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ONE-DIMENSIONAL GENERAL
FOREST FIRE PROCESSES

Xavier Bressaud, Nicolas Fournier

Abstract. — We consider the one-dimensional generalized forest fire process: at each
site of Z, seeds and matches fall according to i.i.d. stationary renewal processes.
When a seed falls on an empty site, a tree grows immediately. When a match falls on
an occupied site, a fire starts and destroys immediately the corresponding connected
component of occupied sites. Under some quite reasonable assumptions on the renewal
processes, we show that when matches become less and less frequent, the process
converges, with a correct normalization, to a limit forest fire model. According to the
nature of the renewal processes governing seeds, there are four possible limit forest fire
models. The four limit processes can be perfectly simulated. This study generalizes
consequently previous results of [15]| where seeds and matches were assumed to fall
according to Poisson processes.

Résumé (Processus de feux de forét généraux en dimension 1)

Nous étudions le processus des feux de forét généralisé en dimension 1 : sur chaque
site de Z, des graines et des allumettes tombent suivant des processus de renouvelle-
ment stationnaires i.i.d. Quand une graine tombe sur un site vide, un arbre pousse
immédiatement. Quand une allumette tombe sur un site occupé, un feu démarre et
briile immédiatement la composante connexe occupée autour de ce site. Nous mon-
trons — sous des hypothéses raisonnables sur les processus de renouvellement — que
lorsque la fréquence des allumettes tend vers zéro, le processus converge, correctement
renormalisé, vers un processus limite. Suivant la nature des processus de renouvelle-
ment gouvernant ’apparition des graines, quatre processus limites sont possibles. Les
quatre modéles limites peuvent étre simulés parfaitement. Cette étude généralise des
résultats de [15], ot nous supposions que graines et allumettes tombaient suivant des
processus de Poisson.

(© Mémoires de la Société Mathématique de France 132, SMF 2013
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Consider a graph G = (S, A), S being the set of vertices and A the set of edges.
Introduce the space of configurations E = {0,1}°. For n € E, we say that n(i) = 0
if the site ¢ € S is vacant and 7(i) = 1 if ¢ is occupied by a tree. Two sites are
neighbors if there is an edge between them. We call forests the connected components
of occupied sites. For i € S and n € E, we denote by C(n,) the forest around 7 in
the configuration n (with C(n,i) = @ if n(¢) = 0). We consider the following (vague)
rules:

> vacant sites become occupied (a seed falls and a tree immediately grows) at

rate 1;

> occupied sites take fire (a match falls) at rate A > 0;

> fires propagate to neighbors (inside the forest) at rate 7 > 0.

Such a model was introduced by Henley [37] and Drossel and Schwabl [27] as a
toy model for forest fire propagation and as an example of a simple model intended
to clarify the concept of self-organized criticality.

The order of magnitude of the rate of growth is much smaller than the propagation
rate, 7 > 1. We will focus here on the limit case where the propagation is instan-
taneous: when a tree takes fire, the whole forest (to which it belongs) is destroyed
immediately. The model is thus:

> vacant sites become occupied (a seed falls and a tree immediately grows) at

rate 1;

> matches fall on occupied sites at rate A and then burn instantaneously the cor-

responding forest.

The features of the model depend on the geometry of the graph; we only consider
in this paper the case S = Z (with its natural set of edges). They also depend on the
laws of the processes governing seeds and matches; the standard case is when these
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are Poisson processes so that the forest fire process is Markov. We deal here with the
most general (stationary) case; Poisson processes are replaced by stationary renewal
processes.

Our main preoccupation is the behavior of this model in the asymptotic of rare
seeds, namely when A — 0. We present four possible limit processes (depending on the
tail properties of the law of the stationary processes governing seeds) arising when we
suitably rescale space and accelerate time while letting A — 0. This is a considerable
generalization of the results obtained in [15].

This introduction consists of six subsections.

(i) In subsection 1.1.1, we briefly recall the concept of self-organized criticality and
recall a certain number of models supposed to enjoy self-organized critical properties.

(ii) We present in subsection 1.1.2 a quick history of the forest-fire process, its other
possible interpretations and its links with other models.

(iii) subsection 1.1.3 explains the importance of the geometry of the underlying
graph G and the links of the forest-fire model with percolation.

(iv) In subsection 1.1.4, we recall what has been done for the (Markov) forest-fire
process on Z from a rigorous mathematical point of view.

(v) subsection 1.1.5 is devoted to a brief exposition of the main ideas of the present
paper.

(vi) Finally, we give the plan of the paper in subsection 1.1.6.

1.1.1. Self-organized criticality. — One of the successes of statistical mechanics
is to explain how local interactions generate macroscopic effects through simple models
on lattices. Among the most striking phenomena are those observed around so-called
critical values of the parameters of such models, such as scale-free patterns, power
laws, conformal invariance, critical exponents or universality.

1.1.1.1. Paradigm. — The study of self-organized critical systems has become rather
popular in physics since the end of the 80’s. These are simple models supposed to
clarify temporal and spatial randomness observed in a variety of natural phenomena
showing long range correlations, like sand piles, avalanches, earthquakes, stock market
crashes, forest fires, shapes of mountains, clouds, etc. It is remarkable that such
phenomena reminiscent of critical behavior arise so frequently in nature where nobody
is here to finely tune the parameters to critical values.

An idea proposed in 1987 by Bak-Tang-Wiesenfeld [5] to tackle this contradic-
tion is, roughly, that of systems growing toward a critical state and relaxing through
catastrophic events: avalanches, crashes, fires, etc. If the catastrophic events become
more and more probable when approaching the critical state, the system sponta-
neously reaches an equilibrium close to the critical state. This idea was developed
in [5] through the study of the archetypical sand pile model.

MEMOIRES DE LA SMF 132
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This paradigm was used to investigate various phenomena, from physics to sociol-
ogy through biology, epidemiology or economics. The pertinence of the conclusions are
not always convincing. Discussion to decide if whether or not there is self-organized
criticality in nature or in one or another model, or even to decide what self-organized
criticality should exactly be, is beyond our purpose. Anyhow let us summarize the
usual features of these models:

> local dynamics but with possibly very long range effects (at high speed) through

a simple mechanism;

> macroscopic states with scaling invariance properties, a priori related to the

critical state of a well-known system;

> long range spatial correlations and power laws for natural observables at fixed

times;

> presence of 1/f or 1/ f*-noise in the temporal fluctuations of natural observables.

We are not experts on this topic, but it seems to be one of the main motivation
of self-organized critical systems. It is the subject of the original article of Bak-
Tang-Wiesenfield [5] and of considerably many physical papers.

One of the specificities of these models is that the interaction is formally non local;
it is local in general, but may, when close to the critical region whatever this
means — have long range effects. This, together with a lack of monotonicity, yields
mathematical difficulties that justify a careful treatment.

To understand, explain or illustrate these phenomena, a multitude of models have
been proposed to explore various mechanisms that would produce these effects. Sim-
ple models, non necessarily realistic, are nice for they try to catch the underlying
mechanisms. They have often been treated numerically, in the spirit of Bak-Tang-
Wiesenfield [5]. Forest fire models are among them and still need a mathematical
rigorous study. Sand pile models, while somehow more complicated, have been more
studied.

1.1.1.2. Sand pile models. — Let us explain in a few words what a sand pile model is.
First, we assume that we have a definition of what a stable sand pile is. Sand grains
fall at random on sites. When a grain falls, if the new pile is unstable, it is immedi-
ately re-organized to become stable, through (possibly many) successive elementary
steps. Such events are called avalanches. This model was introduced by Bak-Tang-
Wiesenfeld [5] and studied by Dhar [25]. Since, there has been a huge amount of
results and we will not try to be exhaustive; for surveys see for instance Holroyd-
Levine-Meszaros-Peres-Propp-Wilson [39], Goles-Latapy-Magnien-Morvan-Phan [34]
or Redig [56].

Let us give a slightly more precise description of the so-called Abelian sand pile
model. The state of the system is described by 1 € Z, representing local slopes of the
sand pile. For instance, when S = Z, think that n(¢) = h(i + 1) — h(¢) where h(7) is

SOCIETE MATHEMATIQUE DE FRANCE 2013



4 CHAPTER 1. INTRODUCTION

the height of the sand pile on the site i. A dynamic is defined on Z“ using a matrix A
indexed by S x S, called toppling matriz. It has positive entries on the diagonal (think
of A;; = v constant), negative entries when ,j € S are neighbors and null entries
elsewhere. It is dissipative if A; ; + Zj# A; ; < 0. Then define the toppling of a site i
as the mapping T; : Z% — Z° defined by

Tim)(G) =n() —Aig, Vi€ S if n(i) > Ay
T;(n) = n otherwise.

Toppling at i consists, whenever the slope is too big at i, of spreading grains on
neighboring sites (possibly in a non conservative way). A pile is stable if for all i € S,
n(i) < A;; (then, no toppling has any effect). Observe that successive topplings at
different sites commute (which explains the term Abelian).

Now consider the situation where sand grains fall at random, on each site, at rate 1.
Each time a grain falls, immediately topple (possibly many times) until stability is
reached. Some dissipativity assumptions guarantee that this is always possible.

At first glance, arrival of a new sand grain on a site has only a local effect:
a non trivial toppling at ¢ may occur. But there can be a chain reaction creating
an avalanche. And indeed, the action may, in general, have a long range effect.

These systems have a nice underlying group structure that depends on the size
and geometry of the underlying lattice, see e.g. Le Borgne-Rossin [13] for such an
algebraic point of view. The thermodynamic limits of the sand-pile models have been
investigated. In particular, existence and uniqueness of a stationary measure have
been proved. See for instance Maes-Redig-Saada [47] when S = Z and Jdrai [42]
when S = Z?. Some features of self-organized criticality have been observed for d > 1,
at least numerically, in the physical literature, see e.g. Liibeck-Usadel [46]. For
instance, they have studied the sizes of avalanches (number of topplings necessary
to stabilize after a grain has been added). A scaling limit was obtained recently by
Diirre [31].

1.1.1.8. Other models.— The Abelian sand pile seems to be the most popular sand
pile model. However it has a lot of variants: Zhang sand pile model (see Zhang [65],
Pietronero-Tartaglia-Zhang [51]), Oslo model (see Christensen-Corral-Frette-Feder-
Jossang [20], Amaral-Lauristsen [4]), Oslo rice pile model (see Brylawski [18]), chip
firing game (see Tardos [62]), etc.

Moreover, various different models have been introduced and studied with the eyes
of self-organized criticality. There is of course the forest fire model that we are going
to discuss in this paper. Let us mention briefly some other models: rotor-router model
(introduced by Priezzhev-Dhar-Dhar-Krishnamurthy [52] under the name FEulerian
walkers model), loop-erased random walks (Majumdar [48]), diffusion/aggregation
models (Cafiero-Pietronero-Vespignani [19]), Scheidegger’s model of river basin
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(Scheidegger [57]), models describing earthquakes (Olami-Feder-Christensen [50]) or
crashes in stock markets (Staufer-Sornette [61, 59]), etc.

As we already mentioned those systems have often been subjected to numerical
experimentations and studies. Of course this is a difficult task and it has sometimes
been misleading: long range effects need huge simulations, the interpretation of which
is not always meaningful.

For surveys on self-organized criticality, see Bak-Tang-Wiesenfeld [6], Dhar [26],
Jensen [43] and the references therein.

1.1.2. Forest fire models. — Here we consider the classical forest fire model
on G = (S, A). Recall that on each site of S, seeds are falling at rate 1 and matches
are falling at rate A, according to some Poisson processes. A seed falling on a vacant
site makes it immediately occupied, and a match falling on an occupied site makes in-
stantaneously vacant the whole corresponding occupied connected component. Thus
the forest fire process is Markov (at least if one is able to prove that it exists and is
unique).

1.1.2.1. History and numerical studies. — The forest fire model was introduced in-
dependently by Henley [37] and Drossel-Schwabl [27]. In the literature, it is generally
referred to as the Drossel-Schwabl forest fire model. In their original paper, they con-
sider the case where S is a cube in Z%. They are interested in scaling laws and critical
exponents for this model. Orders of magnitude of relevant quantities are derived by
analytical computations using essentially mean field considerations. The results are
confirmed by computer simulations. In Drossel-Clar-Schwabl [28], the asymptotic
behavior of the density of vacant sites in the limit A — 0 is obtained when S = Z
(using heuristic arguments, see subsubsection 1.1.4.3 below). After this work, numer-
ous numerical or semi-analytical studies have been produced. Among others, let us
mention Henecker-Peschel [40] and Pruessner-Jensen [53]. Numerical studies were
handled again by Grassberger [35], who computes, when S = Z2, the density of oc-
cupied sites, the fractal dimension of fires and the distribution of the fire sizes, in the
limit A — 0.

The first rigorous probabilistic treatment of this model is the paper by van den Berg
and Jdrai [9]. They give a rigorous description of the asymptotic density of vacant sites
in the limit A — 0 for the forest fire process on Z. To our knowledge, all the rigorous
results about the forest fire process concern the case where seeds and matches fall
according to Poisson processes. See Diirre [29], [30], [31] (existence and uniqueness
of the process on Z? with A > 0 fixed), van den Berg-Brouwer [7] (behavior of the
process near the critical time in dimension 2, as A — 0) and Brouwer-Pennanen [17]
(estimates on the cluster size distribution in the asymptotic A — 0, in dimension 1).
See also the papers by the authors [14] (study of the invariant distribution when A = 1
in dimension 1) and [15] (scaling limit of the one dimensional forest fire process in
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6 CHAPTER 1. INTRODUCTION

the asymptotic A — 0). We will discuss all these results more specifically in this
introduction.

1.1.2.2. Real forest fires. — Real forest fires in nature are also a subject of preoc-
cupation and of study from different point of views. In particular there are various
statistical studies of sizes (and sometimes shapes) of real forest fires in different regions
(see for instance Holmes-Hugget-Westerling [38]). One of the recurrent observations
is that the distributions of those fires have heavy tails (power laws) and pleasant scale
invariance properties. Another one is the tentative description of the (fractal) geome-
try of fires (see for instance Mangiavillano [49]). For references, connection with real
life and practical interest of these studies, see Cui-Perera [23]. A few studies relate
the dynamics of real fires in a given region with theoretical models. One natural task
was to compare real data and numerical experiments done with the toy models we
have. On this aspect, let us mention the recent (and encouraging) works by Zinck-
Grimm-Johst [66], [67]. Other studies focus on the propagation of the fire itself, but
this is not our main preoccupation here since we have assumed that the propagation
is instantaneous.

A direction of study suggested by works on real forest fires is to consider fires in
inhomogeneous, for instance random, media. To our knowledge, this aspect has not
yet been investigated. Another one, that we address here, is to consider the non
Markov case: seeds and matches may not (and actually should not) fall according to
Poisson processes.
1.1.2.3. Other interpretations and variations. — The forest fire model has a very
simple (and natural) dynamic. It may accept a variety of interpretations. And var-
ious modifications can make it fit the description of other phenomena. Indeed, we
initially thought of it as a simplification of the avalanche process: snow flakes fall on
each site, a snow flake falling on a vacant site makes it occupied, and a snow flake
falling on an occupied site makes vacant the whole connected component of occupied
sites (such an event being called avalanche). This is nothing but the forest fire process
with A = 1, see [14]. More generally, the forest fire process may be used to model
phenomena involving geometric relations and a common behavior on connected com-
ponents; natural examples arise e.g. in epidemiology (change fire by virus). From
these points of view, some natural modifications could be explored such as making
the growth process have effect only on sites which are neighbors of occupied sites (in
the spirit of the so-called contact process). Such variants should be dominated by
the standard contact process and by the forest fire process and may enjoy interesting
features.

In a different spirit, a directed version of the forest fire model has been studied as a
toy model for neural networks. Roughly, the idea is to think of growth as activation
and of fire as signal emission. The signal is transmitted along the (directed) connected

MEMOIRES DE LA SMF 132
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component which is at the same time deactivated. The difference is that the underly-
ing graph is a directed graph (usually a tree) and that the signal is (instantaneously)
sent according to the directed edge (instead of all the connected component). Let
us mention the work of van den Berg-Brouwer [7], which include remarks about this
model, and the work of van den Berg-Téth [10].

1.1.2.4. Coagulation/Fragmentation. — A slight change of point of view about the
forest fire model makes explicit a parallel with a class of coagulation/fragmentation
processes. Assume e.g. that S = Z. Say that each edge (i,7 + 1) has mass 1,
and that two neighbor edges (i — 1,7) and (4,7 + 1) are connected (or belong to the
same particle) if n(¢) = 1. Then each time a seed falls on a vacant site, this glues
two particles (preserving the total mass). And each time a match falls on a site
(say, belonging to a forest containing k > 1 sites), this breaks a particle of mass k + 1
into k + 1 particles with mass 1.

We used this remark in [14] to study the evolution of the sizes of particles when
neglecting correlation, using a deterministic coagulation-fragmentation equation. Of
course, similar considerations can be handled on any graph G.

1.1.2.5. Recent results for related models in dimension 1. — Let us mention two
recent results about one-dimensional forest fire processes with a somehow different
flavor.

Volkov [64] considers a version of the forest fire process on N where ignition occurs
only at 0. He studies the weak limit of the distribution of the (suitably normalized)
delay between to fires involving n, as n — co.

Bertoin [12] considers a modified version of Knuth’s parking model where random
fires burn connected components of cars. On a circle of size n, cars arrive at each site
at rate 1. When a car arrives, it occupies the first vacant site (turning clockwise).
Molotov cocktails fall on each site at rate n=% where 0 < a < 1 is fixed. Bertoin
studies the asymptotic behavior of the saturation time as n — oo and observes a
phase transition at o = %
1.1.2.6. Specific difficulties. — As we already mentioned, one of the difficulties with
forest fire models (and with self-organized critical systems in general) is that the
interaction is not local. The process, whenever it is Markov, is not Feller and some
classical results fail. In dimension one, this difficulty does not yield real problems
for the questions of existence and uniqueness of the process. This is essentially due
to the fact that obviously, the sizes of the forests always remain finite (even when
A is very small). This difficulty is more important in higher dimensions, because in
the absence of fires, clusters would become infinite in finite time (due to the fact
that in dimension d > 2, percolation occurs). Fires prevent us from the existence of
infinite clusters. But these arbitrarily huge clusters burning make difficult the control
of the range of interactions. This difficulty also makes the usual proof of existence of
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8 CHAPTER 1. INTRODUCTION

stationary measures using compactness arguments fail (because indeed there is a lack
of continuity).

The lack of monotonicity of these models, although not fundamental, makes the use
of standard intuitions and techniques impossible. Monotonicity allows one to compare
the processes started from two different ordered initial configurations (coupled in a
suitable way). Monotonicity cannot hold here, because a configuration with more
trees will burn sooner.

1.1.3. Geometry of the lattice. — The geometry of the underlying lattice is
crucial in statistical mechanics. Recall for instance that phase transition for the Ising
model on Z¢ appears only for d > 2 (see Velenik [63]). For the forest fire models,
the influence of the geometry clearly comes through the behavior of the lattice with
respect to percolation. This geometrical influence was already striking in numerical
studies. See Grimmett [36] for a very complete book on percolation.

1.1.8.1. Growth without fires/Percolation. — Consider a graph G = (S, A). For all
0 < p < 1 consider an iid. family {n(:i),i € S} of Bernoulli random variables
with parameter p (a percolation trial with probability p). It is well known that there
is 0 < p. <1, depending on the graph, such that for all p < p., there are a.s. no
infinite connected components of occupied sites, while for p > p., there is at least
one infinite connected component with probability 1. The real number p. is called
percolation threshold of G. It is rather natural to consider (dynamical) percolation
processes on G, that are couplings of percolation trials for all 0 < p < 1. For instance,
consider a family {T;,7 € S} of i.i.d. random variables on R; with exponential
distribution with parameter 1. Put n:(i) = 0 if ¢t < T; and n:(¢) = 1 if ¢ > T;. Then
for all t > 0, {n:(i),i € S} is a percolation trial with probability P(T; <t) =1—e™".

Thus an infinite cluster appears at time ¢, defined by 1 — e~t = p,.

It clearly appears that the percolation threshold plays a crucial role in understand-
ing the behavior of the forest fire process on a given lattice. The simple observation
is that the growth process, i.e. without fires (A = 0), is exactly a percolation process
on the lattice. For A small, and a fortiori for A — 0 its study is a necessary prelimi-
nary. For instance, one aspect is the formation of infinite clusters (although in general
those clusters will never appear since, taking fires into account, they must burn before
they become infinite). Recall that the percolation threshold is 1 in dimension 1. It
is 0 < p&d) < 1 on Z% and once there is an infinite cluster, there is a unique one.
While, for instance on a d-regular tree, just after the percolation threshold, there are
infinitely many infinite clusters: these situations are rather different and should yield
different behaviors for the corresponding forest fire processes. Observe that though,
for all A > 0, the forest fire process is easy to define for small times, things turn
out to be more complicated when we reach the critical time t.. Even in dimension 1
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1.1. INTRODUCTION 9

the separate study of the percolation process makes sense as we shall see further,
subsection 1.1.4.4.

1.1.8.2. Modified percolation models. — It has also been fruitful to study modified
(for instance dynamical) versions of percolation processes. Models like frozen per-
colation (Aldous [3], see also Brouwer [16]), invasion-percolation (see for instance
Damron-Sapozhnikov-Vagvolgyi [24]), or self-destructive percolation (see van den
Berg-Brouwer [7] and more recently van den Berg-Brouwer-Vagvolgyi [8]) are closely
related to the forest fire processes. Let us focus one moment on this last example
since it has direct implications on forest fire processes.

A typical configuration for the self-destructive percolation model on Z? with param-
eter (p,d) is generated in three steps: first generate a configuration for the ordinary
percolation model with parameter p. Next, make all sites in the infinite occupied
cluster vacant. Finally, make occupied each vacant site with probability 6. Let 6(p,d)
be the probability that 0 belongs, in the final configuration, to an infinite occupied
cluster. In a recent paper [8], van den Berg, Brouwer and Vdgvolgyi prove that this
function is continuous outside of a set of the form {(p.,d) : & < do}. It is conjec-
tured that this function has a discontinuity, roughly meaning that there is § > 0 such
that for any p > p., the model with parameter (p,d) is sub-critical (there a.s. is no
infinite cluster).

In [7], van den Berg and Brouwer have proved that assumption of a strongly related
conjecture yields a result for a 2-dimensional forest fire process after the critical time:
there is ¢ > t. such that for all m > 1,

et a tree in [—m,m]? burns before ¢ 1
liminf liminf Pr | . G| <5
A0 n—oo in the forest fire process on S, = [—n,n] 2
1.1.3.8. Thermodynamic limit. — The forest-fire process on a finite graph is a fi-

nite state space continuous time Markov chain (if matches and seeds fall according
to Poisson processes). Existence and uniqueness of the process thus come for free.
Existence of an invariant measure as well. A basic argument also yields uniqueness of
the invariant measure (because the configuration with all sites vacant is recurrent).
Hence interesting phenomena may arise only when we let the size of the lattice tend
to infinity.

When S = Z, it is not very expensive to go directly to the limit: the process is
naturally uniquely defined on Z. This is easily seen through a graphical construction
of the process (see [15]), see also Proposition 2.1.4 below.

In dimension d > 1 the situation is more delicate. On Z? (and actually on any
graph with bounded vertex degree) existence has been proved recently by Diirre [29].
He also proved uniqueness, but in two steps: firstly, in [30], he shows that, for A > 0
large enough (the bound is related to the percolation threshold), the forest-fire process
is unique. Only very recently the same author, in [31], tackled the same question on
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a graph with bounded vertex degree and for all A > 0. This is a much more subtle
task. To prove this result he has to introduce the so-called blur processes, to show
that the influence of matches falling far away from 0 is negligible.

