy,y (., F) is exact on Modg _.(kx). Quasi-injective objects are injective with re-
spect to the functors f., fu and, if G € Modgr..(kx), with respect to the functors
Homy, (G, .),Hom(G, .).

The functor Rfy; admits a right adjoint, denoted by f*, and we get the usual isomor-
phisms between Grothendieck operations (projection formula, base change formula,
Kiinneth formula, etc.) in the framework of subanalytic sites.

Let Z be a subanalytic locally closed subset of X. As in classical sheaf theory we
define

Iz : Mod(kx.,) — Mod(kx.,), F+— Hom(pikz, F);
(‘)Z : NIOd(]CXsa) — 1\/10(11(](7)@3)7 Fr— F® pky.

Finally we recall the properties of the six Grothendieck operations and their rela-
tions with the functors p~1, Rp, and p;. We refer to [28] for a detailed exposition.

> The functor R¥ Hom(F, .) commutes with filtrant h_n>1 if F € Modg.c(kx).
> The functors R* fyy and H*f' commute with filtrant h_H)l

The functor p~! commutes with ®, f~! and Rfi.
The functor Rp, commutes with R*om, Rf. and f'.

The functor py commutes with ® and f~1.

v Vv VvV Vv

The restrictions of ® and f~! to the category of R-constructible sheaves commute
with p,.
> If f is a topological submersion (i.e. it is locally isomorphic to a projection
Y x R* = Y), then f' ~ f~!'® f'ky commutes with p~! and Rfy; commutes
with py.
Moreover the functors Rf., Rfy and RHom(F, .) with F € Modg..(kx) have finite
cohomological dimension.

1.2. Modules over a kx_-algebra

A sheaf of kx_ -algebras (or a kx_, -algebra, for short) is an object R € Mod(kx_,)
such that ['(U; R) is a k-algebra for each U € Op(Xs,) and the restriction maps are
algebra morphisms.

A sheaf of (left) R-modules is a sheaf F such that I'(U; F)) has a structure of (left)
I['(U; R)-module for each U € Op(Xga)-

Let us denote by Mod(R) the category of sheaves of (left) R-modules.

The category Mod(R) is a Grothendieck category and the forgetful functor

for : Mod(R) — Mod(kx,,)

is exact.

SOCIETE MATHEMATIQUE DE FRANCE 2013



8 CHAPTER 1. REVIEW ON SHEAVES ON SUBANALYTIC SITES

The functors
Hompg : Mod(R)°P x Mod(R) — Mod(kx_,),
®r : Mod(RP) x Mod(R) — Mod(kx.,)
are well defined. Remark that in the case of R-modules the functor ®x is only right
exact and commutes with lim.
Let X,Y be two real analytic manifolds, and let f : X — Y be a morphism of real

analytic manifolds. Let R be a ky,, -algebra. The functors f~1, f. and Rfy induce
functors

f71: Mod(R) — Mod(f~'R),
fe : Mod(f~'R) — Mod(R),
fu s Mod(f~'R) — Mod(R).

Now we consider the derived category of sheaves of R-modules. Thanks to flat
objects we can find a left derived functor ®7L2 of the tensor product ®x.

DEFINITION 1.2.1. — An object F € Mod(R) is quasi-injective if its image via the
forgetful functor is quasi-injective in Mod(kx_, )-

Let X, Y be two real analytic manifolds, and let f : X — Y be a real analytic map.
Let R be a ky,, -algebra. One can prove that quasi-injective objects are injective with
respect to the functors f. and fi. The functors Rf, and Rfi are well defined and
projection formula, base change formula remain valid for R-modules. Moreover we
have:

THEOREM 1.2.2. — The functor Rfy : DY (f71R) — D*(R) admits a right adjoint.
We denote the adjoint functor by

f': DY (R) — DY (f'R).

MEMOIRES DE LA SMF 135



CHAPTER 2

CONIC SHEAVES ON SUBANALYTIC SITES

We study here the category of conic sheaves on a subanalytic site. References are
made to [14] for the classical theory of conic sheaves and to [31] for applications of
conic subanalytic sheaves to the Laplace transform.

2.1. Conic sheaves on topological spaces

For the statements not proved here we refer to [14] and [28]. Let k be a field and X
be a real analytic manifold endowed with an analytic action p of R*. In other words
we have an analytic map

1 X xRY — X,
which satisfies, for each t1,t; € R*:
N’(Ivtth) :u(ﬂ(xrtl)th) and /‘L(Ivl) =z
Note that y is open. Indeed let U € Op(X) and W € Op(R*). Then
nUw) = |J nv1),
tew

and (. ,t) : X — X is a homeomorphism (with inverse u(.,¢71)). We have a diagram

. I

X1 X xRt T3 X,
P

where j(z) = (z,1) and p denotes the projection. We have poj =poj=id.
DEFINITION 2.1.1. — (i) Let S be a subset of X. We set

R*S = u(S,R).
If U belongs to Op(X), then R*U € Op(X) since p is open.

(ii) Let S be a subset of X. We say that S is conic if S = R*S. In other words, S
is invariant by the action of .
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(iii) An orbit of p is the set Rtz with z € X.
Let 1,52 C X and suppose that Sy is conic. Then it is easy to check that
R*(S1NS3) =R*S1 N Ss.

DEFINITION 2.1.2. We say that a subset S of X is Rt-connected if S N R*x is
connected for each z € S.
DEFINITION 2.1.3. — A sheaf F' € Mod(kx) is conic if p='F ~p~'F.

(i) We denote by Modg+ (kx) the subcategory of Mod(kx) consisting of conic
sheaves.

(ii) We denote by DL, (kx) the subcategory of D (kx) consisting of objects F such
that HJ(F) belongs to Modg+ (kx) for all j € Z.
Let us assume the following hypothesis:
(i) every point z € X has a fundamental neighborhood
(2.1.1) system consisting of R*-connected open subsets;
(ii) for any € X the set Rz is contractible.
In this situation (see [2]) either Rtz ~ R or RTz = .
PROPOSITION 2.1.4. — Let U € Op(X) be Rt-connected and let F € Dp. (kx).

Then
RI(RYU; F) AN RI(U; F).

Denote by Xp+ the topological space X endowed with the conic topology, i.e.
U € Op(Xg+) if it is open for the topology of X and invariant by the action of R*.

Let us consider the natural map 7 : X — Xg+. The restriction of 7, induces an
exact functor denoted by 7. and we obtain a diagram

7
(2.1.2) Modg+ (kx) ¥————= Mod(kx,, )
n
=
NIOd(kx)

Let F € D}, (kx). Let ¢ be the natural map from RI'(R*U; F) to R[(U;n~'F)
defined by

(2.1.3) RI(R*U; F) — RO(R*U; R ™' F)
~ RO(R*U;n"'F) — RT(U; 7 'F).
PROPOSITION 2.1.5. — Let F be a sheaf over Xgp+. Let U be an open set of X

and assume that U is R*-connected. Then the morphism ¢ defined by (2.1.3) is an
isomorphism.
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2.2. CONIC SHEAVES ON SUBANALYTIC SITES 11

THEOREM 2.1.6. — The functors Rn, and n~' induce equivalences of derived cate-
gories
Rn.
DL (kx) T D"(kx,,)

7]—1

inverse to each others.
We need to introduce the subcategory of coherent conic sheaves.

DEFINITION 2.1.7. — Let U € Op(Xg+).

> U is said to be relatively quasi-compact if, for any covering {U; };cs of Xg+, there
exists J C [ finite such that U C | J;¢ ; Us. We write

U € Xp+.

> We will denote by Op®(Xp+ ) the subcategory of Op(Xg+) consisting of relatively
quasi-compact open subsets.

One can check easily that if U € Op®(X), then R*U € Op®(Xp+).

DEFINITION 2.1.8. Let F' € Mod(kx,, ).
(i) F is Xgor+-finite if there exists an epimorphism G — F, with G ~ @ ky,, I
finite and U; € Op®(Xg+) subanalytic. el
(ii) Fis Xg, g+-pseudo-coherent if for any morphism ¢ : G — F, where G is X, g+-
finite, ker v is X, p+-finite.

(ili) F is Xgom+-coherent if it is both X, g+-finite and X, g+-pseudo-coherent.

We will denote by Coh(X, g+) the subcategory of Mod(kx
coherent objects.

.+ ) consisting of X, g+-

2.2. Conic sheaves on subanalytic sites

DEFINITION 2.2.1. A sheaf of k-modules F' on X, is conic if the restriction mor-
phism I'(R*U; F) — I'(U; F') is an isomorphism for each R*-connected U € Op®(Xg,)
with R*U € Op(Xsa)-
(i) We denote by Modg+(kx,,) the subcategory of Mod(kx,,) consisting of conic
sheaves.
(ii) We denote by DR, (kx.,) the subcategory of D’(kx_,) consisting of objects F
such that H?(F) belongs to Modg+ (kx,,) for all j € Z.

REMARK 2.2.2. — Let X be a real analytic manifold endowed with a subanalytic
action p of R™ and consider the diagram

n
X xRt — 2 X,
p

where p denotes the projection.

SOCIETE MATHEMATIQUE DE FRANCE 2013



12 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

As in classical sheaf theory one can define the subcategory Mod*(kx, ) of

Mod(kx,,) consisting of sheaves satisfying
p P ~plE

The categories Mod"” (kx.,) and Modg+ (kx.,) are not equivalent in general.

Indeed, let X =R, set XT = {z € R; z > 0} and let u be the natural action of R*
(i.e. p(z,t) = tx). Let us consider the sheaf pikx+ € Mod(kx,,). Then

p ok ~ i ke = pip” hxe ~pT ik
Let
V:{xER; 1<.7:<2} and Wm:{zeR; i<x<m},

where m € N\ {0}. Recall that pikx+ ~ h_n}l peky ~ h_n>1 p«kw,,. We have

m

UeX+t m
L(Vipkx+) = Im T(V; kw,, ) = k,

since V' C Wy, for m > 2. On the other hand, let
Vn+:{x€R;0<ac<n},
where n € N. Since RtV = Xt we have

DX pikxce) = T TV, prkees) = Tim Tim DV, ks, ),
n n m
(in the second isomorphism we used the fact that V7 € Op°(Xs,) for each n) and

T'(V,F; kw,,) = 0 for each n,m € N. Hence I'(V; prkx+) 2 T(R*V; pikx+).
DEFINITION 2.2.3. — We denote by :

> Op(Xga,r+) the full subcategory of Op(Xs.) consisting of conic subanalytic sub-
sets, i.e. U € Op(Xgur+) if U € Op(Xsa) and it is invariant by the action of R¥;

> Xgar+ the category Op(Xg, r+) endowed with the topology induced by Xg.;

> pgt @ Xp+ — Xgar+ the natural morphism of sites.

Replacing T with Op®(Xg, g+) in [9] we get the following results:

THEOREM 2.2.4. — (i) Let G € Coh(Xsr+) and let {F;} be a filtrant inductive

system in Mod(kx__,,). Then we have an isomorphism

hg Homypy  (pg+, G, Fi) = Homypy . (pg+, G, ll_II)l F).

a, R+
Moreover the functor of direct image pg.., associated with the morphism pg, in (2.2.1)
is fully faithful and exact on Coh(Xsa"]w).

(ii) Let F' € Mod(kx_, ,,). There exists a small filtrant inductive system {Fi}ier
in Coh(Xg, r+) such that F ~ 1£>n Py Fi-

[
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2.2. CONIC SHEAVES ON SUBANALYTIC SITES 13

NOTATIONS 2.2.5. — Since pg,, is fully faithful and exact on Coh(Xg,r+), we can
identify Coh(Xj, r+) with its image in Mod(kx_ ,, ). When there is no risk of confu-
sion we will write F' instead of pp. ,F, for F' € Coh(Xga r+)-

We can also find a left adjoint to the functor plf&i.

PROPOSITION 2.2.6. The functor pngi admits a left adjoint, denoted by pp.,.
It satisfies:
(i) the functor pg., is exact and commutes with ®;
(ii) for F € Mod(kx,, ) and U € Op*(Xar+), pp+ I is the sheaf associated with
the presheaf U — hi>n T(V;F);
VU
(iti) for U € Op(Xg+) one has

pRHkU ~ 11_1’1>1 kv.

Veu
VeOp ‘(Xsa,WFH’)

DEFINITION 2.2.7. — An object I € Mod(kx_ . ) is quasi-injective if the functor
Homkxsa . (., F) is exact in Coh(Xj, r+) or, equivalently (see Theorem 8.7.2 of [18])
if for each U,V € Op®(Xsar+) with V' C U the restriction morphism I'(U; F) —
I'(V; F) is surjective.

The category of quasi-injective objects is cogenerating since it contains injective
objects. Moreover it is stable by filtrant h_)m and []. We have the following result

THEOREM 2.2.8. — The family of quasi-injective sheaves is injective with respect to

the functor Homy, (G, .) for each G € Coh(Xg,r+)-

R+
In particular:

PROPOSITION 2.2.9. — The family of quasi-injective sheaves is injective with respect
to the functor T(U;.) for any U € Op(Xgar+)-

Let : X — Xp+ and 75, : Xsa — X g+ be the natural morphisms of sites. We
have a commutative diagram of sites

(2.2.1) xX— 2 X,

p»&+

X]R+ _— Xsa,R‘F .

LEMMA 2.2.10. Let F € Coh(Xg,g+). Then g py. F ~ p~'F.
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14 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

Proof. — Since all these functors are exact on Coh(Xg, g+), we may reduce to the
case F' = ky with U € Op®(Xg, r+). Then we have

N P kU = 15 ko = ku,
on the other hand we have p,n~'ky ~ p.ky ~ ky and the result follows. |
1

REMARK 2.2.11. — Remark that pjon~
of Remark 2.2.2 we have

% 05t o ppyy- In fact with the notations

e 2 T pk,

m

On the other hand, since X+ € Op®(Xy, z+) we have gl pp, kx+ ~ kx+.

2.3. An equivalence of categories

Let X be a real analytic manifold endowed with an action p of R*. In the following
we shall assume the hypothesis below:
(i) every U € Op°(Xsa) has a finite covering consisting
of R*-connected subanalytic open subsets;
(2.3.1) (if) for any U € Op“(Xsa) we have R*U € Op(Xsa);
(i) for any x € X the set Rz is contractible;

(iv) there exists a covering {V;, }nen of X, such that

V,, is RT-connected and V;, € V;,41 for each n.

Let U € Op(Xsa) such that R*U is still subanalytic. Let ¢ be the natural map
from I'(R*U; F) to F(U;n;llF) defined by

(23.2) T(RYU;F) — T(RTU; e F) = T(RU; ' F) — T(U; L F).

PROPOSITION 2.3.1. — Let ' € Mod(kx_ ,,). Let U € Op(Xsa), assume that U is
R*-connected and R*U € Op(Xsa). Then the morphism ¢ defined by (2.3.2) is an
isomorphism.

Proof. — (i) Assume that U € Op®(Xs,) is R*-connected. Let F' € Mod(kx_ . ),
then F' = hg}l P+, Fi, with F; € Coh(X, g+). We have the chain of isomorphisms
i
Homkxsa (kU7 775;1 h_I‘I>1 pR+*Fi)
7
~ HOII])CXSa (kZU7 hi>n p*nlei) ~ h_n}l Homy, (kU, 77*1Fi)
1 7
o~ h_H}l Homy, (kp+v, Fi) Homk"sa,w (kr+v, h_n>1 P+ Fi)s

A A
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2.3. AN EQUIVALENCE OF CATEGORIES 15

where the first isomorphism follows since 75" 0 ., ~ p.on™! by Lemma 2.2.10 and
the third one follows from the equivalence between conic sheaves on X and sheaves
on Xg+. In the fourth isomorphism we used the fact that R*U € Op®(Xg, g+)-

(i) Let U € Op(Xsa) be Rt-connected. Let {V,,}nen € Cov(Xsa) be a covering
of X asin (2.3.1) (iv) and set U,, = U N'V,,. We have:

2.3.3 D(U;nZ F) ~ lim D(Uy; 3 F) ~ lim T'(RYU,; F) ~ T(R*U; F). O
(2.3.3) (,nsa)gﬂ(,nsa)gl( i F) = I )

n n

COROLLARY 2.3.2. — Let F' € Mod(kx_ ) and let U € Op(Xsa). Assume that U
is R*-connected and R*U € Op(Xsa). There is an isomorphism

nsa*FUns;lF = FR*UF-

Proof. — Let V € Op(Xg, g+). Then RT(VNU) = VNRYU. We have the chain of
isomorphisms

D(VineTonilF) ~ T(V N U;n ! F) ~ T(RY(V NU); F)
~T(VNR'U; F) ~T'(V; Tt F),
where the second isomorphism follows from Proposition 2.3.1. O
We can extend Lemma 2.2.10 to Mod(kx,, )-
LEMMA 2.3.3. — Let F € Mod(kx,, ). Then ng'pp. F =~ pa ' F.
Proof. — Let F € Mod(kx,, ) and let U € Op®(X,a) be R*-connected. Then
L(U; pon” ' F) = T(Usn ' F) ~T(RU; F),

where the second isomorphism follows from Proposition 2.1.5. On the other hand

L(U;ng' pgs, F) = T(RU; pg, [ F) = T(RU; F),

where the first isomorphism follows from Proposition 2.3.1. Hence by (2.3.1) (i)
Nea P F =~ pan ™ F. 0

Let us consider the category Modg+ (kx,,) of conic sheaves on Xg,. The restriction
of ng,, induces a functor denoted by 7,, and we obtain a diagram

7753*
(2.34) Modg+ (kx,,) 7————— Mod(kx_, )
N -
NIOd(kZXm)
THEOREM 2.3.4. — The functors f,, and n3,! in (2.3.4) are equivalences of catego-

ries inverse to each others.
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16 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

Proof. — (i) Let F' € Modg+ (kx.,), and let U € Op®(Xg,) be R*-connected. We have

F(UvF) = F(R+U7 F) = F(RJrU;ﬁsa*F) = F(U, n_lﬁsa*F)'

sa
The third isomorphism follows from Prop. 2.3.1. Then (2.3.1) (i) implies n; 17, =~ id.
(i) For any U € Op® (X, g+) we have:

(U3 ngune F) ~ T(Usng,' F) ~T(U; F)

where the second isomorphisms follows from Prop. 2.3.1. This implies 7,15 =~ id.
O

NOTATIONS 2.3.5. — Since 5! is fully faithful and exact we will often identify
Coh(Xg, g+) with its image in Modg+ (kx,,). Hence, for F' € Coh(X;, g+) we shall
often write F' instead of n ' F.

Thanks to Theorem 2.2.4 we can give another description of the category of conic
sheaves.

THEOREM 2.3.6. — Let F € Modg+ (kx.,). Then there exists a small filtrant sys-
tem {F;} in Coh(Xg, r+) such that F ~ hﬂ}l pun L F;.

i

This implies that each F' € Modg+(kx,,) can be seen as the inductive limit
(in Modg+ (kx,,)) of a small filtrant system {F;} with F; € Modg g+ (kx) such
that F; ~ (F;)y, for some U; € Xp+.

REMARK 2.3.7. — Let F € Coh(X, g+). The functor of inverse image commutes
with lim and
H
ppun T E = popT T F > pup Tty T F ~ pT pun T F.

Hence F' € Coh(Xg, r+) implies F' € Mod”(kx,, ), where Mod"(kx_,) is the category
introduced in Remark 2.2.2. Let

G= h_I>Il p«G; € Modg+ (sza)

i

with G; € Coh(Xg,r+). Since Mod"(kx,,) is stable by filtrant h_H}l we have that G

belongs to Mod”(kx_,). Hence Modg+ (kx_,) is a full subcategory of Mod”(kx_,) but
Modg+ (kx,,) 7% Mod”(kx,,) in general. We have the chain of fully faithful functors

Coh(Xg, r+) — Modg+ (kx,,) — Mod"(kx.,)-
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2.4. DERIVED CATEGORY 17

2.4. Derived category

Assume (2.3.1). Injective and quasi-injective objects of Mod(kx,,) are not con-
tained in Modg+ (ksa). For this reason we are going to introduce a subcategory which
is useful when we try to find acyclic resolutions.

