Albrecht FröHlich
 C. T. C. Wall

Equivariant brauergroups in algebraic number theory

Mémoires de la S. M. F., tome 25 (1971), p. 91-96

http://www.numdam.org/item?id=MSMF_1971__25__91_0
© Mémoires de la S. M. F., 1971, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Colloque Th. Nombres [1969, Bordeaux]
Bull. Soc. math. France,
Mémoire 25, 1971, p. 91 à 96

EQUIVARIANT BRAUERGROUPS IN ALGEBRAIC NUMBER THEORY ${ }^{*}$ *

by
A. FROHLICH and C.T.C. WALL

$$
-:-:-:-
$$

1. - The Equivariant Brauergroup

This section contains the bare minimum of general theory required in the sequel. We shall avoid going into the categorical generalities which underlie a systematic treatment. (See however our paper in the Proceedings of the Hull conference on K-theory (Springer Notes 108) for the notion of a group graded category (5. Those familiar with this paper will realize that what we are considering here are examples of categories Rep((5).

We give ourselves a pair (R, Γ), where Γ is a 2-graded group whose underlying group we shall denote by Γ_{+}with grading map $\omega: \Gamma_{+} \rightarrow \pm 1$ (units of Z) and where R is a commutative ring (always with 1) and a Γ_{+}-module, Γ_{+}acting by ring automorphisms. We shall be interested specifically in two particular cases, namely (a) direct action when $\omega=\varepsilon: \Gamma_{+} \rightarrow 1$ is the null map, i.e. , " $\Gamma=\Gamma_{+} "$, and (b) involution when $\omega: \Gamma \cong \pm 1$ is an isomorphism.

Let M, N be R-modules. An additive map $f: M \rightarrow N$ is said to have grade $\gamma\left(\gamma \in \Gamma_{+}\right)$, if

$$
f(r m)=Y_{r} f(m) \quad, \quad r \in R, \quad m \in M
$$

In the case of direct action an (R, Γ)-module (M, g) consists of an R-module M and a homomorphism $g: \Gamma \rightarrow A_{i}(M)$ so that, for all Y, g_{γ} is of grade γ. In the case of involution an (R, Γ)-module (M, g) consists of an R-module M and a non-singular Hermitian form h_{g} on M over R, with respect to the involution on R induced by the generator Y of Γ. There is of course a general definition applying to all cases, but we shall not need this here. We shall however give the general definition of an (R, Γ)-algebra (A, g). This is an (R, Γ_{+})-module, with A as $R-a l g e b r a$, and so that the g_{γ} act on the ring A by automorphisms when γ is even (i.e., $\omega(\gamma)=1$) and by antiautomorphisms when γ is odd (i.e., $\omega(\gamma)=-1$). Thus in case (b) A is just an R-algebra with involutory antiautomorphism compatible with the involution on R.
(*) This is a version of the talk given by Fröhlich at the Bordeaux Colloquium. A detailed account of the underlying theory and its applications will be published elsewhere. No proofs will be given here.

The (R, Γ)-modules (M, g) for which M is an R-progenerator form a category Gen (R, Γ) with product \otimes_{R} (diagonal action of Γ) and identity object given by R. The morphisms of $G e n(R, \Gamma)$ are to be just the isomorphisms of grade 1 (of course commuting with the Γ-action). Similarly the (R, Γ)-algebras (A, g) with A central separable, and their isomorphisms of grade 1 form a category $थ_{Z}(R, \Gamma)$ with product \otimes_{R} and identity object. The isomorphism classes in each of these two categories form an Abelian monoid, which we shall denote by Gen (R, Γ), and $A_{Z}(R, \Gamma)$ respectively. The classes in $\operatorname{Gen}(R, \Gamma)$ with underlying modules of rank one form the maximal subgroup $C(R, \Gamma)$ of $G e n(R, \Gamma)$, the equivariant classgroup or Picard group. Moreover one can define in general a product preserving functor

$$
\text { End : } \operatorname{Gen}(R, \Gamma) \rightarrow \quad थ_{Z}(R, \Gamma) \text {. }
$$

