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A NEW LOOK AT BRUITS SIEVE

"by
H. HALBERSTAM (joint work with H.-E. RICHERT)

1. - Let G be a sequence of (not necessarily distinct)integers, and let ^ be

a set of primes. The aim of any lsmall* sieve method is to estimate the sifting

function

S(a ;P , z) : = |{ a : a€0 , (a,P(z)) = 1} | ,

where z ^ 2 ,

P(z) = p .
p € P
p < z

and | { } | denotes the cardinality of the set { } . In order -fo make progress

we require some information about the distribution of 0 in certain arithmetic

progressions ; to this end we postulate the existence of a real number X > 1 and

a non-negative multiplicative function U) such that

(i) a) (p) = 0 if p ^P

and (ii) the remainders* R^ : = ^ 1 - ^-^- X (p(d)^O, d|P(z))
a € 0
a = 0 mod d

are small (perhaps only on average) ; note that R- = |^| -X , so that X is seen

to be a convenient approximation to the number of elements in ^ .

Let w(z) = n (i - -^) ;
p<z p

on probabilistic grounds -we expect XW(z) to give the true order of magnitude of

S((Z ;(P , z) . Indeed, we have easily that

3(0 ;P ,z)= ^ ^ p (d ) = XW(z ) + "[ p (d ) R^ ,

aCO d | ( a , P ( z ) ) d | P ( z )

and if we now assume, as we shall do throughout, that

* This lecture will appear, in expanded form, in a forthcoming book by Halberstam

and Richer! on Sieve Methods (Makham, Chicago).
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(^) (^(P) ^ A for some constant A ^ 1 ,

and.

(P) |Rj<So)(d) if d |P (z )

then

(1.1) s(a ;<? ,z) = xw(z) + oCCA+i)'^20 ) .

It is clear that (l.l) gives an asymptotic formula, or an acceptable estimate,
for S(0 ;iP ,z) only if z is about of order log X ; (l.l) is therefore
generally far too weak to be of much use. The first principal result -we wish to
describe here is the following powerful extension of (l.l) :

THEOREM 1. Suppose that (^) and (R) hold, and suppose also that

(^-. ) -)— ^ 1 - -.— for some constant A, ^ 1 .

JjF U = log X / log z and X> z , then

S( Q .P ,z) = XWtzKl^e-11^ ̂ ^^ ^-l0^ ̂ ^(e^^ x)}.

Theorem 1 is of a kind known as a f fundamental lemma* , it is important in the

study of additive functions (see [l] , lemma l.k for a weaker result of this kind)

and also in the theory of representations by ^uasi-primes1 (numbers free of small
prime factors) (see e.g. \_2~\ ).

Special interest attaches to Theorem 1 in respect of the first error term.

Levin [3] pointed out in 1965 that Selberg^ sieve method is not capable of yiel-
ding a result of this degree of precision ; and he went on to suggest that, by

constrast. Theorem 1 could be derived by means of certain elaborate extensions of

Brun^ sieve (attributed by Levin to Buchstab but not traceable in this form by us).

In fact, we can show that Theorem 1 follows from the simpler Rademacher [4]-

Tartakovskij [51 formulation of the Brun method ; moreover, by formalizing Brun^

ideas along lines suggested by Levin, we are able to give a surprisingly simple

account of the Brun method, leading to theorem 2 below. Theorem 1 then follows by

easy stages from Theorem 2.

Seen in this new light. Brunts method appears far from exhausted and may well

lead to further developments.
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THEOREM 2. Suppose that W , (^) and (R) hold. Let b be a positive integer
and X any positive real number satisfying

(1.2) \el+x<l .

^ 2X / ̂ ^NF^,, 2X / 2X/A ^ ^
s(a ;P ,z)^ x^a+sx213-'1 —I—— }+o^ e 'V

l+X^2^^ \

01^-LI ^A I < - A / A - l

l+^e2^

and / 2'b li 2*01 \

S( a;P ,z) ^ XW(z){l-2X2b — — f \ - } ^ o f z e2VA-1 ).
1+X2 e2 2A \ 7

The conditions ( f t ) and (R) could be weakened, without introducing new dif-
ficulties ; however, they cover a great many interesting problems, and we have

considered it appropriate in this exposition to keep things simple. To illustrate
the quality of Theorem 2 we indicate briefly how to prove that

there exist infinitely many integers n such that both n and n+2 have at
most 7 prime factors.

(Of course, more elaborate or deeper methods give much better results - see e.g.
[6] or [f]).

