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Colloque Th. Nombres [19^9» Bordeaux]
Bull. Soc. math. France,
Memoire 25, 19T1, P-' 91 a 96

C ^ )EQLTIVARIANT BRAUERGROUPS IN ALGEBRAIC NUMBER THEORY v /

^

A. FRfiHLICH and C.T.C. WALL

1. - The Equivariant Brauergroup

This section contains the bare minimum of general theory required in the sequel.
We shall avoid going into the categorical generalities which underlie a systematic
treatment. (See however our paper in the Proceedings of the Hull conference on
K-theory (Springer Notes 108) for the notion of a group graded category <£
Those familiar with this paper will realize that what we are considering here are
examples of categories Rep( (£ ) .

We give ourselves a pair (R,r) , where F is a 2-graded group whose underlying
group we shall denote by T with grading map uu : T -> ± 1 (units of Z ) and
where R is a commutative ring (always with l) and a F^-module , I^ acting by
ring automorphisms. We shall be interested specifically in two particular cases,
namely (a) direct action when U) = e : F -» 1 is the null map, i.e. , "F = T^ ",
and (b) involution when uu : Fs* ± 1 is an isomorphism.

Let M , N be R-modules. An additive map f : M -> N is said to have grade
Y ( Y € r^) . if

f(r m) = ̂  f (m) , r ^ R , m ^ M .

In the case of direct action an (R,D-module (M,g) consists of an R -module

M and a homomorphism g : r-»Aut^(M) so that, for all Y , g is of grade Y •
In the case of involution an (R,F )-module (M,g) consists of an R-module M
and a non-singular Hermitian form h on M over R , with respect to the invo-

&
lution on R induced by the generator \ of T . There is of course a general
definition applying to all cases, but *we shall not need this here. We shall however
give the general definition of an (R, T)-algebra (A,g) . This is an (R,T^) -module,
with A as R-algebra, and so that the g act on the ring A by automorphisms

when Y is even (i.e., uu (y) = l) and by ant iautomorph isms when Y is odcL
(i.e., UD (y ) = -1 )• Thus in case (b) A is just an R-algebra with involutory
ant iautomorph ism compatible with the involution on R .

(•%•) This is a version of the talk given by Frohlich at the Bordeaux Colloquium.

A detailed account of the underlying theory and its applications will be published

elsewhere. No proofs will be given here.
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The (R,r)-modules (M,g) for which M is an R-progenerator form a category

®en(R»r) with product (^- (diagonal action of T ) and identity object given

"by R • The morphisms of ©er^P^r) are to be just the isomorphisms of grade 1

(of course commuting with the T -action). Similarly the (R,r)-algebras (A,g)

with A central separable, and their isomorphisms of grade 1 form a category

8I-(R»r) with product <^- and identity object. The isomorphism classes in eachZi i\
of these two categories form an Abelian monoid, which we shall denote by Gen(R»r)»

and A-(R»r) respectively. The classes in ©en(R,r) with underlying modules of

rank one form the maximal subgroup C (R,r) of Gen(R^) 9 the egui variant class-

group or Picard group. Moreover one can define in general a product preserving

functor

End :®en(R,T)^ ^ (R^) .

We only describe it in our two special cases. When the action is direct, then

End(M,g) is just Endp(M) with T acting by conjugation, and in the case of invo-

lution then it is Endp(M) with the adjoint involution of h • We now get a

monoid map

End : Gen(R,D-^ ^(R^) ,

whose cokernel is a group, the equivariant Brauergroup B(R,F) . To establisch the

group property one has to generalize the known isomorphism

A <8^ A033 - End^(A) .

Finally forgetting the reaction one gets a map from B(R,r) into the ordinary

Brauergroup B(R) , and we shall write

B^(R,r) = Ker[ B(R,r)-» B(R)] .

It is this group in which we shall be interested mainly.

The cohomology groups of the graded group F with coefficients in U(R)

(group of units) and in C(R) (ordinary Picard group) are defined via the obvious

action of I. twisted by the grading U) . Thus if (Y, u)-> ^u is the origi-

nally given action of I. on R , then the twisted action of F on U(R) used

to define H^r, U(R)) is (Y,u)-> (^i)^Y) . Thus in case (a)

H^r, U(R)) = H^ , U(R)) , in case (b) H^F, U(R)) = H1''̂  , u(R)) (i ^ l).