1.1.3.4. Mean field model. — The mean field case is slightly different. Indeed, one
has to adopt the dual point of view (on edges). Furthermore, the process cannot be
defined directly on an infinite lattice since we consider the complete graph. The point
of view developed by Réth and Téth in [55] is based on the Erdds-Rényi construc-
tion [32]. For all n > 1, let S,, be a set (of vertices) with |S,,| = n, and consider
the complete graph G,, = (Sp, A,,). Start initially with all edges vacant. Then edges
appear independently at rate 1/n. Matches fall at rate \,, on each site and destroy
instantaneously the whole corresponding occupied connected component. We con-
sider the asymptotic n — oo. The various regimes (see Réth-Té6th [55]) are quite
illuminating.

(I) If A\,, < 1/n, then fires are (asymptotically) negligible. Thus we have the same
asymptotics as in the Erdos-Réyni model: a giant component appears after
some time Ty (the critical time in this formalism).

(II) If A, ~ A\/n, then a giant component appears, but is destroyed after some
time. Only the giant component may burn: there are no matches enough to
burn finite size forests.

(II) If 1/n < A, < 1, there are not enough fires to burn finite size forests, but too

many to let any infinite forest appear. Hence no giant component appears.

(IV) If A\, =~ A, then matches may kill finite forests, so that of course, no giant

component emerges.

To formalize these statements rigorously, R4th-Téth [55] consider the cluster size
distributions: vy, (t) is the number of vertices belonging to a connected component
of size k at time ¢ divided by n. Consider also the concentrations cp i, (t) := vy i (t)/k.
As n — oo, the limit concentrations (cg(t))g>1 should satisfy a system of differential
equations closely related to Smoluchowski’s coagulation equations with multiplicative
kernel and mono-disperse initial condition:

c1(0) =1, ¢(0) = k> 2,

d ) k—1

et =35 i(k —1)c;(t)cp—i(t) — kep(t chl > 1.

i=1

Such equations, discussed in details in Aldous [2], have been introduced by Smolu-
chowski [58] in 1916. These equations are subjected to a phase transition known as
gelation: some mass is lost at some positive finite instant 71, due to the emergence
of a giant particle. For ¢ > Ty, we have to decide what to do with the giant particle.
It can e.g. interact with finite particles (Flory’s equation) or be removed from the
system (Smoluchowski’s equation). See Aldous [1] and [33] for such considerations.
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In the regime (I), the limit equations are the Flory equations: a giant particle
appears at time Tye and then coexists with other particles (finite particles do coa-
lesce with the giant particle). In the regime (II), the limit equations are closer to the
Smoluchowski equations: a giant particle appears at time Ty (the same one as pre-
viously) but once it is giant, it is replaced by particles with mass 1 (in a conservative
way). In the regimes (III) and (IV), some other modifications of the Smoluchowski
equations appear.

The most interesting results obtained by Rath-Téth in [55] are that in the
regime (III), the modified Smoluchowski coagulation system has a unique solution
which is the classical one for all t < Ty and has a particular (critical-like) form
for t > Tgel, and (¢p,k(t))e>0,k>1 converges to this unique solution as n — co. This
shows that the complete graph exhibits self-organized criticality in the sense that
beyond Ty, it remains critical forever: no giant component appears but, after Ty,
the size-distribution is, in some sense, critical.

1.1.3.5. Stationary measures. — The existence of invariant measures for the forest-
fire process in Z? (with any A > 0 fixed) has been proved by Stahl [60]. For the case
of Z the situation is simpler, see the next subsection.

1.1.4. Forest fire on Z. — Let us review in details known results about the forest
fire processes in dimension 1. We still focus on the usual case where seeds and matches
fall according to i.i.d. Poisson processes, with respective rates 1 and A > 0. We denote
np € {0,1}7 the configuration at time ¢ and, for i € Z, C(n},i) is the connected
component of occupied sites around 7. Observe that (possible) infinite clusters in the
initial configuration would immediately disappear.

From the point of view of self-organized criticality, the interesting regime is the
asymptotic behavior of the forest-fire process as A — 0: then fires are very rare, but
concern huge occupied components.

1.1.4.1. Stationary measures. — Existence of a stationary measure does not imme-
diately follow from standard compactness arguments since the process is not Feller.
However, in [17], Brouwer and Pennanen prove the existence of a stationary measure
for all fixed A > 0. In [14], we proved the uniqueness of this invariant distribution, as
well as the exponential convergence to equilibrium in the special case where A = 1.
We also proved that the invariant distribution is (spatially) exponentially mixing and
can be graphically constructed. The methods in [14] should be easily extended to the
case where A > 1 (and actually to A > 1 — ¢¢ for some rather small ¢y > 0) but our
proof completely breaks down for small values of A > 0.

1.1.4.2. Asymptotic density. — Van den Berg and Jérai study in [9] the asymptotic
density of vacant sites in the limit A — 0. Their result states that there are two
constants 0 < ¢ < C such that for any initial configuration, for any A > 0 small
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enough, for ¢ large enough (of order log(1/))),
c A C
g/ = IO =0 < o
This is coherent with the intuition that the rarer fires are, the more space is occupied
by trees (although because of the lack of monotonicity, this is not straightforward).
We mentioned that such result was stated in Drossel-Clar-Schwabl [28]. But the proof
in [28] is not rigorous: it is based on the ansatz that the cluster sizes were following
a cutoff power law, for cluster-sizes up to some sp,, defined by s}, logsh,. = 1/A,

i.e.
N 1

Smax = Nog(1/)
In [9], van den Berg and Jérai also show that the cluster sizes cannot follow the

predicted power law.

1.1.4.8. Sizes of clusters, first results. — In [17], Brouwer and Pennanen show that
1

this last ansatz holds true up to siax. More specifically, they show that there are con-

stants 0 < ¢ < C such that for all 0 < A < 1 and all stationary measures p, (invariant

by translation) of the forest fire model on Z with parameter A, for all z < (s},.)%,
C

c
= < C(n,0)|=2)< —————-
(1+2)log (1/\) <m0 =2) < (1+2)log (1/\)
Observe that this estimate is valid for relatively small clusters that will not be seen
after rescaling (microscopic clusters).

1.1.4.4. Kingman’s Process. — We detail a classical construction related to the
Smoluchowski equation with constant kernel which is quite close to our point of
view. Most ideas and references for proofs can be found in Aldous [2]. Let us
consider the following percolation process on Z. Starting from the vacant con-
figuration, we let appear trees at each site at some rate r(t), that allows us to
control the speed of the process. Say that each edge (i, + 1) has mass 1 (see
subsubsection 1.1.2.4). Let a seed fall on each site ¢ at some random time 7; with
P(T; > t) = 2/(t + 2) independently (this corresponds to the rate r(t) = 1/(t + 2),
because then exp ( — fot r(s)ds) =2/(t +2)). Call D(t,i) the particle containing the
edge (¢,i+ 1) at time ¢ (say that two neighbor edges (5 —1,7) and (j,j + 1) are glued
if g¢(§) = 1). At time ¢, the particle containing a given edge (e.g. (0,1)) has mass m

with probability 9 2 1
b o\m—
onl®) =m(533) (557)

and hence the concentration of clusters with mass m per unit length is nothing but

0= () ()

We recognize the solution to Smoluchowski’s equation with constant coagulation ker-
nel and mono-disperse initial condition, see Aldous [2].
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Now consider a standard construction of the so-called Kingman coalescent pro-
cess. Take independent exponential random variables {&.,k > 2} of rates (z)
Since E[Y pe 5 &k] = 2, we can define random times 0 < -+ < 73 < 72 < 71 < 00 by

TP = Z &k

k=i+1

Take {U;,7 > 1} independent random variables uniformly distributed on (0,1). For
each i draw a vertical segment from (U;, ;) to (U;,0). At time ¢ this construction
splits (0,1) into ¢ intervals, where 7; < t < 7,_1. Write X (¢) for the list of the lengths
of these subintervals. This is a version of the stochastic coalescent called Kingman’s
coalescent. Observe that we also could have put the marks {(U;,7;),i > 1} using a
Poisson measure on [0, 1] x Ry with a well-chosen intensity measure.

Straightforward computations show that Kingman’s coalescent is a limit of the
previously defined percolation process in the following sense: consider the list of
(distinct) normalized clusters AD(t/A, [x/A]) when z runs along [0,1] (cutoff the
boundary clusters at 0 and 1) at time t. When A — 0, it converges to X (¢) in law (in
an appropriate topology). This construction shows how the growth process behaves
in the large scales. In some sense we have identified {0,...,n\} C Z with [0,1] C R
(here ny, = 1/)\) and obtained a limiting process for the rescaled percolation process.

We stress the fact that the convergence holds globally only for the specific speed
r(t) = 1/(t + 2) of the percolation process. This fact is related to the self-similarity
of the percolation (coalescent) process. In particular, for a constant rate (exponential
times for seeds), there is no hope for such a convergence to Kingman’s coalescent:
after normalization, the size of clusters at time ¢ is of order A'~* and converges to 0
or oo according to whether ¢ < 1 or ¢t > 1. Conversely, if the rate of growth has a
polynomial decay, there is a hope to have a limit process.

1.1.4.5. Asymptotic regime: relevant space/time scales. As already mentioned, we
are interested in the behavior of the system in the large space and time scales in the
limit A — 0. Hence the first difficulty is to decide what the relevant scales are. Let
us recall the heuristic developed in [15]. We need a time scale for which tree clusters
see about one fire per unit of time. But for A\ very small, clusters will be very large
just before they burn. We thus also have to rescale space, in order that just before
burning, clusters have a size of order 1.

Consider the cluster C(n;\,0) around the site 0 (for example) at time ¢. For A > 0
very small and for ¢ not too large, one might neglect fires and consider only the
growth process; it follows that |C(n;",0)| = e for ¢ not too large (because since seeds
fall according to Poisson processes with rate 1, each site is vacant at time ¢ with
probability e~*). Then the cluster C(n;",0) burns at rate A|C(n;,0)| =~ Aef, so that
we decide to accelerate time by a factor @ := log(1/A). By this way, A|C(n, ,0)| ~ 1.
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Now we rescale space in such a way that during a time interval of order ay, some-
thing like one match falls per unit of (space) length. Since matches fall at rate A
on each site, our space scale has to be of order my := 1/(\ay): this means that we
will identify {0,...,my} C Z with [0,1] C R. Observe that there holds ny =~ s;)

“max’
where s was introduced in subsubsection 1.1.4.2.

max

Consider now the time/space rescaled cluster around 0
1
() — A
Dt (0) - ny C(T/a)\tv 0)

The same difficulty as in subsubsection 1.1.4.4 appears: neglecting fires (which is
roughly valid for small values of t), we see that

}D;\(O)‘ ~n et = A log(1/)),

which goes to 0 for t < 1 and to oo for ¢ > 1. For ¢ > 1, we hope that fires will be in
effect, which will limit the size of clusters. But for t < 1, |D}(0)| will indeed tend to 0.
This means that we have lost some information. To describe the limit process, we
have to keep in mind more information and thus introduce another quantity (a sort
of degree of smallness) which measures the order of magnitude of the microscopic
clusters, that is clusters that we can not see at macroscopic scales (of which the sizes
are much smaller than ny).

1.1.4.6. Limit processes. — We have proved in [15] that in the asymptotic of rare
matches, the forest fire process converges, under the previously described normaliza-
tion, to some limit forest fire process. We described precisely the dynamics of this
limit process and have shown that it is unique, that it can be built by using a graphical
construction and thus can be perfectly simulated. Using the limit process, we have
also estimated the size of clusters. Very roughly, we have proved that in a very weak
sense, for A small enough and for ¢ large enough (of order log(1/X)), the cluster-size
distribution resembles

a he—r/m
(@ + 1log(1/n) Hasm} T
where a,b are two positive constants. Very roughly, we are able to replace the con-
dition & < (s),,)¥ of [17] by the condition z < (s),,)'™= for any e € (0,1) (but
our result is weaker, in the sense that it holds when integrated in x, and we have
to take the limit A — 0). This means that there are two types of clusters: micro-
scopic clusters, described by a power-like law and macroscopic clusters, described by

Pr[C(n},0) = 2] ~

)

an exponential-like law. This shows a phase transition around the critical size my.

1.1.4.7. No self-organized criticality. — From the qualitative point of view the con-
clusion is rather different from that of Rath and Téth [55] (presented in subsubsec-
tion 1.1.3.4). Here, the (asymptotic) cluster-size distribution does not exhibit self-
organized criticality features. We proved the presence of a power law, but this power
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law describes clusters which are much smaller than the critical size. Large clusters
(clusters near the critical size) have a law with fast decay.

1.1.5. Main ideas of the present paper. — From the modelling point of view,
the Poisson assumption is quite reasonnable for ignitions, but clearly not well justified
for recoveries (seeds). Thus it seems interesting to study what happens when seeds
and matches are driven by other renewal processes. The goal of this paper is to extend
the previous study [15] described above to a more general class of renewal processes.
We assume that the renewal processes are stationary for simplicity, but this can be
more or less justified by the fact that it is the only way that time 0 does not play a
special role.

We thus consider the case where seeds (respectively matches) fall on each site of Z
independently, according to some stationary renewal processes, with stationary delay
distributed according to some law vg (respectively v3,). This means that for any
time ¢ > 0 and on any site ¢ € Z, the time we have to wait for the next seed is a vg-
distributed random variable. We have an assumption saying that as A — 0, matches
are rarer and rarer. We also assume that vg has a bounded support or a tail with
fast or regular or slow variations. We prove that, after re-scaling, the corresponding
forest fire process converges, as A — 0, to a limit process. And we show that there
are four classes of limit processes, according to the fact that

> vg has a bounded support (HS(BS)),

> vg has a tail with fast decay (HS(00)),

> vg has a tail with polynomial decay (HS(8)),

> vg has a tail with logarithmic decay (HS(0)).

As we will see, the limit forest fire process built in [15] is quite universal: it
describes the asymptotics of a large class (roughly exponential decay for vg) of forest
fire processes. A similar limit process arises when vg has bounded support. But
some quite different limit processes arise when vg has a heavy tail. We also develop
the necessary tools to study the cluster size distributions. Let us mention at once
that there is indeed presence of a critical size under (HS(BS)) and (HS(c0)) but
not under (HS(B)) or (HS(0)). In the latter situation, there are only macroscopic
clusters. This is related to subsubsection 1.1.4.4.

Tt is striking that in [15] we made repeated use of the Markov property of Poisson
processes while it turns out the result still holds without this assumption (and with no
significant increase of the complexity). Indeed, proofs remain essentially elementary
except maybe from the combinatorial and computational point of view.

From the qualitative point of view, the main novelty is the rise of a new class of
processes (those corresponding to polynomial tails), reminiscent of the Kingman co-

alescent (with deaths). But for this case as for the others, the conclusion is that, as
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expected, self-organized criticality features do not show up for this model in dimen-
sion 1.

Let us finally insist on the fact that surprisingly (in view of the complexity and
length of the proofs), our assumptions are really light. Consider e.g. the case where vg
has an unbounded support and a fast decay, which means (for us) that for any ¢ > 0,

o vs((@00)
z=00 vg((tx, o0)) ’
where t*° =01if t < 1,1 =1, and t* = oo if t > 1. We do not need the least

additional condition.

1.1.6. Plan of the paper. — Chapter 2 is devoted to a complete exposition of
our results. We start in section 2.1 with notation and with the definitions of the
objects under study, and we state our assumptions. In section 2.2, we explain the
heuristic scales and the relevant quantities (rescaled macroscopic clusters and measure
of microscopic clusters). Then we describe precisely our results in sections 2.3 (case
with fast decay), 2.4 (case with bounded support), 2.5 (case with polynomial decay)
and 2.6 (case with logarithmic decay). We conclude this part with a quick discussion
about our modeling choices and with a short list of open problems and perspectives.
Chapter 3 (sections 3.1 to 3.11) contains all the proofs. In Chapter 4 we handle a
few numerical simulations to illustrate our results. Finally, Chapter 5 contains an
appendix about regularly varying functions and coupling.
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CHAPTER 2

NOTATION AND RESULTS

2.1. Definitions, notation and assumptions

2.1.1. Stationary renewal processes. — We first fix notation about stationary
renewal processes. We refer to Cocozza-Thivent [21] for a book on renewal processes.

DEFINITION 2.1.1. — For p a probability measure on (0,00) with finite expecta-
tion m,, set
v, (dt) = m;l,u((t, 00)) dt,
which is also a probability measure on (0,00). Let Ty be a v, -distributed random vari-
able and let (Xi)r>1 be a sequence of i.i.d. random variables with law p, independent
of Ty. Set
Tit1 =Tk + Xy forallk>1 and Ny = Z L7, <y for allt > 0.
k>1
We say that (N¢)¢>0 is a stationary renewal process with parameter y, or a SR(u)-
process in short.

Tt is well-known, see e.g. [21, Corollaire 6.19, p. 169], that for (N¢):>0 a SR(p)-
process in the sense of Definition 2.1.1, the law of T, +1 — ¢ (i.e. the time we have
to wait for the next mark at time t) is v, for all ¢ > 0. Another possible definition is
the following.

DEFINITION 2.1.2. — For p a probability measure on (0,00) with finite expecta-
tion my,, set
vu(dt) = m;lu((t, 00))dt and (u(dt) = m;ltu(dt)7
which are also probability measures on (0,00). Consider a collection of random vari-

ables (X;)iez\{oy with law p. Consider also Xo with law ¢, and U uniformly dis-
tributed on [0,1]. Assume that all these random variables are independent. Define

T():*(lfU)Xo, T1 :UX()
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and then, forn > 1,
Tw1=Th+ Xy and T_p=T_(,_1)— X_p.
Then we say that (T),)nez is a SR(u)-process.

If (T)nez is a SR(p)-process in the sense of Definition 2.1.2 and if one considers
the associated counting process Ny = > <, 17, <¢}, it is indeed a SR(u)-process in
the sense of Definition 2.1.1. This can be checked immediately: it suffices to observe
that the law of T is v,.

If we have a SR(u)-process (N¢)i>0 as in Definition 2.1.1 and if we denote by
(T )n>1 its successive instants of jump, one can easily build (7),)n<o in such a way
that (T))nez is a SR(p)-process as in Definition 2.1.2.

For (T,)nez a SR(u)-process as in Definition 2.1.2, for any ¢ € R, the random sets

Uiy, U{-Tn} and  (J{Tu+1t}

neL neL nez
have the same law. Thus if we introduce n; such that 7, +¢ < 0 < T},,4+1 + ¢, the
process (Th,+n + t)nez is a SR(p)-process. By the same way, the process (—T1—p)nez
is a SR(u)-process.

2.1.2. The discrete model. — Next, we introduce the forest fire model. For
a,b € Z with a < b, we set
[a,b] =A{a,...,b} C Z.

For n € {0,1}? and i € Z, we define the occupied connected component around 4 as

e if n(i) =0,
C(TN) - { [[E(n,i),r(fhi)]] if 77(1) =1

where ¢(n,i) = sup{k <i: n(k) =0} +1and r(n,i) = inf{k >i: n(k) =0} — 1.

DEFINITION 2.1.3. — Let ps and upn be two laws on (0,00) with finite ex-
pectations.  For each i € Z, we consider a SR(us)-process (N7 (i))i>0 and a
SR(pnr)-process (NM(i))i>0, all these processes being independent. A {0,1}-valued
process (1:(7))icz,t>0 such that (n:(i))e>o0 is a.s. cadlag for all i € Z is said to be a
FF(ps, uar)-process if a.s., for allt >0, all i € Z,

t t
. S/- Y
w0 = [ 10050 = 3 [ Lgecw opdG)
0 — Jo
JEZL
Formally, we say that 7,(¢) = 0 if there is no tree at site ¢ at time ¢ and (i) = 1
else. Thus the forest fire process starts from an empty initial configuration, seeds
fall according to i.i.d. SR(ug)-processes and matches fall according to i.i.d. SR(as)-
processes. When a seed falls on an empty site, a tree appears immediately. When
a match falls on an occupied site, it burns immediately the corresponding connected

MEMOIRES DE LA SMF 132



2.1. DEFINITIONS, NOTATION AND ASSUMPTIONS 19

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

FIGURE 1. Graphical construction of the FF(us,puar)-process.
Matches are represented as bullets and seeds as squares. On the sites —5
and 6, no seed fall during [0,T7], so that these sites remain vacant until 7".
One can thus clearly deduce the values of the process in [—5, 6] during [0, 7]
using only the bullets and squares inside [—5, 6].

component of occupied sites. Seeds falling on occupied sites and matches falling on
vacant sites have no effect.

Assume for a moment that the support of pg is unbounded (thus so is that
of vug). Then the FF(ug, iar)-process can be shown to exist and to be unique
(for almost every realization of (N/(i), N (i))iez,t>0), by using a genuine graphi-
cal construction. Indeed, to build the process until a given time 7" > 0, it suffices
to work between sites i which are vacant until time T' (because NZ(i) = 0). In-
teraction cannot cross such sites. Since such sites are a.s. infinitely many (because
Pr[N£(i) = 0] = v,,4((T,00)) > 0 by assumption), this allows us to handle a graphical
construction. This is illustrated by Figure 1. See Liggett [45] for many examples of
graphical constructions.

We will also study the more complicated case where pg has a bounded support

and this will lead to the following general result.

PROPOSITION 2.1.4. — Let pus and ppy be two laws on (0, 00) with some finite ex-
pectations. For each i € Z, we consider a SR(pg)-process (N (i))i>0 and a SR(uar)-
process (NM(i))s>0, all these processes being independent. Almost surely, there exists
a unique FF (s, par)-process.

This proposition is proved in section 3.1.
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2.1.3. Assumptions. — We now state the assumptions we will impose on the laws
s and ppr. First, we want to express the fact that matches are less and less frequent.
To do so, we consider a family of laws u},, for A € (0, 1], as follows.

For each A € (0,1], u}; is the image measure of u}; by the
map ¢t — t/A and the probability measure u},; on (0,00)
(Hu) 3 satisfies Jo7 tud (dt) = 1. We set
() = w3, (A1) = Ak (1, 00)) dt = Ay (O, o)
The idea we have in mind is that we slow down matches: for (NM);>o a SR(u},)-
process, (NM);~¢ is a SR(p),)-process.
Assume that [;° tp},(dt) = & € (0,00). Then iy, = puf; satisfies (Har). We thus
may of course assume that x = 1 without loss of generality.
Next, we put some conditions about ug.
The probability measure ug on (0,00) has a finite mean
ms = [y tus(dt). We set
vs(dt) = v,g(dt) = mgtus((t, 00)) dt.
(Hs) { Either s has a bounded support or pg has an unbounded
support and

V>0, lm ZS(@X)

z—o0 vg((tz, c0)) €[0,00) U{oo} exists.

Surprisingly, we will consider these assumptions in full generality: no supplemen-
tary technical condition is needed. In the whole paper, we admit the following con-
vention:

0 ifte(0,1)
t*=<¢1 ift=1
oo if t € (1,00).
As proved in Lemma 5.1.1, (Hg) implies either

The probability measure pg on (0,00) has a bounded sup-
port. We denote by mg the expectation of ug and define
Ts = max supp pus and vg(dt) = mg'us((t,00))dt. Ob-
serve that supp vg = [0, Ts].

(Hs(BS))

or, for some 3 € [0,00) U {00},
The probability measure pg on (0,00) has an un-
bounded support, a finite mean mg and for vg(dt) =
(Hs(8)) § ms ms((t,o))dt,

o vs((@,0) s
lim ————== =1t¢".
ve>0, o0 vs((tz, 00)) t

We finally introduce the following notation.
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NOTATION 2.1.5. — (i) Assume (Hg(B)) for some 8 € [0,00). We denote by ¢g
the inverse function of t — t/vg((t,00)). Note that ¢g : (0,00) — (0,00) is an
increasing continuous bijection.