We only describe it in our two special cases. When the action is direct, then End (M, g) is just $\operatorname{End}_{R}(M)$ with Γ acting by conjugation, and in the case of involution then it is $\operatorname{End}_{R}(M)$ with the adjoint involution of h_{g}. We now get a monoid map

$$
\text { End : } \operatorname{Gen}(R, \Gamma) \rightarrow A_{Z}(R, \Gamma),
$$

whose cokernel is a group, the equivariant Brauergroup $B(R, \Gamma)$. To establisch the group property one has to generalize the known isomorphism

$$
A \otimes_{R} A^{0 p} \cong \operatorname{End}_{R}(A)
$$

Finally forgetting the Γ-action one gets a map from $B(R, \Gamma)$ into the ordinary Brauergroup $B(R)$, and we shall write

$$
B_{0}(R, \Gamma)=\operatorname{Ker}[B(R, \Gamma) \rightarrow \quad B(R)] .
$$

It is this group in which we shall be interested mainly.
The cohomology groups of the graded group Γ with coefficients in $U(R)$ (group of units) and in $C(R)$ (ordinary Picard group) are defined via the obvious action of Γ_{+}twisted by the grading ω. Thus if $(\gamma, u) \rightarrow \gamma_{u}$ is the originally given action of Γ_{+}on R, then the twisted action of Γ on $U(R)$ used to define $H^{i}(\Gamma, U(R))$ is $(\gamma, u) \rightarrow(Y u)^{\omega(\gamma)}$. Thus in case (a) $H^{i}(\Gamma, U(R))=H^{i}\left(\Gamma_{+}, U(R)\right)$, in case (b) $H^{i}(\Gamma, U(R))=H^{i+1}\left(\Gamma_{+}, U(R)\right)(i \geq 1)$. Similarly for $C(R)$.

```
From now on assume }\Gamma\mathrm{ finite.
```

THEOREM 1. There is an exact sequence

$$
\begin{align*}
0 & \rightarrow H^{l}(\Gamma, U(R)) \rightarrow C(R, \Gamma) \rightarrow H^{0}(\Gamma, C(R)) \rightarrow H^{2}(\Gamma, U(R)) \rightarrow \tag{1}\\
& \rightarrow B_{o}(R, \Gamma) \rightarrow H^{l}(\Gamma, C(R)) \rightarrow H^{3}(\Gamma, U(R))
\end{align*}
$$

Remarks 1) This is the top row of a larger diagram involving $B(R, \Gamma)$ and other versions of the Brauergroup.
2) The sequence (1) is derived from an infinite exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{1}(\Gamma, U(R)) \rightarrow \ldots \rightarrow H^{i}(\Gamma, U(R)) \rightarrow H^{i}(\mathbb{C}(R, \Gamma)) \rightarrow \\
& \rightarrow H^{i-1}(\Gamma, C(R)) \rightarrow H^{i+1}(\Gamma, U(R)) \rightarrow \ldots
\end{aligned}
$$

where the $H^{i}(\mathbb{C}(R, \Gamma))$ are cohomology groups of a certain complex. One gets (I) via suitable isomorphisms for the lowest terms. We shall describe one example of this (cf. (2)). The only property of the $H^{i}(\mathbb{C}(R, \Gamma))$ we shall need is

THEOREM 2. The groups $H^{i}(\mathbb{C}(R, \Gamma)$) are annihilated by card Γ.

This result is of interest in connection with

THEOREM 3. Every class in $B_{o}(R, \Gamma)$ is represented by an (R, Γ)-algebra (End $_{R}(M), g$) with rank $(M)=$ card Γ. If R is connected then the class in $B_{o}(R, \Gamma)$ of any (R, Γ)-algebra ($\left.\operatorname{End}_{R}(M), g\right)$ is annihilated by rank (M).

Examples (i) - If ω is null , R / R^{Γ} Galois with group Γ then

$$
\begin{aligned}
& C\left(R^{\Gamma}\right) \cong C(R, \Gamma) \quad B\left(R^{\Gamma}\right) \cong B(R, \Gamma) \\
& \operatorname{Ker}\left[B\left(R^{\Gamma}\right) \rightarrow B(R)\right] \cong B_{0}(R, \Gamma)
\end{aligned}
$$

and our sequence (1) yields one which looks like that of Chase-Harrison-Rosenberg.