We take a = {n(n+2) : n <- x } and P the set of all primes. We may choose X = x,
o)(2) = 1 and o)(p) = 2 for p > 2 , so that (R) is satisfied as well as (^)

with A = 2 and (^) with A^ = 3 . It is easy to deduce from (^) and (^ )
that l /W(z) < log^z and it follows from Theorem 2 (-with b = l) that

___ ^ ^ / 2.01 x

S ( a ; P , z ) ^ J (i_)a-^———— ^Ox^z eI::^log2z)}.
2<p< z p l-X^2^ \ /

Constants X and u can be found to satisfy

1 - f,^ - ° and l+s^ < " < 8 .I-A e e -1

and we put z = x1^ . Then S( 0 ;P .X1—) tends to infinity as x ^ °° ; in other
words, the number of n <- x for which both n and n+2 have all their prime fac-
tors s> x tends to infinity with x . Hence each of n , n+2 has at most u < 8
prime factors, i.e. at most T , infinitely often.

Another very simple application of (the upper bound in Theorem 2 (again with
b = 1) gives
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THEOREM 3. Suppose that (f t ) , (ft ) and (R) hold. For any positive number p ,

S( 0;P ,z) = 0(XW(z)) if z ^ X11

and

S(0 ;P ,z) = 0(XW(X)) if z s> X1711 ,

•where the constants implied by the 0-symbols may depend on u

Upper estimates of this kind are frequently used in arithmetical investigations,

and whenever one meets the phrase " ... by Brings sieve it follows ... " in the

literature, an appeal to Theorem 3 will generally justify the claim.

We shall not prove Theorem 1 in detail. In view of Theorem 3 we may clearly sup-

pose that u is large ; and a careful comptitation shows that the choices

, _ r u u i , A log u .- - - - 2b "• [T^ Î g-il3 ' A = ——u lf log z> 2 log u ,

r U "i UA 9
b = L - ^ ] , \ = -^- if l o g z < 2 1 o g u

in Theorem 2 lead to Theorem 1.

2. - It remains to prove Theorem 2. In view of (l.l) we may suppose throughout thefc

z is sufficiently large.

Eet x-, and x? be arithmetical functions, taking the values 0 and 1 only,

on the set of positive divisors of P(z) , such that for v = 1 and 2

(2.1) X^ ( ! )= ! ,

(2.2) X^ (d) = 1 implies x^(t) = 1 for all t|d

(2.3) X^ (t) = 1 , P(t) = (-1)^ imply X^(pt) = 1 for all

P ^(t) » p|P(z) , where, if n >1 , q(n) is the least prime factor of n , and

q(l) = °°. Taking 1 = 1 in (2.3) (and therefore \) = 2) shows that (2.3) incor-

porates the special condition

(2.4) X^P) = 1 ^ all p|P(z) •

It is clear that we may think of x-i 9 X? as characteristic functions of two sets

^- »-^ of divisors of P(z) , but it turns out to be much more efficient to work

directly with x-i and x? rather than through the structures of ^- and -^? .

Qe record the following, virtually obvious, identity.
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LEMMA 1. ^ pt|p(z) , p < q(t) , then

X^(t) - X^(pt) = (-l)^1 P(t)x^(t){l-x^(pt)} ^ = 1,2).

Proof. Both sides vanish if X^(t ) = X^(pt) , and by (2.2) this is always the case
i11 X^(pt) = 1 . Hence we may suppose that X^(p"0 = 0 , X^(t) = 1 • Then, by (2.3),
p( t ) = (-1) "" , and so both sides are equal to 1 .

The relevance of the functions x^ and Xp is embodied in the next Lemma.

LEMMA 2. -For each n |P(z) , refine

T^(n) = ^ p(d) x^(d) (v= 1,2) ;
d[n

then t^ <•!) = 1 = T^(l) , and

T (n) ^ I v ( d ) ^ T^(n) for all n [ P ( z ) .
d|n

Proof. If n = 1 the result is obvious from (2.1). Suppose then that n > 1 , in
•which case we have to show that

(2.5) (-1)" T^(n) ^ 0 if n >1 , n|P(z) (v = 1,2) .

But then if q.(n) = p and n = pm , so that p < q(t) for every t [m , we have

T^(n) = ^ {u( t )x^( t )+p(pt)x^(pt)}= I v( t ){x^( t ) -x^(pt )}
t |m t|m

= (-D^-1 i x^(t) {l-X^(pt)}
t [ m

by Lemma 1 ; and (2.5) follows at once.