(if) Assume (Hg(c0)). We denote by ¢g the inverse function of t — t/vs((t,0))
and by g the inverse function of t — vg((0,t)). The functions ¢g : (0,00) — (0, 00)
and ¥g : (0,1) — (0,00) are increasing bijections.

(iii) Assume (Hg(BS)). We denote by s the inverse function of t — vg((0,t)).
The function g : (0,1) — (0,Ts) is an increasing continuous bijection.

2.1.4. Examples. — Concerning (H)), the situation is clear. The Poisson case
studied in [15] corresponds to pj,(dt) = e~*140y dt, whence

i (dt) = vy (dt) = Ae M50y dt.

We study here a much more general case. However, this is not the main point of the
paper, since it will not generate some very interesting behaviors. Concerning (Hg),
we present here four classes of examples, that will lead to different behaviors.

Ezample 1. — If ps = o, whence vg(dt) = Tg 'L 1y(t)dt, then (Hs(BS))
holds and ¢g(z) = Tsz.

Ezample 2. — Assume that ps((t, 00)) ~ e~*" for some a > 0, so that vg((t, 00)) ~
ct'=e*". Then (Hg(oo)) holds. Furthermore, ¢g(z) ~ (logz)'/* and v¥g(z) A
[log(1/(1 = 2))]*/*.

Ezample 3. — Assume that pg((t,00)) t~1=# for some S > 0, whence
vs((t,00)) = ¢t=F. Then (Hg(8)) holds and ¢g(z) < (cz)Y/ B+,

Ezample 4. — If pus((t,00)) < t~1(logt)~*=7 for some v > 0, then vg((t,00)) =
c(logt)~7, so that (Hg(0)) is satisfied and ¢g(2) < cz(logz) 7.

o]
~

The Poisson case treated in [15], which corresponds to the case where pug((t,0)) =
e~ = vg((t,00)), is thus included in Example 2. Example 1 might seem slightly
strange from the modelling point of view, but it can happen e.g. if seeds are thrown
by a machine.

Observe that (Hg) is not very restrictive, since it is satisfied by all reasonable
laws. Anyway, our results (not only the proofs) clearly break down without such an
assumption.

It is not so easy to build a law pg not meeting (Hg), because t — vg((¢,00)) is
automatically quite smooth (Lipschitz continuous, decreasing and convex). One can
however verify that (Hg) is not holding for

ps(dE) = 150320 — 3coslog(1 + t) + sinlog(1 + )] /[9(1 + )*)] dt,

for which vg((¢,00)) = [10 + sinlog(1 + ¢)]/[10(1 + ¢)]. One easily checks that
vs((x,00))/vs((ze™?,00)) has no limit as & — oo, choosing e.g. the sequences

Ty = 277 and Ty = e2nm+m/2
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2.1.5. Notation. — We denote:

> for I C Z, by |I| = #I the number of elements in [;

> for I = [a,b] = {a,...,b} C Z and o > 0, we will set ol := [aa,ab] C R.
For a > 0, we of course take the convention that a@ = &;
for J = [a, b] an interval of R, |J| = b — a stands for the length of J and for
a >0, we set o = [aa, ab];

v

v

for x € R, |z stands for the integer part of z;
we denote by Z = {[a, b],a < b} the set of all closed finite intervals of R;
> for two intervals [a, b] and [c, d], we set
6([0'7 b}v [C, d]) = |a - C| + ‘b - d| 6([0'7 b]7 @) = |b - a|;
> for two functions I, J : [0,T] = Z U {@}, we set

v

T
§T(I, J) :/ 6(If’Jt)dt’
0

> for (z,1),(y,J) in D([0,T],Ry x ZU {@}), the set of cadlag functions from
[0,T] into Ry x ZU {@}, we define

dr((x,1),(y, ) = sup |a(t) — y(t)| + 821, J).
t€(0,T]

2.2. Heuristic scales and relevant quantities

For us,u), satisfying (Hg) and (Hys), we consider the FF(ug,p),)-process
(7 (4))>0,icz- We look for some time scale for which tree clusters see about one fire
per unit of time. But for A very small, clusters will be very large just before they
burn. We thus also have to rescale space.

Time scale. — For A > 0 very small and for ¢ not too large, one might neglect fires,
so that roughly, each site is vacant with probability vs((t,00)). Indeed, the time we
have to wait for the first seed follows, on each site, the law vg. Thus

C(n',0) ~ [-X, Y],
where X, Y are geometric random variables with parameter vg((¢,00)). Consequently,
for ¢ not too large,
|, 0)| = 1/vs((¢, 0)).

Under (Hg(BS)), |C(n,0)| becomes infinite at time T, so there is no really need to
accelerate time: we are sure that |C(n;, 0)| will be involved in a fire before Ts. We will
accelerate time by a factor Ts (in some sense, this allows us to assume that Ts = 1).

Next we assume (Hg(f)) for some 8 € [0,00) U {c0}. We observe that thanks

to (H]\,j),
t

var((t,00)) ~1— )\/lu}w(()\s, 00))ds = 1— At.
0
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Hence the probability that at least one match falls in the cluster C(n*,0) during [0, ]
is roughly similar, under (Hjs), to

1- (Vﬂ((t?oc)))‘c("?’o)‘ ~ \t |C(7/t)‘70)| ~ \t/vs((t,0)).

We decide to accelerate time by a factor ay, where ay solves Aay = vs((ay,>)). By
this way, the probability that a match falls in C(n*,0) during [0, ay] should tend to
some nontrivial value.

To summarize, we have set, recalling notation 2.1.5 for the definition of ¢g,

under (Hg(BS)), ay =Ts,
(2.2.1) under (Hg(83)) with 8 € [0,00) U {oo}, ay = ¢s(1/N),
which solves Aay = vg((ax,0)).

Under (Hg(B)) for some j € [0,00) U {oo}, one easily checks that
li = and thus lim Aay = li =0.
lim ay = oo and thus  lim Aay = lim 1/5((0,)\7 oo))
Space scale. Now we rescale space in such a way that during a time interval with

length of order ay, something like one fire starts per unit of (space) length. Since on
each site, the probability that (at least) one match falls during [0, ay] equals

ax
v (0, @y)) = )\/ i ((At, 00)) dt = Aay,
0
our space scale has to be of order
(2.2.2) ny = [1/(Aay)].
This means that we will identify [0, n\] C Z with [0,1] C R. We always have

lim ny = oo.
A—0

Rescaled clusters. — We thus set, for A € (0,1), ¢ > 0 and = € R, recalling
subsection 2.1.5,
1
(223) D}Nz) = njC(nim [naz]) CR.

Using the computation handled in paragraph Time scale, we see that roughly, when

neglecting fires,

N 1 o Am
|Dt ('TM - n)\ys((a)\t7 OO)) B VS((aAn OO))

Under (Hg(8)) for some § € [0,00) U {c0}, one gets

vs((ax, o)) 5
vs((axt,0))
Under (Hg(BS)), we obtain roughly (assume that ¢ # 1)

|D?(z)‘ ~ >,

|D?(m)‘ ~
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Indeed, vs((axt,o0)) = vs((Tst,00)) does not depend on A and is positive if and only
ift <1

Case 8 € [0,00). In this case, everything is fine: for all times of order ayt, the
good space scale is indeed n,. Thus we will describe the FF(ug, 113, )-process through
(D?(I))JERJZO‘

Case 8 € {oo, BS}. — Then we have a difficulty as in [15]: the previous estimate
(neglecting fires) suggests that for all € R, for t < 1, [D}(x)| — 0 and for t > 1,
|D}(x)| — oo. For t > 1, fires might be in effect and we hope that this will make
finite the possible limit of |D}(x)|. But fires can only reduce the size of clusters, so
that for t < 1, the limit of | D (x)| will really be 0.

Since we would like to have an idea of the sizes of microscopic clusters, we have to
keep some information about the degree of smallness of microscopic clusters. We adopt
a different strategy than in [15], which is more adapted to the case where 8 = BS
and which leads us to a slightly more direct proof (even in the Poisson case).

We consider a function my : (0,1] — N satisfying

limy_,0 my = oo, limy_,o(my/ny) =0,

A — m, is non-increasing

and additionally, under (Hg(c0)),

Vz €10,1), limyx_omyrs((arz,o0)) = oo.

(2.2.4)

Such a function exists: under (Hg(o0)), see Lemma 5.1.2 and under (Hg(BS)),
choose for example my = [1/1/)].

Of course, there is no uniqueness of my, but that does not matter: the only thing
we need is that the scale m is smaller than the macroscopic scale ny ~ 1/vs((ay, >))
and larger than all the microscopic scales 1/vg((ayz,00)) (for all z € (0,1)). Since
only these scales will appear to be relevant, any choice of such a function my will be
suitable.

We introduce, for A > 0, z € R, ¢ > 0, recall subsection 2.1.5 and that by nota-
tion 2.1.5, v, is the inverse of t — vg((0,1)),

K}MNa) = |{L € [lmz] — my, [naz] + my] - 7;;‘”@) = 1}| .

2my + 1
ay

[0,1],

(2.2.5)
ZMz) =

Observe that K\(x) stands for the local density of occupied sites around |nyz] at
time axt. This density is local because my < my. We hope that for ¢ < 1, neglecting
fires, K (x) ~ v5((0, axt)), whence Z} () ~ t.

The quantity Z}(z) has no physical interpretation. We use it to transform the
local density K;(z) (which depends on t in a complicated way involving vs) in a
quantity of which the behavior does not depend too much on vg (at least for ¢ < 1
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and neglecting fires). This will allow us to describe the limit process in an unified
way (not depending on vg).

For all A > 0 small enough (we need that 2my +1 < ny), we have Z}(x) = 1 if and
only if K}(z) = 1, i.e. if and only if all the sites are occupied around |nyz]. Indeed,
under (Hg(BS)), Z}(x) = 1 implies that ¢5(K}(x)) = Ts, so that

Kf)\(’lj) = Vs((O,TS)) =1.
Under (Hg(0)), Z{(z) = 1 implies that ¥g (K7 (x)) > ay, so that
KtA(I) > 1/5((0, a)\)) =1- Vg((ak,oo)) =1- )\G,)\ > 1-— l/n)\,
whence K)(x) = 1. This last assertion comes from the facts that K}(x) takes its
values in {k/(2my + 1) : k € {0,...,2m, + 1} and that 2my + 1 < n,.

Since the scale my, is larger than all the microscopic scales, Z(x) = 1 will imply,
roughly, that the cluster containing | nyz | is macroscopic, i.e. has a length of order n.

We will study the FF(ug, 3, )-process through (D (z), Z(%))zer t>0- The main
idea is that for A > 0 very small:

> If ZMz) = 2 € (0,1), then |D}(z)| ~ 0 and the (rescaled) cluster containing =
is microscopic (in the sense that the non-rescaled cluster is small when compared
to my), but we control the local density of occupied sites around z, which resem-
bles vg((0, axz)). Observe that this density tends to 1 as A\ — 0 for all z € (0,1)
under (Hg(00)), while it remains bounded as A — 0 for all z € (0,1) under (Hg(BS)).

> If Z)z) = 1 and D) (z) = [a,b], then the (rescaled) cluster containing z is
macroscopic and has a length equal to b — a, or
|Cao Lmaz )| == (b= @)

in the original scales.

Summary. — Assume (Hg(3)) for some 8 € [0, 00) U {c0, BS}.
> We accelerate time by the factor ay, defined by Aay = vg((Aay, 00)) if 8 belongs
to [0,00) U {oo} and by ay = Ty if § = BS.
> Our space scale is my = [1/(Aay)].
> If B € [0, 00), we will only study the rescaled clusters (D (z))1>0,z¢r, see (2.2.3).
> If B € {00, BS}, we will study the rescaled clusters (D (2))¢>0.zcr, as well as
the local densities of occupied sites (Z(z))1>0,zer, see (2.2.4)—(2.2.5).

2.3. Main result in the case = oo

2.3.1. Definition of the limit process. — We describe the limit process in the
case where = oo. It is exactly the same process as in the Poisson case studied
in [15]. We consider a Poisson measure m(d¢, dz) on [0,00) x R, with intensity
measure dtdz, whose marks correspond to matches.
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Before stating a precise definition, let us describe briefly the limit process. Ini-
tially, all the sites are vacant. Matches fall according to ;. All the zones remain
microscopic (meaning roughly that vacant sites are dense in R) until time 1. When
a match falls at some time ¢ € (0,1) at some place z € R, it destroys a microscopic
zone, that will be filled again after a delay ¢ (at time 2¢). Hence there is a barrier
at x during (¢,2t). At time 1, all the sites become occupied, except sites where there
is an active barrier. Hence if a fire falls, just after time 1, it destroys a macroscopic
zone, delimited by some active barriers. Such a destroyed macroscopic zone will need
a delay 1 to be completely filled again. During this delay, matches produce again
some barriers. And so on. See Figure 2 next page for an illustration.

The precise definition of the limit process is as follows.

DEFINITION 2.3.1. — A process (Zy(x), Di(x), Hi(x))i>0,0er  with wvalues in
R4 x I x Ry such that a.s., for all x € R, (Z(x), He(x))¢>0 is cadlag, is said to be
a LFF(c0)-process if a.s., for allt >0, all z € R,

t t
ZL(I):/O l{z_,(x)<1}d5*/o /Rl{zs,(z>:1,yeD_,,(z)}7TM(d5, dy),

ot t

Ht(l) = / Zs—(fL')]-{Zs,(z)<1}7rM(d5 X {L}) — / ]I-{Hs(z)>0} ds7
0 JOo

where Dy(z) = [Ly(x), Re(x)], with

Li(z) =sup{y < x: Zi(y) <1 or Hi(y) > 0},
Ri(x) =inf{y >z : Zi(y) <1 or Hi(y) > 0}

(2.3.1)

and where Dy_(x) is defined in the same way.

2.3.2. Formal dynamics. — Let us explain the dynamics of this process. We
consider T > 0 fixed and set Ap = {z € R: mp([0,T] x {z}) > 0}. For each t > 0,
z € R, Dy(z) stands for the occupied cluster containing x. We call this cluster is
microscopic if Dy(z) = {x}. We have D;(z) = Dy(y) for all y € Dy(z).

1. Initial condition. — We have Zy(z) = Ho(xz) = 0 and Dy(z) = {z} for all z € R.

2. Occupation of vacant zones. — We consider here x € R\ Az. Then we have
Hi(z) = 0 for all ¢t € [0,T]. When Z;(z) < 1, then D;(z) = {z} and Z;(x) stands
for the local density of occupied sites around z (or rather for a suitable function of
this local density). Then Z;(x) grows linearly until it reaches 1, as described by the
first term on the RHS of the first equation in (2.3.1). When Z;(x) = 1, the cluster
containing x is macroscopic and is described by D;(x).

3. Microscopic fires. — Here we assume that z € Ap and that the corresponding
mark of mys happens at some time ¢ where Z;_(z) < 1. In such a case, the cluster
containing z is microscopic. Then we set Hy(z) = Z;—(z), as described by the first
term on the RHS of the second equation of (2.3.1) and we leave unchanged the value
of Zy(x). We then let H;(x) decrease linearly until it reaches 0, see the second term
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FIGURE 2. LFF(oo)-process in a finite box.

The marks of mps (matches) are represented as o’s. The filled zones represent zones in which
ZtA(z) =1 and HtA(z) = 0, that is macroscopic clusters. The plain vertical segments represent
the sites where H/*(z) > 0. In the rest of the space, we always have Z/*(z) < 1. Until time 1, all
the clusters are microscopic. The 8 first matches fall in that zone. Thus at each of these marks, a
process H# starts and its life-time equals the instant where it has started. For example the segment
above (t1,21) ends at time 2¢1: we draw a dotted segment from (0,21) to (t1,21) and then a plain
vertical segment above (f1,21) with the same length.

At time 1, all the clusters where there has been no mark become macroscopic and merge together.
But this is limited by vertical segments. Here we have at time 1 the clusters [— A, z6], [z6, 24], [24, 8],
lzs, @s], [x5,27] and [x7, A]. The segment above (t4,z4) ends at time 2t4 and thus at this time the
clusters [zg, 4] and [x4, 28] merge into [z6, zg]. The 9-th mark falls in the (macroscopic) zone [z¢, zs]
and thus destroys it immediately.

This zone [z6,zg] will become macroscopic again only at time ¢g + 1. A process HA starts at
z12 at time t12: we draw a dotted segment from (tg,z12) to (t12,212) and then a plain vertical
segment above (t12,z12) with the same length (Z;};f(zw) = t12 — tg because ZtA9 (z12) has been set
to 0). The segment [zg,z7] has been destroyed at time t19 and thus will remain microscopic until
tip + 1. As a consequence, the only macroscopic clusters at time tg + 1 are [—A, z12], [z12, 28] and
[z7, A]l. Then the zone [zg, z7] becomes macroscopic (but there have been marks at x13,z14), so that
at time t10 + 1, we get the macroscopic clusters [—A, z12], [#12,Z14], [214,213] and [z13, A]. These
clusters merge by pairs, at times 2t12 — tg, 2t13 — t10 and 2t14 — t10, etc.

Here we have 0 € (z11,215) and thus Z(0) = t for t € [0,1], Z(0) = 1 for ¢ € [1,¢10), then
Z#0) = t — t1g for t € [t10,t10 + 1), then ZA(0) = 1 for ¢ € [t10 + 1,t15),... We also see that
D{(0) = {0} for t € [0,1), D{*(0) = [xs,as5] for t € [1,2t5), D{*(0) = [xs,27] for t € [2t5,t10),
D{‘(O) = {0} for ¢ € [ti0,t10 + 1), D{‘(O) = [z12,z14] for ¢ € [t10 + 1,2t12 — tg), D;“(O) = [—A, z14]
for t € [2t12 — tg, 2t14 — t10), ... Of course, HtA(O) = 0 for all ¢ > 0, but for example HtA(zn) =0
for t € [0,t11), HtA(zn) = 2t11 — t1o — t for t € [t11,2t11 — t10) and then HtA(zu) = 0 for
t € [2t11 — t10,00).
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on the RHS of the second equation in (2.3.1). At all times where H;(z) > 0, the site =
acts like a barrier (see point 5 below).

4. Macroscopic fires. — Here we assume that x € Ap and that the corresponding
mark of mp, happens at some time ¢ where Z;_(z) = 1. This means that the cluster
containing x is macroscopic and thus this mark destroys the whole component D,_(z),
that is for all y € D;_(x), we set Di(y) = {y}, Zi(y) = 0. This is described by the
second term on the RHS of the first equation in (2.3.1).

5. Clusters. — Finally the definition of the clusters (D;(z))zer becomes more
clear: these clusters are delimited by zones with local density smaller than 1 (i.e.
Z(y) < 1) or by sites where a microscopic fire has (recently) started (i.e. H¢(y) > 0).

For A > 0, we call (Z{(z), D{*(x), H{*(2))¢>0,0¢[—4,4] the finite box version of
the LFF(00)-process: it has the same dynamics as the true LEF (0o)-process, but we
restrict the space of tree positions to z € [—A, A]. See section 3.10 for a more precise
definition. On Figure 2, a typical path of this finite box LFF(c0)-process is discussed.
See also Algorithm 3.6.3 (with the function Fs(z,v) = z).

2.3.3. Well-posedness. — The existence and uniqueness of the LFF (co)-process
has been proved in [15, Theorem 3]. We will provide here a simpler proof, which also
works for the case where § = BS.

THEOREM 2.3.2. — For any Poisson measure wa(dt, dz) on [0,00) x R with in-
tensity measure dtdx, there a.s. exists a unique LFF(c0)-process. Furthermore, it
can be constructed graphically and its restriction to any finite box [0,T] x [—n,n] can
be perfectly simulated.

The LFF (co)-process (Zi(z), Dy(z), Hy())t>0,zer is furthermore Markov, since it
solves a well-posed time homogeneous Poisson-driven S.D.E.

2.3.4. The convergence result. — Recall subsection 2.1.5.

THEOREM 2.3.3. — Assume (Hp;) and (Hg(c0)). Recall that ax, ny and my
were defined in (2.2.1) (2.2.2)-(2.2.4). Consider, for each A € (0,1], the process
(Z}N@), DM(x))i>0,0er associated with the FF(ug, uyy)-process, see Definition 2.1.3,
(2.2.3) and (2.2.5). Consider also the LFF(co)-process (Z(x), Di(z), Hi(2))t>0,0cr-

(a) For any T >0, any finite subset {z1,...,zp} CR,

(Zt)\(xl)v Dz\(l‘i))te[o.T],i*

i=1,....p
goes in law to (Z;(x;), De(x:))tefo,1),i=1,....p» 0 D([0, T, R x ZU{@})P, as A
tends to 0. Here D([0,00),R x ZU {@}) is endowed with the distance dr.

(b) For any finite subset {(t1,x1),...,(tp,zp)} C [0,00) x R, with t;, # 1 for
k=1,...,p, (Z{\(xz),Dt)‘(xz))mlp goes in law to (Zy,(x;), Dy, (xi))i=1,....p
in (RxZU{@})?. Here T U{@} is endowed with §.
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(¢) Recall notation 2.1.5 (ii). For all t > 0,
(1/15(1 = 1/IC(n3,4,0)1)

ax

1{|c<naﬂ.0>\21}> Al
goes in law to Z;(0) as A — 0.

Point (c¢) will allow us to check some estimates on the cluster-size distribution.
Since we deal with finite-dimensional marginals in space, it is quite clear that the
process H does not appear in the limit, since for each x € R, as., for all t > 0,
H(z) = 0. (Of course, it is false that a.s., for all z € R, all ¢t > 0, Hy(z) = 0).

We cannot guarantee the convergence in law of D}(0) to D;(0) at time ¢ = 1. This
is due to the fact that when neglecting fires, the probability that a macroscopic zone is
completely occupied at time ayt, tends to 1 if ¢ > 1, but to a nontrivial value if t = 1.

For example, in the absence of fires, a zone with length n) is completely occupied
at time a)t with probability vg((0, axt))™ =~ exp(—nyvg((axt, 00))), which tends to 1
ift>1andtol/eift=1.

We believe that this is really not important and we decided to keep this definition
of the LFF(c0)-process despite this light defect.

2.3.5. Heuristic arguments. — Let us explain here roughly the reasons why The-
orem 2.3.3 holds true. We consider, for A > 0 very small, a FF(ug, ui),)-process
(m(4))>0,icz and the associated processes (Z (), D} ())e>0,2¢R-

0. Matches. — The times and positions at which matches fall will tend, in our
scales, to the marks of a Poisson measure with intensity measure 1. A hint for
this is the following. Consider e.g. the domain [0,7] x [0,1], which corresponds
to [0, axT] x [0, n,]. The probability that two matches fall on the same site during
[0, @\T] is very small. Thus the number of matches falling in [0, ayT] x [0, n)] has
approximately a Binomial distribution with parameters ny and vy ([0, ayT7]). Since

a)\T
vy ([0, axT)) ~ )%A {/o /\u}w((/\akt,oc))dt] — T

as A — 0, the asymptotic number of matches falling in [0,77] X [0, 1] should have a
Poisson distribution with parameter 7.

1. Initial condition. — For all x € R, (Z3(z), D{(x)) = (0,9) =~ (0,{x}) (recall
that ¢s(0) = 0).

2. Occupation of vacant zones. — Assume that a zone [a,b] becomes completely
vacant at some time ¢ (because it has been destroyed by a fire).