LEMMA 2.4.1. — Assume that X satisfies (2.3.1). Then the following property is
satisfied:

(2.4.1) has a finite refinement {V;}_, such that each ordered

{ Each finite covering of an R*-connected U € Op®(Xga)
union \J_, V; is R*-connected for each j € {1,...,n}.

Proof. — Let U € Op®(Xsa) be R*-connected. Then each finite covering of U admits
a finite refinement consisting of R*-connected open subanalytic subsets. Let {U,}72_;
be a finite covering of U, U, € Op®(Xs.) RT-connected for each a. We will construct
a refinement satisfying (2.4.1).

Fork=1,...,nandi=2,...,nset op(i) =i —1if i <k, op(i) =i if i > k and

Vi :=U and Vi, := Uo'k () ﬂ]RJr(Uk N Uak.(i)) for 1 > 2.

For j =2,...,n define recursively
ji—1 n
ijl = U U Viei and iji =Usps) N R (ijl n Uak(i)) for i > 2.
r=1i=1

Remark that Ui):l Ure Uy Vi = Ui:l R*U, NU. By Lemma 2.4.2 below all the
sets Vi;; are RT-connected and {Vjj; }i, ;i is a refinement of {U, }, satisfying (2.4.1)
(with the lexicographic order). O

LEMMA 2.4.2. Assume that X satisfies (2.3.1) (iil). Let U, V,W be open and R -
connected. Then UU (VAR (UNV))U (W NRHUNW)) is Rt -connected.

Proof. — In what follows, when we write R*x we suppose that Rtz ~R. If R*z =z
everything becomes obvious.

(i) First remark that UNV (resp. UNW, VN W) is R*-connected. Indeed,
let z1, 29 € UNVNR*z for some z € X. Then x; = pu(x,a), zo = p(z,b). Every path
in R*x connecting z7 and x2 contains pu(x,[a,b]). Since U and V are R*-connected
then UNV D p(z,[a,b]). Remark that here and below in the notation [a, b] we do
not necessarily have a < b.

(ii) Now let us prove that U U (VNRY(U NV)) is R*-connected. Let x1,x2 belong
to UU (VNRF(UNV))NR*z for some z € X. Then zy = pu(x,a), xa = p(x,b).
We want to prove that

w(z,[a,b]) CUU (VAR (UNV)).
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18 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

If 1,22 € U it follows since U is R*-connected and if 1,20 € VAR (U NV) it
follows from (i). So we may assume that 1 € U and zo € VNRT(UNV). Since U is
R*-connected and x5 € Rz, there exists y = p(z,¢) € UNV. Then pu(z, [a,c]) C U.
In the same way p(z, [b,c]) C VNR*(UNV) and hence

w(z,la, U b, d) cUU (VAR (UNV)).
(iii) Let us show that U U (VNRT(UNV))U (W NRH(U NW)) is RT-connected.

Let 21,20 € UU (VNRHUNV))U (W NRH(UNW))NR*z for some z € X.
Then z1 = u(z, a), 2 = p(x,b). We want to prove that

w(z,la, b)) CUU(VNRYUNV))U(WNRHUNW)).

By (i) and (ii) we may reduce to the case z1 € V, x3 € W. As in (ii), there exist
y1 = p(z,c) e UNV and yo = p(x,d) € UNW. Then p(z,[c,d]) € U, p(z,[a,c]) C
VNARYUNV) and p(z, [b,d])) C WNRY(UNW). Hence u(z,[c,d] U [a,c] U[b,d]) is
mUUVNARYUNV))UWNRT(UNW)) and the result follows. O

DEFINITION 2.4.3. — A sheaf F € Mod(kx,,) is R*-quasi-injective if for each RT-
connected U € Op°(Xs,) the restriction morphism I'(X; F) — I'(U; F) is surjective.

Remark that the functor ng! sends quasi-injective objects of Mod(kx_ .. ) to
R*-quasi-injective objects since I'(U;nlF) ~ D'(R*U; F) if U € Op®(Xsa) is R*-
connected. Moreover the category of Rf-quasi-injective objects is cogenerating since
injective objects are cogenerating in Mod(kx._, ).

PROPOSITION 2.4.4. — Let 0 — F' — F — F” — 0 be an exact sequence in
Mod(kx,,) and assume that F' is R*-quasi-injective. Let U € Op(Xs,) be RF-
connected. Then the following sequence is exact:

0 T(U;F') — T(U; F) — [(U; F"') = 0.

Proof. — (i) Let us consider a R*-connected U € Op®(Xs,). Let s” € T'(U; F”),
and let {V;}7_; be a finite covering of U satisfying (2.4.1) and such that there exists
s; € T'(Vi; F) whose image is 3//\\/1' For n > 2 on V3 NV, 81 — sy defines a section
of T'(V4 N Vi; F') which extends to s’ € T'(X; F'). Replace s; with s; —s’. We may
suppose that s; = s on V4 N Va. Then there exists ¢ € I'(V; U Va; F) such that
tm = s;, for i = 1,2. Thus the induction proceeds.

(ii) Let us consider a Rt-connected U € Op(Xs,). By (2.3.1) (iv) there exists a
covering {V;, }nen of Xga such that V;, is R*-connected and V;, € V,,1; for each n.
It follows from (i) that for each n the sequence

0= DU NV F') — T(U NV F) — T(U N Vp; F”) = 0

is exact. Moreover the morphism T'(U N V,41; F') — I'(U N V,; F') is surjective
for each n since F’ is RT-quasi-injective. Then by the Mittag-Leffler property (see
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2.4. DERIVED CATEGORY 19

Proposition 1.12.3 of [14]) the sequence
0— ImT(UNVy,; F') — ImT(U NV, F) — lim T(U NV, F’) =0
— — —

is exact. Since lim I'(U N V,,; G) ~ T'(U; G) for each G € Mod(kx,, ) the result follows.
o O
PROPOSITION 2.4.5. — Let F' | F be R*-quasi-injective and consider the exact se-

quence 0 — F' — F — F” — 0 in Mod(kx,,). Then F" is R*-quasi-injective.
Proof. — Let U € Op®(Xsa) be R*-connected and let us consider the diagram
NX;F) —— > T(X; F")

a vy

I(U; F) —— (U, F").

The morphism « is surjective since F' is RT-quasi-injective and § is surjective by
Proposition 2.4.4. Then 7 is surjective. |

It follows from the preceding results that

PROPOSITION 2.4.6. — R*-quasi-injective objects are injective with respect to the
functor T(U;.), with U € Op(Xsa) and Rt -connected.

COROLLARY 2.4.7. — RT-quasi-injective objects are injective with respect to the
functor Ty, with U € Op(Xsa) and R -connected.

Proof. — Let 0 — F' — F — F” — 0 be an exact sequence in Modg+ (kx,,) and
assume that F’ is R*-quasi-injective. By Proposition 2.4.6 the sequence

0-TUNV;F)—TUNV;F)—TUNV;F") =0
is exact for any V' € Op(Xs.) and R*-connected. This implies that the sequence
0—=TIyF —TyF —TyF’' =0
is exact. O
COROLLARY 2.4.8. — R*-quasi-injective objects are ng,, -injective.

Proof. — Let 0 - F' — F — F” — 0 be an exact sequence in Modg+(kx_,) and
assume that F’ is R*-quasi-injective. By Proposition 2.4.6 the sequence

0—=T(U;F)—T(U;F) —T(U;F") =0
is exact for any U € Op(Xg,r+). This implies that the following sequence is exact:
0 = Neaw I — N ' — 1 F”" — 0. O

THEOREM 2.4.9. — The categories D*(kx_ ) and D} (kx,,) are equivalent.
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Proof. — In order to prove this statement, it is enough to show that 3! is fully

faithful. Let F' € Db(kXSM .) and let I* be an injective complex quasi-isomorphic

to F. Since n3! sends injective objects to R*-quasi-injective objects which are 7,,-
injective we have

R F = ngni I* = 1° ~ F.
This implies Rng,,na! ~ id, hence n3;! is fully faithful. O

Hence for each F € D&, (kx,,) we have F ~ n ' F’ with F” € D (kx_

a,R+

). Remark
that Theorem 2.4.9 also implies that conic sheaves are 7, -acyclic.

PROPOSITION 2.4.10. — Let F € DP(kx_ . ). Let U € Op(Xsa) be R*-connected
and such that R*U € Op(Xg,). There is an isomorphism

RI'(R*U; F) =5 RI(U; ' F).

Proof. — Let I* be a complex of injective objects quasi-isomorphic to F. Since ng!
sends injective objects to R*-quasi-injective objects we have
RI(RYU; F) ~ T(RYU; I*) =5 T(U;n I°) ~ RT(U; 31 F),

where the second isomorphism follows from Proposition 2.3.1. O

COROLLARY 2.4.11. — Let F € Mod(kx_ _, ) and let U € Op(Xs). Assume that U
is R -connected and R*U € Op(Xsa). There is an isomorphism

R Ry F ~ RTg+y F.
Proof. — Let V' € Op(Xgar+)- As in Corollary 2.3.2,
RI(V; Ry, RUgnsl F) = RE(V 0 U3l F) = RO (V N U); F)
~RI'(VNR'U; F) ~RI(V;RIp+p F),
where the second isomorphism follows from Proposition 2.4.10. |

We extend Lemma 2.3.3 to Db(kxﬁ)‘

LEMMA 2.4.12. — Let F € D"(kx,, ). Then
e Rpgs F ~ Rp.n'F.

Proof. — (i) Let F' € Mod(kx,, ) be injective. Then for each R*-connected U in
Op®(Xsa), one sees that R['(U; Rp,n ' F) ~ R['(U;n~'F) ~ R['(R*U; F) is concen-
trated in degree zero. Hence n~1F is Rp,-acyclic by (2.3.1) (i).

(i) Let F' € DP(k X, . ) and let I* be a complex of injective objects quasi-isomorphic
to F. Then ns’alRpR”F ~ Us;1PR+*I' ~ p.n I ~ Rp.n~'F, where the second
isomorphism follows from Lemma 2.3.3 and the third one follows from (i). O
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2.5. Operations

Let X be a real analytic manifold endowed with an analytic action of R*. We
study the operations in the category of conic sheaves on Xg,.

PROPOSITION 2.5.1. — The category Modg+ (kx,,) is stable under ll_H)l and E&n

Proof. — This is a consequence of the equivalence with Mod(k, g+)- O

PROPOSITION 2.5.2. — Let F € Modg+(kx) and G € Modg+(kx.,). Then we have:
(i) p«F € Modg+ (kx.,);
(ii) pflG € Modg+ (k’x)
Proof. — (i) Let U € Op®(Xsa) be R*-connected. We have the chain of isomorphisms
T(U;p«F) ~T(U; F) ~T(R'U; F) ~T(R*U; p. F).

(ii) We have G = h_n)] p«Gj, with G; € Coh(Xg, g+). Then
J i <G~ i “15.Gi ~ lim G,
P E}l Pxlaj E; PPl E} J
j J J
and llj}l G; belongs to Modg+(kx). O
J
PROPOSITION 2.5.3. — Let F,G € Modg+(kx_,). Then we have:
(i) F®G € Modg+ (kx,,),
(ii) Hom(F,G) € Modg+ (kx._.).
Proof. We have F' = li_n>1p*Fi and G = 1i_n>1p*Gj7 with F;,G; € Coh(Xg,gr+),
and i j

(1) FOG~ hi>n p«(F; ® Gj;) and F; ® G; belongs to Coh(Xg, g+) for each i, j;
]
(if) Hom(F,G) ~ lim lim p, Hom(F;,G;) and Hom(F;, G;) is conic for each 4, j.
— =
i O
Let f : X — Y be a conic morphism of real analytic manifolds. We have a
commutative diagram

(2.5.1) Xo— T Ly,

an lma
f
X, sa,R+ szaJR* .

PROPOSITION 2.5.4. — Let F € Modg+(kx.,) and G € Modg+ (ky,,). We have:
(i) f+F € Modg+ (ky.,);
(ii) f7'G € Modg+ (kx.,).
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Proof. — (i) Let U € Op®(Yza) be Rt-connected. Since f commutes with the action
of R*, the set f~1(U) is R* connected. We have the chain of isomorphisms
D(f7H(U);F) ~D(RYfTHU); F) = T(fTHRTU): F).
Hence I'(U; f. F) ~ T'(R*U; f.F).
(i) We have G = h_H)l p«Gj, with G; € Coh(Y, g+). Then
T Gy i Gyl pf G
J J J

and f~1G; is conic for each j. |

PROPOSITION 2.5.5. — Let F' € Modg+(kx,,) and let G € Modg+ (ky,,). We have:
(1) "]sa*f*F: f*nsa*F§
(i) Nyau /G = 1050,

Proof. Part (i) follows immediately from the commutativity of the diagram (2.5.1).
Let us prove (ii). We have

PG = TG 00 G = G T 0. G
where the first isomorphism follows from Theorem 2.3.4 and the second one from the

commutativity of the diagram (2.5.1). Composing with 7,,, and using Theorem 2.3.4
once again, we obtain the required isomorphism. (]

REMARK 2.5.6. — While (i) is true in Mod(kx,, ), the isomorphism (ii) works only
for conic sheaves. For example, let X = {0}, Y = R and let f : {0} — R be the
inclusion. Endow R with the action g induced by the multiplication. Let B. be the
open ball of radius € > 0 centered at {0}. In this case

ks, ~T(Rikp,) =0 and 1y, [~ kg, = [ kg, ~ k.
PROPOSITION 2.5.7. — Let F,G € Modg+ (kx,,). Then we have:
() Mo (F @ G) = o, F @15, G
(i) Mo Hom(F, G) = Hom (1 F, 050, G)-
Proof. — (i) We have the chain of isomorphisms
Neae B @ 040 G = 015 (0 F © 140, G)
~ N (e Mg F © 15140, G) = g (F @ G),

where the first and the third isomorphisms follow from Theorem 2.3.4.

(ii) We have the chain of isomorphisms
Naae Hom(F, G) = 1. Hom(ng 0, F, G) = Hom(, F, 14, G),

where the first isomorphism follows from Theorem 2.3.4. (]
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Now let us consider the operations in the derived category of conic subanalytic
sheaves.

PROPOSITION 2.5.8. — Let F € D (kx). Then Rp.F € Db (kx.,).

Proof. — There exists F' € Db(kxw) such that F' ~ 7~ F’. Then the result follows
from Lemma 2.4.12. O

PROPOSITION 2.5.9. — Let F,G € Db, (kx.,). Then RHom(F,G) € D, (kx..). In
particular, if H*F € Coh(Xq,r+) for each k € Z, then RHom(F,G) € DY, (kx.,)-
Proof. — (i) Let us prove that if F',G' € Mod(kx_ ,,) and G’ is injective, then
RHom(nt F',ntG") is concentrated in degree zero. Let U € Op®(Xs.) be R*-
connected. Then
RI(U; RHom(n,' F',n5'G)) ~ RHomy,, (n,'F',RTyng,!GY)
~ RHomy,, . (F', Ry, ,RTynitG)
~ RHOHI]CX‘ - (F‘l7 RFR+UG,)
~ RHomk"sa,w (Fiey, G,
which is concentrated in degree zero since G’ is injective. The third isomorphism

follows from Corollary 2.4.11. By (2.3.1) (i) this implies that RHom(n 1 F’, n;1G")
is concentrated in degree zero.

(ii) Let I* be a complex of injective objects of Mod(kx_
and let F’ € Db(kxs

such that nll* ~ G

)
a,RT
o+ ) such that nZ'F' =~ F. By (i) we have

RHom(F,G) ~Hom(ny F',nZ T*)

and Proposition 2.5.3 (ii) implies that Hom(nilF',n;tI*) is a complex of conic
sheaves. If F' € DP(Coh(X,,p+)), then RHom(F,G) has bounded cohomology: it is
a consequence of the fact that Hom (K, .) has finite cohomological dimension for each
K € Modg..(kx) (Corollary 2.3.3 of [28]). O

PROPOSITION 2.5.10. — Let F € Dy, (kx,,). Then Rf.F € DY, (ky,,).

Proof. — Remark that the functor 3! sends injective sheaves to f.-acycic sheaves.
This is a consequence of the fact that 1! sends injective sheaves to I'(U;-)-acyclic
sheaves for each R*-connected U € Op(Xg,). There exists F’ € Db(kxsa_k+) such that
F~n_lF'. Let I* be a bounded injective resolution of F’. Then n;!I 7 is conic and
fs-acyclic for each j. We have Rf.F ~ f.n tI* and f.nlI7 is conic for each j. O

PROPOSITION 2.5.11. — Let F,G € D} (kx.,). We have:

(1) Mg Rf«F ~ Rfing,, F;
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Proof. — Part (i) follows immediately from the commutativity of the diagram (2.5.1)
and the fact that conic sheaves are 7g,,-acyclic. The proof of (ii) goes as Proposi-
tion 2.5.7 (ii) since RHom(F,G) is conic and conic sheaves are 7, -acyclic. O

REMARK 2.5.12. — The commutation in the derived category between 7,, and the
functors f~! and ® follows immediately from Propositions 2.5.5 and 2.5.7 and the fact
that conic sheaves are 7, -acyclic.

PROPOSITION 2.5.13. — Let G € DY, (ky,,). Then f'G € DB, (kx.,).

Proof. — We may reduce to the case G € Modg+ (ky,, ). Then
G = h_II}l p*Gj,
J
with G € Coh(Yg, r+). By Proposition 2.4.5 of [28] we have
H*f'G ~ lim p. H* f'G;
f tim p I'Gj
2

for each k € Z and the result follows since H* f!Gj is conic for each k € Z and for
each j. O

REMARK 2.5.14. — The functor fi : Mod(kx,,) — Mod(ky,,) does not send conic
sheaves to conic sheaves in general. In fact, let p : R3 — R? be the projection. It is a
conic map with respect to the natural action of R* on R* and R?. Set
U= {(x,y) ER? (- 1) +4% < 1}, B, = {(.r,y) eR?% 22+ 42 < n},
Bl =B,Nn(R*xR), S=R" (U x {1}).
Let us consider the conic sheaf kg. By definition of proper direct image we have
L(U;pnF) = lim T'(p~ Y (U); Tk F),

_>

K
where K ranges through the family of subanalytic compact subsets of R3. Since U is

bounded we have

T(U;puks) ~ lim LU x R;T'kks) = lim DU x R;Tge [ m,mks) = k,
K m

where m € N. On the other hand we have

L(R*U;puks) =~ lim [(B};puks) ~ lim lim L(B % R; T2 x [—m,miks) = 0,

n n m

where m,n € N, since T'(B;f" x R; T2y [—m,mjks) = 0 for each m, n.

Hence we shall need a new definition of proper direct image for conic sheaves.
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DEFINITION 2.5.15. — We define functor fg+, of proper direct image for conic
sheaves in the following way, where F; € Coh(Xg, g+ ):
fan : Modg+ (kx,,) — Modg+ (ky,, ), h_H; puFy — h_H; p« i
1 k2
Let us see an explicit formula for the sections of fp+y. Let U € Op®(Yy,p+) and
let F' = h—l’I)l p«F; with F; € Coh(Xg, r+). We have the chain of isomorphisms

i

L(U; lim p. fiFy) = M D(U; fiFy) = lim L(fHU);Tznk Fy)

i i ,Z,K
=~ lim D(f U)iTznk ) = lim L(f~'(U)iT 2k lim p. Fy).
iZ2' K 71K i

Here Z ranges into the family of closed subanalytic subsets of f~'(U) such that
f:Z — U is proper, Z’' ranges through the family of closed conic subanalytic subsets
of f~1(U) such that f~!(y) NR*x = {point} for any y € Y, z € X, and K € Xp+
are conic and closed. The first isomorphism follows since U € Op®(Yg, g+), the third
since F; is conic for each i and the last one since f~3(U) N K € Xg+. This formula
also explain why fgr+y does not depend on the choice of the family {F;}.