We are now in a position to begin the argument. We have, by lemma 2 ,

(-1)^(0 ; P , z ) = I (-1)" ]: p (d ) ^ ^ (-l)\((a,P(z)))'

a C O d | ( a ,P (z ) ) a^Q

„ P(d ) X . ( d )
= (-l)^X ]: ———g-^——o)(d)+

d |P(z )

+ (-1)" 7 p (d ) x^(d) R^

4p(z)
(2.6) ^ (-1)^ XL^(z) - i X^(<i)o)(d) (v=1.2)

d |P(z)
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using (R) , •where

(2.7) L ( z ) = I vW X,(d) ̂  ( v = l , 2 ) .
<i|P(z) v d

Our aim must be to construct X, » ^ o consistently with conditions (2.1), (2.2)

and (2.3) so that the remainder terms

(2.8) i X^(d) o)(d) (^ = 1,2)
d | P ( z )

in (2.6) are small while L ( z ) is, for each of \) = 1 and ^ = 2 , bounded above
and below by a constant positive multiple of W ( z ) . We note that L ( z ) = W ( z ) if
\ (d) = 1 for every divisor d of P (z ) . The connection between L ( z ) and

W ( z ) emerge very clearly in the following identity.

LEMMA 3. Let p denote the successor of p in ^ , and write

P(u.v) = TT P = p^ / P^) •
u ^p< v
p e P

Then, for v == 1 and 2 ,

L,(Z) = w(z) a.(-i)-1 I ̂ ^} I x,(t)a-x,(pi)}^ ).
p<z t|P(p''',z)

Proof. We substitute the (obvious) relation

X ^ ( d ) = 1- I (X^d^.z))) - X ^ ( ( d , P ( p . z ) ) ) } ( d | p ( z ) )
p|d

in (2.7) , so that

L^(z) = I ( p ( d ) + I u(^) {x^ (d .P (p + . z ) ) ) -X^( (d .P (p . z ) ) )} ) ̂  ;
d |P(z) p [d

and if we now write d = (Spt where 6 J P ( p ) , t |P(p ,z) , we obtain

^)^)^ ^1 ^ ^^1 i ^-^^ ,(,).
p <z 6 |p(p) t^p^z)

An application of Lemma 1 to the innermost sum on the right completes the proof.

(Note that division by W ( z ) is justified in view of condition (^- , ) which
ensures that o)(p)/p is bounded away from 1 ).

We now introduce a partition

(2.9) 2 = z^< z^< ... < z^ < ZQ = z
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of [2,z] and. group the primes of P that are less than z into sub-sets cor-

responding to the intervals [z ,z ) (n=l,2,... ,r). Using the obvious fact that

W(p) ^ W(z^) if z^ p < z^

we derive the

COROLLARY.

^ . ^ . X,(t){l-X,(pt)}L ^ ( z ) = W ( z ) {1.9 I ̂  I ^ ^ ^__^^. ̂

n=l z^p<z^ t^p^z)

•where v = 1 or 2 and 1 6 1 ^ 1 .

There is, as Levin has indicated, considerable latitude in the choice of the

functions x (or, what amounts to the same thing, the sets J^ ) . However, for

our present purpose Brun's choice, as modified by Tar-takovskij , suffices. Let b

be a positive integer. For \) = 1 or 2 , and each n = 1 ,...»r , put

(2.10) x^(d) = 1 if d|P(z ,z) and \/(d)<s2b-\; + 2n-l

= 0 if d|P(z) otherwise. *

Then x^_ , Xg obviously satisfy (2.1) and (2.2) . To check (2.3) , suppose

that t|P(z ,z) and X^("b) = 1 • Then v(t) ^ 2b- v+ 2n-l ; if also
u(t) =(-l)v = (.i)213"^211-2 ^ ^e^ ^(-b) = 2b-\/+2n-l is impossible. Hence

v(t) < 2b-\;+2n-l , and so, if p < q(t) and p|P(z) , v(pt) a& 2b-^+2n-l ; but

pt|P(z ,z) for some m ^ n , and it follows that x (pt) = 1 • Thus \ , \

satisfy (2.3) too.

Let us now interpret the innermost sum (over t ) on the right of Lemma 3 ,

Corollary, in the light of the choice (2.10). Here t makes a contribution to the

sum only if ^ (t) = 1 , y (pt) = 0 ; since both, t and pt divide P(z ,z) , it

follows that \»(t) ^ 2b-v«-2n-l and v(pt)> 2b-v+2n*l , whence \/(t) = 2b-v+2n-l.