(i) For s €[0,1) and if no fire starts on [a, b] during [¢,t + s], we have
Df‘+5(1:) ~ [a: +1/(nyvs(ays, oo))] ~ {z}

and Zp, ,(z) ~ s for all € [a, b].
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Indeed, D (z) ~ [z — X/ny,z + Y/n,], where X and Y are approximately
geometric random variables with parameter vg((ays,00)). (Recall that for any t > 0
and for any site, vg is the law of the time we have to wait until the next seed falls).
Thus

D?+s(x) ~ [z £ 1/(navs((ars,00))] = {z}

due to (Hg(00)), since vg((axs,00)) > vs((ax,00)) ~ 1/n,. For the same reasons,

K} () =~ v5((0, ars)),
whence Z, (z) =~ s.
(ii) If no fire starts on [a,b] during [¢,¢ -+ 1], then Z} ;(z) ~ 1 and all the sites
in [a, b] are occupied (with very high probability) just after time ¢ + 1.
Indeed, we have (b — a)n, sites and each of them is occupied at time t + 1+ &

with approximate probability vs((0, ax(1+¢)]), so that all of them are occupied with
approximate probability

(vs((0,ax (14 2)))) ™™ = exp (= (b= aws((ar(1 +£),0)) /vs((ar, ) )
which tends to 1 as A — 0 for any € > 0 by (Hg(c0)).

8. Microscopic fires. — Assume that a fire starts at some place = at some time t,
with Z} (z) = 2z € (0,1). Then the possible clusters on the left and right of z
cannot be connected during (approximately) [¢,t + z], but can be connected after
(approximately) ¢ + z.

Indeed, the match falls in a zone with approximate density vg((0, axz)), so that it
should destroy a zone A of approximate length 1/vs((ayz,00)) < ny. The probability
that a fire starts again in A after ¢ is very small. Thus the probability that A is
completely occupied at time ¢ + s is approximately

1/vs z,00
(vs((0, ars])) 2P ~ exp (= vs((ars, 00)) /vs((arz, 0))).
When A\ — 0, this quantity tends to 0 if s < z and to 1 if s > z thanks to (Hg(00)).

4. Macroscopic fires. — Assume now that a fire starts at some place x, at some
time ¢ and that Z} () ~ 1, so that D} (x) is macroscopic (that is its length is of
order 1 in our scales, or of order my in the original process). This will thus make
vacant the zone D (z). Such a (macroscopic) zone needs a time of order 1 to be
completely occupied, see point 2.

5. Clusters. — For t > 0, z € R, the cluster D;*(x) resembles
[z £ 1/(navs((arz, 0)))] =~ {z}

if Z})(x) = 2z € (0,1). We then say that z is microscopic. Macroscopic clusters are
delimited either by microscopic zones, or by sites where there has been recently a
microscopic fire.
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Even if the above arguments are (hopefully) quite convincing, the rigorous proof
is long and tedious. The main idea is that even if each isolated event is easily treated
(for example, the fact that a vacant macroscopic zone needs a delay 1 to be completely
filled again relies on an immediate computation; estimating the delay needed to fill
again the zone destroyed by a microscopic fire is not difficult, etc.), it is quite hard to
follow the process during an arbitrary large time interval. Indeed, we have to check
that the small errors due to one such event do not become large errors after some
time. For example, if a macroscopic zone is not filled at time 1, but slightly after (say
at time ¢y > 1), this could reduce consequently the impact of a match falling in this
zone between 1 and ¢g, etc. The main ideas of the proof are however quite simple and
really rely on the above heuristic arguments.

2.3.6. Cluster-size distribution. — We will deduce from Theorem 2.3.3 the fol-
lowing estimates on the cluster-size distribution.

COROLLARY 2.3.4. — Assume (Hpr) and (Hg(00)). Recall that ay and ny were
defined in (2.2.1) and (2.2.2). Let (Zy(x), D¢(x), Hi())t>0,0er be a LEF(00)-process.
For each X\ € (0,1], let (0} (i))e>0,icz be a FF(us, 1), )-process.

(i) For some 0 < ¢1 < ca, for all t > %, all0<a<b<l,

tim P (C(n},.0)] € [1/v5((ara,50)). 1/vs((axb, 50)))
=Pr (Z,(0) € [a,b]) € [c1(b—a),c2(b—a)].

(ii) For some 0 < ¢; < ¢z and 0 < K1 < kg, for allt > 3, all B >0,

lim Pr (|C(np,,,0)] = Bny) = Pr(|Dy(0)] > B) € [cre™8, cze™B].
A—=0

This results shows that there is a phase transition around the critical size ny: the
cluster-size distribution changes of shape at n,.

Consider the case of Example 2, where pg((t,00)) ~ e~*". Then

ay ~ (log(1/ANY* and  my ~ 1/[A(log(1/X))*/°].
Very roughly, Corollary 2.3.4 proves that when A — 0, the law of |C(n*,0)], for large
times, resembles
[log(1 + )]/t
(14 2)[log(1/N)]!/«
The first term corresponds approximately to the law of 1/vg((a\U, )), for U uni-
formly distributed on [0, 1] and the second term is an exponential law with mean n,.

l{mE[O,m\]} da + (1/nA)07I/nA1{I20} dax.

The main idea is that two types of clusters are present: macroscopic clusters, of
which the size is of order my ~ A~ '[log(1/A)]~'/®, with an exponential-like distribu-
tion; and microscopic clusters, of which the size is smaller than ny, with a law with
shape log(1 + z)'/*~1/(1 + z).
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2.4. Main result in the case § = BS

This case is slightly more complicated than the case § = co. The limit process
is essentially the same, except that the height of the barriers (vertical segments in
Figure 2) are more random.

2.4.1. Law of the heights of the barriers. — Start at time 0 with all sites
vacant. Let u € (0,1). Assume that a match falls at site 0 at time Tsu and neglect
all other fires. Call ©, the time needed for the destroyed zone to be completely
regenerated and 6, the law of ©,,/Ts. Clearly, 6, is supported by [0, 1]. We will show
in Lemma 3.9.1 below that 8, can be defined as follows.

DEFINITION 2.4.1. — Assume (Hg(BS)). Fort,s € [0,00), we denote by
gs(t,s) = Pr[Ni, > 0,NE (g > Ni].

where (N);>0 is a SR(us)-process. For u € (0,1), we consider the probability mea-
sure 0, on [0,1] defined by
vs((Tsu, Ts))

2
1—gs(u,h) ) gs(u, h).

Vhe[0,1], 6,((0,h]) = vs((Tsu, Ts)) + (

Finally, we consider a function
Fg:[0,1] x [0,1] — [0, 1]
such that for each w € [0,1] and for V a uniformly distributed random wvariable

on [0,1], the law of Fs(u,V) is 0,. We can choose Fs in such a way that for
each u € [0,1], v — Fg(u,v) is nondecreasing.

Let u € [0,1] be fixed. Since pg([0,Ts]) = 1, there holds gs(u,1) = vg([0, Tsul),
whence 6,([0,1]) = 1. To check that h — 6,([0, h]) is nondecreasing, it suffices to
observe that h — g(u, h) is nondecreasing. Notice that 0,,({0}) = vs((Tsu,Ts)): this
corresponds to the situation where nothing has been destroyed because the match has
fallen on an empty site. For Fg(u,.), one can e.g. use the generalized inverse function

of 0,([0, .])-

2.4.2. Definition of the limit process. — Let m);(d¢, dz) be a Poisson measure
on [0,00) x R with intensity measure d¢dz, whose marks correspond to matches. We
also consider an ii.d. sequence (Vj)r>1 of uniformly distributed random variables
on [0,1], independent of mps. If
mar(dt, dz) =Y 6(r x,)
E>1
we (abusively) write

ma(dt, dz, dv) = Z O( Ty, X1, Vi) -
E>1
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Observe that 7y (dt, dz, dv) is a Poisson measure on [0, 00) X R X [0, 1] with intensity
measure dtdzdv.
DEFINITION 2.4.2. — A process (Z(x), Di(x), He(x))t>0,zer with values in Ry x

Z x Ry such that a.s., for all z € R, (Z,(z), Hi(z))i>0 is cadlag, is said to be a
LFF(BS)-process if a.s., for allt >0, all z € R,

Zi(z) = /l{z <z><1}d8—//1{z, (@)=1yeD,—()}™M (ds, dy),
(241) / / FS )]l{Zs (T)<1}7T]u(d€ X {’B} X d?))

t

- / 1iH,(2)>0y ds,

where Dy(z) = [Ly(x), Ri(x)], with 0
Li(z) =sup{y < x: Zi(y) <1 or H(y) > 0},
Ri(x) =inf{y > 2 : Zi(y) <1 or Hi(y) > 0}

and where D;y_(x) is defined in the same way.

The difference with the LFF(co)-process is that when a match falls at (¢, x)
with Z;_(x) < 1, we choose H;(z) according to the law 0z, (s, instead of simply
setting Hy(z) = Z;_(z).

2.4.3. Formal dynamics. — Let us explain the dynamics of this process. We
consider T' > 0 fixed and set

Ar = {z e R: mp([0,T] x {2}) > 0}.

For each ¢t > 0, € R, D;(z) stands for the occupied cluster containing x. We call
this cluster is microscopic if D;(z) = {z}. We have D,(z) = D;(y) for all y € D;(z).
1. Initial condition. We have, for all z € R
Zo(x) = Ho(z) =0 and Dy(z) = {z}.

2. Occupation of vacant zones. — We consider here x € R\ Ap. Then we have
Hy(x) =0 for all t € [0,7]. When Z;(z) < 1, then Dy(z) = {z} and Z;(z) stands for
the local density of occupied sites around z (or rather for a suitable function of this
density) Then Z;(z) grows linearly until it reaches 1, as described by the first term
on the RHS of the first equation in (2.4.1). When Z;(z) = 1, the cluster containing x
is macroscopic and is described by Dy(z).

3. Microscopic fires. — Here we assume that @ € Ap and that the corresponding
mark of 7y happens at some time ¢ where Z;_(2) < 1. In such a case, the cluster
containing « is microscopic. Then we set Hy¢(z) = Fs(Z;—(x), V), for some uniformly
distributed V on [0, 1] as described by the first term on the RHS of the second equation
of (2.4.1). We then let Hy(x) decrease linearly until it reaches 0, see the second term
on the RHS of the second equation in (2.4.1). At all times where H(z) > 0, the site
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FIGURE 3. LFF(BS)-process in a finite box.

The marks of 7); (matches) are represented as o’s. The filled zones represent zones in
which Z{*(z) = 1 and H{(x) = 0, that is macroscopic clusters. The plain vertical segments
represent the sites where H;*(z) > 0. In the rest of the space, we always have Z{(z) < 1.

acts like a barrier (see point 5 below). All this means that at x, there is a barrier
during [t,t 4 Hy(z)), where Hi(x) is chosen at random, according to the law 0z, (o).

4. Macroscopic fires. — Here we assume that x € Ap and that the corresponding
mark of my, happens at some time ¢ where Z;_(z) = 1. This means that the cluster
containing x is macroscopic and thus this mark destroys the whole component D,_(z),
that is for all y € D;_(x), we set Di(y) = {y}, Z:(y) = 0. This is described by the
second term on the RHS of the first equation in (2.4.1).

5. Clusters. — Finally the clusters (Dy(z))zer are delimited by zones with density
smaller than 1 (i.e. Z;(y) < 1) or by sites where a microscopic fire has (recently)
started (i.e. Hy(y) > 0).

A typical path of a finite-box version (Z{(z), D! (z), H(2))1>0,z¢[-a,4) Of the
LFF(BS)-process is discussed on Figure 3. It is very similar to Figure 2: the only
difference is that each time there is a bullet falling at some (¢, z) in a white zone, the
height of the segment above (¢, ) is chosen at random, according to the law 6z, (,).
And Z;_(z) equals the time passed since z was involved in a macroscopic fire (the
case LFF(00) corresponds to the law 6, = §,). See also Algorithm 3.6.3 below.
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2.4.4. Well-posedness. — We will prove the following result.

THEOREM 2.4.3. For any Poisson measure 7y (dt, dz, dv) on [0, 00) xR x [0, 1]
with intensity measure dtdzdv (and for mpr(dt, dz) = [,
a.s. exists a unique LFF(BS)-process. Furthermore, it can be constructed graphically

€[0,1] mu (dt, dz, dv)), there
and its restriction to any finite box [0, T] X [—n,n| can be perfectly simulated.

The LFF(BS)-process (Z¢(x), D¢(x), H () )t>0,zer is furthermore Markov, since it
solves a well-posed time homogeneous Poisson-driven S.D.E.

2.4.5. The convergence result. — We are now in a position to state the main
result of this section. Recall subsection 2.1.5.

THEOREM 2.4.4. — Assume (Hpy) and (Hs(BS)). Recall that ay = Ty, ny =
[1/(A\Ts)| and let my satisfy (2.2.4). Consider, for each X € (0,1], the process
(D}Mx), Z)M(x))i>0,0er associated with the FF (ug, pyy)-process (3 (i))i>o0,icz, see Def-
inition 2.1.3, (2.2.3) and (2.2.5). Consider also the LFF(BS)-process

(Zt(ac)7 Dy(x), Ht(x))tz[),mE]R'

(a) ForanyT > 0, any finite subset {x1,...,7,} C R, (ZMz;), Dz\(wi))te[O,T]j:I,...,p
goes in law to (Zi(x;), Di(2:))tef0,1),i=1, in D([0,T],R x ZU {@})?, as A
tends to 0. Here D([0,00),R x ZU {@}) is endowed with the distance dr.

(b) For any finite subset {(t1,z1), ..., (tp, @)} C [0,00)XR, (Z} (x:), D (1))i=1,...p
goes in law to (Zy,(x;), Dy, (25))i=1,..p in (R x ZTU{@})P. Here T U {@} is
endowed with §.

(c) Foranyt>0, any k € N,

lim Pr [IC(n2e, 0)] = k] = E [g1(Z:(0))],
where, for z € 0,1],

{ q0(2) = vs((2T5,Ts)),

(242) ) .
ar(z) = k[vs((2Ts,Ts))] [vs((0,2T5))]" if k>1.

Here we have no problem with ¢ = 1: for the discrete process (in the absence
of fires), all the sites are occupied at time Ts (which corresponds to time 1 after
normalization). Point (c¢) will be useful to prove some estimates about the cluster-
size distribution. Observe that for z € (0,1), gx(2) is the probability that the cluster
around 0 has the size k at time Tsz, in the absence of fires, if seeds fall according
to i.i.d. SR(ug)-processes.

SOCIETE MATHEMATIQUE DE FRANCE 2013



36 CHAPTER 2. NOTATION AND RESULTS

2.4.6. Heuristic arguments. — Let us explain roughly the reasons why Theo-
rem 2.4.4 holds true. We consider a FF(ug, u};)-process (1 (i))i>0,icz and the cor-
responding processes (Z) (), D} (z))i>0,zer. We assume below that A is very small.

0. Matches. — As in the case = oo, the times and positions at which matches fall
will tend, in our scales, to the marks of a Poisson measure with intensity measure 1.

1. Initial condition. — We have, for all x € R, (Z}(z), D} (z)) = (0,9) =~ (0, {z}).

2. Occupation of vacant zones. — Assume that a zone [a,b] becomes completely
vacant at some time ¢ (because it has been destroyed by a fire).

(i) For s € [0,1) and if no fire starts on [a, b] during [¢,t+ s] (or [Tst, Ts(t+s)] in
the original scales) the density of vacant sites in [a, b] at time t+s should clearly
resemble vg((0,Tss)). Hence for z € [a,b], Z}(z) ~ ¥s(vs((0,Tss))) = s and
D?‘Jrs(x) ~ {x}.

(ii) If no fire starts on [a,b] during [¢,¢ + 1] (or [Tst,Ts(t 4+ 1)] in the original
scales), then all the sites of [a,b] become occupied at time ¢ + 1 (recall that
Ds((O,Ts]) = 1)

3. Microscopic fires. — Assume that a fire starts at some place = at some time ¢,
with Z} () = z € (0,1). Then the possible clusters on the left and right of x
cannot be connected during (approximately) [, +©.Ts], but can be connected after
(approximately) ¢t + ©,Ts, where ©, follows approximately the law 6,. Indeed, 0, is
designed for that: consider a zone where the density of occupied sites is z and assume
that the sites are exchangeable in this zone. Pick at random a cluster in this zone.
The law of its size depends on z. Then 6, is the law of the time needed for a seed to
fall on each sites of this cluster (divided by Ts).

4. Macroscopic fires. — Assume now that a fire starts at some place z, at some
time ¢ and that Z (z) ~ 1, so that D} (x) is macroscopic (that is its length is of
order 1 in our scales, or of order my in the original process). This will thus make
vacant the zone D} (z). Such a (macroscopic) zone needs a time of order 1 to be
completely occupied, see point 2.

5. Clusters. — For t > 0, x € R, there are some vacant sites in the neighborhood
of z if Z}(x) < 1 (then we say that x is microscopic), or if there has been (recently)
a microscopic fire at = (see point 3). Now macroscopic clusters are delimited either
by microscopic zones, or by sites where there has been recently a microscopic fire.

To transform these heuristic arguments into a rigorous proof, we have essentially
the same difficulties as when = oo (see subsection 2.3.5): each isolated event is
easily treated, but it is quite hard to put everything together.

2.4.7. Cluster-size distribution. — We will deduce from Theorem 2.4.4 the fol-
lowing estimates on the cluster-size distribution.
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COROLLARY 2.4.5. — Assume (Hyr) and (Hs(BS)). Recall that ay and my were
defined in (2.2.1) and (2.2.2). Let (Zy(x), D¢(z), Hi(z))t>0,0er be a LFF(BS)-process.
For each X € (0,1], let (0} (i))>0,icz be a FF(us, 1), )-process.

(i) For some 0 < ci <eca, forallt > 2, all k €{0,1,...},

lim Pr (IC (1744, 0)] = k) € [c1Gk, c2qn],

where, for k> 1
1 1
k
q = / VS((TSZ,TS))dz and qp = lc/ [Vs((Tsz,Ts))]Z[Vs((O,Tsz))} dz.
0 0
(if) For some 0 < c¢1 < 2 and 0 < K1 < Ko, for all t > %, all B> 0,
)l\irerr (\C(n%st,()ﬂ > Bn)\) =Pr(|D(0)| > B) € [cle_"'QB,CQe_'“B].
—

Consider the case of Example 1, where pg = d1, Ts = 1 and vg(dt) = 1} 3)(t)dt.
Then ny ~ 1/A and one can check that go = 3 and gr = 2k/[(k + 1)(k + 2)(k + 3)]
for k> 1.

Corollary 2.4.5 shows the presence of two regimes: for A > 0 very small, there are
some finite (uniformly in A) clusters, as described in point (i) and some clusters of
order 1/), as described in point (ii). Roughly, for A > 0 very small, the cluster-size
distribution resembles, for large times,

Z qkék(di) + )\esz]l{zzo} dzx.
k>0

2.5. Main results when 3 € (0, 00)

2.5.1. Definition of the limit process. — Surprisingly, the limit process in this
case is more natural than in the previous cases, in the sense that there are only
macroscopic clusters and thus no microscopic fires: heavy tails can sometimes produce
natural objects. This is due to the fact that for 5 < oo, the scale space n, is correct
for all times. We describe the limit forest fire process by a graphical construction. The
limit forest fire process (Y3(z))zer,e>1 will take its values in {0,1}. In some sense,
Y;(xz) = 0 means that there is no tree at x at time t.

For (Y (z))zer with values in {0,1}, we define the occupied component around
r €R as

(2.5.1) C(Y,z) = [((Y,z),r(Y,2)]

where (Y, z) =sup{y < z: Y(y) =0} and r(Y,2) =inf {y > 2 : Y(y) =0}.
If Y(x) = 0, this implies C(Y, z) = {z}.
We consider a Poisson measure

7T]\,j(dt, dI)
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on [0,00) x R with intensity measure d¢dz, whose marks correspond to matches. We
also introduce a Poisson measure

ms(dt, dz, df)
on [0,00) X R x [0,00), independent of 757, with intensity measure
dtdzB(B+ 1)~ P2de.

Roughly, when mg has mark (7, X, L), this means that no seed fall on X during
[T — L,7]. In all the other zones, seeds fall continuously.

Before handling the precise construction of the limit process, let us say roughly
what happens. Matches fall according to mp;. Draw a vertical dotted segment at X
between 7 — L and 7 for each mark (7,X,L) of mg. Start from time 0. All the
sites become immediately occupied, except sites for which there is a dotted vertical
segment crossing ¢t = 0. These sites remain vacant until the height of these segments.
Thus we overwrite in plain the parts of these segments above zero. When there is a
fire at some time ¢y, it destroys a zone delimited by some active plain segments. But
all the sites in this zone are immediately occupied again, except those for which there
is a dotted vertical segment crossing ¢ = tg. Such sites will remain vacant until the
height of these segments, so that we overwrite in plain the parts of these segments
above t3. And so on. Of course, plain segments represent vacant sites. See Figure 4
next page for an illustration.

We now handle the rigorous construction on a fixed time interval [0,T]. First,
we set

Yto(x) = ]l{ws({(s,;ﬂ,f) 1 s>t,s—0<0})=0}
for all ¢ € [0,T], all x € R. Observe that for all z € R, ¢ — Y;?(2) is non-decreasing
on [0,77. Since [3° [° Lis>T,s—e<0pB(B + 1)¢7P=2dlds > 0, one can clearly find an
unbounded family {x;}icz C R such that for all ¢ € [0,T7], all i € Z, Y,?(x;) = 0. We
take the convention that for all ¢ € Z,

Xi < Xit+1, Xo<0<x1, lim x;=-0c0 and lim x; =oco.
12— — 00 1—> 00

We now handle the construction on each box [0,7] X [xi,Xxi+1] separately.
Let thus ¢ be fixed. The Poisson measure 7y, has a.s. a finite number n; of
marks (p},04),...,(ph,,0f.) in [0,T] X [xi, xi+1), ordered in such a way that
0<pl < - <ph,.

We consider the occupied cluster I = C (Ylg_, at) (which is included in [x;, Xi+1]

by construction). For (¢,z) € [0,T] X [x:, Xi+1], we set

V) = Ung (((ss2,0) s> t.5—£<pi })=0}
if (t,x) € [p},T] x I and Y;}(x) = Y2(z) else.
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%ot o ' o

FIGURE 4. LFF(f)-process with 8 € (0, c0).

The plain segments represent vacant sites and the occupied clusters are delimited by these
segments. The marks of 7); (matches) are represented as e’s.

Step 0. — First, we draw on the whole space [0,00) X R all the o’s and we draw a vertical
dotted segment from (7 — L, X) to (7, X) when mg has a mark at (7,X,L). Of course, such
segments are infinitely many so that it is not possible to draw all of them on a figure.

Step 1. — For each of these dotted segments that encounter the axis ¢ = 0, we overwrite in
plain its part above ¢ = 0. Then we denote by xo and x1 the first places on the left and right
of 0 such that plain segments go beyond T'. At this stage, we have built (Y, (%)) ¢efo,1],2€R-

Step 3. — At time p, we consider the component I{ (between plain segments) where the
match e falls. Then, for each dotted segment (lying in I?) that encounters the axis t = p(l], we
overwrite in plain its part above t = p{. At this stage, we have built (Y,! (®))te0,1),2€x0.x1]-

Step 3. — At time pg, we consider the component Ig (between plain segments) where the
match e falls. Then, for each dotted segment (lying in Ig) that encounters the axis t = pg, we
overwrite in plain its part above t = p3. We have built (Y (%)) eco,11,2€x0,x1]-
And so on...

Remark. If we draw a vertical dotted segment from (7 — L, X) to (7, X)) when 7g has a mark at
(7, X, L) only if L > §, and if § > 0 is smaller than min{p9, p3—p, p3—p3}, then we get the exact
values of Y3 () for all « € [xo, x1] and all ¢ € [0, T]\ ([0, 5]U[pY, p? +8]U[p3, p3 +6]U[p3, p§ +3]).