Note that if F' € Coh(Xg,r+) then frenpF >~ p  iF % fup.F. Moreover this
1

definition is compatible with the classical one. In fact fg+; commutes with p~' and

we have the following commutative diagram

Modg+ (kx) ——— Modg+ (ky)

|- al
fx+vz

1\/10(1]1;24r (kxm) _— 1\/[Od]R+ (ky”)
REMARK 2.5.16. — With the notation of Remark 2.5.14, we have
DR*U; prinks) ~ T(U; prenks) = k.
In fact the restriction of p to S N {(z,y,2) € R = > 0} is proper.

It is easy to prove that projection formula and base change formula for conic
sheaves are satisfied. Moreover, RT-quasi-injective objects are acyclic with respect to
the functor fr+y, since they are Hom(G, .)-injective for each G € Coh(Xg, g+)-

In order to find a right adjoint to R fg+, we follow the method used to find a right
adjoint to the functor proper direct image for subanalytic sheaves. We shall skip the
details of the proof (which are an adaptation of the results of [28]). The subcate-
gory Jx_ .. of Rf-quasi-injective objects and the functor fg+y have the following
properties:

(i) Jx,, ., is cogenerating;

(ii) Mod(kx_ .. ) has finite quasi-injective dimension;
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(iil) Jx_, .. I8 fr+u-injective;
(iv) Jx_ . is closed by small @;
(v) fr+n commutes with small @.

As a consequence of the Brown representability theorem (see [18], Corollary 14.3.7
for details) we find a right adjoint to the functor Rfg+y, denoted by ffw.

By adjunction fn!w commutes with Rp, and as in [28] one can prove that H¥ fﬁw
commutes with filtrant hi>n

Hence f4, coincides with the restriction of f* to DB, (ky,,).
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CHAPTER 3

FOURIER-SATO TRANSFORM FOR
SUBANALYTIC SHEAVES

We construct here the Fourier-Sato transform for subanalytic sheaves. References
are made to [14] for the classical Fourier-Sato transform.

3.1. Conic sheaves on vector bundles

Let E 5 Z be a real vector bundle, with dimension n over a real analytic mani-
fold Z. Then R* acts naturally on E by multiplication on the fibers. We identify Z
with the zero-section of F and denote by i : Z < E the embedding. We set

E=E\Z
and 7: E — Z denotes the projection.
LEMMA 3.1.1. — The category Op(Es,) satisfies (2.3.1).

Proof. — Let us prove (2.3.1) (i). Let U € Op°(Xsa) Let {V;}ien be a locally finite
covering of Z with V; € Op®(Zs,) such that 7! (Vi) 2~ R™ x R™ and let {U;} be a
refinement of {V;} with U; € Op®(Zs.) and U; C V; for each i. Then U is covered by a
finite number of 7=1(U;) and U N7~1(U;) is relatively compact in 7=1(V;) for each i.
‘We may reduce to the case E ~ R™ x R™. Let us consider the morphism of manifolds

P R" xS xR —R™xR", (2,9,7) —> (2,7i(9)),

where i : S"~! < R™ denotes the embedding. Then ¢ is proper and subanalytic. The
subset ¢ ~1(U) is subanalytic and relatively compact in R™ x S*~1 x R.

(a) By Lemma A.1.11 ¢~1(U \ Z) admits a finite cover {W;};es such that the
intersections of each W; with the fibers of 7 : R™ x S*71 x R — R™ x S"~! are
contractible or empty. Then (W) is an open subanalytic relatively compact R*-
connected subset of R™ x R™ for each j. In this way we obtain a finite covering
of U\ Z consisting of R*-connected subanalytic open subsets.



28 CHAPTER 3. FOURIER-SATO TRANSFORM FOR SUBANALYTIC SHEAVES

(b) Let p € m(¢~1(UN Z)). Then 71 (p) Np~1(U) is a disjoint union of intervals.
Let us consider the interval (m(p), M(p)), m(p) < M(p) € R containing 0. Set

Wz ={(p,r) € 7' (U); m(p) <r < M(p)}.

The set Wz is open subanalytic (it is a consequence of Proposition 1.2, Chap.6
of [38]), contains ¢ ~1(UNZ) and its intersections with the fibers of 7 are contractible.
Then ¢(Wz) is an open R*-connected subanalytic neighborhood of U N Z and it is
contained in U.

By (a) there exists a finite covering {¢(W;)};es of U\ Z consisting of R*-connected
subanalytic open subsets, and o(Wz) UU;c; ¢(W;) = U.

By Proposition 8.3.8 of [14] the category Op(FEs,) also satisfies (2.3.1) (ii).

Moreover (2.3.1) (iii) and (iv) are clearly satisfied. O

Now let us consider E' endowed with the conic topology. In this situation, an object
U € Op(Eg+ ) is the union of U € Op(Eg+) and U, € Op(Z) such that 7! (Uz) CU.
If U,V € Op(Eg+), then U € Vif Uz € Vzin Z and U € V in Egs+ (this means that
7(U) € n(V) in E/R*, where 7 : E — E/R* denotes the projection).

Applying Theorem 2.4.9 we have the following:

THEOREM 3.1.2. — The categories D, (kg,,) and Db(kEs are equivalent.

a.]pz+)

Consider the subcategory NIOd&?C,R+(kE) of Modg ¢ g+ (kg) consisting of sheaves
whose support is compact on the base (i.e. 7(supp(F)) is compact in Z). Let us
consider the natural map 7 : £ — Eg+. The restriction of 57! to Coh(Eq, g+) gives
rise to a functor
(3.1.1) 77" Coh(Ey, m+) — Mod, g+ (k)

Since the functor n~! is fully faithful and exact, we identify Coh(Fgr+) as a
subcategory of I\/Iodfgc,w(k E).

THEOREM 3.1.3. — The functor 71 in (3.1.1) is an equivalence of categories.

Proof. — (i) Let F € Modfgzc?]w (kg). Let us show that F is Eg, g+-finite. We may
reduce to the case E ~ R™ x R"™ and Z ~ R™ x {0}. It is well known that if X is a
real analytic manifold and G € Modg_(kx), then G is quasi-isomorphic to a bounded
complex of finite sums @y, kw, where W € Opg, (X).

Let us consider the diagram Z Ay N Z, where i is the embedding. We have
7.7 € Modg_.(kz). Since F is conic 7. F ~ i~ F. We have an exact sequence
(3.1.2) @kT—L(Vi) —>7’71T*F—>0,

icl

where I is finite and V; € Opg,(2).
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Now let us consider the diagram S AN S, where S = E/R* ~ R™ x §"~1
and 7 is the projection. We have j‘lF‘E € Modg_.(ks). Since F|,, is conic, one has
Wfljle‘E ~ F‘E' ‘We have an exact sequence

(3.1.3) @kw—l((]]) —>FE — 0.
J
where J is finite and U; € Opg,(S).
It is easy to check that the morphism 717, F @ FE. — Fis an epimorphism and
we obtain the result by (3.1.2) and (3.1.3).

(ii) Let us show that F'is Eg, p+-pseudo-coherent. Let G = €D, kw,, with I finite
and W; € Op°(Egp+), and consider a morphism ¢ : G — F. Since F and G are
R-constructible and conic, then kert belongs to Modg ¢ r+(kg), and its support is
still compact on the base. O

As a consequence of Theorems 2.3.6 and 3.1.3 one has the following:

THEOREM 3.1.4. — Let F € Modg+ (kg.,). Then there exists a small filtrant sys-
tem {F;} in Mod%b_c,R+(k5) such that F ~ h_II)l pFy.

7
We end this section with the following result, which will be useful in §3.2.
LEMMA 3.1.5. — Let F € D}, (kg,,). Then:
(i) R F ~i~'F;
(ii) RmF ~i'F.
Proof. — (i) The adjunction morphism defines
Rr,F ~i 'r7'Rr,F — i 'F.
Let V € Op®(Zsa). Then
lim R*D(U; F) ~ lim RFT(U; F) ~ R*T (1= X(V); F) ~ RFI(V; RT. F),
Usv UsV
T(U)=V

where U € Op(Es,) and R*-connected. The second isomorphism follows from Propo-
sition 2.4.10.

(i) The adjunction morphism defines
i!F — i!T!RT[]F ~ RT”F.

Let V € Op®(Zsa), and let K be a compact subanalytic R*-connected neighborhood
of Vin E. Then 77(V) \ K is R*-connected and subanalytic, and

R (r'(V)\K) =771 (V)\ Z
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By Proposition 2.4.10 we have the isomorphism
RL (7~ }(V);RIzF) ~ RD(r~}(V); Rk F).
It follows from the definition of Rmy that for any k € Z and V' € Op®(Zs,) we have

R*T(V; Ry F) =~ lim RFT(r~'(V);RTk F),
K

where K ranges through the family of compact subanalytic RT-connected neighbor-
hoods of V' in E. On the other hand for any k € Z we have

RFD(V;i'F) ~ R¥ Hom(ixky, F) ~ R* Hom(i,i '~ ky, F) ~ RFD(+ 71 (V); R 2 F)

and the result follows. O

3.2. Fourier-Sato transformation

Let E - Z be a real vector bundle, with dimension n over a real analytic man-
ifold Z and E* = Z its dual. We identify Z as the zero-section of F and denote
by i : Z < E the embedding, we define similarly i : Z < E*. We denote by p; and po
the projections from E x ; E*:

p1_E X E* _p2

\Z/

P:={(x,y) € E X B (y) 2 0}, P :={(z,y)eE X E% (z.y) < 0}

‘We set

and we define the functors
Upi = Rpy, o RUproph : DR (kp: ) — DRy (kg,,),
®pr = Rpano (Jpropy ' DRy (ki) — Dpi (ki)
Up = Rpay, oRTpop;t : DR (kp,,) — DRy (kp= ),
®p = Rpwo ()popy: Dy (kgs) — Dp (ke,,)-

REMARK 3.2.1. These functors are well defined, more generally they send suban-
alytic sheaves to conic subanalytic sheaves.

LEMMA 3.2.2. — Let F € Db, (kp,). Then supp((RTp(p;'F))p:) is contained
n Z Xz E*.
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Proof. — We may reduce to the case F' € Modg+(kg,,). Then F = hj; p«F;, with
F; € Modg, g+ (kg). We have i

H*(RCp(py! lim p«F;)p) = lim H*(RTp(py ' oo Fi)pr)

2

where the last isomorphism follows from Lemma 3.7.6 of [14]. O

LEMMA 3.2.3. — Let A and B be two closed subanalytic subsets of E such that
AUB=E, and let F € D"(kg,,). Then RTa(Fp) ~ (R[4F)5.

Proof. We have a natural arrow (I F)g — T'a(Fg), and R(T4F)g ~ (RT4F)p
since (.)p is exact. Then we obtain a morphism (R[4 F)p — RI4(Fg). It is enough
to prove that for any k € Z and for any F' € Mod(kg,,) we have

(R*T4F) g = RFT 4(Fg).

Since both sides commute with filtrant lim, we may assume F' € Modg_.(kg). Then

the result follows from the corresponding one for classical sheaves. |
PROPOSITION 3.2.4. — The two functors ®p,¥p : D, (kg,) — Dp.(kgx) are
isomorphic.

Proof. — We have the chain of isomorphisms:

®p F = Rpon(p7 ' F)pr ~ RpoyRTp((p7 ' F)pr) =~ Rpon (RTp(p7 ' F)) p,
~ Rps. (RTp(py ' F)) p, ~ RpouRTp(py ' F).

The first isomorphism follows from Lemma 3.1.5 (ii), the second from Lemma 3.2.3,
the third one from Lemma 3.2.2 and the last one from Lemma 3.1.5 (i). O

DEFINITION 3.2.5. — Let F € D}, (kg,,).
(i) The Fourier-Sato transform is the functor
()" : DRy (kg,,) — DRy (kgs), F"=®pF ~VpF.
(ii) The inverse Fourier-Sato transform is the functor

()Y : DR+ (kp:) = DR+ (kp,,), FY=UpF~3pF.
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It follows from the definition that the functors * and ¥ commute with Rp, and p~!.

‘We have quasi-commutative diagrams

A A

D£+(kE)<:V>D§+(kE*) DHng(kE)ﬁvDﬁﬂkE*)
A
Dy, (kp,,) &————= Dy, (kg:,) Dy (kg,,) 7 ——= D, (ke:,)-

v v

This implies that these functors are the extension to conic subanalytic sheaves of
the classical Fourier-Sato and inverse Fourier-Sato transforms.

THEOREM 3.2.6. The functors ™ and v are equivalence of categories, inverse to
each others. In particular we have

HOH]D£+ (kp,,) [ G) = HomD§+(kE;a)(FA7 GM).

Proof. — Let F' € D2, (kg,,). The functors ” and ¥ are adjoint functors, then we
have a morphism F — FV. To show that it induces an isomorphism it is enough to
check that RI'(U; F) — RI'(U; FY) is an isomorphism on a basis for the topology
of Es,. Hence we may assume that U is R*-connected. By Proposition 2.4.10 we may
suppose that U is an open subanalytic cone of E. We have the chain of isomorphisms:

RHom(ky, F"V) = RHom(ky, U pr® p/ F) ~ RHom (® prkyy, @ pr F)
~ RHom(®p ky, U pF) ~ RHom(®p®p ky, F)
~ RHom(ky, F),
where the last isomorphism follows from Theorem 3.7.9 of [14] and from the fact
that the functors  and v commute with Rp,. Similarly we can show that for G €
Dp, (kg:,) we have an isomorphism GV = G. O

REMARK 3.2.7. — We have seen that the functors ¥ and ”* commute with p, and p~!.

They do not commute with py in general since it does not send conic sheaves to conic
sheaves. We have the following quasi-commutative diagram

A

D§+ (kp) ——— D§+ (kg~)

v

J{pﬁfr! lp]wrv

A
D (kp,,) 7= —= DR (kpy,)

PROPOSITION 3.2.8. — Let F € DY, (kg,,). Denote by a the antipodal map.

(i) FM ~ F*® orgz[—n], where F* denotes the inverse image of F by the anti-
podal map.

(ii) Let U be a convex conic subanalytic open subset of E*. Then

RI(U; F*) ~ RTy- (E; F),
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where U° denotes the polar cone.

(iii) Let v be a closed convex proper cone of E* containing the zero section. Then
RI,(E*; F") ~ RI'(Inty°%; F) ® or g z[—n].
(iv) We have
(D'F)’ = D'(FY),  (DF)Y = D(FY)
(As usual, for X = E,E*, D'(.) = RHom(.,kx) and D(.) = RHom(.,wx)).
Proof. — The result follows adapting Proposition 3.7.12 of [14]. O

Let us study some functorial properties of the Fourier-Sato transform. Let Z’
be another real analytic manifold and let f : Z’ — Z be a real analytic map. Set
E' = 7' xz E and denote by f; (resp. fr) the map from E’ to E (resp. from E’*
to E*).

PROPOSITION 3.2.9. — Let F € Db, (kg ). Then:
(RfrsF)" ~ Rfzu(F") and (RfrmnF)" = Rfagen(F").
Let G € D}, (kg,,). Then:
(frG)" = f1(G") and  (f7'G) = f7H(G").
Proof. — The result follows adapting Proposition 3.7.13 of [14]. O

Let E;, i = 1,2 be two real vector bundles over Z, f : F; — E5 a morphism of
vector bundles. Set !f : E5 — E7 the dual morphism.

PROPOSITION 3.2.10. — (i) Let F € DY, (kg,,,). Then:

(FY) ~ (RfF), tf!(FA)z(Rf*F)A(@WE;/Ep
YHFN) = (Rfzrn F)", YHFY) > (RfprnF)Y © W%,;E;-
(ii) Let G € DL, (kg,,,). Then:
(f'O)" = (R'F.G"), (Wp /e, ® fG)Y = (RL.GY),
(f7'G)Y ~ R'fz+1GY, (Wpy /B, @ FTH G = R'faenG".
Proof. The result follows adapting Proposition 3.7.14 of [14]. |

Let E;, i = 1,2 be two vector bundles over a real analytic manifold Z. We set for
short £ = FEy Xz By and E* = E} xz E5. We denote by " the Fourier-Sato transform
on E;,i=1,2 and E.

PROPOSITION 3.2.11. — Let F; € D2, (kg, ,,), i = 1,2. There is an isomorphism

F R~ (R F)
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Proof. — Let pf and p; the i-th projection defined on Ej Xz E7, j = 1,2 and E x E*
respectively. Let

Pl ={(z;,y;) <0} CE; xz B} (j=1,2),

P = {<(I1,I2), (y17y2)> < O} CEXxg E*.
The Kiinneth formula gives rise to the isomorphisms:

A A -1 2-1
Fl ZF2 fRP2!!(ZJ1 Flzpl FZ)PIIXZPZH

(Fy 5 Fz)A ~ Rpou(py ' Fy Zil)?_le)P,-

It is enough to show that for any sheaf F' € D*(k(EXZE*)%) conic with respect to the
actions of R* on Ej and E7, j = 1,2, the morphism RpanFpr — RpanFp;x , p; induces
an isomorphism R¥pon Fpr — Rkpggngl/XZpé for any k € Z. We may reduce to the
case F' concentrated in degree zero. Then as in § 2.3 one can show that F' = hj}l pFi,

1
with F; conic with respect to the actions of R* on E; and E%, j = 1,2, R-constructible
and with compact support on the base for each i. We have the chain of isomorphisms
R¥pon( h_H; pFy) pr h_n; pu R por (Fy) pr
= lim PR por(Fi) pr s, 1y
i ' )
~ R*pan( 151 p«l) prx 4 Py
i
RFpyy commutes with p, by Lemma 3.1.5 and the second isomorphism follows from
Proposition 3.7.15 of [14]. O
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SPECIALIZATION OF SUBANALYTIC SHEAVES

We define here specialization for subanalytic sheaves. We refer to [14] for the
classical theory of specialization.

4.1. Review on normal deformation

Let X be a real n-dimensional analytic manifold and let M be a closed submanifold
of codimension £. As usual we denote by Ths X — M the normal bundle. We identify
M as the zero-section of Thy X and denote i : M — Ty X the embedding.

We follow the notations of [14]. We consider the normal deformation of X, i.e. an
analytic manifold X7, an application (p,t) : Xpr — X x R, and an action of R\ {0}
on Xy (z,r) — T - r satisfying

p~ 1 (X \ M) isomorphic to (X \ M) x (R\ {0}),

t~1(c) isomorphic to X for each ¢ # 0,

t=1(0) isomorphic to ThsX.
Let s : Ty X — )?M be the inclusion, Q the open subset of )Z'M defined by {t > 0},
1o Q= Xy and p = poig. We get a commutative diagram

T]\,{ X 5 X M

L

M ——————X.

The morphism p is smooth and € is homeomorphic to X x R* by the map (p, ).

DEFINITION 4.1.1. — Let S be a subset of X. The normal cone to S along M,
denoted by Cj(S), is the closed conic subset of Ty X defined by

C]p[(s) =TuX ﬂf]fﬁl(s).
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Let us recall the following result of [14].

LEMMA 4.1.2. — Let 'V be a conic open subset of Ths X .
(i) Let W be an open neighborhood of V in Xy and let U = p(W N Q). Then
VNCyu(X\U)=2.
(ii) Let U be an open subset of X such that VNCy(X\U) = @. Thenp Y (U)UV
is an open neighborhood of V in QU Ty X.