> (ii) - When R is a field then (l) yields an isomorphism $$
H^{2}(\Gamma, U(R)) \cong B_{o}(R, \Gamma) .
$$

It is instructive to interpret this explicitly in the well known cases
(a) Γ acts directly as Galois group , (b) Γ acts trivially on R with direct action , (c) $\Gamma \cong \pm 1$ with non-trivial involution, (d) $\Gamma \cong \pm 1$ with trivial involution.

2. - Algebraic integers with involution

To begin with R can still be an arbitrary commutative ring, $\omega: \Gamma \cong \pm 1$, and Y denotes the generator of Γ.

Consider pairs (P, f) , P a rank 1 projective, f an automorphism of P of grade γ with $f^{2}=1$. If Q is any rank l-projective and γ_{Q} its image under some bijection $q \mapsto \gamma_{q}$ of grade γ then for $P=\gamma_{Q} \otimes_{R} Q$ we may take $f\left(Y_{q_{1}} \otimes q_{2}\right)=Y_{q_{2}} \otimes q_{1}$. Call this a trivial pair. The isomorphism classes of pairs (P, f) modulo those of trivial pairs form an Abelian group under \otimes_{R} an this is $H^{2}(\mathbb{C}(R, \Gamma))$ in our simple case. The general construction is really quite analogous. (There is also a special feature of the quadratic casetying up equivariant classgroups and Brauergroups for opposite gradings).

Next we describe the isomorphism

$$
\begin{equation*}
\psi: H^{2}\left(\mathbb{S}(R, \Gamma) \cong B_{0}(R, \Gamma)\right. \tag{2}
\end{equation*}
$$

Let a pair (P, f), as above, be given. The associated Brauer class is then that of the pair ($\left.E n d_{R}(M), i_{h}\right)$ where (i) M is an R-progenerator, (ii) $h: M \times M \rightarrow P$ is a non-singular pairing which is R-linear in the first argument and so that $h\left(m_{2}, m_{1}\right)=f h\left(m_{1}, m_{2}\right)$ (in other words h is a "non-singular Hermitian from over (P, f) ") (iii) i_{h} is the adjoint involution of h in End $_{R}(M)$ (this exists !). Note that by Theorems 2 and 3 we could manage with an M of rank 2 and, except for the trivial class, not with M of rank 1 . In fact we can choose

$$
\begin{equation*}
M=R \oplus P, \quad h\left(\left(r_{1}, p_{1}\right),\left(r_{2}, p_{2}\right)\right)=r_{1} \cdot f_{p_{2}}+Y_{r_{2}} \cdot p_{1} \tag{3}
\end{equation*}
$$

Viewing ψ as an identification the relevant maps of (1) have now an obvious description. Namely $B_{o}(R, T) \rightarrow H^{l}(\Gamma, C(R))=\hat{H}^{\circ}\left(\Gamma_{+}, C(R)\right)$ (Tate cohomology) takes $c l(P, f)$ into $c l(P)$. On the other hand let $u \in U(R), Y_{u} \cdot u=1$. Then under $H^{l}\left(\Gamma_{+}, U(R)\right)=H^{2}(\Gamma, U(R)) \rightarrow B_{o}(R, \Gamma)$ the class of u goes into the class of $\left(R, f_{u}\right), f_{u}(r)=u . Y_{r}$. The module M in (3) is now free, End $R^{(M)}$ is the 2×2 matrix ring over R and

Every full matrix ring over R with involution is Brauer equivalent to one of this type and criteria for equivalence can be derived from (1) .

From now let R be the ring of integers in a finite algebraic number field L. If first the involution on R is trivial then (1) reduces to
(4) $\left\{\begin{array}{l}C(R, \Gamma) \cong\left(U(R) / U(R)^{2}\right) \times C(R)_{2}, \\ B_{0}(R, \Gamma) \cong\{ \pm I\} \times\left(C(R) / C(R)^{2}\right),\end{array}\right.$
where the subscript 2 denotes the kernel of multiplication by 2 . If the involution is non-trivial then (2) yields