Assume that for some k =2,...,n;, (Y;fk:71(I))tE[O,T],-’L‘E[Xi,X1+1] has been built and
consider the occupied cluster I} = C(Yp’f‘f, a}) (which is still included in [x;, xi+1])-
k

For (t,x) € [0,T] x [xi, Xit1], we define Y;*(z) by setting
k
Y (@) = L ({(si2,0) : s>t,5—0<pi})=0}
if (t,x) € [pi,T] x I}, and Y5 (z) = Y~ (z) else.
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We finally set Y;(z) = Y,"(x) for all t € [0,T7], all € [x;, xi+1]. Doing this for
each i, this defines a process (Y;()):e[0,7],cer-

A typical path of the LFF(/3)-process is drawn and discussed on Figure 4, from
which the following remark is clear.

REMARK 2.5.1. — (i) If we build the process using some larger final time T" > T,
this does not change the values of the process on [0, T] x R. Thus the process can be
extended to [0,00) x R.

ii) For § > 0, denote by 7% the restriction of mg to [0,00) x R x [5,00). The
s

sequence (Xi)icz clearly depends only on ﬂg:. Then for each i € Z, we denote

T ={t€0.7] - mu({t} x [ xi+)) > 0} U {0}, dir = inf |t —s|.
s,teTy”
s#t
Then for all 6 € (0,00 AT), all @ € [Xi, Xi+1] and all t € [0,T]\ U erir(s,s + 9],

the value of Y,(z) depends only on mpr, wd.

Observe that for all ¢ > 0, {Y; = 0} is countable and for all ¢ > 0 such that
v ({t} x R) =0, {Y; = 0} is discrete (it has no accumulation point).

PROPOSITION 2.5.2. — Let my, s be two independent Poisson measures on
[0, 00) xR and [0, 00) x Rx[0, 00) with intensity measures dtdx and dtdxB(8 + 1)~ d¢.
There a.s. ezists a unique LFF(3)-process (Yi(2))i>0,zcr- It can be simulated exactly
on any finite box [0,T] X [-n,n]. For each t > 0 and x € R, we set Dy(x) = C(Yy, x),
recall (2.5.1).

This proposition is obvious from the previous construction. Of course, we can build
exactly the process on any finite box, but we cannot draw it ezactly: when a match
falls in some occupied cluster I at some time ¢, the set {z € I : Y;(z) = 0} is dense
in I (but {z € I: Yi4.(z) =0} is finite for all small € > 0).

Note that it would have been more natural to set Y;(xz) = 0 for all € I when a
match falls in some occupied cluster I at some time t. However, since then I becomes
occupied almost everywhere immediately after ¢, the present definition (which only
implies that {# € I : Y;(2) = 0} is dense in I) is simpler for mathematical purpose.

2.5.2. On the Markov property. — The LFF(S)-process (Y:(z))i>0 is clearly
not Markov, in particular because the heights of the barriers are not exponentially
distributed. The aim of this subsection is to build a Markov process that contains
more information than (Y;(z)):>o-

Let the Poisson measures 7y and 7g be given. Write 7g = >, Oty an ) and
introduce

1 _ 0 _
T = Z6(%7151@,%,1%)l{tkfkk>0}7 TS = Z 6(tk»mk,1’»k)1{tk*5k<0}'
E>1 k>1
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Observe that 7% and 7} are independent. Furthermore, 7} has a mark (7, X, L) if
and only if there is a dotted vertical segment from (7, X) to (7 + L, X) (with 7 > 0)
and 7% has a mark (7, X, L) if and only if there is a dotted vertical segment from
(r—L,X) to (r,X) (with 7 — L < 0 < 7). One can easily check that 7} is a Poisson
measure on [0, 00) x R x (0, 00) with intensity measure dtdzB(8+1)¢~7~2d¢. We set,
for x € R,

To(x) = /Om‘/ooo smd(ds x {z} x df),

which represents the height above 0 of the dotted (or plain) vertical segment at x that
crosses the axis t = 0, with of course I'g(z) = 0 if there is no such dotted segment.
We then introduce, for z € R and t > 0,

t poo t
Ty(z) =To(z) + /o/o max {é - FS,(x),O}Wé(ds x {z} x df) _/0 1ir, (2)>03 ds,

which represents the height above ¢ of the dotted (or plain) vertical segment at x that
crosses the horizontal axis with ordinate ¢, with I';(z) = 0 if there is no such dotted
segment. Indeed, I';(x) clearly decreases linearly when it is positive, and jumps from
T,_(z) to max{Ts_(z), ¢} when 7§ has a mark at (s,z,¢). Using the fact that a.s.,
for all x € R, there is at most one dotted segment at x, it is possible to replace
max{{¢ — I's_(z),0} by ¢. Finally, we define, for z € R and t > 0,

t t
Hy(z) = Tol: 1 . Ty (2)mar(ds, dy) — | Lia. (o501 ds,
o) =To@)+ [ 1 o @mads dn) = [ L sn ds
Yi() = L, (2)=0}

where (7 (Ys—,z) stands for the interior of C'(Y;_,z). Then Hy(zx) is the height
above t of the plain segment at x that crosses the horizontal axis with ordinate ¢
(with Hy¢(x) = 0 if there is no such plain segment), and thus (Y;(z))s>0 is the LFF(8)-
process. Indeed, since we overwrite in plain all the dotted segments that cross the
axis t = 0, we clearly have Hy(z) = I'g(z). Then H;(z) decreases linearly when it is
positive, and jumps to I's_(z) when z is involved in a fire at some time s (whence
necessarily Hs_(z) = 0): recall that we then overwrite in plain the dotted segment
at = that crosses the horizontal axis with ordinate s, of which the height above s it
given by I's_(z).

The process (I'y(z), Hi(x), Yi(2))i>0,zecr is Markov, since it solves a well-posed
homogeneous Poisson-driven S.D.E.

2.5.3. The convergence result. — We now state our main result in the case
B € (0,00). We use subsection 2.1.5.

THEOREM 2.5.3. — Assume (Hyr) and (Hg(B)) for some 8 € (0,00). Consider,
for each X € (0,1], the process (D ())t>0.zer associated with the FF (g, uj,)-process,
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see Definition 2.1.3 and (2.2.3). Consider also a LFF(B)-process (Yi(2))t>0,0er and
set Dy(x) = C(Yy, ) for allt >0, all x € R as in Proposition 2.5.2.
(a) Forany T >0, any finite subset {x1,...,xp} C R, (DZ\(xi))te[O,T],i=1,...,p goes
in law to (Dy(xi))iepo,1],i=1,....p 1 D([0,T],Z)?, as A — 0. Here D([0,T],T) is
endowed with 6.

(b) For any finite subset {(t1,21), ..., (tp, )} C (0,00) xR, (D} (2;))i=1,...p goes
in law to (Dy,(;))i=1,...p in I?, T being endowed with .
2.5.4. Heuristic arguments. — We assume below that A > 0 is very small.

0. Matches. — Exactly as in the case f = oo, we hope that matches will fall, in
our scales, according to a Poisson measure with intensity 1 (in mean, 1 match per unit
of time per unit of space, which corresponds to 1 match per m, sites during [0, a)] in
the original scales).

1. Occupation of vacant zones. — Consider a zone [a,b] (or [lany], [bny]] in the
original scales). At time 0, this zone is completely empty. In this zone, each site will
be empty at time ¢ if no seed has fallen during [0,¢] (or [0, axt] in the original scale).
This occurs with probability vs((axt,o0)). Thus in the absence of fires, the number of
empty sites in [a, b] at time ¢ follows a binomial distribution with parameters (b—a)ny
and vs((axt,c0)). Recalling (2.2.1), (2.2.2) and (Hg(5)), we see that

(b= a)nyvg((axt, 00)) ~ (b— a)vs((axt, 00))/vs((ax,00)) — (b —a)t=P.

Hence the number of empty sites in [a,b] at time ¢ follows approximately a Poisson
law with parameter (b — a)t™* (when neglecting fires).

The link with the LFF(8)-process is simple: for any a < b and any ¢ > 0, the
random variable wg({(s,z,¢) : x € [a,b],s > t,s — ¢ < 0)}) follows a Poisson law

with parameter
o] b [e]
/ ds/dx/ BB+1EP2dl = (b—a)t™".
t a s

2. Fires. — Now when a match falls at some place, this destroys the whole occupied
cluster. The destroyed cluster is then treated as in point 1.

The rigorous proof is, as usual, not so easy. The first step is to find a suitable
coupling between the seed processes (N (1)) and the Poisson measure 75 describing
times/places where seeds do not fall in the limit process. Next, we have to find a
(necessarily complicated) event on which the normalized discrete process resembles the
limit process and to show that this event occurs with high probability. For example,
this event has to guarantee us that for sites on which seeds fall continuously in the
limit process, seeds fall sufficiently often in the discrete process. We also need that
a small error in the time/place where a fire starts (or where a seed falls) does not
produce large errors after some time, etc.
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2.5.5. Cluster-size distribution. — We aim here to estimate the law of the oc-
cupied cluster around 0. No phase transition occurs here.

COROLLARY 2.5.4. — Let B € (0,00). Assume (Hpy) and (Hs(B)). Recall
that ay and my were defined in (2.2.1) and (2.2.2). Consider the LFF(S)-
process (Yi(z))i>0,0er and the associated (Di(x))¢>0,zecr. For each A € (0,1],
let (7 (2))e>0.icz be a FF(ug, uy,)-process. There are constants 0 < ¢; < ca and
0 < K1 < kg such that for allt > 1 and all B > 0,

lim Pr [\C’(n,’;t,ﬂﬂ > Bny] = Pr[|Dy(0)| > B] € &1 e 2B cpe=m B,
A—=0

2.6. Main results when 5 =0

2.6.1. Definition of the limit process. — In this case, the limiting process is
trivial: we consider a Poisson measure mg on R with intensity measure dz and we
put, for all t > 0, all x € R,
Yi(2) = Lms()=0}-

Denote by {x;}icz the marks of mg with the convention that -+ < x_1 < xo <0 <
X1 < X2 <.... Then for all t > 0, all i € Z, recalling (2.5.1), C(Yz,z) = [xi, Xi+1] for
all 2 € (x4, xi+1) and C(Yz, xi) = {xi}- Matches fall according to a Poisson measure
ma(dt, dz) on [0,00) X R with intensity measure dtdz.

The LFF(0)-process (Y3(2))t>0,0cr is obviously Markov and the following state-
ment is trivial.

PROPOSITION 2.6.1. — Let mg be a Poisson measure on R with intensity mea-
sure dx. There a.s. exists a unique LFF(0)-process (Y:(2))t>0,0er. It can be simu-
lated ezactly on any finite boz [0,T] X [—n,n]. For each t > 0 and x € R, we will
denote by Dy(x) = C(Yz, ) the occupied cluster around x (see (2.5.1)).

Of course, fires do not appear in the construction. Hence it is not necessary to
introduce my;. However, it allows us to keep in mind that fires do occur. But these
fires generate empty zones that are immediately regenerated. The main idea is that
in our scales: on the great majority of sites, seeds fall almost continuously for all
times; but there are rare sites where the first seed will never fall. Hence when there
is a fire, this always concerns a zone where seeds fall continuously, so that one does
not observe the fire at the limit. A typical path of the LFF(0)-process is commented
on Figure 5 next page.

2.6.2. The convergence result. — We now state our last main result, using sub-
section 2.1.5.

THEOREM 2.6.2. — Assume (Hp) and (Hs(0)). Consider, for each A € (0,1],
the process (D}(z))i>0.ccr associated to the FF(ug, pu3,)-process, see Definition 2.1.3
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R

X—l XO X[ XZ

FIGURE 5. LFF(0)-process.

The marks of 7); (matches) are represented as o’s. We draw a plain vertical segment
above each mark of wg. For all times, the occupied clusters are delimited by these vertical
segments. In some sense, fires have an instantaneous effect, represented as dotted horizontal
segments, that we decided to neglect for obvious practical reasons.

and (2.2.3). Consider also the LFF(0)-process (Yi(z))i>0,0cr and the associated
(Dt(-T))tZO,zE]R~
(a) For anyT > 0, any finite subset {x1,...,z,} C R, (DtA(xi))tE[O,T],izl,m,p goes
in law to (Dy(2:))tepo,1),i=1,...,p 0 D([0,T],Z)? as X = 0. Here D([0, 00),Z) is
endowed with d.
(b) For any finite subset {(t1,21), ..., (tp, 2p)} C (0,00) xR, (DR (%;))i=1,...,p goes
in law to (D, (z;))i=1,...p in I?, T being endowed with §.

2.6.3. Heuristic arguments. — The only difference with the case § € (0,00) is
the following. In some sense, for each site i, in our scales, either seeds fall continuously
on 4, or the first seed never falls on 4. A first hint for this is the following.

Consider a zone [a,b]. At time 0, this zone is completely vacant. Fix T > 0.
Then in the absence of fires, the number of vacant sites in [a,b] at time T (or in
[Lana], [bna]] at time a)T in the original scales) follows a binomial distribution with
parameters (b — a)ny and vg((arT,00)). Observe now that for any value of 7 > 0,
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using (Hg(0)), (2.2.1) and (2.2.2),
(b—a)nvs((axT,00)) = (b — a)vs((arT,0)) /vs((ar, 00)) — (b—a).

Hence the number of sites that are still vacant at time 7" follows approximately a
Poisson distribution with parameter (b — a). Since this parameter does not decrease
with 7', this means that in our scales, sites are either immediately occupied or vacant
forever.

Here the rigorous proof is rather simple, but it still needs some care. We have
essentially the same difficulties as in the case where 8 € (0, 00) (see subsection 2.5.4),
but they are more easily treated.

2.6.4. Cluster-size distribution. — Since the LFF(0)-process is very simple, we
obtain of course some more precise information on the asymptotic cluster-size distri-
bution.

REMARK 2.6.3. — Assume (Hp;) and (Hs(0)). For each A € (0,1], let a
FF(us, uyy)-process (n(i))es0.icz be given, see Definition 2.1.3.  Consider the
LFF(0)-process (Yi(x))t>0,0cr and the associated (Dy())t>0,0er. Then fort >0 and
B >0,

oo

Jim Pr [IC(n3 4, 0)] > Bny] =Pr [|D:(0)| > B] = /B re ®dz = (B+1)e 5.

No proof is needed here: ze 1,0} is just the density of [D;(0)| = x1 — xo0. The
convergence in law of |C(n},;,0)|/nx = [D2(0)] to | D;(0)| follows from Theorem 2.6.2.

2.7. On some other modelling choices

For p a probability law on (0,00), we say that Ny = > o1 Lix,4oqx,<i) 15 @
natural renewal process with parameter p, or a N R(j)-process in short, if the random
variables X; are i.i.d. with law pu. When extending the traditional forest fire model
(where all the renewal processes are Poisson), we had to make some choices.

1. Matches can fall according to iid. (i) SR(u},)-processes, (i) NR(u},)-
processes.

2. Seeds can fall according to i.i.d. (i) SR(us)-processes, (ii) N R(us)-processes.

3. When a fire destroys an occupied component [a,b], we can (i) keep the i.i.d.
renewal processes governing seeds as they are, (ii) forget everything and make start
some new i.i.d. renewal processes governing seeds in the zone [a, b].

Recall that when dealing with Poisson processes, choosing (i) or (ii) in points 1, 2, 3
does not change the law of the FF(us, u},)-process.

From the point of view of modelling, it seemed more natural to choose (i) in points 1
and 2: this is the only way that time 0 does not play a special role. We also decided
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to choose (i) in point 3, because its seems more close to applications. Let us discuss
briefly what could happen with other choices.

First, for matches (point 1), choosing (i) does not play a fundamental role. In-
deed, in our scales, only 0 or 1 match can fall on each site. Thus our results should
extend, without difficulty, to the choice 1(ii), replacing (Hys) by the assumption
s ((0,8)) =~ Xt as A — 0 (together with some additional regularity conditions if we
want a strong coupling as in Proposition 3.2.1).

Next, we believe that in point 2, our results should still hold if choosing (ii) when
B = oo. In the case where ugs has a bounded support, one would have to assume
some regularity on pg (the case ug = d; is trivial) and to modify the dynamics of
the LFF(BS)-process (the law 6, should also depend on time). Our study would
completely break down when 3 € [0,00). In the latter case, the situation would be
quite intricate and we are not able to predict scales (and, a fortiori, to predict some
limit process). Let us explain briefly the situation. If § = oo, then vg and pg have
a similar tail (see example 2). Thus the time and space scales we have considered
will fit both vg and pg. On the contrary, if 3 € [0,00), the tails of ug and vg are
really different. Consequently, if we accelerate time according to ps (in order that
for a NR(ug)-process, the cluster containing the site 0 burns before time 1 with a
positive probability), then this will be too slow for larger times (when a fire destroys
a cluster (a,b), this zone (a,b) will never regenerate).

Finally, in point 3, we also believe that choosing (ii) would not change our results
when 8 = oo and not change too much the situation when pg has a bounded support.
When § € [0,00), we expect that this would not change time/space scales, but we
would have to modify the limit processes. For example if § = 0, we expect that each
time a fire burns a zone (a,b), this zone would regenerate immediately, except in a
random number of sites, that follows a Poisson distribution with parameter (b — a).
Next if § € (0,00), then when a fire burns a zone (a,b) at some time ¢, we would
have to pick another Poisson measure Tr(Sa’b)‘t(ds, dz, d¢) on [t,00) X (a,b) x (0,00),
independent of everything else and use this Poisson measure above (a,b) instead of
the original 7g.

2.8. Open problems and perspectives

Of course, the main interesting problem is to find a scaling limit of the forest-
fire process, e.g. when seeds and matches fall according to Poisson processes, in di-
mension 2 or more. We believe that the 2-dimensional limit process should enjoy
self-organized criticality. However, it is highly probable that our work, though quite
complete in dimension 1, does not give the least hint of what could happen in dimen-
sion 2. Indeed, all our study is based on the fact that connectedness is very simple in
dimension 1: a vacant site is sufficient to stop a fire. One immediately gets convinced

MEMOIRES DE LA SMF 132



2.8. OPEN PROBLEMS AND PERSPECTIVES 47

that the situation is much more complicated in higher dimension. A possible inter-
mediary step, that we investigate, is to study the case where the underlying lattice is
a tree, in which connectedness is much simpler than in Z2.

A much easier problem, on which we also work, is to study (e.g. in the Poisson
case) the possible scaling limits of the forest-fire process, in dimension 1, when fires
propagate at finite speed. We then expect that several limit processes should arise:
(i) if fires propagate sufficiently fast, then we should recover the same limit process
as when fires propagate at infinite speed, (ii) when fires propagate at some precise
speed (to be determined as a function of \), then we should find a modified limit
process, in which the microscopic fires are unchanged, but in which the macroscopic
fires propagate at finite speed, (iii) when fires propagate slowly, a quite different limit
process should arise.

Other possible variants could be studied. First, one could consider the case where
the processes governing seeds are not independent. It should not be too difficult
to get some results (probably with the same scaling limits as in the present paper),
under a suitable ergodicity assumption. We could also study the case where seeds
fall in a random media. For example, choose (independently) for each site some
parameter A; > 0 at random, and assume that seeds fall on this site according to
a Poisson process with rate ;. In the case where the support of the law governing
the A;’s is bounded from below, a scaling limit could reasonably be found and should
not differ much from the LFF(co)-process. More subtle phenomena could occur if
there are some sites with arbitrarily small rate (on which seeds will fall very rarely).
And so on.

It also would be very interesting to study the existence and uniqueness of invariant
probability measures for the four limit processes, as well as their convergence to
equilibrium. The case 8 = 0 is obvious, since the limit process LFF(0) is stationary.
But the three other cases seem quite intricate. Finite-box versions of these processes
obviously converge in law to a unique invariant probability measure. However, we
have no idea of how to check that correlations do not become longer and longer when
time increases for the true limit processes. Although this problem seems hard, it is
probably less difficult to study invariant distributions for the limit processes than for
the original forest-fire processes.

Finally, it might be possible (possibly using the ideas of the present paper), to give
much stronger versions of Corollaries 2.3.4, 2.4.5, 2.5.4 and Remark 2.6.3 concerning
the asymptotics of the cluster-size distribution. For example in the Poisson case (use
Corollary 2.3.4 with us((t,0)) = e~), we deduce from our convergence result that
the probability that the cluster containing 0 is of size x, in the original scales and for
sufficiently large times, resembles

1 a2 log
(7 ) loa(i/a)] eeiot/hogta/an)y + Aog(1/3) =B M1 )
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in a very weak sense. It would be interesting to prove a stronger version of this
claim. For example, it was proved rigorously in Brouwer-Pennanen [17] that there
are constants 0 < ¢ < C such that for all 0 < A < 1 and all stationary mea-
sures p (invariant by translation) of the forest fire model on Z with parameter A, for
all z < (1/[Alog(1/A\)])3,
c C
Trotee(yy =M IC00I=2) < o ra iy

Our result shows that at least a weakened version of such inequalities extends to much
higher values of z, possibly to all 2 < 1/[Alog?(1/))]. It would be very interesting to
prove that these inequalities really hold true for such values of x.
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PROOFS

3.1. Graphical construction of the discrete process

The goal of this section is to prove Proposition 2.1.4 by using a graphical construc-
tion.

Proof of Proposition 2.1.4. — Our aim is to prove that for any 7' > 0, a.s., the
values of the FF(ug,par)-process (1:(i))ecio,),icz are uniquely determined by
(NZ (@), NM(9))i>0,icz- Recall that

vg(dz) = mgl/l,g((x, 00))dz and vy (dz) = M M ((z,00)) da,

where mg and m; are the expectations of ug and . We consider hg > 0 such that
vs([2ho,>0)) > 0 (if vs has an unbounded support, any value of hg is possible) and
we put ¢o = vs((2ho, 00))var((0, ho)) > 0. We also set K = |T/ho].
For n € Z, we consider the event €, r, on which the following conditions are
satisfied:
(i) NS (n) = 0;
(i) Vi€ [L K], Ny, (n+i) = NGy, (n+19);
(iif) Vi € [1, K], Nj (n+i) >Ny, (n+19).
We first observe that for any n € Z, using the stationarity of the renewal processes,
Pr[Q, 7] = vs((ho, oo))c(lf =:cr > 0.
Next we prove that necessarily,
Qnr C {Vt € [0,T],3i € [n, n+ K], n:(i) = 0}.
This is not hard:
(i) implies that ni(n) = 0 for ¢ € [0, ho], since no seed falls on n during this
interval;
(ili) implies that for ¢ € [1, K], a match falls on n + ¢ during ((¢ — 1)ho, iho] ;
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(ii) guarantees us that no seed falls on n + ¢ during ((¢ — 1)ho, (¢ + 1)hg], whence
the site n + 4 is necessarily vacant during (at least) (iho, (i + 1)ho].
Consequently, on Q,, 1, there is always at least one vacant site in [n,n+ K] during

.U (U Giho, i+ Dhol) > [0,7]
i=1,.., K
(with our choice for K, we have (K + 1)hg > T).

Hence conditionally on Q,, 7, during [0, T7], the fires starting on the right of n + K
do not affect the values of the forest fire process on the left of n; and the fires starting
on the left of n do not affect the values of the forest fire process on the right of n+ K.

Since Pr(Q, r] = ¢ > 0, we can find --- < n_y <ny <0< ny <ny... such that
Meez, n,, 7 is realized (use that Q, 7 is independent of Q,,, 7 if [m —n| > K).

We deduce that for any i € Z, the values of (1:())¢c[o,) are entirely determined by
the values of (N7 (5), NM(5))eeqo,(k+1)ho] for a finite number of j’s, namely (at most)
j € [nk,ne + K], where k < ¢ satisfy n, + K < i < ny.