Let V' be a conic subanalytic subset in ThsX. We introduce the conditions (Va)
and (Vb) for V:

(4.1.1) {(Va) DV CTuX\i(M),

(Vb): (V) C7(VNni(M)).
Note that each conic V' € Op(TyXs.) has a finite subanalytic open cover satisfying
conditions (Va) or (Vb), since V = (V \ i(M)) Ur~1(r(V Ni(M)). In [11], the local
version of the following lemma was shown, however, the global one can be proved by
the same argument as that in [11] for the one divisor case.

LEMMA 4.1.3. — Let V be a conic open subanalytic subset of Ty X satisfying condi-
tions (Va) or (Vb) of (4.1.1). For any subanalytic open neighborhood W of V' in Xy,
there exists a subanalytic open neighborhood W C W of V' such that:

(4.12) (i) the fibers of the map D : WNQ— X are connected,

o (it) 5@ N Q) is subanalytic in X.

4.2. Specialization of subanalytic sheaves
DEFINITION 4.2.1. The specialization along M is the functor

V3% DP(kx.) — D®(kp, x..), Fr+— s 'ROgp 'F.

THEOREM 4.2.2. — Let F € D"(kx.,).
(i) One has V§3F € DR, (kry x..)-
(ii) Let V be a conic subanalytic open subset of Tay X satisfying the condition either
(Va) or (Vb) of (4.1.1). Then:
HY (V5w F) = lim HY(U; F),
U
where U ranges through the family of Op(Xsa) such that Cpy (X \U)NV = @.

(iii) One has the isomorphisms

(VR"}F)‘M ~ Rr (V31 F) ~ s (RFA,W}T}}F)‘M ~ R F ~ (RI‘MF)‘M.
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Proof. — (i) We may reduce to the case F' € Mod(kx,,). Hence F = h_n; p«F; with
F; € Modg..(kx,,) for each i. We have i
p! h_n; peFi = h_n; psp ' F}
2 K
and p~'F; is R-constructible and conic for each i. Hence p~1'F is conic. Since the
functors RT'g and s~! send conic sheaves to conic sheaves we obtain
sT'RLop ' F = V57 F € DR (kry, x..)-
(ii) Let U € Op(Xsa) such that V N Oy (X \ U) = @. We have the chain of
morphisms
RI(U; F) — RL(p~H(U);p™'F) — RL(p~ (U)NQp'F)

— RI(p~ Y (U)UV;RIgp ' F) — RI(V; V52 F)
where the third arrow exists since p~!(U) U V is a neighborhood of V in Q by
Lemma 4.1.2 (ii). Let us show that it is an isomorphism. Let V be a conic open
subanalytic subset of ThsX satisfying the condition either (Va) or (Vb) of (4.1.1).
We have

Hk .5 ~ li k . —1 ~ li k o1
(Vi3 F) = lim H*(WiRLgp™ F) = lim H*(W 0 Qip™'F),

w w
where W ranges through the family of subanalytic open neighborhoods of V' in X
By Lemma 4.1.3 we may assume that W satisfies (4.1.2). Since p~!F' is conic, we have

HYWNQp ' F) ~ HE (p~ (p(W N Q));p~'F)

~ H*(p(W N Q) x {1};p7'F) ~ H*(p(W N Q); F),
where the second isomorphism follows since every subanalytic neighborhood of
p(WNQ) x {1} contains an R*-connected subanalytic neighborhood (the proof is
similar to that of Lemma 4.1.3). By Lemma 4.1.2 (i) we have that p(W N ) ranges

through the family of subanalytic open subsets U of X such that VNCy(X\U) = @
and we obtain the result.

(iii) The result follows adapting Theorem 4.2.3 (iv) of [14]. O
PROPOSITION 4.2.3. Let F € Mod(kx,,) be quasi-injective. Then V33 F is concen-
trated in degree zero.

Proof. — Since v§3F is conic, it is enough to prove that HY(V;152F) = 0, j # 0,
when V is a conic subanalytic open subset of Tj,X satisfying the condition either
(Va) or (Vb) of (4.1.1). By Theorem 4.2.2 we have

HY(V;13iF) = lim H(U; F),

U
where U ranges through the family of Op(Xs,) such that Cp (X \U)NV = @, and
HI(U; F) =0 if j # 0 since F is quasi-injective. O
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Let us study the relation with the classical functor of specialization vy;.
PROPOSITION 4.2.4. — Let F' € D(kx). Then p~'v3aRp, F ~ vy F.

Proof. — We have to show that for each x € T X we have
H*(p " Wi Rp.F)y = H* (var F).
Hence we have to prove the isomorphism
1'£>n HY(V; 152 Rp, F) ~ h_n; HY(Vivy F),
zeV zeV
where V' ranges through the family of open R*-connected relatively compact suban-

alytic subsets of Ths X (which is cofinal in the family of neighborhoods of z). This is
a consequence of Theorem 4.2.2 and Theorem 4.2.3 of [14]. O

REMARK 4.2.5. — Remark that the functor of specialization does not commute
with Rp. and p~! in general. In fact let V € Op¢,(TaX) be R-connected and let
F € Mod(kx). Then

H*(V; 58 Rp, F) ~ lim H*(U; F),
—
U
where U ranges through the family of Op(X,) such that Cy (X \U) NV = @, which

is not cofinal to the family of Op(X) such that Cp (X \U)NV = 2.
Now let V' € Opg,(ThX) be RT-connected and let G € Mod(kx,,). Then

H*(Vvap™ @) ~ lim lim H*(W; @),
—
U weUu
where U ranges through the family of Op(Xg,) such that Cp (X \U) NV = @ and
W € Op(Xs). Then H*(p~'w2G), # H* (v p ' G),.
Some interesting examples of this fact will be given in §6.3.

Let f: X — Y be a morphism of manifolds, let N be a closed submanifold of Y of
codimension k and assume f(M) C N. We denote by f’ the map from T'X to X xyTY
associated with f and by f; : X Xy TY — TY the base change. We denote by T'f
the composite map. Similarly, replacing X, Y, TX,TY by M, N, Ty X, TnY we get
the morphisms f},, farr, Tarf-

We have a commutative diagram, where all the squares are cartesian

TuX ox Xy 2 Ox px X
JTMf lf’ J{f Jf
TNY il Y il Oy Py Y.
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Recall that the following diagram is not cartesian in general:

(4.2.1) Xy —2 X
)
?N p—y> Y.
DEFINITION 4.2.6. — (i) One says that f is clean with respect to N if f~}(N) is a
submanifold M of X and the map ¥}, : M xn T}Y — T3, X is surjective.
(ii) Ome says that f is transversal to N if the map tf/\XxYT;ng X xyTRY - T*Y
is injective.
If f is transversal to N and f~!(N) = M, then the square (4.2.1) is cartesian.
We will not prove the following results, which can be easily recovered adapting
§IV.4.2 of [14], using the construction we did for subanalytic sheaves.
PROPOSITION 4.2.7. — Let F € D®(kx_,).

(i) There exists a commutative diagram of canonical morphisms

R(Tm frsnvii ' ——————— v Rfpru F

| |

R(Tyf) W3 F ¢+ USRS, F.

(ii) Moreover if suppF — Y and Cpy(suppF) — TNY are proper, and if
suppF N f~Y(N) C M, then the above morphisms are isomorphisms.
In particular if f is clean with respect to N, proper on suppF and
FfYUN) = M, then the above morphisms are isomorphisms.
PROPOSITION 4.2.8. — Let G € DP(ky,,).

(i) There exists a commutative diagram of canonical morphisms

wry x/Tny © (T f) 7RG —— vit(wxyy © f1G)

J |

(T ) VG 1 ['G
(ii) Moreover if f: X —'Y and f‘M : M — N are smooth the above morphisms are

isomorphisms.

Let X and Y be two real analytic manifolds and let M, N be two closed submani-
folds of X and Y respectively.

PROPOSITION 4.2.9. — Let F € D"(kx.) and G € D (ky.,). There is a natural
morphism
vigF viG — iy (F o G).
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COROLLARY 4.2.10. — Let F,G € DP(kx,,). There is a natural morphism
Vi F @ 13iG — 33 (F ® G).
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CHAPTER 5

MICROLOCALIZATION OF SUBANALYTIC SHEAVES

With the construction of the Fourier-Sato transform and the specialization we have
all the tools to define the functor of microlocalization in the framework of subanalytic
sites. See [14] for the classical theory of microlocalization. Then we introduce the
functor phom®* for subanalytic sheaves, we study the relations with the notion of
microsupport of [17] and with the functor of ind-microlocalization of [19].

5.1. Microlocalization of subanalytic sheaves

Let us denote by Ty, X the conormal bundle to M in X, i.e. the kernel of the map
M xx T*X — T*M. We denote by 7 the projection Ty, X — M.

DEFINITION 5.1.1. — Let F' € D"(kx,,). The microlocalization of F' along M is the
Fourier-Sato transform of the specialization, i.e.

i F = (i )"

THEOREM 5.1.2. — Let ' € DP(kx_,).
(i) u57 F € DR (kry, x.)-
(ii) Let V' be an open convex subanalytic cone of T3, X satisfying (in Ty, X) the
condition either (Va) or (Vb) of (4.1.1). Then:
HI(V; i3 F) = lim HY (U F),
U,z
where U ranges through the family of Op(Xsa) such that UNM = w(V') and Z through

the family of closed subanalytic subsets such that Car(Z) C V°, where V° denotes the
polar cone.

(iii) One has the isomorphisms

(W37 F)|ay = B (Ui F) = iy By (RO F)|yy = RmpSip F = iy F @ dlyhx.



42 CHAPTER 5. MICROLOCALIZATION OF SUBANALYTIC SHEAVES

Proof. — The result follows from the functorial properties of the Fourier-Sato trans-
form and Theorem 4.2.2. O

As in classical sheaf theory, we get the Sato’s triangle for subanalytic sheaves:
. s +
F‘M ®wM|X — RFIWF‘IVI — Rﬂ'*,uj\?[F —
where 7 is the restriction of 7 to T3, X \ M.

PROPOSITION 5.1.3. — Let F € Mod(kx,,) be quasi-injective. Then p~'uSyF is
concentrated in degree zero.

Proof. — The result follows from Theorem 5.1.2 (ii). O

REMARK 5.1.4. Remark that the functor of microlocalization does not commute
with Rp, and p~! since specialization does not. If F € DP(kx) we have
P~ Ui Rp.F =~ py F

1 1

since the Fourier-Sato transform commutes with p~ and p™" o 3} 0 Rp. ~ var.

Let f: X — Y be a morphism of manifolds, let N be a closed submanifold of Y of
codimension k and assume f(M) C N. The map T'f defines the maps

tel
T*X 1 X xy T*Y L Ty
and similarly one can define the maps f}, and farr.

Applying the Fourier-Sato transform to the morphisms of §4.2 we get the following
results (see also [14] §IV.4.3 for the classical case)

PROPOSITION 5.1.5. — Let F € DP(kx_,).

(i) There ezists a commutative diagram of canonical morphisms
Rfvmn'fig 5t F ————— pRfuF
Rfrms (Fipsy F @ wxyy © W?}ﬂ;) —— W Rf.F.

(ii) Moreover if suppF — Y and Cy(suppF) — TnY are proper, and if suppF N
f~Y(N) C M, then the above morphisms are isomorphisms. In particular if f is clean
with respect to N, proper on suppF and f~1(N) = M, then the above morphisms are
isomorphisms.

PROPOSITION 5.1.6. — Let G € DP(ky,,).
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(i) There ezists a commutative diagram of canonical morphisms

Rf],\,{Rﬂ](WAI/N & f]?[l(ﬂi\éllG) I #?\%(WX/Y ® f_lG)
Rfrp FarnhG i1 f'G
(ii) Moreover, if f : X = Y and flp : M — N are smooth, then the above
morphisms are isomorphisms.
Let X and Y be two real analytic manifolds and let M, N be two closed submani-
folds of X and Y respectively.

PROPOSITION 5.1.7. — Let F € D"(ky.) and G € D"(ky.,). There is a natural
morphism
HRHE iR G — pin (B G).

COROLLARY 5.1.8. Let M be a closed submanifold of X and let v : T3 X X
Ty X — Ty X be the morphism given by the addition. There is a natural morphism

Ry (135 F " pG) — 3 (F Q) ©wyyyx

5.2. The functor phom™

We denote by A the diagonal of X x X, and we denote by ¢ the diagonal embedding.
The normal deformation of the diagonal in X x X can be visualized by the diagram

(5.2.1) TX ——— > Tha(X xX)——— X

Set p; = g; op, i = 1,2. While p and p;, i = 1,2, are smooth, p is not, and moreover
the square is not cartesian.

DEFINITION 5.2.1. — Let F € DY (kx) and G € DP(kx_,). We set
phom™(F,G) := p3 RHom(g; ' F,¢\G) = (v RHom(q5 ' F, q’lG))A.
As in the classical case, there is a useful description of the functor phom™*.
LEMMA 5.2.2. — Let F € DR (kx) and G € D"(kx..). Then
phom™(F,G) ~ (371 RHom((p; ' F)a,p7'G) ® silp’lq!lkx)/\.
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Proof. — (i) We first need the following result: let f : X — Y be a morphism of real
analytic manifolds and let U € Op(Xs,) such that |y 1s smooth. Let F' € D (ky)

and G € DP(ky,,). Then
(5.2.2) RIy f~! RHom(F,G) ~ RT'y RHom(f'F, f1G).

We first reduce to the case G = h_rr>1 p«G; with G; € Modg.¢(ky) for each i. Let Ux_,

1
be the site induced by Xg, on U. We have

H’“i{]}(% Y RHom(F, hg 0.Gy) ~ h_n: pH g f~Y RHom(F, G;)
~ lim p H* RHom(i," f 7 F,ig f1Gy)
—
~ lim p, H*i7' R S N Y es
tim p. H%iy Hom(f'F, f~1Gy)
~ H"'ia)l(sa RHom(f~'F, h_n: 0o fT1GY).

In the first and the last isomorphisms we used the commutation between p, and the
restriction to U given, for V € Op(Ux.,), by i&j{sap*F(V) = F(V) = pig' F(V).
The second isomorphism follows because f o iy is smooth. Composing with Riyy .
we obtain the result.

(ii) Let F' € DR (kx) and G € D®(kx,,). We have
phom™(F,G) ~ (s"'Rlop~" RHom(q; ' F,q,G))"

~ (sT'RI'q RHom(p 'q; ' F,p tqi G))"

~ (s7' RHom((p™" gy ' Fla,p™ 01 G))"

~ (s (BRHom((p™ gy ' F)a.p™'ar 'G) @ p~ g1kx))"

=~ (s7' RHom((py ' F)a,py 'G) @ s~ 'p~ qikx)",

Whergxt}/le second isomorphism follows from (5.2.2) with (U, X, f) replaced by

(Q,X x X,p). O
Let 7 denote the projection from TX (X x X) to A ~ X.

PROPOSITION 5.2.3. — Let F € DY (kx) and G € DP(kx.,). There is a canonical
isomorphism m,puhom™ (F,G) ~ RHom(F,G).

Proof. — The result follows adapting Proposition 4.4.2 of [14]. O

REMARK 5.2.4. The functor phom™ is well defined also if F' € DP(kx,,). In this
case we do not know if phom®*(F, G) has bounded cohomology or not.
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REMARK 5.2.5. — Adapting the results of §4.2 and §5.1 one gets the functorial
properties of gphom for subanalytic sheaves. Since the proofs are essentially the same
as the classical ones we will skip them and refer to [14].

Let m : T*X — X be the projection and consider the canonical 1-form w, the
restriction to the diagonal of the map ‘' : T*X xx T*X — T*T*X. We have a
diagram

TT*X T T*X xxT*X — " T*X

Ap-x
LEMMA 5.2.6. — Let F € D}_(kx) and G € D®(kx_,) We have
W phom™ (77 F, n71G) ~ phom®(F,G).

Proof. — We have the isomorphism ‘rfy 7 uhom™(F, G) — phom™ (7~ 'F,771G).
Hence we get the isomorphisms
w i phom™ (n 7 F, n71Q) ~ w ) n s L phom® (F, G)

~ ontimr L phom™ (F, G) =~ phom™(F, G). O

5.3. Microlocalization and microsupport

In [14] the authors prove that the support of uhom(F, G) is contained in the inter-
section of the microsupports of F and G. We extend this result to the functor phom™.
Let X be a real analytic manifold and let 7*X = X be the cotangent bundle. We
recall the following two equivalent definitions of microsupport of a subanalytic sheaf
of [17]. For the notion of microsupport for classical sheaves we refer to [14]. For the
functorial properties of the microsupport of subanalytic sheaves we refer to [23].

DEFINITION 5.3.1. The microsupport of F' € DP(kx,,), denoted by SS(F) is the
subset of T* X defined as follows. Let p € T*X, then p ¢ SS(F) if one of the following
equivalent conditions is satisfied:

(i) There exist a conic neighborhood U of p and a small filtrant system {F;} in
Cle(Modg..(kx)) with SS(F;)NU = @ such that F is quasi-isomorphic to lim p, F;
in a neighborhood of 7 (p). i

(ii) There exists a conic neighborhood U of p such that for any G € DE__(kx) with
supp(G) € 7(U) and such that SS(G) C UUT%X, one has

HOme(sza) (G, F) =0.
REMARK 5.3.2. — In [17] microsupport was defined for ind-sheaves. The above
definition follows from the equivalence between subanalytic sheaves and ind-R-
constructible sheaves (see [23] for details).
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We need the following result of [23].

LEMMA 5.3.3. — Let X,Y be two real analytic manifolds and let q1,q2 be the pro-
jections from X x Y to X and Y respectively. Let G € DY (ky) and F € DP(kx_,).
Then

(5.3.1) SS(RHom(¢; G, g5 F)) C SS(F) x SS(G)".

Let M be a real closed submanifold of X. Let F' be a conic subanalytic sheaf on
T3 X, let S be a conic subset of Tj; X and set sF = F ® pp_ ks.

PROPOSITION 5.3.4. — Let F € DP(kx_,). Then
wirF = ssrynry, x (Wi F)-

Proof. — Let I € D"(kx,,) and let p ¢ SS(F). There exist a conic subanalytic
neighborhood U of p and a small filtrant system {F;} in C[“’b](MOdR-c(kX)) with
SS(F;) N U = @ such that there exists W € Op(Xs) with U C 7~ 1(W) and
Fy ~ 11_11; p+F;. We have

' H" 5 Fyy ~ limy pH v Fow,

hence (u3% )‘U = 0 since supp(pnF;) € SS(F;). This implies (u55F)y = 0 for each
V€ Op*((Th X \ SS(F))sar+), hence p3i F > () (137 1) 0

COROLLARY 5.3.5. — Let G € DR .(kx), F € D(kx..). Then
(5.3.2) phom™(F,G) ~ gg(mnss(c) (phom™(F,G)).
The result follows from Proposition 5.3.4 and (5.3.1). O
COROLLARY 5.3.6. — Let G € D} (kx), F € DP(kx.,). Then
supp(p™~tphom™(F,G)) C SS(F) N SS(G).
Proof. — Applying p~! to (5.3.2) we obtain the result. O

Let f: X — Y be a morphism of real analytic manifolds and denote the base
change map by
fr: X Xy TY — T'Y.

DEFINITION 5.3.7. — Let f : X — Y be a morphism of real analytic manifolds and
let F' € D"(ky,,). One says that f is non characteristic for SS(F) if

fHSS(F)) NTxY C X xy TyY.

If f is a closed embedding X is said to be non characteristic.
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PROPOSITION 5.3.8. — Let f: X — Y be a morphism of real analytic manifolds and
let F € DP(ky,,). Assume that f is non characteristic for SS(F). Then the natural
morphism

f'Fowxy — f'F

is an isomorphism.

Proof. We may reduce to the case f closed embedding, hence we have to prove
the isomorphism By @ wx)y ~ RI‘XF‘X when SS(F)NTxY CTyY. Consider the
Sato’s triangle
+
F‘X ®wx‘y — Rer‘X — RT'F*/L?F —_— .