Similarly for C(R) .

From now on assume F finite.



Equivariant brauergroups 93

THEOREM 1. There is an exact sequence

(i) o -^(r ,U(R) )^ c(R.r)-> H°(r. C(R))-» H^r ,U(R))-»
-> B^(R,D -> H-^r, C(R))-» H^F, U(R) ) .

Remarks l) This is the top row of a larger diagram involving B(R,T) and
other versions of the Brauergroup.

2) The sequence (l) is derived from an infinite exact sequence

o -» H1^, U ( R ) ) -> ... -^(r, U(R)) -> H^S: (R,r)) ->
-» H1-1^, c(R))-* H^r, U ( R ) ) - ^ . . . .

where the H^SCR,?) ) are cohomology groups of a certain complex. One gets (l)
via suitable isomorphisms for the lowest terms. We shall describe one example of
this (cf. (2) ). The only property of the H^ S (RJ')) we shall need is

THEOREM 2. The groups H^S (R,r) ) are annihilated "by card F .

This result is of interest in connection with

THEOREM 3. Every class in B (R,T) is represented "by an (R,F)-algebra
(Endp(M),g) with rajik (M) = card T . If R is connected then the class in
B (R,F) of any (R,r) -algebra (Endo(M),g) is annihilated by rank (M) .

•p
Examples (i) - If uu is null , R/R Galois with group T then

CCR^ E=C(R, r ) , B(R^) - B(R,r)

Ker WiF) -» B(R)]- B^(R,F)

and our sequence (l) yields one which looks like that of Chase-Harrison-Rosenberg.

(ii) - When R is a field then (l) yields an isomorphism

H^F, U ( R ) ) ^ B ^ ( R , r ) .

It is instructive to interpret this explicitly in the well known cases

(a) r acts directly as Galois group , (b) F acts trivially on R with
direct action , (c) r^s ± 1 with non-trivial involution, (d) Fss ± 1 with
trivial involution.
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2. - Algebraic integers with involution

To begin with R can still be an arbitrary commutative ring , (ju : F^ ± 1 ,

and Y denotes the generator of F .

Consider pairs (P,f) , P a rank 1 projective , f an automorphism of P

of grade y with f = 1 . If Q is any rank 1-projective and ^ its image

under some bijection q »-> ^ of grade Y then for P = ^ <8- Q we may take

f(Yq^ <8> q^) = Yq^ <g) g^ . call this a trivial pair. The isomorphism classes of

pairs (P,f) modulo those of trivial pairs form an Abelian group under ^ an
o R

this is H (£ (R,F)) in our simple case. The general construction is really quite

analogous. (There is also a special feature of the quadratic castt tying up equi-

variant classgroups and Brauergroups for opposite gradings).

Next we describe the isomorphism

(2) ^ : H2^ (RJ-) ^ B^(R,D .

Let a pair (P,f) , as above, be given. The associated Brauer class is then that

of the pair (End^(M) , î ) where (i) M is an R-progenerator,

(ii) h : M x M -> P is a non-singular pairing which is R-linear in the first

argument and so that h(m^,m ) = fh(m ,m?) (in other words h is a "non-singular

Hermitian from over (P,f) ") (iii) r is the adjoint involution of h in

End^(M) (this exists ! ). Note that by Theorems 2 and 3 we could manage with an M

of rank 2 and, except for the trivial class, not with M of rank 1 . In fact we

can choose

(3) M = R ® P , h((r^,p^) , (r^.p^)) = r^.fp^ + \'P^_ •

Viewing ^f as an identification the relevant maps of (l) have now an obvious

description. Namely B^(R,T) -> H^r.cKR)) = H°(r^,C(R)) (Tate cohomology) takes

cl(P,f) into cl(P). On the other hand let u € U(R) , \i . u = 1 . Then under

ir^r^ , U(R)) = H^F, u(R)) ->B^(R,T) the class of u goes into the class of

(R,f^) , f^(r) = u r̂ . The module M in (3) is now free, End^(M) is the

2 ^2 matrix ring over R and

Every full matrix ring over R with involution is Brauer equivalent to one of

this type and criteria for equivalence can be derived from (l) .
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From now let R be the ring of integers in a finite algebraic number field L .