We have shown that for any T' > 0, (1:(¢))¢>0,icz is entirely and uniquely defined
by the values of (N (i), NM(4))se(o,(K+1)ho] ic2- O

3.2. Convergence of matches

In this section, we consider any function A — ay bounded from below and such
that ny = [1/(Aay)| — oo. For A > 0 and i € Z, we set

A)\: \_A’n)\J, Iz\: [—A)”A)\]]., Z’)\ = [i/nA,(i—&-l)/n,\).
The following result will be used to prove our four main theorems.
PROPOSITION 3.2.1. — Assume (Hyr). Let A > 0 and T > 0 be fived. We can
find, for any X € (0,1], a coupling between a Poisson measure wp(dt, dz) on [0, 00) xR

with intensity measure dtdx and a family of i.i.d. SR(u);)-processes (NtM’A(i))iez,tzo

such that for
QUL () = {vt € [0,T], Vi € I, ANMA0) # 0 iff mar({t} x ix) # 0},

axt
one has limy_,o Pr[Q& (V)] = 1.
This means that in our scales, with a high probability, the matches used in the

discrete processes can be prescribed by a Poisson measure, as in the limit processes.

Proof. We divide the proof into several steps. Observe that
By = U ix=[—Ax/nx, (Ax+1)/m)
iel}
(which is approximately [—A, A]). It of course suffices to build 7wy restricted to
[0,T] x By and the family (N;}"*(:)) for i € I and t € [0, axT].
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Step 1. — We observe that a possible way to build mas (restricted to [0,7] X By)

is the following;:

(i) Consider a family of i.id. r.v. (Z}

i

)ic 1, following a Poisson distribution with
parameter T|iy| = T/ny.

(ii) For each i with Z > 0, pick some i.i.d. r.v. (Tf’A,X;’A), Cey (T;;\,Xlzi‘) with

uniform law on [0,7] x ix (conditionally on Z?). Set finally

z}
™ = Z Zé(T;,AA’X;.)\)‘

iel} k=1

Step 2. — Next, we note it is possible to build the family (Nt]w,)\(i))ielz,tE[O,aAT]
as follows: introduce

g\ T) = Pr[N2 () = k] and (7 (db, ..., dty)

the law of the k jump instants of N™:A(;) in [0, a\T)] conditionally on {NXT)‘(Z) = k}.
(i) Consider a family of i.i.d. r.v. (Zi)‘)iejﬁ with law (gx(X, T))k>o0-
(i) For each i with Z} > 0, pick (T,... ,f%i‘) according to (%;T(dtl, c dtgj)
(conditionally on Z}).
7 2
Set finally NMA (i) = Y70 Lsginy for t € [0,a3T), i € I}
Step 3. — We show in this step that for each i € Iﬁ, one can couple Zf‘ (as in
step 1(i)) and Z} (as in step 2(i)) in such a way that
Pr(Z} = Z} = 0] > 1 - Aa\T(1 +er(N\)),
Pr[Z} = Z} = 1] > AayT(1 —er(N)),
where limy_,ge7(\) = 0. Below, the function er may change from line to line.

It is classically possible (see Lemma 5.1.3 (i)) to build a coupling in such a way that

We now use (Hyy): recalling that fooo ph((s,00))ds =1,
o0

Pr[Z} = 0] = V])Cj((a,\T, 0)) = /\/ T,u}w(()\s, 00)) ds

oo Aa T
= / s ((u,00))du=1— / w3 ((u,00)) du > 1 — AayT.
A

a)\T 0
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Since Pr[Z)} = 0] = e~ T/m = e~ T/L1/(a)] — 1 _ X, T(1 + ep()\)), this concludes
the proof of the first lower-bound. Next, recalling Definition 2.1.1 and (Hjy),

ranT

PZ = 1) = [ (@ - .00 (as)

_ /0% pds (AMaxT = s),00)) Ak (As, 00)) ds

Aa T
= [ k(0T — w00)) iy (10 du
0
= )\a)\T(l - ET()\)),
since Aay — 0 as A — 0. But now
Pr[Z} = 1] = (T/ny) e T/™ = XaxT (1 — ex(N),

because ny = |1/(Aay)] and this concludes the step.

Step 4. We now check that for each i € I, conditionally on {Z} = Z} = 1},
we can couple TP and 77 (see steps 1 (i) and 2 (ii)) in such a way that for

rr(\) = Pr [T} =T7 ay | 20 = Z) = 1],
limy_,o 77 (A) = 1. We first recall that 77 is uniformly distributed on [0, 7] (con-
ditionally on {Z} = 1}). We next remark that the conditional law of T:** knowing
{Z} =1} (which we called ¢;"") is nothing but
vir(d)pds ((axT — t,00))Lirefo,an11)
T

I 1 (aT — 5,00) ()

_ 13 (M(axT — t),00)) Ay, (AL, OO))]I-{tG[OA,aAT]} dt
AayT (1 —er(N) ’

where we used the same computations as in step 3. Consequently, the conditional law
of Ti* /ay knowing {Z} = 1} has a density gy 7 of the form

1+er(A
%M}w(()\aA(T — 1),00)) tar ((Aaxt, 00)) Liero 173

T (dt) =

() =

Observe that limy_,o g 7(t) = Tflll{te[oyT]}, since Aay — 0. Hence, classical ar-
guments (see Lemma 5.1.3 (ii)) show that conditionally on {Z} = Z>» = 1}, we can
couple TP* and T in such a way that

T
; ~ ~ 1
Pr [0 = TN ay | 2} = 2} =1] > / min (T,g)\j(t)> dt,
0
which tends to 1 as A — 0 by dominated convergence.

Step 5. — We finally may build the complete coupling.

(i) For each i € I}, we consider some coupled random variables (Z},Z)‘) as
in step 3.
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(i) For i € I} such that Z} = Z} = 0, there is nothing to do.

(iii) For i € I} such that Z} = Z} = 1, couple T;"* and Ti" as in step 4 and pick
X iA uniformly in iy.

(iv) If i € I} does not meet one of the two above conditions (ii) and (iii), then we
build (Tf’)‘, X{I’A), ce (T;;‘ X’Zi) and Tf’)‘, ... ’T;N? in any way (e.g., follow
the rules of step 1 (ii) and step 2 (ii) independently).

(v) Forie I}, t€[0,Tay], set

z} z
M-
™= Z&Té'\xi’*) and N0 = Lioainy
k=1

ien} k=1
Step 6. — Define the event
=N (120 =2 =0puiz} = 2} =1, TP =T}V a,}).
iel)
Then we have SN‘Z%T(/\) C Q%T(/\) (where Q%T()\) was defined in the statement).
Indeed, on ﬁ%T(/\)7 for any i € Iﬁ, t €0,T], we have ANK,;)‘(i) # 0 iff (Z?‘ =1and
axt = T ff (Z) = 1 and ¢ = TP iff s ({t} x i) > 0.
Finally, using steps 3 and 4 and that |I}| = 24, + 1,
- - _ 24541
Pr[QY (V)] > (Pr[zoA =7} =0]+Pr [Zg =Z)=1, T" = TP’A/aA]) i
24541

Z (1 - )\H,/\T(l + ET()\)) + )\a,)\T(l - ET()\))TT(/\))

Recall that limy_,0 er(A) = 0, that limy_,o 7r(A) = 1 and that Ay < A/(Aay). Hence
for some (other) function er with limit 0 at 0,

PriQY 7 (A)] > (1 — AaxTep(N))*A/ Ao+

This last quantity tends to 1 as A — 0, which concludes the proof. (]

3.3. Convergence proof when § € (0,00)

We split this section into three parts. First, we handle some preliminary compu-
tations on SR(g)-processes. Next, we show how to couple the set of times/locations
where no seed fall (in the discrete model) with the Poisson measure mg. Then we
conclude the convergence proof. In the whole section, we assume (Hys) and (Hg(3))
for some 8 € (0,00). We recall that ay and my are defined in (2.2.1) and (2.2.2).
For A > 0 and i € Z, we set

Ay = [Amy ], Ik = [—Ax, Ax], ix= [i/nA,(i+ 1)/nA).
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3.3.1. Preliminary computations. — First, we will need the following estimate.
LEMMA 3.3.1. — For any £ € (0,00) fized,

us( (axt, 00 ) ~mgBlTPTIN as A — 0.
t,

Proof. — Recall that pg(
monotonicity of z — ug((z,0)),
)

axl, oo 1 ay ((+a)
MS(( /)\\ ) > a)\a/\/ ,U/S((Q?, OO)) dz

00))dt = mgvg(dt). For a > 0, one may write, using the

axt
= ey [s((axt,00)) —vs((ax(t + ), o0))]
_ms {us(w, %) _ ws((@r(l + ), )
o [s((ano) ~ vs((ar.0)

For the last equality, we used that by definition, vs((ax, 00)) = Aay. Due to (Hs(5)),
we deduce that for any « > 0,

limint Hs((axt, o))
A— A

> % [0 = (t+ )] > msB(l+ ) P

One gets an upper bound by the same way: for any « € (0, /),

a)?
lim sup ps(art, ) < lim sup / ps((z,00)) do < mgB(€ — )P
A—0 A—0 aAay Jo (1—a)
We have proved that for any a € (0,7),
14 14
mgB(l+ a) P~ < liminf ps(art,0)) < limsup #s((art, 00)) <mgBl —a) P
A—=0 A A—0 A

Making « tend to 0 allows us to conclude. |

Next, we compute the asymptotic probability that on a given site, no seed fall
during some large time interval. By large, we mean with a length of order a.

LEMMA 3.3.2. — Let (Ty)nez be a SR(pg)-process (see subsection 2.1.1). For
A>0,t>0and (>0, we set

SO =#{ne€Z: T,el0,art], Tn — Tho1 > arl},
which represents the number of delays with length greater than ax{ that end in [0, axt].
(i) Fort>0 and £ >0 fized, as A — 0, Pr [SP(£) = 1] ~ tAa B¢ P~
(i) Fort>0 and £ >0 fived, limsup,_,o(Aax) "2 Pr [S}(0) > 2] < oo
(iii) On the event {S}(€) = 1}, we put
7:=T, and L=T,—T,_ 1,

where n 1is the unique index such that T,, € [0,t] and T,, — Ty,—1 > ax{. For all
s€0,t], all z € (¢,00),

)l\iL%Pr['r/a,\ <s, Ljay>x | SMNC) =1] = (s/t)(x/t)~ "1
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Proof. — Let us recall that the SR(ug)-process (T, )nez is built as follows: one consid-
ers an i.i.d. sequence (X;);ez\ oy of pus-distributed r.v., Xo a zpug(da)/ms-distributed
r.v. and U uniformly distributed on [0, 1]. Then we set

To=-(1-U)Xo, Th=UXo
and for all n > 1,
Tpi1 =Tp+Xn and Top =T pi1 — X_p.
We also introduce, for A >0,/ >0and 0 <s <t
SO =#{n€L: T, €[ars,art], T — Tne1 > arl}.
Step 1. — First assume that £ > ¢. Then by construction, S} (¢) € {0,1} and
{0 =1} ={Th < axt, 1 —Tp > axl} = {UXy < axt, Xo > axl}.

Hence

E[Sf)\(g)} =Pr [UX() S a,)\t, X() Z a,\é]
® rug(de) [
:/ M/ @l sty

N4 mgs 0
oo
zus(dr) axt  axt
:/ zps(de) axt _ D16 ((axt, 0)).
at  Ms z ms
We used here that since ¢ > ¢, for = > ay/, there holds ayt/x < 1.

Step 2. We now show that for any ¢ > 0, any t > 0,
A a)\t
E[S}(0)] = mus((aAZ, 00)).

Consider n > 1 such that t/n < ¢ and observe that

n—1

i=0
By stationarity, we have E[Sﬁ/n (1)t (0] = IE[St)‘/n(Z)] fori = 0,...,n — 1, which
is nothing but %ug((a%, 00)) by step 1. The conclusion follows by linearity of
expectation.

Step 8. — We now check point (ii). Let
p1 = inf {Tn tneNT, T,
p2 = inf {Tn :nmneNT, —T, 1

\%

a)\f,Tn > 0}7
a)l, T, > P1}~

Y

Then Pr[S}(€) > 2] = Pr[pz < axt]. We also observe that

Prip1 < axt] =Pr [St)‘(é) >1] < E[St)‘(é)] = axtps((axt,o0))/ms.
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Denote by (¢ the law of p;/ay. Then a renewal argument shows that

Pelsp022) = [ Gutansine-n),
where
JOLGs)=Pr[3n>1;X, > axl; X1+ + X < ans].
We can rewrite this as (recall that T3 = UX ~ vg)
F(\ L, s)
=Pr[An>1;X,>a;UXo+ X1+ -+ Xn < axs+UXy)

<Pr[3n>0X, > ax;UXo+ X1+ + X < an(s + 1)] + PrlUXp > a)]
=Pr [S;\H(f) > 1] + vs((ax,0))

_ ax(s+1)

. ug((a)\f, OO)) + Aay

thanks to step 2. As a conclusion,

t+1
Pr(S}(¢) > 2] < (%#s((a%w +/\GA / Cae(dr)
t+1
= (M/LS(((LM,OO +/\a,\> Prlp1 < a\T)
ms
< (%us((aﬂ,m +/\a)\> a)\f, oo))

Due to Lemma 3.3.1, this last term is equivalent to (/\a)\)2[(t+ DBeA=t 4 1]tpe=h -1,
from which point (ii) follows.

Step 4. — Steps 2 and 3 imply point (i). Indeed, we clearly have
Pr[S)(0) = 1] <E[S}(0)] = %MS((@\& 50)) ~ thayBL-F1
by Lemma 3.3.1. Next, using that SP(¢) < 1+ ¢/¢ by construction,
Pr [S}(0) = 1] = E[S}OVsp0-1y] = E[SHO] = B[S} (D15 0>2]

> T,T;us((me, 00)) — (1+t/) Pr[S}(¢) > 2).

Point (ii) allows us to conclude easily.
Step 5. — It remains to check (iii). We thus fix 0 < s <t and 0 < £ < z. Then as

A — 0, and due to point (i)

Pr[S}(z) = 1]

Pr[S}4) = 1]

shayfr A1
t)\a)\ﬁf7571

Prir/ay<s, Ljay > | S}(6) =1] =

=(s/t)(z/0)""1. O
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3.3.2. Coupling of seeds. — We aim to couple the Poisson measure g (dt, dz, d¢)
used to define the LFF(3)-process with times/places where seeds do not fall in the
FF(us, uy,)-process. We would like that roughly, mg({t} x i x {£}) = 1 if and only
if no seed falls on ¢ during [ax(t — ¢), axt] (and if this is the maximal interval, that
is seeds fall in ¢ at times ay (¢ — ¢) and ayxt). We have to consider the finite Poisson
measure 7g restricted to the set {¢ > 0}, for some arbitrarily small § > 0.

PROPOSITION 3.3.3. — Let A > 0,7 >0, @ >0 and § > 0 be fized. For any
X € (0,1], it is possible to find a coupling between a Poisson measure wg(dt, dx, df) on
[0,00) x R x [0, 00) with intensity measure 3(8+1)¢~#~2dtdzdl and an i.i.d. family
of SR(ug)-processes (T )icznez (recall subsection 2.1.1) in such a way that for

S%(&Z) = Fs([O,T] X i)\ X [5 OO)),
SpO ) =#{n>1: T €0, a\T], TP TP, > axd},
setting

A rsa = () ({826:9) = 56,0 = 0} U {S3(6.1) = 5p(8,) =

iel)
00 - Ee0 s - B0 <o)

there holds
. S =
)l\lgi) Pr (QA,T,J,Q()‘)) =1

On the event {S}(5,i) = §)‘(6 i) = 1}, we have denoted by (7(3,4), L}(5,4)) the
unique element (t,€) € [0,T] x [6,00) such that ws({t} x ix x {€}) =1 and we have
put F%(@z) T! and L(5, z) T,’L Ti |, where n > 1 is the unique element of N
such that Tfl € [0, ax\T] and TT’L - T}Hl > ayd.

Proof. — We fix T >0, A > 0,5 >0 and a > 0. We divide the proof into several
steps. Observe that

= U ix=[—Ax/nx, (Ax+1)/m)
iel)
(which is approximately [—A, A]). It of course suffices to build mg restricted to

[0,T] x By x [d,00) (we abusively still denote by 7s this restriction) and the fam-
ily (T%) for i € I’} and n > 0 (with our notation, we have T¢ < 0 < T).

Step 1. — A possible way to build mg (restricted to [0,7] x By X [d,00)) is the
following.

(i) Consider a family of i.i.d. r.v. (S%(é,i))idj\ following a Poisson distribution
with parameter

i) [ T8+ 120 = 55Ty,
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(ii) For each i € I} with S7(8,7) > 0, pick some ii.d. r.v.

Ay A i
{(TI; 7Xllc 7L;< )}kzl,m,s,}(é,i)

with density l{te[ B+ 1)npd8t1=8=2/T. Put

0,7],c€ix,0>5 } (

52.(8,0)

s = Z Z 6(T;./\’X;,A7L;€.A).

iel) k=1

Step 2. — Next, we note it is possible to build the family (Trib)ieI}NQO as follows:
denote by gx(A) = Pr[S3(6,4) = k| and by A} the law of (T}}),>0 conditionally on
{S2(6,4) = k}.

(i) Consider a family of i.i.d. r.v. (5%(671'))1-613 with law (gx(X))k>o0-

conditionally on g%(& 7).

(i) For each i € I}, pick (T%),>0 according to A%%(é,i) (

Step 3. — For each i, it is possible to couple S (4,) and g%(&i), distributed as
in step 1 (i) and step 2 (i), in such a way that

Pr[S2(8,i) = S2(6,9) = 0] > 1~ AaxB6 71T (1 + 7 5(N)),
Pr[S3(6,4) = S2(8,1) = 1] > XaxB6 77T (1 — er5(N)),

where limy_,gep,s(A) = 0. It is classically possible (see Lemma 5.1.3 (1)) to build a
coupling in such a way that
Pr [S3(8,4) = S}(8,1) = 0] > Pr (S}(8,1) = 0) A Pr (S3(3,4) = 0),
Pr [S}(8,4) = S}(8,i) = 1] > Pr (S3(8,i) = 1 1
First, we infer from Lemma 3.3.2 that
Pr (S3(8,4) = 0) > 1 — AaxB6 21T (1 + e 5(N)),
Pr (S3(6,7) = 1) > AaxB6 71T (1 — ers(\).

Next, since S (3,4) follows a Poisson distribution with parameter 36~#~1T/ny ~
AaxB5~ 21T, we have

Pr(S3(5,i) = 0) = e "7 T/m > 1 _ xay B5 P T (1 + e,5(N))
and there holds
Pr(Sp(6,4) = 1) = [86 71T my]e 0" T/m > Xapy 861 T (1 — ex5(N)).
This concludes the step.
Step 4. — We now check that for each i € I}, conditionally on
{82(8,49) = Sp(8,4) = 1},
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we can couple (Tlm7 Lﬁ’A7 X#M1) and (ffz)nzo in such a way that limy_o rr,5.0(A) =1
for (see the statement)

(6,

N ¢ [eaa - L3G.0)

rrsa(d) = Pr [ |72,1) .

<o<|Zi)‘:Z)‘:1]
ay

To this end, consider (Tfl)nzo with law A7 (recall step 2). Denote by
por(dt, df)

the law of (72(6,1)/ay, f}(&, i)/ay) (under A3). We know from Lemma 3.3.2 (iii) that
p(?,T(dt7 dl) goes weakly, as A — 0, to
ps,r(dt, d6) == T (B + 1) P21 (o a6y dtde.
Indeed, observe that ps ([0, s] x [z, 00)) = (s/T)(z/5)#~! for s € [0,T] and = > 4.
But ps.r(dt, ) is nothing but the law of (7)(6,4), L}(6,1)) = (Ti**, L:*) condi-
tionally on {S3(6,4) = 1} (recall step 1(ii)). We easily conclude: first, we couple
(T2(8,4)/ax, L (8,4)/ay) and (72(68,4), L(6,1)) in such a way that they are close
to each other (with a distance smaller than «) with high probability (tending to 1
when A — 0), using Lemma 5.1.3 (iii). Then we choose Xi™ at random, uniformly
in 4y, independently of everything else and finally, we pick (77),>0 conditionally on
{S2(6,4) = 1} and (7)(6,4), L} (5,1)).
Step 5. — We finally may build the complete coupling.
(i) For each i € I, consider some coupled r.v. (S} (4,1), 5%(5? i)) as in step 3.
(ii) For i € I) such that S)(d,i) = §%(6,z) = 1, couple (Tf‘)‘,Li’)‘,X'{’)‘) and
(TH)n>0 as in step 4.
(iii) For i € I’} not meeting the above condition (ii), follow the rules of step 1 (ii) to
build (T,;*A7 X;’)‘, L;C’A)lgkgs%(é,i) and the rules of step 2 (ii) to build {77 },>0
(e.g. independently).
. i S (6,
This defines {T};},,>0,icsy and ms = Ziezg Ek’zg ) (5(T;.>\.XILC,)\"LL‘)\).
Step 6. — With this coupling, using steps 3 and 4 and that |[I}| = 24, + 1,
Pr[Qi,T,é,a]
> (Pr[83(6,1) = 53(6.4) = 0] + Pr[S}(0,1) = 53(6,1) = 1,
~ 2A5+1
|7(8,4) = 77(8,0)/ ax| + L7(8,4) — L7(8,4) /ax| < a])

> (1= AaxB6”'T(1 +er,s(N) + AanB6° T (1 — ET,J(/\))TT,&.UL()‘))ZA/\JA'

Recall that limy_,oep s(A) = 0, that limy_,or75,(A) = 1 and that Ay < A/(Aay).
Hence for some function e7 5 with limit 0 at 0,

— 2A/(Aayx)+1
PrIOS 150l > (1= AaxB0P 1 Ter 5 o (V) O

This last quantity tends to 1 as A — 0, which concludes the proof. (]
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3.3.3. Convergence. — We are now able to conclude. Intuitively, the situation
is clear: using Proposition 3.2.1, we couple the time/positions at which matches fall
in the LFF(83)-process with those of the FF(ug,u),)-process; and using Proposi-
tion 3.3.3, we couple the time/positions at which no seed fall in the LFF()-process
with time/positions at which no seed fall during a time interval of length of order ay
in the FF(us, /l,ﬁ,[)—proccss‘ Then we only have to show carefully that this is sufficient
to couple the FF(ug, 3, )-process and the LFF(53)-process in such a way that they
remain close to each other. But there are many technical problems: our couplings
concern only finite boxes [0,7] x [—A, A], do not allow to treat small time intervals
with no seed falling, etc. We thus have to localize the processes in space and time and
to work on an event (with high probability) on which everything works as desired.

Proof of Theorem 2.5.3. — We fix T > 0, 1 < --+ < zp, and ty,...,t, € [0,T]. We
introduce B > 0 such that —B < 27 < 2, < B. We fixe > 0 and a > 0. Our
aim is to check that for all A > 0 small enough, there exists a coupling between
a FF(us, 1)y )-process (0 (i))i>0,iez and a LFF(B)-process (Y;(z))s>0,zcr such that,
recalling (2.2.3) and Proposition 2.5.2,

p 4
(3.3.1) Pr [ 360 (D (i), Dlww)) + D_ 8(D)) (a1), Dy (1)) = a] <.
k=1 k=1
This will of course conclude the proof.
Step 1. — Consider two independent Poisson measures mg(dt, dz, d¢) with inten-

sity measure 8(8+41)¢~#~2dtdzd¢ and 7y, (dt, dz) with intensity measure dtdz. Set,
for A > B,

O = {ms({(t,2,0) : 2 € [B, At >T+1,0>t+1}) >0}
N{rs({(t,z,0) : € [-A,-Bl,t >T+1,0>t+1})>0}.