Since SS(F)NT%Y C TyY we have R, uS2F = 0 by Proposition 5.3.4 and the result
follows. O

As usual, for F' € D®(kx,,) we define
D'F = RHom(F, kx).
LEMMA 5.3.9. — Let F € D} _(kx) and let G € DP(kx.,). Then
D'F G- RHom(q7'F,q3'G).
Proof. — We may reduce to the case F' = ky with D’'ky ~ ki and G € Mod(kx_, ).

Set G = h_n>1 p+G; with G; € Modg..(kx), we have the chain of isomorphisms
i
H 3" G) gy = lim pu (03 Gi) g 7
i
= lim p. BT o 07y (63 ' Gi) = BT s 1) (437 G)
i

where the second isomorphism follows from Proposition 3.4.4 of [14]. |

PROPOSITION 5.3.10. — Let F € DE (kx) and let G € DP(kx,,). Suppose that
SS(F)NSS(G) CTxX. Then

D'F®G = RHom(F,G).
Proof. — Let 6 : A — X x X be the embedding and let us consider the Sato’s triangle
67" RHom(g; ' F.yC) @ wa| wx — 8" RHom(¢; 'F.gG)
— Riuphom™(F,G) ——s .
We have §' RHom(q; ' F, ¢,G) ~ RHom(F,G). Moreover
0~  RMHom (¢ ' F,¢,G) ® WA XX = S RHom(¢7 F,q; Q)
~5"YD'F G)~DF®G,
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where the second isomorphism follows from Lemma 5.3.9. Then we obtain a distin-
guished triangle

. +
D'F ® G — RHom(F,G) — Ri.phom™(F,G) —
and the result follows since R7r,puhom®*(F,G) = 0 by Corollary 5.3.5. O

5.4. The link with the functor p of microlocalization

We will study the relation between microlocalization for subanalytic sheaves and
the functor pu of [19]. Let X be a real analytic manifold and consider the normal
deformation of A in X x X visualized by the diagram (5.2.1).

LEMMA 5.4.1. — Let G € DP(kx_,), then fori=1,2

(5.4.1) kg ®p; |G ~ RHom(ka,p; ' G),

(5.4.2) ko ® p;'G ~ RHom(kg,p; 'G).

Proof. — Let us prove (5.4.1). Since for ¢ = 1,2 p; is smooth, Proposition 3.160/3[/23}
implies that SS(p; 'G) N SS(kq) is contained on the zero section of T*(X x X).

Then the result is a consequence of Proposition 5.3.10, and the fact that D'kq ~ kg.
The proof of (5.4.2) is similar. O

Let o be a section of T*X — X and consider the following commutative diagram
with cartesian square

(5.4.3) TX
id

2

T*"X xx TX ¢——FTX

X ¢——— X.
We set
P = {((2,€),(z,v)) € T"X xx TX; (€,v) > 0},
P = {((%,9),(z,v) e T*X xx TX; (£,v) <0},
P, :={(z,v) € TX; {o(z),v) > 0} =o'7}(P),
P = {(z,v) € TX; (o(z),v) <0} =o'} (P).

The kernel K, is defined as follows
(5.4.4) K, = Rpu(k@ ® pikp,) ® pgé*wfgxx.
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PROPOSITION 5.4.2. — (i) Let F € DY _.(kx) and G € D"(kx.,). There is a natural
arrow

¢ : RHom(F,K, o G) — o~ tphom™(F,Q),
where K, o G means quyg(qglG ® K,).
(ii) Let p: X — Xga be the natural functor of sites. Then p~'(p) is an isomor-
phism.
Proof. — (i), Let H € D"(krx.,). We have the chain of isomorphisms
o Y H") ~ UﬁlRﬂ'w(ﬂ'ng ®kpr) ~ RTX![UI71(7T271H ® kpr) ~ Rrxn(H ® kp:).

Consider the normal deformation of A in X x X visualized by the diagram (5.2.1).
We have

~ (s RHom((p; " F)a,p™'a; ' G) @ s~ 'pgikx)"
~(s ! RHom(py 'F,Rop; 'G) ® s 'p~"qikx)"
~ (s7' RHom(py ' F,RTop; G)®T§1W§\_Xlxx)A

phom™(

_ _ - 1 e A
~ (s™' RHom(p; 'F,p; 1G®kﬁ)®7'xlw§‘xlxx) ,

where the second isomorphism follows from Lemma 5.2.2 and the last one follows from
Lemma 5.4.1. Hence we get

o phom®™(F,G) ~ Rrxu (s~ RHom(py ' F,pr'G @ kg) @ Tglwg—){lxx ® kpr)
~ Rponsn (s‘l R"Hom(p;lF,pflG ®kg)® T)}lwf‘}lxx ® k‘p{;)
~ Rpon( RHom(py 'F,p7'G ® kg) ®p716*w§|}1xx ® kp).

(i), On the other hand we have the chain of isomorphisms
K(,OGZquu( 1G @ Rpy( kg ®@ pkp,) ® p1o. WA\XXX)

~ Rpln(p er: ks ® prkp, @ p~ L6, ""A\Xxx)

=~ Rpau(p'G @ kg ® pikp, @ p~ ' pié. WA\Xxx)

=~ Rpan (p1'G @ kg @ pr(kp, @ p10.wZ Y x))-

Hence we get

RHom(F, K, 0 G) ~ RHom(F, Rpau(py'G @ kg @ pi(kp, @ p~ 10031 x)))
=~ Rpoy RHom (p3 ' F,p7'G ® kg @ pi(kp, ®p’16*w§|}1xx))
=~ Rpou( RHom(py ' F,pi 'G @ kg) @ py(kp; ®p_16*w§‘}lxx)).

(i), The adjunction morphism defines a morphism p; — p.. It induces the mor-
phism
©: RHom(F,K, 0 G) — o~ tphom™(F,G).
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ii) Composing with p~* Lop = p?t
g with p p—p

p ) : p Tt RHom(F, Ky 0 G) = p~to ™ uhom™ (F, Q). O

we get p~ o p, ~id. Hence we get

Let m : T*X — X be the projection and consider the canonical 1-form w, the
restriction to the diagonal of the map 7. Replace X with T*X and o with w in (5.4.4)
and consider the microlocal kernel

Ko = Rpu(kg ® pikp,) © pdawR ! e orex
DEFINITION 5.4.3. — The functor of microlocalization of [19] is defined as
w:DP(kx.) — D®(kr-x.,), Fv+— pF=K,orn 'F.
REMARK 5.4.4. The functor p of [19] was defined for ind-sheaves. The above

definition for subanalytic sheaves corresponds to the original one thanks to the com-
patibility conditions of §A.2.

THEOREM 5.4.5. — (i) Let F € DR (kx) and G € D"(kx,,). There is a natural
arrow

(5.4.5) ¢ : RHom(n ™ F, uG) — pthom™ (F, G).

(i) Let p: T*X — T* X, be the natural functor of sites. Then p~1(y) is an iso-
morphism.

Proof. — (i) By Lemma 5.2.6 and Proposition 5.4.2 (i) we get the morphisms
phom™®(F,G) ~ w™phom™ (77 F, 77 1G) «+— RHom(r~'F, uG).
(ii) The result follows from Proposition 5.4.2 (ii). O

EXAMPLE 5.4.6. The morphism (5.4.5) is not an isomorphism in general. For
example let F' € Mod(kx,,). Then

RHom(m 'kx, uF) ~ RHom(kp«x, uF) ~ uF;
on the other hand we have
whom® (kx, F) ~ j,uF ~ j.F,

where j : T% X — T*X denotes the embedding of the zero section.
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CHAPTER 6

HOLOMORPHIC FUNCTIONS WITH
GROWTH CONDITIONS

We show how the functors we defined before generalize classical constructions.
In §6.3 we show the relation between specialization of Whitney holomorphic func-
tions with the functor of formal specialization of [6], and the sheaf of asymptotically
developable functions of [22] and [36]. In §6.4 we study the microlocalization of tem-
pered and Whitney holomorphic functions. We establish a relation with the functors
of tempered and formal microlocalization introduced by Andronikof in [1] and Colin
in [5].

6.1. Review on temperate and formal cohomology

From now on, the base field is C. Let M be a real analytic manifold. One denotes
> Dby the sheaf of Schwartz’s distributions,

> C37 the sheaf of C*°-functions,

> Ajs the sheaf of analytic functions,

> Dy the sheaf of finite order differential operators with analytic coefficients.

Given a morphism f : M — N of real analytic manifolds, let Dy;,n and Dy s
be the transfer bimodules. They are defined by

Doy = Ay @p-1.4, [ An,
Dyen =AY ®ap Duon @14y FHARET,

where A}, (resp. AY;) denotes the sheaf of real analytic densities (i.e. the tensor prod-
uct in M (resp. N) between the sheaf of real analytic differential forms of maximal
degree and the orientation sheaf).

In [12] the author defined the functor

THom( ,Db]u) : N[Od]R_c((CM) — Mod(DM)
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in the following way: let U be a subanalytic subset of M and Z = M \ U. Then the
sheaf THom(Cy,Dbay) is defined by the exact sequence

0— szb]v[ — DbM — THom((CU,DbM) — 0.

This functor is exact and extends as a functor in the derived category, from DR _(Cas)
to DP(Dys). Moreover the sheaf THom(F,Dby) is soft for any R-constructible
sheaf F.

DEFINITION 6.1.1. — Let Z be a closed subset of M. We denote by Z3; , the sheaf
of C*°-functions on M vanishing up to infinite order on Z.

DEFINITION 6.1.2. A Whitney function on a closed subset Z of M is an indexed
family F' = (F*)penn consisting of continuous functions on Z such that for all m € N,
for all k € N*, |k| < m, for all z € Z, for all ¢ > 0, there exists a neighborhood U
of x such that for all y,z e UNZ

: nyj i m—
e - Y By <ty
lj+k|<m ’
‘We denote:

> Wiy 7 the space of Whitney C*°-functions on Z,
> Wit  the sheaf U — W5, 7.

In [15] the authors defined the functor
- ® €59 - Modg.o(Car) — Mod(Dyy)
in the following way: let U be a subanalytic open subset of M and Z = M \ U. Then
Cu®Cy =15, and Cz®C =W,

This functor is exact and extends as a functor in the derived category, from DR (Cas)
to DP(Dy). Moreover the sheaf F' ® Cqy7 is soft for any R-constructible sheaf F.

Now let X be a complex manifold, X the underlying real analytic manifold and X
the complex conjugate manifold. The product X x X is a complexification of Xg by
the diagonal embedding Xg <+ X x X. One denotes by O the sheaf of holomorphic
functions and by Dx the sheaf of finite order differential operators with holomorphic
coefficients. For F' € D2 (Cx) one sets

THom(F,Ox) = RHomp_(Ox, THom(F, Dbxy)),
F®Ox = RHomp_(Og, F ©C%,),

and these functors are called the functors of temperate and formal cohomology re-
spectively.
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6.2. Tempered and Whitney holomorphic functions

DEFINITION 6.2.1. — One denotes by Db}, the presheaf of tempered distributions
on Mj, defined as

U+— F(]W; DbM)/FM\Uu\/I; DbM).

As a consequence of the Lojasievicz’s inequalities [20], for U,V € Op(Ms,) the
sequence

0 — Dby, (UUV) — Dbk, (U) @ Dbiy(V) — Db, (UNV) =0
is exact. Then Db}, is a sheaf on Ms,. Moreover, by definition Db}, is quasi-injective.

DEFINITION 6.2.2. One denotes by Cy; ™ the presheaf of Whitney C*-functions
on My, defined as follows:

U T(M; H'D'Cy & C59).
As a consequence of a result of [21], for U,V € Op(Ms,) the sequence
0=CyY(UuV) —=cCyrU)aecyy™ (V) — M (UunV)

is exact. Then C3;™" is a sheaf on Mg,. Moreover if U € Op(Ms,) is locally cohomo-
logically trivial (Lc.t. for short), i.e. if D'Cy ~ Cg, the morphism

L(M;Cip™) — T(U;Cr™)
is surjective and RT'(U;Cy;™) is concentrated in degree zero.
We have the following result (see [16], [28]).
PROPOSITION 6.2.3. — For each F € Modg.(Cps) one has the isomorphisms

p~ Y RHom(F,Dbl;) ~ THom(F,Dby), p~* RHom(F,Cop™) ~ D'F%Cfv}’.

Now let X be a complex manifold, X the underlying real analytic manifold and X
the complex conjugate manifold. One denotes by O% and O¥% the sheaves of tempered
and Whitney holomorphic functions defined as follows:

0% := RHom,p_(pOx,Dbk.), O% := RHom,p_(mOx,.CX™").

The relation with the functors of temperate and formal cohomology are given by
the following result (see [16], [28])

PROPOSITION 6.2.4. — For each F € DX (Cx) one has the isomorphisms

THom(F,0x) ~ p~* RHom(F,0Y%), D'F® Ox ~ p~* RHom(F,O%).
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6.3. Asymptotic expansions

Let M be a real analytic manifold. We consider a slight generalization of the sheaf
of Whitney C*°-functions of [16].

DEFINITION 6.3.1. — Let F' € Modg.<(Cps). We define the presheaf Cﬁlg on My,
as follows:
U s D(M; (H'D'Cy & F) & C32).
Let U,V € Op(Ms,), and consider the exact sequence
0—Cynv — CyCy — Cyuy — 0,
applying the functor Hom(.,Cys) = H'D'(.) we obtain
0— H°D'Cyuy — H°D'Cy @ H°D'Cy — H°D'Cyny,
applying the exact functors - ® F', - (VXVJ C37 and taking global sections we obtain
0= Cip(UUV) — Cin(U) & Chin(V) — Cp(Un V).

This implies that C;’;‘g is a sheaf on M,. Moreover if U € Op(Mg,) is lc.t., the
morphism F(MC;Z;) — F(U;Cﬁ"g) is surjective and RF(U;C;}W;) is concentrated

in degree zero. Let 0 = F — G — H — 0 be an exact sequence in Modgr.(Cyy), we
obtain an exact sequence in Mod(Cyy,)

(6.3.1) 0= Cyir — Caric — Carjr — 0.
We can easily extend the sheaf Cﬁ‘; to the case of F' € DR (Cys), taking a finite
resolution of F consisting of locally finite sums @Cy, with V' lc.t. in Op®(Ms,).

hes o0, w i . oo, w s .
The sheaves C MiBCy form a complex quasi-isomorphic to C MIF consisting of acyclic

objects with respect to I'(U; ), where U is l.c.t. in Op®(Ms,).
As in the case of Whitney C*-functions one can prove that, if G € DR (Cy),

P~ RHom(G,Ciy) ~ (D'G @ F) & 5.

EXAMPLE 6.3.2. — Setting F' = Cjs we obtain the sheaf of Whitney C°°-functions.
Let N be a closed analytic submanifold of M. Then C;;igM\N is the sheaf of Whitney
C*>°-functions vanishing on N with all their derivatives.
NOTATIONS 6.3.3. — Let Z be a locally closed subanalytic subset of M. We set for
short C;/10|Z instead of wao"gz.

Let N be a closed analytic submanifold of M, let TnM 5 N be the normal vector
bundle and consider the normal deformation My as in §4.1.

Set F' = Cyp\n, G =Cp, H=Cy in (6.3.1). The exact sequence

0= Cunny — Car™ — Cayiy = 0
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induces an exact sequence

sa,700,W sa,700,W sa

0= vNChiny — VNCa " — VNC%’X — 0,

in fact let V be a l.c.t. conic subanalytic open subset of Ty M and U € Op(Ms,)
such that Cy(M \ U) NV = @, then we can find a Lc.t. U’ C U satisfying the same
property. Moreover it is easy to see that I/]S\?CX?‘X ~ T’lC;;i}'\Vp hence we get the exact

sequence

58,700, W sa 00, W —1p00,w
(6.3.2) 0= vNChiny — VNCy " — 7 Chfiy — 0.

REMARK 6.3.4. — Let G € DP(pD)y). Then
VG € DY (pr i D).

Now let us study the relation with the constructions of [6]. In that work the author
defined the functor of Whitney specialization as follows: let F' € DH%,C((C M), then

wun (F,C59) = s~ RHomp, (D ap (' F)g®C3 ).

It is an object of DP(7=%~1Dy;). The stalks are given by the following formula: let
v € TyM. Then
(6.3.3) H* (wrn (F,C3)),, = lim HY(M; Fy ®C),
U
where U € Op(Ms,) l.c.t. such that v ¢ Cn(M \ U).

PROPOSITION 6.3.5. — Let F & DH%,C((CM), there is a natural isomorphism in
DP (1™ Dyy)

wun (F,C3%) ~ p~ e ;’;‘g
oo

This means that Whitney specialization is obtained by specializing the sheaf MIF-

Proof. We have the chain of morphisms in DP(p~'Dy;)

pflRFQpACf\;i‘; — pflRFQp!CE"g —1]

~ p~'RI'g R’Homp!DMN (p D+ cv )

My—M’>~"My|p—1F
~ RHomp,, (D pTIRICOY )

My—M? My|p~'F
-1 W hoco
~ RMomp, (Dyf ap (P 'F)g® cm).

The first isomorphism follows from (A.4.3) and the last one follows since D'Cq ~ Cg.
Applying the functor s=' we obtain wvn(F,C59) — p*1V§§*C]T4°$. Let v € Ty M.
By (6.3.3) and Theorem 4.2.2 (ii) it turns out that

H*(wuy(F,C59)), ~ li_n>1H"'(]W; F[7<§c;>j) ~ n_n;Hk(wc;f;i;) ~ Hk(p_ll,fgcj‘;‘;ﬂ)v,

U U
where U € Op(Ms,) l.c.t. such that v ¢ Cn(M \ U). This completes the proof. O
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Assume that M ~ {(z,y) € R* x R"*} and N ~ {0} x R*~*.

> A sector S of M is a subanalytic open subset S = U x V with U € Op(R% %)
and V =W N B(0,¢), where W € Op(Rﬁaﬁw) and B(0, ¢) is the open ball of center 0
and radius e.

> We say that S is a subsector of S if &'\ N C S. We write for short S’ < S.

DEFINITION 6.3.6. — Let S be an open sector of M and let f € C37. One says that
f is asymptotically developable on S along M, if there exists a formal series

> an@)yt
keNt
with C* coefficients ay, such that, for all S’ < S, m € N, there exists C > 0 such that
Ve e s, |fay) = Y ala)yt| < Clly|m
[k|<m
One denotes by
> on(S) C C39 the space of functions asymptotically developable along M,
> o3 ={f €C(S), Vk € Nt, D*f € opr(9)}-
Recall (see [14]) that locally we may assume
M~ {(z,y) eR* xR"‘}, N~ {0} xR"*
and we may identify M ~ Ty M. A sector S C M means a sector in the local model.

We have the following result (see Proposition 2.10 of [6]).

PROPOSITION 6.3.7. — Let S be a sector of M. Then
D(R*S; p wNCy™) = 0% (S)

and T'(R*S; p’luf\?CﬁiXI\N) is the subspace of functions asymptotically developable to
the identically zero series.

Applying the functor p~! to the exact sequence (6.3.2) we obtain the exact sequence

1 1 1coo4,w

— sa 00, W —1. sa,o0,wW — —
0—=p VNCM|M\NHP vNCy " —pT T min =0

where the surjective arrow is the map which associates with a function its asymptotic
expansion.
Let X be a complex manifold and let Z be a complex submanifold of X. Let
F € D (Cx). We denote by O%r the sheaf defined as follows:
OXyr = RHom,p (pOx%,Cp)-
Let 0 - F — G — H — 0 be an exact sequence in Modg..(Cx). Then the exact
sequence (6.3.1) gives rise to the distinguished triangle

(6.3.4) O%p — O% g — O% 1y — .