If first the involution on R is trivial then (l) reduces to

w C (R,r)- (U(R) /U(R) 2 ) ^ C(R)^

B^(R,D-{±l5 x ( C ( R ) / C ( R ) 2 ) ,

where the subscript 2 denotes the kernel of multiplication by 2 . IT the invo-

lution is non-trivial then (2) yields

(5) B^(R,D - Cok [:H°(r^)-> H°<r^ , I ( R ) ) ] .

where L* = U(L) , l(R) = group of fractional ideals. Hence B (R,T) is an elemen-

tary 2-group and

f card B ( R , F ) = sup (2,2(i)
(6) \

d = number of ramified prime ideals in R/R

3. - Algebraic integers with direct action of a Galoisgroup

L is again a finite algebraic number field with sub field K , F= Gal(L/K) -

with null grading a) = e , R = integers in L , T = integers in K • The subscript

p denotes completion at p , with respect to a prime p in the base field K .

Thus if p is finite then R^ = II Rnv (all ^ in L above p ). One knows

that B(R^ ) = 0 whence B(R. ,F) = B (R ,T). Also B(R) -> B(L) is injective,

and we may identify B(R) with the group of those Brauer classes over L which
Q

split at all finite primes. Moreover, as by (l) H (F , U(R )) = B^(R. ,F) ,

these groups vanish at all non-ramified prime ideals. Beyond this one has

THEOREM h. The sequences

are exact and

0 -» K e r [ B ( T ) - > B ( R ) ] -» B (R,F) -> II B (R , T )
0 p finite ° ^

O - » B ( T ) -> B(R,D -» n B^(R , r )
P infinite

B^(R,D -> B^(L,F ) , B ( R , F ) -» B(L,F )

are injective.

Let cL be the idele group of L andjj

^ = n ^b ^ x n u(Lb ^ •p finite p finite '

Then we have
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THEOREM 5. In the commutative diagram

0-^(R,r)-^ H2^,^) lnv H^.J^/L* )

2' ^ 9 y inv ? y »o-. H^r^^H^r^) -. H'dw^/B )

the first row is exact (and so is of course "by classfield theory the second row).

Let for the moment B (L/K) denote the subgroup of B(K) of Brauer classes

which split in L , as well as at all finite, non-ramified p and which have

at all finite ramified primes cocycles in the group of units. From the last theo-

rem we have an isomorphism

(T) 6 : B^(L/K)2< B^(R,F) .

We shall describe 9 explicitly.

Let A be a central simple K-algebra whose class lies in B (L/K) . Then

A <8>^ L ss End (V) , V an L-vector space. The I-structure, given ty the action

on L , is reflected in a r-structure on End,(V) given by conjugation with

automorphisms fy of grade Y on V , so that f^f^ ^ ty 5 (mod L*) . One

can then construct an R-lattice M spanning V and fractional R-ideals 0

so that f M = a M . This yields an R-algebra EncL(M) <= End.(V) stable

under the f,, . Its class is the required image in B (R,r). Moreover the ideal

classes cl( 0., ) define its image under B (R,r) -» H^-CT^R)).

We shall finally compute the order of B (R,F) • Let *P be a finite prime in

L , Lm the completion, U<̂  the group of units of R<n and consider the

exact valuation sequence

6 -> Um -> Lt -^ Z -^ 0 .

If e^ = e is the ramification index over K CPjp) then V(JK = e«. v .It

follows that effectively H^Gal L /K ) , L* )-> H^GaltL-VK ) ,Z) is malt iplieat ion

by e- and hence that H^(Gal(L-/K ) ,U_) is cyclic of order e • Going over to
45 •P1 p •P ^

the global field and taking into account the infinite primes we conclude that
o

H (r,U,) id the direct product of cyclic groups of frder e , h running through

all primes of K , with the obvious meaning of e for infinite p • On the other
9 P

hand the image of inv from H (r,U.r) clearly has order the least common multiple

of the e. . Hence finally

(8) cardB,(R.D =^. .
P
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