A simple computation shows that
A [eS] o]
Pr[Qi’lT] >1-—2exp ( - / dx/ dt BB+ 1)Z_ﬂ_2>,
’ B T+1 t+1

so that we can choose A large enough in such a way that Pr[Qi’}T} > 1— %e. This will

ensure us that there are x, € [-A, —B] and x4 € [A4, B] with Y;(x4) = Yi(xa) = 0 for

all t € [0,T + 1] (recall Figure 4). This fixes the value of A for the whole proof.
Next we consider Ty > T" + 1 large enough, so that for

O = {ms({(t,2,0) + t> Tyt — (< T+ 1,z € [-A A]}) =0},

Pr[Qi}%} >1— Le. This is possible, because

A oo oo
PriQ3% 1) :exp(f/ dz/ dt/ 5(5+1)e—ﬂ—2de),
—A To t—(T+1)

MEMOIRES DE LA SMF 132



3.3. CONVERGENCE PROOF WHEN g € (0, c0) 61

which clearly tends to 1 as T increases to infinity. This will ensure us that all the
dotted vertical segments in [—A, A] that intersect [0, T+1] end before Tj (see Figure 4).
This fixes the value of Ty for the whole proof. Next we call

Xy = {I S [—A7 A} : WA{([O,T] X {.T}) > 0},
Tu ={t€10,T] : mp({t} x [-A, A]) >0} U{0}.
Classical results about Poisson measures allow us to choose Kjp > 0 (large)

and cp; > 0 (small) in such a way that Prj}! ]>1— e for

K em

M,1 . .
Kyem {'TM‘ < K, z,glel7r'11 [t — 3‘ > CM, trél%; ‘t —t| > cur,
s#t k=1,...,p
min |z — zg| > CM}.
zE€EXM
k=1,....p

We can now fix § > 0 for the whole proof, in such a way that

a
d<ley and 6 < -
O 8ApK s
We use this § to cutoff the Poisson measure mg (in order that it has only a finite
number of marks) without affecting the values of the LFF(8)-process in the zone
under study.
Next, we consider the finite Poisson measure 7r'54’6"T° defined as the restriction of g

to the set [0, Tp] x [—A, A] X [, 00). We define
xS = {ze[-A 4] : 75([0,To] x {z} x [0,00)) > 0},
w=( U  {t-0)noT

A8, T
(t,z,0)€ supp mg "0

Then for Kg > 0 large enough and ¢g > 0 small enough, the event

Qf(z 5.6 = {|Tb§| < Kg, min > cg, min > cg,
- LI &S Je-tal
m%n > cg, n}in > cg, r?in > Cs}
Ty S la=l S el 2SS ol

satisfies Pr[ﬂfé;cs,a] >1- éa. Finally, we fix o > 0 in such a way that
a<ics, a<icy, a<i and a<a/(8Ap(2Ks+ Kur)).

Step 2. — Using Proposition 3.2.1, we know that for all A > 0 small enough, it is
possible to couple a family of i.i.d. SR(u},)-processes (N} (i))i0.icz with mp in
such a way that

QNP (N = {vt € [0,T], Vi € I, ANYY(6) # 0 iff mar({t} x ix) # 0}
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satisfies Pr[Q4,(A)] > 1 — ge. We infer from Proposition 3.3.3 that for all A > 0
small enough, it is possible to couple an i.i.d. family of SR(us)-processes (ii)iez,nzo
with 7g in such a way that for

57,(6,1) = 75 ([0, To] x {ix} x [5,00)),

STU 5 Z #{n >1: T,,Zl S [O, (l)\T()], f;l — fyil—l > a,\(S},
setting

O 1,50 = () ({82,06.0) =86, =0} u{sh (65.4) = S} (6.1) =1

(6.1 )
A5 q) — %) PV P )
‘T (6:) = = )+‘L (3.0) = ‘<a}>,
Pr(Qi,Tm(S,a()‘)) > 1— %e. On the event {S%U(é,i) = 5%0(6, i) = 1}, we have de-
noted by (7*(6,7), L*(,i)) the unique element (¢,£) € [0,7p] x [§,00) such that
ms({t} x ix x {¢}) = 1 and we have put
7X(8,1) :ilb and LM6,i) = TJL 1

where n > 1 is the unique element of N such that TT’L S [O, a)Tp] and ilb 77%71 > a)o.

We put
S(
)= sz
n>1

for all ¢ € Z, all ¢ > 0, which is a family of i.i.d. SR(ug)-processes in the sense of
Definition 2.1.1, see subsection 2.1.1.

Step 8. — We work with the FF(us,uj,)-process (n)(i))i>0,icz built from
(NZ(i))iz0,icz and (N"(i))i0,iez and the LFF(B)-process (Vy(2))iz00er built
from 7g and 7y, all these processes being coupled as in step 2. We consider the asso-
ciated clusters (D (z))i>0,zer and (Dy(2))i>0,zer, see (2.2.3) and Proposition 2.5.2.
We will work on the event

O = Q0 N, N NPt QY () NQS 556N

Kn,em Ks,cs,0
Thanks to the previous steps, we know that Pr[Q,] > 1—e¢ for all A > 0 small enough.
We introduce
S = (Uterns [tvt +46+ a]) U (UteTS‘*' [t —ot+ a])

We will prove in the next steps that for A > 0 small enough, on Qy, forallk =1,...,p,
for all t € [0,T],
(3.3.2) 8(D}Mzr), De(zr)) < 4/mx + 241 ey,
which will imply that

37 (D> (wg), D(xy,)) < 4T /ny + 24]S|.
This will conclude the proof. Indeed, on {2y, we know that ¢;,...,t, do not belong
to S (thanks to QKS co.s and o and since ¢g > « and ¢y > 0 + «) and that

KM cm
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the Lebesgue measure of S is smaller than K0 + (2Ks + Kp)a. Thus on £, since
0 < a/(8ApK ) and a < a/(8Ap(2Ks + Kur)),

> 67 (DMak), D(a)) + Y (D)) (xk), D, (zx))

k=1
< p[2A(KuM6 + 2Ks + Ky)o) + 4T /ny + 4/my] < a/2 + (AT + 4)p/n,

which is smaller than a for all A > 0 small enough. This implies (3.3.1) for all A > 0
small enough.

Step 4. — Here we localize the processes, on the event €. Due to Qi’AlT, we
know that mg has some marks (74, X4, Lg) and (74, x4, La) such that —A <’Xg <
—B, B<xa<A 179g>T+1,17q>T+1, Ly >71y+1and Ly > 74+ 1. This
implies, by definition of the LFF(/3)-process, that Y;(xy) = Yi(xa) = 0 for all t €
[0,T + 1]. Consequently, for all ¢t € [0,T] and all z € [x4,xq] D [-B, B], we have
Dy(z) C [xg, Xdl-

Set now gx = |naXy) and dy = |myxa). These are those sites of I} C Z such that
Xg € (g2)x and xq € (dx)x. We claim that on Qy, for all t € [0, axT],

i (ga) = m(dx) = 0.

Consequently on 2, we clearly have C(n ,4) C [gx+1,dx —1] for all t € [0,T] and
all i€ [gr +1,dx —1].

Indeed, consider e.g. the case of dy. Due to Qi’Tq)&a(/\) and since 5'5\«0 (6,dx) >0
(because g has the mark (74, x4, Lq) that falls in [0, Tp] X (dx)x X [, 00)), we deduce
that S (3,dx) = S, (6, d») = 1 and that

|72(8,dr)/ax — 7a| + |LMN6,dr) /ax — La| < o < 1.

But no seed falls on dy, by definition, during (F*(8, d))—L*(6, dy), 7*(5,dy)). This last
interval contains [0, axT]: since @ < 1, 72 (8,dn) > ar(Ta— @) > ax(T+1—a) > a\T
and 72(d,dy) — ZA(& dy) < ax(ta — La + 2a) < ax(—1+ 2a) < 0. This proves that
n(dy) = 0 for all ¢ € [0, a\T).

Using furthermore Qfl:QT,TD (0), we deduce that on Qx, (Y:(2), Dt(2))iec(o,1,2€[xq.xal
is completely determined by the values of mg and 7y restricted to the boxes [0, Tp] x
[Xg-,Xd] x (0,00) and [OvT] x [Xg-,Xd]- By the same way, (nt)\(i))te[o,akT],ieﬂgx«,dx]]
is completely determined by (Nig(i),thw’/\(i))tg[o,axT],iG[[g)\,dA]]‘ And we recall that
[_B7B} Cc [ngXd] - [_A7 A}

Step 5. — In this whole step, we work on Q5. We denote by (p;,a;)i=1,....n the
marks of mps in [0, T] X x4, Xa], ordered chronologically (0= pg < p1 < -+ < pp < T).
For each k, we recall that in the FF(ug, ,u}/[)—process, there is match falling at time
axpy, on the site [naax] (recall Q41 (X) and that @ € iy iff i = [nyz]). Furthermore,
these are the only fires in [0, axT] X [gx,dr]. For k = 0,..., n, let us consider the
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properties
(Hk) t Vie [[g/\%dk}]v Wiwk (7’) = ;relg ka (I)
(Hp): Vi€londal, VEE [proprin) \ S, ay(i) = inf Yi(a).
XTEiN

We observe that (Hyp) holds: for any i € Z, (i) = 0 and inf ,¢;, Yo(x) = 0 because
the set {x € R : Yy(z) = 0} is a.s. dense in R. Indeed, recall that Yj(z) = 0 as soon
as mg({(t,2,0) : 1 >t})>0and that [;° dt [ B(8+1)P2dl = 0.

We are going to prove that for k € {0,...,n — 1}, (Hy) implies (H}}) and (Hy1).
Assume thus that (Hy) holds for some k € {0,...,n —1}.

We first prove that (H}}) holds.

We recall that for all i € [gx,da], S3,(0,i) = 5%0(671') is either 0 or 1. On
{83, (8,9) = S}, (8,i) = 1}, we have

|72(8,4) — 7M6,1)/ax| <@ and  |LA(8,4) — LN(8,4)/ar| < o

M,1

S,3 . 1 .
Korear and QKS,Cs,é’ using that a < zcpr, we deduce that:

Recalling furthermore
> either 72(d,4) and 7*(6,4)/a both belong to the same interval (p,(i), Pq(i)+1) for
some ¢(i) € {0,...,n — 1} or are both greater than p,, (then we say that ¢(i) = n);
b either 72(6,4) — L*(8,7) and (F(8,i) — L*(6,4))/ax both belong to the same
interval (pq:(s), Pq(i)+1) for some ¢'(i) € {0,...,n — 1} or are both greater than p,
(then we adopt the convention that ¢/(i) = n), or are both smaller than 0 (then we
say that ¢/(i) = —1).

We next observe that since § < c¢ps, the values of
(Y't(l)7 Dt(w))te[O,T]

depends on mg only through its restriction to [0, To] X [xg, xa] X [0, 00). Furthermore,

\Usey, [8,548],2€[xg,xal

for any ¢t € [0,T] \ Usery, [s,s + 9] and any = € [x4, xa], Di(x) has its extremities
in Xg. Have a look at Figure 4 and use the fact that all the dotted segments with
length smaller than ¢ cannot concern two fires. See also Remark 2.5.1 (ii).

We now distinguish several situations to prove (H};). We use, in all the cases below,
that there are no fires in the time interval (pg, px+1) in the LFF(8)-process in the
box [xg, Xa] and no fire during (@xpi, axpx+1) for the FF(ug, i3, )-process in the box
[gx, dx], recall Q47 (X). Let i € [ga, da].

Case (a): ny, ,, (i) = 1. Then by (Hy), infye;, Yy, (z) = 1. An obvious monotonic-
ity argument shows that for all t € (pk, pr+1), Mgy, (i) = infees, Yi(z) = 1.

Case (b): 77‘)1‘% (i) = 0 and 53, (6,4) = §%0 (6,%) = 0. Then inf,¢;, Yi(xz) =1 for all
t € [pr+9, pr+1), because in 7y, there is no dotted segment with length greater than §
that intersect [0,77] (see Figure 4). Next, 5%0(6., i) = 0 means that all the delays we
wait for a seed (on the site ¢ during [0, axTp]) are smaller than a)d. Consequently,
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Naye(i) = 1 for all t € [pr + 6, ppq1). Hence 1) ,(i) = infre;, Yi(z) = 1 for all
t € [px + 9, pr+1) O (Pr, pPrs1) \ S

Case (c): 7p,,,(i) = 0 and S, (6,7) = 5%0(5, i) = 1 and ¢(i) < k. Then
infye;, Yi(z) =1 for all ¢ € [pg +9, pry1), because the only dotted segment in iy with
length greater than ¢ that intersects [0, 7] has ended before pj (because ¢(i) < k).
Next, the only delay (between two seeds on ¢ during [0, a\T]) greater than a0 is
ended before axpy (because q(i) < k), so that n} (i) = 1 for all t € [p + 6, prs1)-
Hence 1 (i) = infoei, Yi(z) =1 for all ¢ € [pr + 6, prr1) D (s prs1) \ S-

Case (d): nﬁ‘wk (i) =0, 5%0(6,2') = :57%0 (6,4) = 1 and ¢'(¢) > k. Then
infyei, Yi(z) = 1forall ¢ € [pg + 0, pr41). Indeed, the only dotted segment in iy with
length greater than ¢ that intersects [0, T starts (strictly) after py (because ¢'(i) > k).
Next, the only delay (between two seeds on i during [0, a\T]) greater than axd will
start strictly after axpy, (because ¢(i) > k), so that n (i) = 1 for allt € [pp+5, prs1).-
Hence 1, (i) = infyei, Yi(z) = 1 for all t € [pg + 6, pri1) D (pks pres1) \ S-

Case (e): 7y, ,, (i) = 0 and S3, (6,9) = 5%0 (6,7) =1 and ¢'(i) < k < q(¢). Then

ngﬂ(i) =0 forallte [pk, (?A(J,i)/ak) A pk+1),
T];‘)\t(l‘) =1 forallte [(?A(d,i)/ax) A Pl 15 Prt1)

(because no seed fall on i during [7*(6,7) — L*(8,4),7*(6,4)) > pr and a seed falls
on i at time 72(6,1)). By (Hy), we also know that inf,e;, Y, (#) = 0. Calling
(72(8,1), z0, L*(J,1)) the only mark of 7g that falls in [0, Tp] x iy x [6,00), we claim
that necessarily, Y}, (z9) = 0. Indeed, all the other dotted segments in i that inter-
sect [0, T] have a length smaller than 6 < ¢y < pr—pp—1. Thus ifinf,e;, Yy, —(x) =0,
necessarily, Y, —(zg) = 0 and thus Y, (z¢) = 0. If now inf,¢;, ¥, —(z) =1, then iy is
connected at time time pj,—, whence the fire at time pj burns completely iy (because
inf,e;, Y,, () = 0 by assumption), so that in particular, Y, (z¢) = 0. Then we have
to separate two situations.

> If 72(d,4) < px + 6, then we easily deduce that inf,c;, Yi(z) = 1 for t € [pp +
b, pr+1)- Recalling that np (i) = 1 for all ¢ € [(7}(8,4)/@x) A prs1, prs1) and that
[72(8,4)/ ax—72(3,%)| < o, we easily conclude that n (i) = 1 for ¢ € [pr+a+0, pry1).
Thus 7, ,(i) = infee;, Yi() for ¢ € [op + 0+ @, prs1) O [or, prs1) \ S-

> If now 77(6,4) > pi + J, then we have, by construction, inf,¢;, Y;(z) = 0 for
t € [pr, 7(0,9) A prr1) and inf,e;, Yi(x) = 1 for ¢t € [72(6,4) A pry1, prr1)- Recalling
the values of 13 (i) and that |[7%(6,4)/ax — 7*(6,i)| < «, one easily concludes that
na (i) = infaeq, Yi(a) for t € [pr, pri1) \ S (because 72(8,7) € TS whence [72(6, ) —
a,7(8,1) +a] C S).

We have proved (H}}) and this implies that

Vi€ lgndal, mypp,,- (1) = inf Y, (2).

TN
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It remains to prove (Hg41).

Consider the ignited cluster [a,b] = D,, ., —(aks1) in the LFF(j3)-process. Then
the ignited cluster in the FF(ug, u),)-process at time aypr+1 (due to a match falling
on the site [naag41]) is nothing but I, == {i € [gx,da] : ix C Dpyy— (i)},
at least if X is small enough (such that 1/ny < cg). Indeed, we have 771);}%“—(1') =
infyei, Yp,,,—(2) = 1 for all 4 such that iy C D,, ., (axy1) and (on the two boundary
sites) néwkﬂ,(i) = infyeq, Yy, —(2) = 0 for i such that ix ¢ D,, ., (agq1) with
ix N Dy, —(okg1) # @. And for A > 0 small enough (such that 1/ny < cs),
|naas1] € I, (because [a+1/nx,b—1/ny] C I, by the previous study, because
Dyy.i—(aks1) = [a,b] has its extremities a, b in X2, because agy1 € Xy and because
the distance between X g and Xy is greater than cg, recall Qféims, s> S0 that actually,
Q41 € [a +cs,b— Cs}).

Then on the one hand, for all i € [gx,d,], we have

;gi Yﬁk+1 (I) = ;gf)\ Yﬁk+1—(x) lf i/\ n Dpk+1—(ak+1) = @7
inf Y, ., (2) =0 if ixND,,,,—(ars1) # 9.
TELN

The first case is obvious and the second one follows from the fact that a.s.,
ms({(t,2,0) + t > prg1, 2 €ixN Dy, —(apgr1),t — € < pry1}) = 00

(but this concerns marks (¢, x,¢) with a very small length ¢ > 0).

On the other hand, for all i € [gx,dx], we have ), (i) = n,, (i) if i & I},
and 7, (i) =0ifi € I}, ;.

As a conclusion, for all i € [gx,dA],

> if ix C Dy, — (041, Le. if i € I}};, then we have seen that n;‘Ale (1) =
0 =infee;, Yoo, (@);

> if ix N Dy, —(ars1) = @ (hence i ¢ I, ,), then we have seen that
773\”;;#1 ('L) = nz)z\xpwrl—(i) = inf:L'EiA ka+1—(z) = infzeh YPk+1 (I)v

>if i ¢ I}, but iy N Dy, _(ars1) # @, then we have seen that
infyeiy, Yy, (2) =0 and néwk“ (2) = 0 because néwkﬂf(i) = 0 (since then
i lies at the boundary of I}, ).

Hence (Hy41) holds.

Step 6. — We finally can prove (3.3.2) on 2 and this will conclude the proof. First,
we know from step 4 that for allt € [0,T], allk = 1,...,p, Di(x) C [xg, xd) C [—A4, 4]
and that C(n),,, laxzr]) C [gr + 1,dx — 1] whence D} (zy) C [—A, A] (because
(gr +1)/ny > xg = —A and (dx — 1)/ny < xa < A). This obviously implies that
8(D¢(xx), D} (1)) < 24.

Next, step 5 implies that for all ¢ € [0, \ S (or rather for all ¢ € [0, p,) \ S, but
the extension is straightforward), for all i € [gx,da], nj, (i) = infoei, (Ye(x)). This
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implies that for all ¢ € [0,T]\ S, for all k = 1,...,p, §(D}(xx), De(z1)) < 4/ny as
desired.

Indeed, assume that D;(zx) = [a,b] C [xg, xq] for some ¢ € [0,T]\ S. Recall that
a,b € X3. We have Y;(y) = 1 for all y € (a,b) and Y;(a) = Y;(b) = 0. Hence we
deduce that

na (@) =1forallie [lany]+1, |bny] —1]] and 75, (lam]) =n2 ([bna]) = 0.

Next, we observe that for A > 0 small enough, |any| < |zxna] < [bny]. Indeed,
on ), we have, since a,b € Xg, |z — a| > cs and |b — x| > cg. We finally obtain

C(na s lzema]) = [[lama] + 1, [bny] — 1]],

whence D (xx) = [(lana] + 1)/ny, ([bna] — 1)/ny]. Recalling that Di(z) = [a,b],
one easily deduces that §( D} (zy), Di(zr)) < 4/my. O

3.4. Cluster-size distribution when f € (0, )

This section is entirely devoted to the

Proof of Corollary 2.5.4. — We thus fix 5 € (0,00) and assume (Hys) and (Hg(53)).
For each A > 0, we consider a FF(ug,uj,)-process (n(i))es04ez. Let also
(Yi(%))¢>0,2er be a LEF(B)-process. We know from Theorem 2.5.3 that |C(n;,0)|/n
goes in law to |Dy(0)], for any t > 0. In step 1 below, we will check that for ¢ > 0,
the law of |D;(0)| does not charge points. Thus for any B > 0, ¢t > 0, we will have

lim Pr [|C(n,0)] > naB] = Pr[|D:(0)| > B].

In steps 2 to 6, we will check that there are some constants 0 < ¢; < ¢ and
0 < K1 < kg such that if ¢ > 1, for any B > 2, Pr[|D;(0)| > B] € [e1e™ 28, cge 1 5],
One immediately checks that this implies

Pr[|Dy(0)| > B] € [e1 e 22 emR2B (o) v e2r1) e
for all t > 1, B > 0 and this will conclude the proof.

Step 1. — The goal of this step is to check that for any ¢ > 0 fixed, the law of
|D¢(0)| does not charge points.

Consider the first mark (Ty, x4, La) of ms on the right of 0 (x4 > 0) such that
[0,t] C [T4 — Lq, Tq). Consider a similar mark (T, x4, Lg) of mg with x4 < 0.

Then Y;(xy) = Ys(xa) = 0 for all s € [0,¢], so that fires falling outside [x,, xd]
cannot affect 0 during [0, ¢].

Next, denote by (Tar, Xar) the instant/position of the last match falling before ¢
in [xg,xa]. Then as., t —Th > 0, and D,(0) is of the form [a, b], for some marks
(Ta,a, Lq) and (Ty, b, Ly) of mg satisfying x, < a < 0 < b < x4, To — Lo < Tu,
Ty, — Ly < Ty, T, > t and T, > t. There are a.s. a finite number of such marks
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(because a.s., [~ ds [ B(B+1)¢F72dl = (t —tar)™? < 00), and their (spatial)
positions clearly have densities, whence the result.

Step 2. For t > 1, a € R, we consider the event €, defined as follows, see
Figure 6 next page:

(i) ma has exactly one mark (T, Xps) in [t — 1,¢] X [a,a + 1] and there holds
(T, Xn) €t —2,t— 4 x[a+ 10+ 2]

(i) ms has one mark (Ty, Xy, Ly) such that Ty — Ly < t —1 < t < T, and
X, € la,a+ %] and one mark (Ty, X4, Lq) such that Ty — Ly <t — 1<t < Ty
and Xq € [a+ 2,a+ 1] (recalling Figure4, there are dotted vertical segments
in [a,a+ 3] and in [a + 2, a + 1] that run across [t — 1,¢]);

(iii) all the other marks (T, X, L) of mg with X € [a,a+1] and [T—L, T|N[t—1, ] not
empty satisfy L < i (recalling Figure4, all the other vertical dotted segments
in [a,a + 1] that intersect [t — 1,¢] have a length smaller than ).

Step 3. — In this step, we prove that on € ,, we have either Y(X,) = 0 for all
s€[t— 3,1 or Yy(Xq) =0 forall s € [t — 3,]. We distinguish two situations.
> First assume that [X, X4| is connected at time Th;— (that is Y7,,_(z) =1
for all x € [Xy, X4]). Since Xpr € [Xg, Xg], the fire destroys the cluster and
thus we deduce that Y,(X,) = 0 for all s € [Tar,T,) D [t — %,t] and that
Yy (Xg) =0 for all s € [Ty, Ty) D [t — 1,4
> Next assume that [Xg, X4] C [a,a + 1] is not connected at time Ths— (that
is, there is some zg € [X,, Xg4] such that Y7,,_(x¢) = 0). Then we claim
that either Yr,,_(Xy) = 0 (then Y,(X,) =0 for all s € [T, Ty) D [t — 3,1])
or Yr,,—(Xq) = 0 (then Y;(Xq) = 0 for all s € [Tar,Ty) D [t— 3, ¢]). Indeed,
recall that all the dotted segments that intersect [t —1,¢] in (X4, Xq) have
a length smaller than %. Thus if [ X, X4] is disconnected at time Ths— due
to a fire that started before ¢ — 1, it can be only with 2y = X, or 2y = X,
whence the conclusion. But if now [Xy, X4] is disconnected at time Th;— due
to a fire that started at some time 7 € [t —1,T)s) at some place x ¢ [a, a+1]
(since there are no fires in [a,a + 1] during [t — 1,Ths)), this necessarily also
concerns one of the extremities X, or Xg of [X,, X4|. Thus in any case, we
obtain either Y7,,_(X,) = 0 or Y7,,_(X4) = 0 as desired.