MEMOIRES DE LA SMF 135



6.3. ASYMPTOTIC EXPANSIONS 57

If we consider the functor of specialization of formal cohomology of [6]
wvz(F,Ox) = RHom —1p_ (T_l(’))?,wVZ(F,C?(OR)),

we have the isomorphism

wvz(F,Ox) = p~ V7 OY p.

Setting F'= Cx\z, G =Cx, H=Cz in (6.3.4) and applying the functor of special-
ization, we have the distinguished triangle

. —1 samyw -1 samyw -1, — W +
(6.3.5) p~ g OXx\z — P WFOX — pir 1OX\Z -

The sheaves p~lv3O% and p’lT’lqu 4 are concentrated in degree zero. This fol-
lows from the following result of [8]: in the local model if U € Op(Xs,) is convex,
then RI'(X;Cy ®0 x) is concentrated in degree zero. Moreover (see [15]) the sheaf
p*lox‘ 4 is isomorphic to the sheaf O XTZ, the formal completion of Ox along Z.
‘We have an exact sequence

0= p LHOWEOY 7z — 0~ WEOx = 710 — pTTHWEOY 5 7 — 0.
Let 0%01(5 ) be the space of holomorphic functions asymptotically developable in S,
having an asymptotic expansion with holomorphic coefficients. We have the following
results of [6].
PROPOSITION 6.3.8. — Let S be a sector of X. Then
D(R*S; p~ '3 0%) = a(S)

and T(R*S; p~ v ‘;’(‘X\Z) is the subspace of functions asymptotically developable to
the identically zero series.

PROPOSITION 6.3.9. — The distinguished triangle (6.3.5) induces an exact sequence
outside the zero section

- - - w 1T
(6.3.6) 0— p tHYS Xizlg,x — P 1I/SZaOX‘TZX — 7 Oxlz =0
On the zero section we have the exact sequence
(6.3.7) 0= Ox|, — Oxlz — p " H'WFOY x\ 5], = 0.
Remark that on the exact sequence (6.3.7) we used Theorem 4.2.2 (iii) and the fact
that p~1O% ~ Oy.

EXAMPLE 6.3.10. Set X = C and Z = {0}. Outside the zero section the sheaves
P~ FOY x\ 7 and p~'VFOY are the well-known sheaves A and A of Malgrange [22]
and Sibuya [36]. These sheaves were defined in the real blow-up of the origin of C
identified with S* x (R* U {0}). Let 7 be the projection on C. The sequence (6.3.6)
is a generalization of the exact sequence in Mod(Cg:)

0— Ag — A — 771C[[2]] — 0,
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and the sequence (6.3.7) is a generalization of the exact sequence
0 — C{z} — C[[z]] — H'(S';Ay) = 0.

EXAMPLE 6.3.11. — Let X = C and Z = {0}. The sheaf 4 is an example of
the fact that specialization does not commute with p~!. Indeed p~1O% ~ Ox and
A~ p‘lygﬂ‘ % # vzOx (outside the zero section).

6.4. Microlocalization of O% and O%

Let f: M — N be a smooth morphism of real analytic manifolds. We have the
following results (see the Appendix):
RHom,p,, (0D, DbY,) ~ fIDbY,
RHompp,, (0 Dur—n,Cap™) = fICF.
Let us consider the normal deformation of the diagonal in M x M of diagram (5.2.1).

Let F € D} .(Cps). We recall the definitions of the Andronikof’s functor of microlo-

calization of tempered distributions
tphom(F, Dbyr) == (s_l(D ®p

ME AT XM MXxM

_ A
THom((p; ' F)a, Pb,)[—1]))
and Colin’s microlocalization of the Whitney tensor product

& 0o (-1 =1 _ ¥ Ao \
F@Ciy = (s7" RHom (Dypgpoy s (2 Flg © Cng))
They are objects of DP(Dyy).

REMARK 6.4.1. — Let N be a closed submanifold of M and consider the projection
m:THM — N asin §5.1. Let H € D®(pDy). As in Remark 6.3.4, uS3H is an
element of Db(pm’li’lDM). In particular in the case of the diagonal § : A < M x M,
if F € DR .(Cy) and G € DP(pDyy) we have phom™ (F,G) € DP(pDyy) (we do not
write 771 to lighten notations).

THEOREM 6.4.2. — Let F' € DR _(Cyps). We have the isomorphisms in DP(Dyy)
(6.4.1) p L uhom™ (F,Dbl,) ~ tuhom(F, Dbyy),
(6.4.2) p L phom™ (F,C5™)  ~ (D'F & C9)°,
”w
where (.)* denotes the direct image of the antipodal map.
Proof. — Let G € D®(Cyy,,). By Lemma 5.2.2 we have

phom™(F,G) =~ (s~ RHom((p; ' F)a,p; 'G) ® sTipT g )"
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1

(i) Let us prove (6.4.1). Setting G = Db}, and composing with p~! we have

o~ shom™ (F, Db,)
~ (571t RHom((p; ' F)a,py 'Dbh,) @ s 'p~1qiCar)”

~ (871p71 RHOmp,D RHom(( 1F) 7DbM><]\4))

M><M(p!DM/_\XXIpJ]M7
®s 'plgiCu)"

1 —1 t
(DMIQM»/) RHom((p; F)Shpbmj))

— — A
® s 'p71qiCu)

~ (sfl RHomp

M x M

~ ( “YRHomp (D

—1
sxa T MxMEAMY T?{om((pz F)Q’Db

M><M))
C P71QiCAf)A
_ A
= (s 1(DMTQM1 D 3w THom((p3" Fa, Dbirgy)l= 1))
~ tphom(F, Dbyy).

I we have

(ii) Let us prove (6.4.2). Setting G = C3;"" and composing with p~
p~ ! phom™ (F,C3p™)
~ (571 L RHom((py ' F)a,p; 'Cry W)®571;17111]1((:1\/1)A
s o RHom((p3 ' F)a, pT Cﬁ’w))va
-1 y -1 00, W Va
s RHomp,p — (0D irmmn o BHOom((p2 F)Q,CM M)))

. S 00, W Va
a0 BHom((p5" F)o, €2 )

~

~

M XM (Dmfﬂ

~ (s"' RHomp D'(p; ' F)g ‘%C%))va

MXM (DMIZE)M’

s'RHomp__ (D

(s~
(s~
~ (s ' RHomp
(
( S N MMM (

—1 00 Va
py D'F)g ®CM M))
where the last isomorphism follows since
D'((py*F)a) ~RLqD' (py ' F) ~ RTgp, *D'F ~ (p, *D'F)g
Here we used Lemma 5.4.1 and the fact that ps is smooth. We have

s™' RHomp

(p3 ' D'F)g @02 ))"" = <D'F§cx?>a

D—~—>»
Alx}\l( MxM3Mm’ MxM

and the result follows. O

Let X be a complex manifold and let F € D (Cx). In [1] and [5] the authors
constructed the functors tuhom(F,Ox) of tempered microlocalization and F ® Ox
of formal microlocalization taking the Dolbeaut resolutions of the real ones.

SOCIETE MATHEMATIQUE DE FRANCE 2013



60 CHAPTER 6. HOLOMORPHIC FUNCTIONS WITH GROWTH CONDITIONS

THEOREM 6.4.3. — Let F € D} (Cx). We have the isomorphisms
(6.4.3) o~ tuhom®™ (F, O%) =~ tuhom(F,Ox),
(6.4.4) p~Lphom™(F,0%) ~ (D'F & Ox)*,

m

where (.)* denotes the direct image of the antipodal map.

Proof. — The result follows by taking Dolbeaut resolutions on the left and the right-
hand sides of (6.4.1) and (6.4.2). Let us see the proof of (6.4.3). Let F € DR (Cx).
As pointed out in Remark 6.4.1, the pDg-module structure of Dbg(R implies that
phom™ (F, Dbk ) € D®(p!Dx). The coherence of O implies that

RHompp, (pOx,puhom™(F,Db.)) ~phom® (F, RHom,p_(pOx,Db.)).

L we have

Applying the functor p~
p~ phom™ (F,0%) ~ p~' RHom,p, (mOg.uhom™ (F, Dbk,))
~ RHomp, (Ox,p ' phom™ (F, Dbk,))
~ RHomp_ (O, tphom(F, Dbx.,))
~ tphom(F, Ox).

The proof of (6.4.4) is similar. O
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INTEGRAL TRANSFORMS

We give some applications related to the microlocalization of subanalytic sheaves.
We show the existence of a natural action of tempered microdifferential operators on
tempered and formal microlocalization. We show also the invariance under contact
transformations of tempered and formal microlocalization.

7.1. Ex-modules

Let X be a complex manifold of complex dimension dx. Following the notations
of [14] one sets
&% = H™ (1a 0%%)).
It is a sheaf of rings over T*X and for each F € DP(Cx), j € Z the sheaf
HIphom(F, Oy) is naturally endowed with a structure of left £%-module.
> The sheaf £% is called the ring of microlocal operators on X.

> It contains a subring, denoted by Ex and called the ring of (finite-order) micro-
differential operators. We will not recall all the properties of this sheaf and refer
to [32] for a detailed study.

In [1] the author introduced the sheaf Sﬁ'f of tempered microdifferential operators

L
EI)R}J = de(tuhom((CA,(’)Xxx) ® (’)g?’ﬁ;g)).

Oxxx
It follows from Theorem 6.4.3 that
gﬁ’f ~ pledX uzaogg(;’ié‘).
Let us recall the following results:

> the sheaf tuhom(Ca, Oxx x) is concentrated in degree dx;

> one has the ring inclusions Ex C Eg{;’f c &k
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7.2. Integral transforms

Let X,Y, Z be three manifolds. Let ¢;; be the (4, 7)-th projection defined on X x
Y x Z and let p;; be the (i, j)-th projection defined on T* X x T*Y x T*Z. Let p{; be
the composition of p;; with the antipodal map a andlet § : X xY' xZ = X xY xY xZ
be the diagonal embedding. We denote by py : T*Y TX, (Y xY) the isomorphism
induced by the second projection. Consider the diagram

a a
P12 XP23

(7.2.1) T*(X xY)xT*(Y x Z) TXXTYXTZﬁ

I L|id xp2xa

T*(X X Y) xy T*(Y X Z)6; ——T*X x T (Y X Y) x T*Z
’5’J{ Pis
T* (X><Y><Z)<—T*X><Y><T*Z
q13 q13m
T*X xT"Z
For Fy € D"(k(xxy).,) and F» € D"(k(yxz).,) set
FioFy = Raian(qip Fi ® ¢33 Fa)
and for Gy € Db(k(T*X)(T*Y)Sa) and G € Db(kg*yXT*Z)sa) set

G1 6 Ga = Rplypin(pf; 'G1 @ ply ' Ga).

We need this proposition which follows from the functorial properties of phom®® (it is
an adaptation of Proposition 4.4.11 of [14]).

PROPOSITION 7.2.1. Let us consider the sheaves

Ky € DR o(kxxy), F1€D’(kixxy),.); K2 € DRo(kyxz), Fa€ D"(kiyxz),,)-
Suppose that q3 is proper on supp(ql}lKl ® q;;Kg). There is a morphism
(7.2.2) whom™ (K1, Fy) g,uhomsa(Kg,Fg) — phom™ (K1 o Ko, Fy o F3).

PROPOSITION 7.2.2. — Let A = @,t. Let K1 € DR .(Cxxy) and K2 € DR .(Cyxz).
Suppose that qi3 is proper on supp(qulKl ® q;31K2). Morphism (7.2.2) defines a
morphism

(7.2.3) whom® (K7, (9’\(0 dY)) S phom*® (K, Og\,(g"gZ))
— phom®* (K1 o Ko, Oﬁ((ﬂ*;Z))[fdy].

Proof. — 1t follows from (7.2.2) setting F; = (9)‘(0 W) Fy = O))‘,(:’;Z) and using the

integration morphism (’))‘(O ) Oi‘,(g’gZ) — (’);‘((QZZ) [—dy]. O

COROLLARY 7.2.3. — Morphism (7.2.2) induces the ring structures on £% and Eg{;’f‘
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Proof. — Apply p~! to (7.2.3) with X =Y = Z and K; = Ky = Ca[—dx]. O
PROPOSITION 7.2.4. Let F € DY (Cx). Morphism (7.2.2) defines a morphism
(7.2.4) HROE [dx] @ phom™ (F, 0%) — phom™ (F, 0%)).

Proof. — We apply Proposition 7.2.1 with X =Y and Z = {point}. We set
(K1, K2, Fi, F>) = (Cal—dx], F,O30%),0%).

In this case we have CaoF ~ F. We obtain the desired morphism using the integration

morphism (’)3\;2';?‘) o 0% — O%[—dx]. O

Applying the functor p~! to (7.2.4), we find the morphisms of [1] and [14] (recall
that p~tuhom™(F, O%) =~ tphom(F, Ox)).

COROLLARY 7.2.5. — Morphism (7.2.4) induces morphisms
(7.2.5) EXT ® p~ phom™ (F,0%) — p~' phom™(F, 0%,
(7.2.6) ER @uhom(F,Ox) — phom(F, Ox),

which, for each k € Z, induce a structure of Eﬁ’f—module (resp. E%-module) on the
sheaves H* p~1 puhom™ (F, O%) (resp. H*uhom(F,Ox)).

Now we will study the action of Eg{;’f on formal microlocalization. We first recall
the definition of the sheaf of tempered C*°-functions.

DEFINITION 7.2.6. — Let X be a real analytic manifold and let U € Op(X). Let
f eT(U;C%¥). One says that:

> f has poynomial growth at p € X if for a local coordinate system (z1,...,2,)
around p, there exists a compact neighborhood K of p and N € N such that

sup (d(:c,K\U))N|f(a:)| < 05
ze KNU

> f is tempered at p if all its derivatives have polynomial growth at p;

> f is tempered if it is tempered at any point.

DEFINITION 7.2.7. — One denotes by C?’t the presheaf of tempered C*°-functions
on X, defined as follows:

Uvr— {f € (U;C¥), [ is tempered}.
As a consequence of a result of [15], for U,V € Op(Xs,) the sequence
0= CUUV) s U dCHV) = CHUNY)
is exact. Then C)O(o’t is a sheaf on Xg,. Moreover RI'(U; C;"'t) is concentrated in degree
zero for any U € Op(Xsa).
Let THom(F,C¥) be the sheaf of [15].
When F = Cy, U € Op(Xs) it is defined by V s CoOH(U N V).
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We have the following results (see [16]).

PROPOSITION 7.2.8. — For each F € DR (Cx) one has the isomorphism
"L RHom(F,C¥") =~ THom(F,CY).

PROPOSITION 7.2.9. — Let X be a complex manifold, X the underlying real analytic
manifold and X the conjugate manifold. Then

O ~ R?—Lomp,p)?(p!oy,(f?yjt).
We prove the following result.

LEMMA 7.2.10. — Let f: X — Y be a smooth morphism of real analytic manifolds.
Then we have the isomorphism

£ =5 RHomppy (Dxoy, CX1).
Proof. — First of all remark that there is a natural morphism

f*l(};’f’t — RHom,p, (Dx—y, C)o(o’t)-

In order to prove that it is an isomorphism we may reduce to the case of a projection
m:Y xR — Y. We shall prove that the morphism

0 C3l — ¥k
where ¢ denotes the variable in R, is surjective. Let U € Op°((Y x R)sa), then
by Lemma A.1.11 it admits a finite covering {U;}}¥, such that each U; is simply
connected and the intersections of each U; with the fibers of m are contractible (or

empty). Hence we may reduce to the case that the intersections of U with the fibers
of 7 are contractible (or empty). Moreover we can assume that

U={(z,t) €Y xR; f(z) <t<g(x)},

where f, g : 7(U) — R are continuous subanalytic maps and m(U) is simply connected.
Let us consider h,k : 7(U) — R continuous subanalytic and ¢ € I'(w(U);C$°) such
that f <h <@ <k <g. Let s € (U;C5%) and define

(,t)
S(z,t) = /( s(z,T)dr.

z,p())
Then 5 € T'(U;Cy°,r) and 0;5 = s. Moreover
[3(z,t)| < |o(z) — ] sup |s(z,7)].
(z,7)e{z}x[p(2).t]

Since U is bounded, there exists M > 0 such that |p(z) —t| < M for each (z,t) € U.
Since s is tempered, for each € 7(U) and each 7 € [¢(z),t] there exist ¢1,71 > 0
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such that
1
s(x <l
sl < e g o
1
= “min{d((z,1),00), d((z, h(x)), 00), d((, k(x)), 00}

As a consequence of Lojaciewicz’s inequality (see Theorem 6.4 of [3]) there exist co > 0
and ry > 0 such that

d((z, h(z)),00),d((x, k(x)),0U) > cad(z,d(n(U)))" > cad((,t),0U)".

Hence there exist ¢, > 0 such that

3w, t) < 1

S(z C———

T d((xt),00)"

and the result follows. O
LEMMA 7.2.11. — Let f: X =Y be a smooth morphism of real analytic manifolds.

Let M,N € D(Dx). There is a natural morphism

L L
RHomp, (Dx—y, M) @ RHomp,(Dx—y,N)— RHomp, <Dxﬂy,/\/1;®/\/’).
f*l‘Ay X

Proof. — By Lemma 4.9 of [13] we have
L Lo,
(7.2.7) Dy x ® Dxy ¥Dycx ® f~ Dy.
Ax f1Ay
Then if M is a Dx-module
L Lo Lo L
(Dvex 8M) & f'Dy = (Dyex ® ['Dy) &M
Dx ftAy ftAy Dx
L L L L
~ (DYFX ® DX%Y) M ~Dy x & <M®DX~>Y)-
Ax Dx Dx Ax
Now when f is smooth
L
Dycx ,@ -~ RHomp, (Dx—y, .)[dx — dy].
X
Then if N is another Dx-module

L
RlHompx(quy,M)f ?A R'H()mDX(DXAy,N)
“tAy

L L
~ RHomp, (DX_,y,M P Doy, & RHomo, (DX_W,N))
® i

Y

L
— RHomp, (Dxﬁy,Mf@N). O
X
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LEMMA 7.2.12. — Let X be a real analytic manifold. Let F,G € DD%_C((CX) and let S
be a closed subanalytic subset of X. There is a morphism

p~t RHom (F,(CT)s) ®ax p~t RHom (D'((F ® G)s),C¥™)
— p ' RHom (D'(Gs),CX™).

Proof. — (i) Let Vi,Va € Op(Xs). The sheaf p~'Ty, (CX*")s is concentrated in
degree zero since C)O(o"t is T'(U; -)-acyclic for each U € Op(Xs,). Moreover the sheaves

w
p~' RHom(D'Cy,nvans; CF™) ~ Crynvans ® CF,
—1 ’ co,w oo
14 RHOTH(D CVZQS,CX ) ~ (Cv2ms ®CX
are also concentrated in degree zero. There is a morphism

(72.8) PTT(CE)s @ax Crinvans © CF = Ciyns ®CF

This follows since the multiplication of a function tempered on V; by a function van-
ishing with all its derivatives outside V] is a function vanishing with all its derivatives
outside V.

(if) By Theorem 1.1 of [15] the morphism (7.2.8) extends to a morphism
(7.2.9) pflrvl(c;c’t)s ®Rax Gvins ®CF — Gs @CY,
functorial in G € Modg..(Cx). By adjuction this gives a morphism
(7.2.10) P, (€ — Homay (Gyans ® CF,Gs ® CF).
By Theorem 1.1 of [15] the morphism (7.2.10) extends to a morphism
(7.2.11) p L Hom (F,(CT")s) — Homay (F @ G)s & CF,Gs % CF).
functorial in F' € Modg¢(Cx).