Writing pt = d we have, therefore, that

L^(z) = W(z ) {1+fi I -^- i ^11 } , [ 9 | ^ 1 ( v = l , 2 ) .

n=l d|P(z^,z)

v(d)=2b-\^+2n

•%• In other words, £• consists of all divisors d of P(z) with the property

that if d|P(z ,z) then \^(d) ^ 2b-v+2n-l (\^(d) denotes the number of prime

factors of d) ; thus if d € ^ , d has relatively few large prime factors.
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and so, by an elementary inequality for elementary symmetric functions (clearly the

sum over d is the (2b-v+2n)-th elementary symmetric function of the arguments
o)(p)/p , z^P<z ) ,

r W(z )
(2.11) L ( z ) = W ( z ) { l + 9 ^ —__—__———^ ( V iii(£L2b-^+2n. , ,

^ " W(z) (2b-\)+2n)! L p / ^, | o | ;s l,

n=l V^2 v = 1 . 2 .

Also (cf. (2.6) and (2.8) ) a simple combinatorial argument shows that, with our
choice (2.10) ,

(2-12) I X^d) o)(d)^(l^ (.(p))213-^12^ (1^ o)(p))2

<i|P(z) P<z n=l p<z^

^(1+A^z))213-^1 ̂  (l+A^(z ))2

n=l n

by ( f t ) ; and to take the estimations in (2.11) and (2.12) further we must now

choose a convenient partition (2.9).

Let A be a real number satisfying 0< A^ l , and define {z } by

(2•I3) ^ = 2 . logz^e"^ log z (n = l,2,...,r-l) ,

where r is chosen so that log z = e"'^"1^ ]_og z>log 2 but
—rA r^-L

e log z s? log 2 , in other words, so that

{2.1k) e^-1^ <lo£L|^erA .log 2

Remembering that we may assume z to be sufficiently large, a simple calculation

combining (2.12) , (2.13) and (2.l4) shows that

2b-v+l+-|—

(2-^) i x^ (c0 o)(d) = 0 (z e -1 ) ; v = 1.2 .

d |P (z )

It remains to deal with L (z ) . We shall see that A can be chosen in such a

way that

(2-I6) W(z^) /W(z) ^ e^ (n = 1.2....,r) ;

if we assume (2.l6), then

i ^l.^ ^a-^1.)-^^^.^
z ^ ^ P < q z ^ ^ p < z

(n = 1,...,r) ,

so that, by (2.11) ,
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r 9r̂  ^n213"^211

L,(z) = W(zHl.9 I e^ ^^ , }, |9|.l; .=1.2.

n=l

Since (2b-.+2n) ! ^ (2n) ! (2n) ^ , -the sum on the right is at most

? ,2b-v (2n/e)211 ,, l+Xx2n
L x (2n) ! (^e ) . ;

n=l

but (me~ )m/m ! is a decreasing function of m , so that this sum is, in turn, at

most

2^^ I (Xe1^)211 » 2^-^ \\^ .
- Î A en=l

It follows form this, (2.6) and (2.15) that, for v = 1,2 ,

2X
(2.IT) (-1)" S ( a ; P . z ) ^ (-1)" XV(z) {l+92X2b^+2 ——l̂ ^r" }

1-X e

2b-^+l+ -r^——

+0(z e "tl )}.

provided that A , 0 < A ^ 1 , is such that (2.l6) is true. (The reader will have

noticed that various approximations have been made in the preceding argument which

could be improved or avoided, e.g. for small n , if anything were to be gained by

it).

We therefore consider (2.l6). By a well-known result we deduce from (0) that

^ Q)(p) log P ^ A ( l og^+ 1) 'if 2 ^ w ^ z ,

w ^ p <z .

and from this we can deduce, using (^,) , that

Hence

^}. (^)A^(^)} if 2.....

• ^J nl\A Tte^ ^

-wrty ^ e ^ ĵg-^ = exp{ nAA + 10^1+B -^)}' ^nsr

for some suitable constant B . By (2. lU)

nA , rA;i»t(i*'sr,:"7Wi.B^-)

'^——^-
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•whence

W(z^) B

wTiT^8^ n/VA(l ^log logz^ > n - l . — ^ -

Thus (2.16) follows on choosing

(2.18) A^^—^—r1
A loglog z' »

and. 0<A ^ 1 since X < -^ , A s 1 and z is large. Our argument is now

complete, and Theorem 2 follows readily from (2.17) and (2.18).
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