Step 4. — Let us prove that p := Pr[Q; o] > 0. This value will obviously does not
depend on a € R, t > 1, by homogeneity in (s, z) of the Poisson measures 7 (ds, dx)
and 7g(ds, dz, df). Define the zones

Aw= (= 3t- 1) x o+ Lt 3)

BM: ((t*l,t) X (a,a+1))\AM,
Asz{(s,x,é), T € (a,a+i),5>t>t71>57€},
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(Tg’Xg) (T, Xy
T i —
— — P ——H =12
I : ° A
i E ; ' , (Tu,. X ! ',
H— — 23
N SRS DU LA S S
a’ atl/a ' Lo a4 atl
(Tg_Lg’Xg) (Td_ Ld’Xd)

FIGURE 6. The event 2 4.

Bs={(s,z,0), v €(a+2,a+1),s>t>t—1>s—1(},
Cs={(s,z,0), z€(a+ta+3)s>t>t—1>s—1(},
Ds={(s,x,0), x € (a,a+1),[s—L,s]N[t—1,t] # @,£> 3} \ (As UBs UCs).

The zones Aps and By, are disjoint and for (p(ds, dz) = dsdz, (u(Anm) = ﬁ
and (y(By) = % The zones Ag, Bg,Cgs, Dg are also disjoint and simple computa-
tions show that, for (s(ds, dz, df) = (8 + 1)¢~°~2dsdzdl, (s(As) = (s(Bs) = 1,
(s(Cs) = % and Cs(Dg) = 4%(58 + 1) — 1. Consequently, recalling that 7y, and 7g
are independent Poisson measures with intensity measures (s and (g,

PI‘[Qt‘a,g] = PI‘ (71'1\1(14]\,1) = 177TM(B1\1) = O,Fs(As) = Trs(Bs) = 1,
75(Cs) = ms(Dg) = 0)
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— C(AM)E*CM(AM) e*CM(BM)CS(AS)e*Cs(AS)
CS(BS)G*CS(BS) e ¢s(Cs) g—C¢s(Ds)

e 2o ti(1)2e s e VBB .y 5 0,
Step 5. — We clearly have, for any ¢ > 1, any B > 2,
{ID:(0)| > B} c {V2 €[0,1B], Yi(z) =1} U{Vz € [-1B,0], Yi(z) = 1},

whence Pr[|D;(0)| > B] < 2Pr[V z € [0, 1 B], Y;(z) = 1] by symmetry. Furthermore,
step 3 implies that

(V2 €0,38], Yi(x) =1} QN Q5,0 0Q0 4 .
L3 B-1)

Using then step 4 (and some obvious independence arguments), we get
1 1
Pr[|Dy(0) > B] < 2(1 —p)'2P7 U+ <201 —p)2P7t.

Consequently, for all ¢ > 1, all B > 2, Pr[|D;(0)| > B] < coe "8 with co = 2/(1—p)
and k1 = —3[log(1 — p)].
Step 6. — Next, we consider the event &:vlt,B on which:
(1) mar(t = 3.t x [0, B]) = 0;
(ii) all the marks (7, X,L) of mg with X € [0, B] satisfy either T < t or
T—-L>t— %) (this means that there is no dotted vertical segment running
across [t — 2,t] in [0, B]).

An easy computation as in step 4 implies that

- t B (o) B ges)
mmﬂ:wq_/ / @m—/ m/ M/ <ww+w%4)
t—3 Jo t 0 s—t+3

:exp(f %372’3B).

We claim that on Q; ¢ ﬁ(lt,B Ny g, we have [0, B] C D;(0), whence |D;(0)| > B.
Indeed, we know from step 3 that there is xo € [—1,0] and x1 € [B, B + 1] such that
Yi(x0) = Ys(x1) = 0 for all s € [t — 3,1]. Thus the fires starting outside [xo, x1] do
not affect the zone [xo, x1] during [t — 3,¢]. Furthermore, there are no fires starting in
[x0, x1] during [t— %, t]. At last, since all the dotted segments in [0, B] intersecting {¢}
have started after t — 1. We easily conclude that Y;(z) =1 for all z € [0, B].

Using finally some obvious independence arguments, we get
Pr UDL(O)\ > B] >Pr[Q, 1N ﬁL?B NQy Bl > p? exp ( - %B — QﬂB) =cren2B

with ¢; = p? and H2:%+23. |
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3.5. Convergence proof when 5 =0

This case is simpler than the case 8 € (0,00), but a little work is however needed.
We also divide the section into three parts: preliminaries, coupling of seeds and
convergence proof. In the whole section, we assume (Hy) and (Hg(0)). We recall
that ay and n, are defined in (2.2.1) and (2.2.2). For A > 0 and ¢ € Z, we set

Ay = LA’IZAL 1—2: II—A)\,A)\]], i\ = [i/n,\,(i—k—l)/n)\).
3.5.1. Preliminaries. — The proof will use the following estimate.
LEMMA 3.5.1. — For any ¢ € (0,00) fized, we have limy—o A" s ((arl, 00)) = 0.

Proof. — Using the monotonicity of 1 ((x, 00)) and since pg((z, 00))dz = mgvg(dz),

ps((art,00) _ 2 /”
) XAl Jori)2

s ((z,00)) dz

2m
= MSZ [vs((art/2,00)) = vs((arl, )]
2mg
= =7 [vs((axt/2,00)) /vs((ar, ) = vs((arl, 00)) /vs((ar, )]
For the last equality, we used that by definition, vs((ay, o0)) = Aay. Using (Hg(0)),
we easily conclude. O

The following statement contains some crucial facts about accelerated SR(us)-
processes under (Hg(0)).

LEMMA 3.5.2. — Let (T)n>1 be a SR(ps)-process (see subsection 2.1.1). For

A>0,t>0 and (>0, we set
RMO)=#{n>1: T, €0,axt], Tps1 —Tn > arl},

which represents the number of delays with length greater than ay{ that start in [0, axt].

(i) For any T > 0, Pr[T1 > axT| = vs((arxT,0)) ~ Aay as A — 0.

(ii) For anyT >0, any £ >0, as A\ — 0

E[R%(f)} = ayTug((arl,0)) /ms = o(Aay).

Proof. — Point (i) is immediate: vg is the law of T7 and since Aay = vg((ax, o)) by
definition, one has vg((a\T, )) = Aayvs((ayT, o0))/vs((ax,00)). One concludes us-

ing (Hg(0)). Point (ii) is slightly more delicate. First, we complete the SR(us)-process
(Th)n>1 in (Th)nez, see subsection 2.1.1. Then we observe that since Ty < 0 < T7,

Ry =#{n€Z: T, €[0,a\T), Tpy1 — T > arl}.

Next, we set
=T -T_,
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and we introduce ng such that 7,,, <0 < 7,,41. We put

Th = Tng+n-
Then (Tp)nez is also a SR(jug)-process (see subsection 2.1.1). We have

Ry O =#{n€eZ: axT—T, € [0,a\T], (arT — T,) — (axT — Tr41) > axl}
=#{nez: f,n,m, €10, axT7, f,n,no - T,n,l,m, > axl}
=#{neZ: T,€(0,a\T], T, — Tro1 > a\T}
=#{n>1: T, € [0, axT7, Ty — Ty > axl} =: 5}(6)

We used that Ty < 0 < Ty by construction. But §% () is the number of delays with

length greater than ay¢ that end in [0, @\T}], for the SR(us)-process (T}, )nez. Thus
exactly as in the proof of Lemma 3.3.2 (steps 1 and 2), we get

E[S2(0)] = mg'axTpus((art, o0)),

so that

E[R}(0)] = mg'axTus((arl, 00)).
Finally, Lemma 3.5.1 implies that E[R}).(€)] = o(Aay). O
3.5.2. Coupling of seeds. — We aim here to couple the Poisson measure 7g(dz)

used to build the LFF(0)-process with a family of SR(ug)-processes, in such a way
that roughly:

> if wg(ix) > 0, then the first seed never falls on ;
> if wg(ix) = 0, then seeds fall almost continuously on i.

The precise statement is as follows.

PROPOSITION 3.5.3. — Let A>0,T >0, § >0 be fired. For any X € (0,1], it is
possible to find a coupling between a Poisson measure mg on R with intensity measure
dz and a family (N7 (i))s>0.icz of SR(us)-processes in such a way that for

s = () ({7sin) =0, _inf | IN5 4 () = N, 0)] > 0}
i€} ’
U {ms(in) = LN 2(i) = 0}),
one has limy_,¢ Pr[Qf"T’J(/\)] =1
Proof. — We split the proof in several steps. As usual, it suffices to build 7g on

Bx =Uiepy ia = [~A4, 4] and to build NZ(i) for t € [0,a\T] and i € I}.
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Step 1. — Denote by (N;?);>0 a SR(us)-process and by (T}, ),>1 its jump instants.
Recall the notation of Lemma 3.5.2. Then we observe that

{Nor =0} ={T1 > axT},
{ (N2 116) — Nanid >0} = {Th < ax6, R3(5) = 0}.

These two events are furthermore disjoint. By Lemma 3.5.2, we deduce that for some
functions e7(X) and e 5(A) tending to 0 when A — 0

inf
te[0,7—4]

Pr [te[éprﬂs][Ni(Hé) —NJ,]>0] >1-Pr [Ty > axd] — E[R}(5)]

>1- )\11)\(1 + ET.g(/\))
and pr(A) = Pr[Ng = 0] = Pr[Ty > axT] = Aax(1 +ep(X)).

Step 2. — Next, we prove that it is possible to couple a family (Z;\)ielg of i.i.d.
Poisson-distributed random variables with parameter |iy| = 1/n) and a family of

(ZM)e 1y of Lid. Bernoulli random variables with parameter pr()) (see step 1) in

such a way that for

Qra\) = {Vie I}, 2} = Z} € {0,1}},

there holds limy_,0 Pr[Q7 4(A)] = 1. As usual, this follows from Lemma 5.1.3 (i) and
relies on the straightforward computations (here the function er changes from line
to line)

Pr[Z} = 0] APr[Z} = 0] = (e /™) A (1= pr(N) > 1= Aar(1+er(N),
recall that ny ~ 1/(\ay), and
Pr[Z} = 1 APr[Z} = 1] = (e7 Y™ /my) Apr(N) > Aax (1 — er(N)

from which
A

~ A
Pr [ a(V)] > [1— Aax(1+ () + Aar (1 — er(W)] 4 > [1 = Aaxer (V)] 4.
This last quantity tends to 1 as A — 0, because |I}| ~ 24/(\ay).

Step 3. We finally build the complete coupling.

(a) Consider (Z3, Z/\)z‘elj\ as in step 2.

(b) For each i € I} such that Z} > 0, pick some iid. random variables

. . A
(X XIZ;‘) uniformly distributed in iy. Then mg = 37, /x Zf’zl 5X;A is
a Poisson measure with intensity measure dz on By =, en ix.

(c) Eor each i € I} such that Z> =1, set N2 (i) = 0. For each i € I} such that
Z} =0, pick (N7 (i))se[0,a,7) conditionally on NESAT(i) # 0. This defines a
family of i.i.d. SR(us) processes on [0, ayT] (because Pr[Z} = 1] = pr()\) =
Pr[NZ (i) = 0]).
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Step 4. — With this coupling, we have S~2T>A()\) n ﬁi,T,(;(/\) C Q3 1,5(A), where

=S . : . .
QarsN) =) (re[éaniﬂ[N,i(t 1oy (i) = N3 o (8)] > 0 or N (i) = 0).
iery

It thus only remains to check that limy_, Pr[ﬁimg()\)] = 1. But using step 1 and
recalling that |I}| ~ 24/(\ay), we get

Pr 05 250 = [1- Aax(1 +er,5(0) + Aax (1 + (V)] "2,

which tends to 1 as A — 0, as usual, since |T}| ~ 24/(\ay). O

3.5.3. Convergence. — We now prove the convergence result in the case 5 = 0.

Proof of Theorem 2.6.2. — We fix T >0, 1 < --- < xp and t1,...,ty, € (0,T]. We
introduce B > 0 such that —B < z; <z, < B. We fix ¢ > 0 and a > 0. Our aim is
to check that for A > 0 small enough, there exists a coupling between a FF(ug, /L}\V[)—
process (17 (i))¢>0.icz and a LFF(0)-process (Y;(2))i>0,zer such that, recalling (2.2.3)
and Proposition 2.6.1, there holds

(3.5.1) Pr [Z(ST(D*(I,C), D(ar)) + > 8(D} (x1), Dy, (x1)) > a] <e.
k=1 k=1

This will conclude the proof.

Step 1. — Consider two independent Poisson measures mg(dz) and mp/(dt, dz)
with intensity measures dz and dtdz. First, we consider A > B large enough, in
such a way that for

Q' = {7s([~A,—B]) > 0,75([B, A]) > 0},
there holds Pr(Qi’l) > 1— fe. This fixes the value of A. Next we call
Xs = {z €[4, A],ms({z}) > 0},

Tu = {t € [0,T): mar({t} x [-A, A]) > 0} U {0},
Xy = {z € [-A4, A, 7y ([0,T] x {z}) > 0}.

Classical results about Poisson measures allow us to choose K > 0 (large) and ¢ > 0
(small) in such a way that for

Q = Xg| < K i — g i —

K.c {‘7—]\4‘ +|Xs| < K, trél%l, [t —tx]| > CLL',yE%i‘ILIJXM |z —y| > c,
F=top Y min |z — x| > c}
TEXsUX k ’
k=1,....p

there holds Pr[Qg . >1— %5.

MEMOIRES DE LA SMF 132



3.5. CONVERGENCE PROOF WHEN 3 =0 75

Step 2. — Next, we know from Proposition 3.2.1 that for all A > 0 small enough,
it is possible to couple a family of i.i.d. SR(u},)-processes (NtM’A(i))tZO?iEz} with s
in such a way that for

QUL () = {vt € [0,T], Vi € I}, AN (6) # 0iff mag ({t} x ix) # 0},
there holds PriQ}/ ()] > 1 — 1e. We now fix 6 > 0 such that
0<c/4 and 6 <a/(4AKDp).

Proposition 3.5.3 tells us how to couple, for all A > 0 small enough, a family of i.i.d.
SR(us)-processes (N7 (i))i>0,icz With mg in such a way that for

Qi,T,J()‘) = ﬂ ({775(1})\) = O’te[éan,(s][N;;(t*(”(i) - Nit(i)] > 0}
i€l ’
U {ms(in) = 1, N52() = 0}),
there holds Pr[Qf"T.(;(/\)] >1-1e.

Step 3. — We consider )y, 7g, (Nts(i))tzo,iez} and (NtM’/\(i))tzo,iez} coupled as
in step 2. Then we build the corresponding FF(ug, 113)-process (n;\(i))¢>0.icz and
the associated rescaled clusters (D (x))t>0,zer, see (2.2.3) and we build the LFF(0)-
process associated to mg and the corresponding clusters (Dy(z))i>0,zcr. We will work
on the event

O =05 N QNN NQS 1 5(N).
We know that for all A > 0 small enough, Pr[Q,] > 1 —e. We introduce

S=Jtt+4]
teTm
We will prove in the next step that on Q,, for all A > 0 small enough, for all
ke{l,...,p}, forall t € [0,T]\ S,
(3.5.2) 8(D}(wk), De(wi)) < 4/mx + 241 ey,
which will imply that
87 (D (wk), D(z1)) < 4T/ny + 24S|.

This will conclude the proof, since for k = 1,...,p, tx, ¢ S (recall Qx . and that § < ¢)

and since the Lebesgue measure of S is smaller than K¢ (recall Qg . and that 6 < ¢).
Thus (3.5.2) implies, since § < a/(4AKp),

> 67 (DMak), D(wk)) + Y (D) (wx), Diy (2x)) < p[AT/my + 24K + 4/
k=1 k=1 <a/2+4p(T +1)/ny,

which is smaller than a for all A > 0 small enough. Thus (3.5.1) holds for all A > 0
small enough.
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Step 4. — It remains to check (3.5.2). In the whole step, we work on 2. Let thus
ke {1,...,p} be fixed. Consider the first marks x4, x4 of 7 on the left and right
of . Then by definition, we have Dy(zx) = x4, xq] for all ¢t € [0,T]. By Qi’l and
since x € (—B, B), we know that —A < x4 < xa < A. Define

gr = [mx,] and dy = |mxal-

Due to Qimé()\) and since mg({xy}) = ms({xa}) = 1 and 7s((xg,xa)) = 0 by
construction, we know that

(i) Nar(gx) = Ngr(dy) = 0 (because xg € (9x)x and xa € (dx)r);

(i) for all ¢ € [gx + 1,dx — 1], infte[oﬁT,(;][N(i(tw)(i) — NZ,(i)] > 0 (because

iA @ (Xg7Xd))'

Observe now that for A > 0 small enough (it suffices that 1/ny < c¢), there holds
gx < |zrna] < dy (use that x4, xg € Xs and that x4 < ) < xq so that due to Qx .,
Xg+c<ap < Xa—C).

Point (i) implies that 7}, ,(gx) = 7a,;(dx) = 0 for all ¢ € [0, axT]. Consequently,
for all ¢ € [0,7], there holds C(n},,, |#xna)) C [ga + 1,dx — 1]. This implies that
Di(zx) C [(gx +1)/nx, (dx —1)/m] € [xg Xa]- Recalling that Dy(wx) = [xg, xa] and
that —A < x4 < xa < A, we deduce that

8(Di(ar), D (wr)) <24 for all t € [0,7].
Another consequence is that the matches falling outside [gx,d\] (and a fortiori
outside I}) have no influence on |zn, | during [0, a\T].
It only remains to check that for ¢ € [0,7]\ S, if A > 0 is small enough,
8(Dy(xx), D)M(z1)) < 4/ny. We thus fix t € [0,7]\ S and consider
to = max{s € Ty : s <t}.

Then by definition of S, t — ¢ty > d. Consequently, point (ii) guarantees us that

Vi€ [gn+1,dy—1], NZ,— N2

axt — *Vaxto

> 0.

A seed falls on each of these sites during [axto, axt]. Furthermore, there are no matches
falling on [gx + 1,dx — 1] during [axto, axt], by definition of ¢y and due to Q& (X).
Consequently, we have 7}, (i) = 1 for all i € [gx + 1,dx — 1]. All this implies that
C(n)e, lwema)) = [ga + 1,dx — 1], whence

Dxx) = [(gx + 1)/ma, (dx — 1)/ma] = [(Imaxg] +1)/ma, ([axa) — 1)/ma].

Recalling that Dy(x) = [xg4, xd], we easily conclude. O
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3.6. Well-posedness of the limit process when 8 € {c0, BS}

The aim of this section is to prove Theorems 2.3.2 and 2.4.3, and to localize the limit
processes. All the results below have already been proved in [15] for the LFF(oo)-
process. We provide here a consequently simpler proof, that allows us to treat simul-
taneously the cases § = BS and § = co.

REMARK 3.6.1. — Under (Hs(o0)), we put 0, = 0, and Fs(u,v) = u for all
u € [0,1], all v € [0,1]. Using this function Fs, the LFF(BS)-process is nothing but
the LFF(00)-process.

We consider a Poisson measure 7y (dt, dz, dv) on [0, 00) x R x [0, 1] with intensity
measure dtdzdv and abusively write mys(dt, dz) = fve[O 1 v (dt, de, dv), which is
a Poisson measure on [0,00) x R with intensity measure dtdz.

DEFINITION 3.6.2. — Let 8 € {oco,BS}. If B = oo, consider Fs as in Re-
mark 3.6.1. If 8 = BS, consider Fs as in Definition 2.4.1. Let A > 0 be fixed.
ARy x I x Ry-valued process (Zi*(x), D{*(x), H{* (%)) >0,0¢(—a,4] Such that a.s., for
all z € [-A, Al, (ZA(z), HA(2))i>0 is cadlag, is called a LFF 4(B)-process if a.s., for
allt >0, allz € [-A, 4],

t t
Z{ () :/0 1{Z§(z)<1}d3*/0 /[_A A Liza (2)=14epA (2)37m(ds, dy),

H,A($) :/0 /0 FS(Z_ff(x),v)]l{zslt(w)d}ﬁM(ds x {z} x dv) 7/0 Lipa(y>oyds,
where D (z) = [LA(z), R ()], with
(3.6.1) Li(z) = (=A) vsup{y € [-A,z]; Z1(y) <1 or HP(y) > 0}
N R (x) = Anint{y € [z, A]; Z(y) <1 or H{(y) > 0}

and where D{* (z) is defined similarly.

Observe that for 8 € {co, BS}, for any A > 0, the LFF 4(3)-process is obviously
well and uniquely defined and can be built as follows.

ALGORITHM 3.6.3. — Consider the marks (Tk, Xk, Vi)k=1,...n Of mas in [0,T] x
[—A, A] x [0,1], ordered chronologically and set Ty = 0.

Step 0. — Put Zg'(x) = H§'(z) = 0 and D{'(x) = {z} for all x € [~ A, A]. Assume
that for some k € {0,...,n — 1},

(Zi(2), Di*(2), H*(®)) 1o 1) el a )
has been built.

Step k + 1. — Then for t € (Tj, Ty+1) and z € [—A, A], put
ZA () = min(1, Z‘T4k (z) +t —Ty),
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set H{(x) = max(0, Hy, (x) — t + Tj) and then define D (z) as in (3.6.1). Finally,
build (Z{}Hl(a:),D?Hl(x), Hﬁﬂ(m)) as follows.
> If Z4  (Xpg1) = 1, set H{}Hl(w) = H{w‘kﬂf(m) for all € [-A, A] and

Thy1—
consider [a,b] := Dﬁ“—(Xk‘H)' Set

0 for all z € (a,b),
Pt (@) = {zA (@) forall # € [~A, A]\ [a,8]
Trq1— ) Pl
. A _
Z;} (a) = 0 if ZTH]_(a) =1,
i Zz,,,_(a) it Z7 , _(a) <1,
4 ()_{0 itz _(b)=1
* Z{}Hﬁ(b) if Z;ém,(b) <1

> I Z7, | (Xksr) < 1, set
Hqékﬂ(XkH) = Fs(ZqékH,(XkH), Vi),
put Z?Hl (Xky1) = Z{«‘Hl_(XkH) and
(24, (@), H, ,, (x)) = (27, ,,_(2), H, ,,_(2))
for all z € [—A, A] \ {Xp41}-

> Using the values of (Zﬁﬂ (z), H{?Hl (%)) ze[-a,4], compute (Dﬁ+1 (%)) e-a,4]
as in (3.6.1).

We now state a refined version of Theorems 2.3.2 and 2.4.3.
PROPOSITION 3.6.4. — Let S € {oo,BS}. Let mp be a Poisson measure on
[0,00) x R x [0, 1] with intensity measure dtdzdv.
(i) There exists a unique LFF(B)-process (Z¢(x), De(x), He(x))t>0,zeRr-
(i) It can be perfectly simulated on [0,T] x [—n,n] for any T >0, any n > 0.
(ili) For A > 0, let (Z{(z), D (2), HA(%))i>0,0e[—a,4) be the unique LFF 4(5)-
process. There holds
(3.6.2) Pr[(Z(x), Dy(x), Hy(2))refo,1),0e(-A/2,4/2]
= (ZtA(m)7D;‘(z)vHtA(m))te[O,T],ze[—A/Z,A/Q]] >1-Cre T4,
for some constants ayr > 0 and Cp > 0 not depending on A > 0.

To prove this result, we need a lower-bound of the length of the barriers