(iii) Let F,G € DE_.(Cx). We have the following chain of morphisms

p~' RHom(F, (CX")s) = R(p~' Hom (F,(CX")s))
— R(Homay (F®G)s ®C¥,Gs CF))
— RHomay (F @ G)s ©CF,Gs ®CF),

where the first isomorphism follows since p~! is exact and (.)s sends quasi-injective

objects to quasi-injective objects, the second arrow follows from (7.2.11) and the third
one is a canonical morphism of derived functors (see [18], Proposition 13.3.13).
By adjunction we obtain the desired morphism. O
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LEMMA 7.2.13. — Let us consider the normal deformation of the diagonal in X x X
of diagram (5.2.1). Let F,G € D} (Cx). There is a morphism

p~ WX RHom(q; ' F a3 'CX) @ay p~ W& RHom (¢7 ' D'(F @ G), 45 'CX™)
— p 2 RHom (¢ D'G, g5 1CFT).
Proof. — (i) As in the proof of Theorem 6.4.2, if X is a real analytic manifold,
K € DR (Cx), A =t,w, we have
p~ 5 RHom(q7 'K, qQIC;’{O')‘)
~p~'s™! Riom ((py ' K)a.py 'C5)
=~ p71871 RHom ((pflK)527 RHomp!Dm (plpqu,c;%))

— — 00, A
p~ RHom((p; 1K)Q,CX'XX)),

—1
~ —
~ 8 RHOmD,;(J (DXXX X’

where the second isomorphism follows from Lemma 7.2.10.

(ii) By Lemma 5.4.1 for H € DY (Cx) we have
(ple’H)Q ~ D’((p;lH)ﬁ) and RFQp;lC)O(O’t ~ (p;l(f;o’t)ﬁ.

(iii) By Lemma 7.2.11 with (X,Y) = (X/;/X,X)7 M = RHom(p;'F, (C)%)ﬁ),

N = RHom(D'((p (F ® G))g)ﬁ%), we are reduced to find a morphism
X

xX

— p ' RHom (Dl((pflc)ﬁ)’c%)

p~' RHom (p'F, (cj{i’x’;)?)ﬁ) ®a p~ ' RHom (D'((py '(F® G))ﬁ),c;gﬁ)

which follows replacing (X, S, F, G) with (X/>\</X7 Q,p7'F,p;'@) in Lemma 7.2.12.
(]

Let us consider the complex case. Let X be a complex manifold.
LEMMA 7.2.14. — Let £, € D*(Dx,). There is a natural morphism

L L
RHomp. (Ox.£) & RHomp (Ox,H) — RHomp_ (oy,cAe; 7—[)‘
X Xp

Proof. — By definition we have
L L D
LRH= DX¥—>XR><XR ® (‘C M)
Xp Axpx xp

Hence we get

D L
L H— RHomp,, (DXWXRX)(WLA@ H)
Xp
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There is a chain of morphisms
L
R’Hompy(oy,ﬁ)(;@ RHomp_(Ox,H)

L D
~Dxoxxx & (RHomp (O5.L)  RMomp (Ox.H))

X xX

L L
& R'HomDY Dy (O)? O},'DXXXD ® (L H))

— Dx—xxx
Dxxx x Dx

L L L
—}DXHXXX ® R’HOTRD)?X}T <0)7X}77D}7X)7 ® DXXX ® (£ H))
Dxxx Dx Dx Dx Dx

L D
— Dxoxxx @ RHompy, « (Ox.x £ M)

X xX
XXX

L L
— Dxoxxx _® RHompg (nyy, RHompy, (DX]%XBXX]};’EA® 7-[))
X x X Xr

L L
~Dx,xxx ® RHomp, (DXAXX)QRIHOMDY(OXMC ® H))

X xX Xr
L
— RHomoy (Ox.£ 5 H). 0
Axp
LEMMA 7.2.15. — Let us consider the normal deformation of the diagonal in X x X

of diagram (5.2.1). Let F,G € DY_.(Cx). There is a morphism
ol RHom(qr ' F, a5 O) ®oy, p~ 18 Riom (7D (F  G), 47" 0%)
— p~ W RHom(q; ' D'G,q; ' O%).
Proof. — If X is a complex manifold, X € DR .(Cx), A = t,w, we have
p~ 2 RHom (¢ K, g3 1 O%)
~p~ts7I RHom ((pflK)Q,pgl(%\()
~ p~ts ! RHom ((pflK)Q,pgl RHomp,Dy(pyO)?,C;i’)‘))
~ 133';'-[0771927((’))77 p s RHom ((p;lK)Q,pQIC?R’)‘))
~ RHomp_(Ox,p ' v RHom (¢; 'K, qQIC?R;A)).
Set
£= 5 RHom(ar Fa; G, M= p~ v Riom (a7 D'(F & G).45'€")).

By Lemma 7.2.14 there is a natural morphism
L L
RHomp. (Ox.£) © RHomp. (Ox,H) — RMomp, (oy,cAe@ 7{)
X Xp

Then the result follows from Lemma 7.2.13. O
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LEMMA 7.2.16. — Let f : X — Y be a smooth morphism of complex manifolds.
Then there is a natural morphism

RfuQx [dx] — Q¥ [dy].
Proof. — By Theorem A.4.7 we have the isomorphism
f]OSVZ[ZdY] - R?'LomP!Dx (p!'DX%YV O;) [QdX]‘

L
We have RHom,p, (mDx—y,O0%) ~ pmDyx %) O%|dy — dx]. Hence we get
mDx

Dy o Xpéxow ~ fO¥[dy — dx].
By adjunction we get
Rfy(piDy Xpéxogg) s O%[dy — dx].
From this we can deduce

L
RAQY — Rf“(Q} @ p;DXAy> — Q¥ [dy — dx]. O
mDx

Let us consider the diagram (7.2.1) with Z = {point}. Set
px T*X x T*Y — T*X, py T X X T'Y — T*Y,
gx : X XY — X| gy : X XY —Y.

PROPOSITION 7.2.17. — Let G € DR (Cx) and K € DR .(Cxxy) such that gy is
proper on supp(qx'G) Nsupp(K). Then we have a morphism

(7.2.12) p~tuhom® (K, Oiﬁ‘l‘{,”)[dy} 5 p~Ljhom® (D'(K o G),0¥%)
— p~tuhom™(D'G, O%).
Proof. — We will prove the assertion in several steps. Set
Hy = p~ & RHom(q7 'K, yO3) ~ p~ v RHom(qr ' K, g5 'O ) [2dx ],
Hy = p~ 'V RHom (¢ ' D'(K o G), ;0%)
=~ p~ X RHom (¢; ' D' (K o G), g5 ' OF ) [2dy].
1

we have

H ~ p~tphom™ (K, (’)Eg&‘z)’)), H} ~ p~'phom™ (D'(K o G), OF).

Since the Fourier-Sato transform commutes with p~

(i) By the commutativity of the diagram (7.2.1) we have an isomorphism
Rp% (HD)" @ py ' HY) ~ Raxm'dx ' RYS0; 1 (HY  HY).
(ii) By Proposition 3.7.15 of [14] we have an isomorphism

(H)" (H)" = (H Hy)",
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(iil) Denote by Tqy : T(X X Y) — TY the tangent map. By Propositions 3.7.13
and 3.7.14 of [14] we have the isomorphism

R'SI67HHy  Hy)" ~ (Hy ® Tqy' Ha)" [—2dy].
(iv) We have the chain of morphisms
Tay' v RHom(q7 ' D'(K o G), ¢35 ' OF)
~ v RHom (ql’lq;lD’(K o G), q;lq;los“/’)
~ v RHom (¢ ' D'(¢y " av. (K ® ¢ G)), 43 a5 OF)
— v RHom (¢7 'D'(K © ¢5'G), ¢ ¢y OF)
— VX RHom (¢ 'D'(K ® ¢x'G). 43 ' OX xy)

where the first isomorphism follows since ¢y is smooth, the second one since
supp(gx' G) Nsupp(K) is proper over Y.

(v) We have a morphism
(Hy ® Tqy Hy)"[~2dy] — p~ phom™ (qx' D'G, 0% ).
To prove the existence of this morphism we shall prove the morphism
Hy ® Tay' Hy[~2dy] — p~ ' RHom (¢ a5 D'G. g5 OX 03 ) 2dix v ).
Hence by (iv) we may reduce to the case of the morphism
p R RHom(qr ' K, gy ' Ok oy) ® p~ 'R RHom (¢ ' D' (K @ 4x'G), 43 ' O% v )
— p~ VR RHom (¢7' D' (4x' G), 43 ' O% v )
This is a consequence of Lemma 7.2.15 with (X, F, G) replaced by (X x Y, K, ¢x'G).
(vi) We have the chain of morphisms
Raxn'dy Lp~ phom™ (g5 D'G, O 3))
— p~tphom™ (Rgx.qx' D'G, RaxnOY i)
— p Luhom®(D'G, O%)[—dy],
where the second morphism is a consequence of the integration morphism
RxnOY ) — O%[~dv]
defined in Lemma 7.2.16 (see also Remark 3.4 of [15]) and the fact that Rgx.qx" = id.
Composing morphisms (i)—(vi) we get the desired morphism. O
COROLLARY 7.2.18. — Let F € DR (Cx). Morphism (7.2.12) defines a morphism
(7.2.13) SE’f ® p~Lphom™ (F,0%) — p~ ! phom® (F,0%)

which induces a structure of Sﬁ’f-module on H*p~'uhom™ (F, O%) for each k € Z.
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Proof. — We apply Proposition 7.2.17 setting X = Y and (G,K) = (D'F,Ca). In
this case we have D'(Ca o D'F) ~ D'D'F ~ F. O

In this way we find the morphism of [5]
ERN @ F®0x — F&Ox
w I

(recall that p~tphom™ (F,0%) ~ (D'F %) Ox)%).

REMARK 7.2.19. — The integration morphism in Proposition 7.2.17 (vi) can be
directly constructed starting from the integration for Whitney C*°-functions. Let
f:X —Y be a smooth morphism. Given a l.c.t. U € Op®(Ys,) we have

L(U; fuCX™) = Te(Y5 fip~" RHom(Cpr (1), CX™)
= T(XGCpo ) ©CFY) D T(vicy B epY) =T UscE).

REMARK 7.2.20. — Let us consider the compatibility between this morphism and
the one of Andronikof ([1], Proposition 3.3.10). Steps (i) to (iii) of Proposition 7.2.17
are the same. We need the compatibility between the multiplications. We will see the
compatibility between

p IRT 0% ® p~t RHom(F,0%) — p~! RHom(F,O%)
and
pTIRT 0% ® p~t RHom(F,0%) — p~! RHom(F,O%)
when Z C X is closed subanalytic and F € D} (Cx).
We reduce to the case of a real analytic manifold and we use the fact that
L RHom(G,CY") ~ THom(G,C¥) and p~! RHom(G,C¥™) ~ D'G ® C¥
for G € DR (Cx). Define
F & THom(G,C¥) = THom(G, F & CT)
saying that, if U,V are open subanalytic
Cy & THom(Cy,CE) = THom(Cy,Cy & CF)

are C*°-functions tempered on V' and vanishing up to infinity outside U. Then we
have

THom(Cz,CE) ® THom(F,CF) — THom(Cz,C¥) @ THom(F,Cz @ CT)
— THom(Fz,C¥) — THom(F,CY)
and
THom(Cy,C¥) @ D'F & C¥ — THom(Cy,C¥) @ (D'F)z & CF

— THom(Cz, D'F ®C¥) — D'F & CL.
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The first and the third arrows of the two diagrams are clearly compatible. Let us see
the compatibility between the second arrows. Note that F' € DD%C (Cx) plays no role
in these arrows (it denotes a growth conditions which is preserved after the multipli-
cation), so in order to better understand how they are constructed we set F' = Cx.

Let U = X\ Z. Then THom(Cz,C¥) and Cy (%Cj'(o are represented by the complexes
0—C¥ — THom(Cy,CY¥),
Cu®CE = CF =0
where in both cases C¥ is the degree zero of the complex. The morphism is induced

by the following diagram, where the vertical arrows are given by multiplication

Cu ®CPRCT —Cy &CF @ THom(Cy,CF) B CL @ CF — CF @ THom(Cy,CE)

| l |

Cr®CF——— s Cy®CPHCE ——— THom(Cy, C).

In the complex in the second line the first arrow is given by s — (s,s) and the
second one by (u,v) — u — v. Computing the cohomology, it is quasi-isomorphic to
THom(Cz,CF).

7.3. Microlocal integral transformations

In the case of a contact transformation the hypothesis of properness of the previ-
ous section are not satisfied. Hence we are going to define microlocal operations on
phom®(., 0%) extending those of [14] and [1]. Let © C T*X. Denote by

> DP(Xga, Q) the category DP(Cx.,)/Na;

> DP(X,Q) the category DP(Cx)/Nq;

> DE (X,Q) the category D2 (Cx)/Np;
where N = {F € D*(Cx,,); SS(F)NQ = @} (resp. F' € D*(Cx),resp. F € DE .(Cx)).

It follows from Corollary 5.3.5 that the functor

pLuhom™ : DP(Xg, Q)°P x DP(Xa, Q) — DP(Q)

is well defined.
NOTATIONS 7.3.1. If there is no risk of confusion we will write for short
whom(.,0%) instead of p~tuhom™ (., O%).

Denote by o the microlocal composition of kernels of [14] (and [1] for R-

"
constructible sheaves). As usual, given K € D*(C(xxy).,) and F € D*(Cy,,) we set
VP =KoF
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PROPOSITION 7.3.2. — (i) Let X,Y be two complex analytic manifolds, let K €
DE (Cxxy), px € T*X, py € T*Y such that SS(K) N ({px} x T*Y) C (px,p%) in
a neighborhood of this point. Then for each F € DR (Cy) and G € DR _(Cx) there
are morphisms

Jdy
(7.3.1) phom(K, Oﬁoxy ))(px,puy)[dy] @uhom(F, O%),,
— phom (P4 F, O% )py
(732)  phom(K, O%057) .y [dy] @ phom(D' (9 G), OF )y

— phom(D'G, O%)p -

(ii) Let Z be another complex analytic manifold, let K, € Dﬁic((CXXy) and Ky €
DE _(Cyxz) be microlocally composable at (px,py,pz) € T*X x T*Y x T*Z, i.e.

(SS(K1) 7y SS(K2)) Npiy " (px,0%) € {((0x.0%), (py,0%))}
in a neighborhood of ((px,p%), (py,p%)). Then there is a morphism
0,d 0,d
phom (K7, Oégx'yy))(px,p‘;,) @ phom (K», Oif(xZZ))(py,p%)

d
— phom(Ky 0 Kz, O (o i [—dly]

Proof. The result follows thanks to the morphisms defined in the previous section
and adapting the proof of Proposition 3.3.12 of [1]. O

7.4. Contact transformations

Let X,Y be two complex analytic manifolds of the same complex dimension n and
let Qx C T*X, Qy C T*Y be two open subanalytic subsets. Let x be a contact
transformation from Qx to Qy. Let A C Qx x Qf be the Lagrangian manifold
associated with the graph of x (i.e. (px,p}) € A if py = x(px)). We denote by py
and p§ the projections from A to Qx and 2y respectively.

Let (px,py) € Qx x Qy and consider K € D}E_C(X x Y, (px,p$)) satisfying the
following properties (for the definition of simple sheaf we refer to [14]):

(7.4.1) SS(K)c A and K is simple with shift 0 along A.
In this situation we have the following results of [17] and [1].
PROPOSITION 7.4.1. — Let K € D@ (X x Y, (px,p%)) satisfying (7.4.1). Set
K* =r, RHom(K,wxxy|y),
where r : X XY — Y x X is the canonical map. Then the functors
@+ D (Xea, px) — D®(Yaa Dy ),
Pl : D’ (Yaa, py) — D°(Xea, px)

are equivalences of categories inverse to each other.
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LEMMA 7.4.2. — Let K € DR (X x Y,(px,py)) satisfying (7.4.1). Then
phom (K, O% . y) is concentrated in degree zero.

PROPOSITION 7.4.3. — Let K € Dg (X x Y, (px,p%)) satisfying (7.4.1) and let
s € phom (K, O%&@)(m,p;)-

(i) For each F € DR (Y,py) there are morphisms induced by s

w5 1 pthom(F, 04 )y [n] — phom (@4 F, O% )y,
¥s 1 phom (D' (@4 F), 0% )py [n] — phom(D'F, OF )y, .
(ii) Let Z be a n-dimensional complex analytic manifold, Qz C T*Z and let
Yy — Qy
be a contact transformation. Let A’ be the Lagrangian submanifold associated
with the graph of x'. Let K' € DR (Y x Z (py,p%)) satisfying (7.4.1) and
s € phom(K', 03‘1”2‘)). Then
Ps 0Py = (PO )sos and P50y = (Y01 )sos,
where so s is the image of s ® s’ by the morphism
whom(K, Ori(xY)(px,p‘;,) @uhom(K', O@XZ)(I,YW%
— phom (K ° K'[n], Og(xZ)(px,PZ}‘
(iii) Let P € EgRé’éX and @Q € 85'[{}, such that Ps = sQ. Then:
Pops=¢:0Q

(and similarly for s).
Proof. — (i) Similar to Proposition 5.2.1 (i) of [1]. There exists a neighborhood Q
of (px,p}) such that s € T'(Q;phom (K, (9;?;’7;,)) and we may suppose that A is closed
in Q. Set K =phom (K, (’)zg(l?,)) Then
(7.4.2) s € T'(Q,K) ~ Hom(Cy, K).
Moreover we can find a relatively compact neighborhood Vy- of 7y (py) such that

F =P, F=Kxxy oF.

Now set
Fi =phom(Pk ., F\ oY), G1 =phom(D'F,0Y),
F = phom(F, 04 )], Gs = phom (D' (@i, ), O% ) .

Then the morphisms ¢ and 9, are given by the diagrams

fz‘gy = (C% 0]:2)\9;( — (K o]-'g)mx — fl\ﬂx’

Gajg, — (CRoGa)lg, — (K" 0Go)jg, — Gio,
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where the first arrows are given by (7.4.2) and the second ones by (7.3.1) and (7.3.2).
(ii) The arrow follows from (i) and the associativity of the composition.
(iil) See [1], Proposition 5.2.1 (iii). O
THEOREM 7.4.4. — Let x be a contact transformation from Qx to Qy and let A

be the Lagrangian manifold associated with the graph of x. Then there exist K in
DR (X XY, (px,p})) satisfying (7.4.1) and s € phom(K, O;&’@)(pxipg’) such that:

(i) the correspondence £x,p 3 P — Q € Ey,p, such that Ps = sQ is an isomor-
phism of rings,
(ii) for each F € DY_(Y,py) the morphisms induced by s
90 +1hom(F, 04 )y 1] —> phom (@l F, O} )
Vs : phom (D' (@5 F), O )py [n] — phom(D'F, OF )y, .
are isomorphisms compatible with (i).

Proof. — The proof is similar to the proof of Proposition 5.2.2 of [1]. |

REMARK 7.4.5. — Set F = ®%.G with G € D% (X,px) then &} F ~ G and
D'F ~ Uk . D'G ~ ®.D'G, where U%. = Rqy. o RHom(K*,-) o ¢ and the sec-
ond isomorphism follows from Proposition 7.1.9 of [14]. Hence, replacing X with Y’
and D’G with F we obtain the isomorphism

phom(F, OF) ., [n] — phom(®% F, O% ), -
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APPENDIX A

REVIEW ON SUBANALYTIC SETS

A.1. Properties of subanalytic subsets

We recall briefly some properties of subanalytic subsets. Reference are made to [3]
for the theory of subanalytic subsets and to [7] and [38] for the more general theory
of o-minimal structures. Let X be a real analytic manifold.

DEFINITION A.1.1. — Let A be a subset of X.

(i) A is said to be semi-analytic if it is locally analytic, i.e. each # € A has a
neighborhood U, such that X N U, = U;¢; Ny Xij;, where I, J are finite sets
and either X;; = {y € Uy; fi;(y) > 0} or X;; = {y € Uy; fij(y) = 0} for some
analytic function f;;.

(if) A is said to be subanalytic if it is locally a projection of a relatively compact
semi-analytic subset, i.e. each z € A has a neighborhood U, such that there
exists a real analytic manifold Y and a relatively compact semi-analytic subset
A" € X xY satisfying X N U, = w(A’), where 7 : X x Y — X denotes the
projection.

(iii) Let Y be a real analytic manifold. A continuous map f: X — Y is subanalytic
if its graph is subanalytic in X x Y.

Let us recall some results on subanalytic subsets.

PROPOSITION A.1.2. Let A, B be subanalytic subsets of X. Then
AUB, AnB, A 0A, A\B
are subanalytic.

PROPOSITION A.1.3. — Let A be a subanalytic subset of X. Then the connected
components of A are locally finite.
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PROPOSITION A.1.4. — Let f : X — Y be a subanalytic map. Let A be a relatively
compact subanalytic subset of X. Then f(A) is subanalytic.

DEFINITION A.1.5. — A simplicial complex (K, A) is the data consisting of a set K

and a set A of subsets of K satisfying the following axioms:
(S1)
(S2) if 7 is a non-empty subset of an element o of A, then 7 belongs to A;
(S3) for any p € K, {p} belongs to A;

(S4) for any p € K, the set {o € A;p € o} is finite.

any o € A is a finite and non-empty subset of K;

If (K,A) is a simplicial complex, an element of K is called a vertex. Let RX be
the set of maps from K to R equipped with the product topology. To o € A one
associates |o| C R¥ as follows:

lo| = {IGRK; z(p) =0 for p ¢ o, z(p) > 0 for p € o and Zx(p):l}.
P

As usual we set:

K|=J ol U@ = I,

oEA T%A
and for = € |K]|: i
U(z) =U(o(z)),

where o(z) is the unique simplex such that z € |o|.

THEOREM A.1.6. — Let X = | |;c; Xi be a locally finite partition of X consisting of
subanalytic subsets. Then there exists a simplicial complex (K,A) and a subanalytic
homeomorphism 1 : |K| —+ X such that

(i) for any o € A, ¥(|o|) is a subanalytic submanifold of X ;

(ii) for any o € A there exists i € I such that ¥(|o|) C X;.

Let us recall the definition of a subfamily of the subanalytic subsets of R™ which
has some very good properties.

DEFINITION A.1.7. — A subanalytic subset A of R" is said to be globally subana-
lytic if it is subanalytic in the projective space P"(R). Here we identify R™ with a
submanifold of P"(R) via the map (z1,...,@,) — (L: @1 : -+ 1 2p).

An equivalent way to define globally subanalytic subsets is by means of the map
Tn : R — R”™ given by

T yeeey = PR ] .
et kst Vi

In particular relatively compact subanalytic subsets are globally subanalytic.

DEFINITION A.1.8. — A map f : R" — R" is said to be globally subanalytic if its
graph is globally subanalytic.
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PROPOSITION A.1.9. — Let f: R™ — R"™ be a globally subanalytic map. Let A be a
globally subanalytic subset of R™. Then f(A) is globally subanalytic.

Now we recall the notion of cylindrical cell decomposition, a useful tool to study the
geometry of a subanalytic subset. We refer to [7] and [38] for a complete exposition.

A cyindrical cell decomposition (ccd for short) of R™ is a finite partition of R™ into
subanalytic subsets, called the cells of the ccd. It is defined by induction on n:

n=1. — A ccd of R is given by a finite subdivision a; < --- < ay of R. The cells
of R are the points {a;}, 1 < i < ¢, and the intervals (a;,a;+1), 0 < i < ¢, where
ap = —o0 and agy1 = +00.

n > 1. — A ccd of R" is given by a ced of R"™! and, for each cell D of R*7!,
continuous subanalytic functions (p1 < --- < ({p,, : D — R. The cells of R™ are :

> the graphs {(z,(pi(z)); + € D}, 1 <i < {p, and
> the bands {(z,y) € D x R; (p,i(z) <y < (p,it1(z)} for 0 <i < Lp,

where (p,o = —o0 and (p,¢,+1 = +00.

THEOREM A.1.10. — Let Ay,...,Ax be globally subanalytic subsets of R™. There
exists a ccd of R™ such that each A; is a union of cells.

We end this section with the following useful result.

LEMMA A.1.11. — Let U be a globally subanalytic subset of R and m : R® — R"~!
the projection. Then U admits a finite open covering {U;} such that each U; is simply
connected and the intersection of each U; with the fibers of w is contractible or empty.

Proof. — Up to take the image of U by the homeomorphism

n I )
V1+a? Vi+a2

we may assume that U is bounded. Then it follows from a result of [40] that U can

iR (<L) (@, a)
be covered by finitely many open cells, and cells satisfy the desired properties. O

A.2. Ind-sheaves and subanalytic sites

Let us recall some results of [16]. One denotes by
> I(kx) the category of ind-sheaves of k-vector spaces on X, that is
I(kx) = Ind (Mod®(kx)),

where Mod®(kx) denotes the full subcategory of Mod(kx ) consisting of sheaves with
compact support on X:
> DP(I(ky)) the bounded derived category of I(kx).
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There are three functors relating ind-sheaves and classical sheaves:
t:Mod(kx) — I(kx), F+— “hj}l”FU,
vex
a:I(kx) — Mod(kx), “lm”F;+— lim Fj,
- -
B :Mod(kx) — I(kx), left adjoint to a.
These functors satisfy the following properties:
> the functor ¢ is fully faithful, exact and commutes with {i_m;
> the functor « is exact and commutes with lim and lim;
— <
> the functor § is fully faithful, exact and commutes with 111)1;
> (a,¢) and (8, ) are pairs of adjoint functors.
Since ¢ is fully faithful and exact we identify Mod(kx) (resp. DP(kx)) with a full
abelian subcategory of I(kx) (resp. DP(I(kx))).
The category I(kx) admits an internal hom denoted by Zhom and this functor
admits a left adjoint, denoted by ®. One can also define an external
Hom : I(kx) x I(kx) — Mod(kx)
and one has
Hom(F,G) = aThom(F,G) and Homy,)(F,G) = I'(X;Hom(F,Q)).
The functor ® is exact while Zhom and Hom are left exact and admit right derived
functors RZhom and RHom.
Consider a morphism of real analytic manifolds f : X — Y. One defines the
external operations
f71 . I(ky) s I(kX)7 “li_H)l”Gi — ‘Lh—I>n’7(f71G2')U7
i LWUEX
fo  I(kx) — I(ky), “li_)m”Fi — El_m h_n)l f«TuF;,

i vex i
fu i Xkx) — 1(ky), 11_>mF1 — h_r>nf'Fz

where the notation fi is chosen to stress the fact that fiyo¢ 22 ¢t o fi in general.

While f~1 is exact, the other functors admit right derived functors. One can show
that the functor Rfy admits a right adjoint denoted by f' and we get the usual
formalism of the six Grothendieck operations. Almost all the formulas of the classic
theory of sheaves remain valid for ind-sheaves.

There is a strict relation between ind-sheaves and sheaves on the subanalytic site
associated with X. Set for short

Ip-c(kx) = Ind (Modg_.(kx))-
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THEOREM A.2.1. — One has an equivalence of categories

Ir.c(kx) = Mod(kx,,), “lim”F; — lim p,F;.

- -

1 1

Let us recall the following functor defined in [16]:
I : Mod(k — I(kx), U W — “lm”F;.
7 : Mod(kx,,) (kx),  lim p limy
2 1

It is fully faithful, exact and commutes with h_n)l and ®. It admits a right adjoint
JT : I(kx) — N[Od(kxﬂ)

satisfying, for each U € Op(Xia), I'(U; J7F') = Homy, ) (ky, F). This functor is right
exact and commutes with filtrant inductive limits. Moreover we have RJy o I ~ id
and

RJr RZhom(ITF,G) ~ RHom(F, RJrG).
We have the following relations:
RJroit~Rp, and a~p lolJr,
aolr~p ' and Irop ~§.
Let f: X — Y be a morphism of real analytic manifolds and let U be an open
subanalytic subset of X.
LEMMA A.2.2. — Let F € DP(kx.,) and G € DP(ky.,). We have
(i) It o RfuF ~ Rfyo ITF;
(ii) Iro f7'G ~ [~ olrG;
(iii) Iro f'G ~ f' o ITG;
(iv) ITFy = (ITF)u;
(v) It oRI'yF ~RIT'y o ITF.

A.3. Inverse image for tempered holomorphic functions

The results of § A.3 have already been proved in [16] using ind-sheaves, for sake of
completeness we reproduce here the proofs with slight modifications. Let f: M — N
be a morphism of oriented real analytic manifolds of dimension dy; and dy. Set

d=dn —dy.
LEMMA A.3.1. — Let F be an Apr-module locally free of finite rank. Then, for k # 0:
R* fu(Dby @pay, pF) = 0.

Proof. It is a consequence of the fact that Db, is quasi-injective and Proposi-
tion 1.6.5 of [28]. O
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LEMMA A.3.2. — Let M and N be orientable real manifolds. There is a natural
morphism of complexes

fu(Dby ® pQ3y)ldu] — Dby ® pQyldn].
pAM PAN

Proof. — Let U € Op®(Nsa). We have the chain of morphisms

F(U? fu (Dbﬁxfp% pzﬁi?fﬁ)) ~ I‘(N;p’1 Hom ((CU7 f!!(Dbhmg? p@%ﬂ-)»
~ F(N; fi THom (f‘l(cU’ DbMA%IQ%F—i))
— To(N; THom (ccU, Dby J?ngm))

:F(U;Db}v ® p!Q‘}VN—i),

prAN
where the arrow is a consequence of Proposition 4.3 of [15]. O
PROPOSITION A.3.3. — There is a natural morphism in D" (p/D$}):

L
(A.3.1) Rf,!(Dbgy ® p!DNHN) — DbY.
P Pn

Proof. — The Spencer resolution of Djys_, y gives rise to the quasi-isomorphism

DN <Dy @NOy ® PDysn =Dy @NOy & f Dy
Ay A Awm f~YAm

L
from which we obtain the following quasi-isomorphism for Dbl ® pDy—n in

Dy
DP(pf~'DY)

L L]
Db ® pDyon =~ (Dbj/, ® ngM> ® (pz('DM QNOM ® f*lDN»
pDm prAM pDu Anr f1AN

~ Db, ® P!(QM @NOM ® f_lDN)
prAM A -1 AN

~ Db, ® pg(ﬂ}w ® fﬁlDN)[dM]-
prAm AN
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Applying Rf) we obtain:
ok N t . —1
Rfy (DbMﬂ!%MP!IDMHN> ~ Rfy (DbM P!§I\/I o (Q]\,{f_?ANf DN)) [dar]

~ Rfu(Dbxfpg <) @ pDxldu]

~ fu (Dbf\f ® p!QEVI> ® pDnldp]
prAM prAN
—>Db]t\; @ py @ pzDN[dN]
prAN prAN
~ Dby @ pQy =DbY,
PrAN

where the third isomorphism follows from Lemma A.3.1 and the arrow from

Lemma A.3.2. |
By adjunction we get a morphism
v L LyptV
Dy
THEOREM A.3.4. — The morphism (A.3.2) is an isomorphism.

Proof. — Let F € Dﬂg_c((c M) with compact support. We have the chain of isomor-
phisms

RHom(F, f'DbY/) ~ RHom(R fuF, Dby) ~ RI'(N, THom(RfF, DbY;))

~RT (N, Rf( THom(F, DbY;) Dé Dirv))

L L
~ RF(M, THom(F, Db]VV[)@DMHN) ~ RHom (F DhY ® p!DAHN),
Du pDm

where the third isomorphism follows from Theorem 4.4 of [15]. O

By the equivalence between left and right D-modules, we have an isomorphism
L ~
(A.3.3) pDnen @ Dby — f!Dbf\b
pDm

COROLLARY A.3.5. — When f is smooth we have an isomorphism
Dbl = RHom,p,, (0 Dy, Dby
Proof. The result is obtained by the following isomorphisms

L
R’HommDM (p'DM—>N7Dbjt\/[) eyl RHOmpM (DAJ_”\],DA,{) % Dth\/f
PPy

L
~ p Dyt 2 Db, [d] ~ f'Db4[d] ~ f1DbY,.
J4R25Y

The first isomorphism is obtained by replacing Dj;—, ;v with its Koszul complex. The
second follows from the smoothness of f and the isomorphism

RHomp,,(Py—n,DPu) ~ Dyenld].
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The last isomorphism follows since we have the isomorphism f'(.)[d] ~ f~! when f
is smooth. O

From now on X will be a complex manifold of complex dimension dx, with struc-
ture sheaf Ox. We denote by X the complex conjugate manifold (with structure
sheaf Ox), and Xg the underlying real analytic manifold, identified with the diago-
nal of X x X. Let O% be the sheaf of tempered holomorphic functions on X. We
also consider the sheaf Q% € DP(pDY):

t DY & O]
Ol = DHY. @ pOxg|—dx].
,nDx

!

PROPOSITION A.3.6. — Let f : X — Y be a holomorphic map between complex
manifolds. Then
L
(A.3.4) QL © pDx_yldx] ~ Q4 [dy].
mDx
Proof. — We have the chain of isomorphisms

| o L [PV —1
DB & 40—) ~ DY & pf O+
f(wwgy DY & pi O

~DHY & pDxasy. & pf O
- Xr D, ! R— YR f’le- Y

P!

(Db]ﬁv QL@ D ) <§L§ D GL§ nflo
>~ |l i Y _ .V 1 avd
Xr oD X—=Y Dy XﬂypszlDV ! Y

v L L v L L
~ (Dbxm ® P!DXﬁY> ® pOx ~ (Dbxm ® p!o)7> ® pDxy
pDx pDx mDx ,Dx

where the second isomorphism follows from Proposition A.3.4. (]

By the equivalence between left and right D-modules, we have an isomorphism

L ~
(A.3.5) pPyex @ Oxldx] = fOV[dy].
mDx

COROLLARY A.3.7. When f is smooth we have an isomorphism

f10L =5 RHom,py (0 Dxoy, O).

Proof. — The proof is similar to that of Corollary A.3.5. |

A.4. Inverse image for Whitney holomorphic functions

Let f : M — N be a morphism of oriented real analytic manifolds of dimensions d s
and dy. Set
d=dy —dpy.

LEMMA A.4.1. The sheaf f'Cx " [d] is concentrated in degree zero.
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Proof. — If f is smooth, then f'(.)[d] ~ f~!, and the result is clear. Let f be a
closed embedding. Then Rf, ~ Rfi ~ f; . Let F € DD%C((CM) We have the chain of
isomorphisms

RHom(D'F, f'¢3"™)[d] ~ RHom(f,D'F[—d],C¥™)
~ RHom (D'(fiF);C3™) ~ RI(N, iF ©C%).
The second isomorphism follows since
Rf.DF ~ D(RfiF)

(where D(.) = RHom(.,wy)) if F € DR (Cy) and Rf. ~ Rfi ~ fi since f is a
closed embedding. Let U € Op®(Ms,) be locally cohomologically trivial. We have
D'Cy ~ Cy, and if k # 0 we get

RMHD(U; f'C™) = RFT(X; fiCr ©CF) =0

since fiCq ® C% is soft. Hence f'C3 " [d] is concentrated in degree zero on a basis
for the topology of Mg, and the result follows. |

LEMMA A.4.2. There is a natural morphism in Mod(Cyy,,)
p Ay @ FleR™d — ChpY.
pftAN
Proof. Let U € Op®(Ms,) be locally cohomologically trivial. We have the chain of
morphisms
T(U: /3™ [d]) ~ RU(N; RfiCy & CF7)
— RI(M; f'RACyH & C39)
— RT(M;Cy ® C59) ~ T(U;C2™),

where the first isomorphism has been proved in Lemma A.4.1 and the first arrow fol-
lows from Theorem 3.3 of [15]. In this way we construct a pyf~'.Ay-linear morphism
FC3d) = Cap™. The inclusion prAda — Che™™ and multiplication imply the desired
morphism. |

PROPOSITION A.4.3. — There is a natural morphism in DP(pDyr):

L
(A41) p]DJ\/[AN f® f'C;f’W[d] — C;;’W.
pf~1Dn

D

Proof. — The Spencer resolution of Dy;_, y gives rise to the quasi-isomorphism

Dusn <— Dy @ NOu @ Duosn ~Du @ NOum
Anm Anr

® f'Dy
A “1ANn

!
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from which we obtain

L ! oo, W
pDyusn @ FCRVd]
f~1Dn

P

A L
~pDy @ pAOM  © pf "Dy © R[]
prAM pf-T Ay o f-1DN

=pDy @ mAOu 8 F1ed)

— p Dy ® P’/\eM ® CM ~Cy",

VAt
where the arrow follows from Lcm‘;na A.4.2. |
By adjunction we get a morphism
(A4.2) FCX™d] — RHomyp,, (0Dr—N,Cop™).
THEOREM A.4.4. — The morphism (A.4.2) is an isomorphism.
Proof. — Let F € D]E,C((C ). We have the chain of isomorphisms
RHom(D'F, f'C3™)[d] ~ RL(Y; R F & C)
~ RHomp,,(Py—n, F ® Cy)
~ RHomp,, (Dyn, p ' RHom(D'F, Cu'™)
~ RHom,,p,, (0 Py—n, RHom(D'F,C37"))
~ RHom (D'F, RHom,p,, (p/Dy—n,Cap™)),

where the second isomorphism follows from Theorem 3.5 of [15]. O
COROLLARY A.4.5. — When f is smooth we have an isomorphism

Fe™Y =5 RHomp,py, (0 Py—n, Cp™).
Proof. — Tt follows from the fact that f'(.)[d] ~ f~' when f is smooth. O
REMARK A.4.6. — There is a similar isomorphism for CY;, N| w, Fe D .(Cy), namely
(A43) C;ﬁ;[d] RH07’LP!DA1(plDAl**N’CAﬂ’fle)‘

The proof is the same as the one for C3;™". We only considered the case F = Cx to
lighten notations.

From now on X will be a complex manifold of complex dimension dx, with struc-
ture sheaf Ox. We denote by X the complex conjugate manifold (with structure
sheaf Ox), and Xg the underlying real analytic manifold, identified with the diago-
nal of X x X. Let O% be the sheaf of Whitney holomorphic functions on X.
THEOREM A.4.7. — Let f : X =Y be a morphism of complex manifolds. Then

(A.4.4) oY [2dy] = RHom,py (pDx_y, O%)[2dx].
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Proof. — Remark that, if M € D(p/Dx,) we have
R,Homﬂ!f’lpv (p!f71077 RrHompszR (p!DXmﬂYuv M))
~ RHom,py (p!DX_,y, RHom, -1p, (p;f_1(97, RHomp (p!Dyﬁv,/Vl)))

L
~ RHom,py (pDx—y, RHom,p (n(Dx y @ [f7'0p),M))

p1f 1Dy
~ RHomppy (p;DX_,y, RHomp,Df(ng)?,M)).
We have the chain of isomorphisms
FO¥[2dy] ~ f' RHom,p, (0O, C3™)[2dy ]
~ RHom, p1p_(f ' pOg, f'CY)[2dy]
~ RHom,, ;-1 (pf 'O, RHomyny, (mDxy vz, Cxo ™)) [2dx]
~ RHom,py (p!DX_w,RHomp,DY(ng)?,C?{’W))[2dx]

~ RHom,py (pDPx -y, O%)[2dx]. O
COROLLARY A.4.8. — When f is smooth we have an isomorphism
f7rOY = RHom,py (mDx—y, O%).
Proof. — The proof is similar to that of Corollary A.4.5. |
REMARK A.4.9. — As above, there is a similar isomorphism for O%F, with F' in

DE .(Cy), namely
(A.4.5) F' 0¥ p[2dy] ~ RHom,py (mDx oy, OX|p-15)[2dx].
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