$$
\begin{equation*}
\mathrm{B}_{\mathrm{o}}(\mathrm{R}, \Gamma) \cong \operatorname{Cok}\left[\hat{\mathrm{H}}^{\mathrm{O}}\left(\Gamma_{+}, \mathrm{L}^{*}\right) \rightarrow \hat{\mathrm{H}}^{\mathrm{O}}\left(\Gamma_{+}, \mathrm{I}(\mathrm{R})\right)\right] \tag{5}
\end{equation*}
$$

where $L^{*}=U(L), I(R)=$ group of fractional ideals. Hence $B_{0}\left(R_{0} \Gamma\right)$ is an elementary 2-group and

$$
\left\{\begin{array}{l}
\operatorname{card} B_{o}(R, \Gamma)=\sup \left(2,2^{d}\right) \tag{6}\\
d=\text { number of ramified prime ideals in } R / R^{\Gamma}
\end{array}\right.
$$

3. - Algebraic integers with direct action of a Galoisgroup

L is again a finite algebraic number field with subfield $K, \Gamma=G a l(L / K)$, with null grading $\omega=\varepsilon, R=$ integers in $L, T=$ integers in K. The subscript p denotes completion at p, with respect to a prime p in the base field K. Thus if p is finite then $R_{p}=\Pi R_{\mathcal{B}}$ (all \mathcal{P} in L above p). One knows that $B\left(R_{p}\right)=0$ whence $B\left(R_{p}, \Gamma\right)=B_{0}\left(R_{p}, \Gamma\right)$. Also $B(R) \rightarrow B(L)$ is injective, and we may identify $B(R)$ with the group of those Brauer classes over L which split at all finite primes. Moreover, as by (l) $H^{2}\left(\Gamma, U\left(R_{p}\right)\right)=B_{o}\left(R_{p}, \Gamma\right)$, these groups vanish at all non-ramified prime ideals. Beyond this one has

THEOREM 4. The sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ker}[B(T) \rightarrow B(R)] \rightarrow B_{0}(R, \Gamma) \rightarrow \prod_{\text {finite }}^{B_{0}\left(R_{p}, \Gamma\right)} \\
& 0 \rightarrow B(T) \rightarrow B(R, \Gamma) \rightarrow \prod_{\text {infinite }} \rightarrow B_{o}\left(R_{p}, \Gamma\right)
\end{aligned}
$$

are exact and

$$
B_{0}(R, \Gamma) \rightarrow B_{0}(L, \Gamma), B(R, \Gamma) \rightarrow B(L, \Gamma)
$$

are injective.

Let J_{L} be the idele group of L and

$$
U_{L}=\prod_{p \text { finite }}^{U\left(R_{p}\right) \times \underset{p \text { finite }}{ } U\left(L_{p}\right) .}
$$

Then we have

THEOREM 5. In the commutative diagram

the first row is exact (and so is of course by classfield theory the second row).
Let for the moment $B_{0}(L / K)$ denote the subgroup of $B(K)$ of Brauer classes which split in L, as well as at all finite, non-ramified p and which have at all finite ramified primes cocycles in the group of units. From the last theorem we have an isomorphism

$$
\begin{equation*}
\theta: B_{0}(L / K) \cong B_{0}(R, \Gamma) \tag{7}
\end{equation*}
$$

We shall describe θ explicitly.
Let A be a central simple $K-a l g e b r a$ whose class lies in $B_{0}(L / K)$. Then $A \otimes_{K} L \cong \operatorname{End}_{L}(V), V$ an L-vector space. The Γ-structure, given by the action on L, is reflected in a Γ-structure on $\operatorname{End}_{L}(V)$ given by conjugation with automorphisms f_{Y} of grade γ on V, so that $f_{Y} f_{\delta} \equiv f_{\gamma \delta}\left(\bmod L^{*}\right)$. One can then construct an R-lattice M spanning V and fractional R-ideals a_{γ} so that $f_{\gamma} M=a_{Y} \quad M$. This yields an R-algebra $\operatorname{End}_{R}(M) \subset \operatorname{End}_{L}(V)$ stable under the f_{γ}. Its class is the required image in $B_{o}(R, \Gamma)$. Moreover the ideal classes $c l\left(a_{\gamma}\right)$ define its image under $B_{o}(R, \Gamma) \rightarrow H^{1}(\Gamma, C(R))$.

We shall finally compute the order of $B_{o}(R, \Gamma)$. Let P be a finite prime in $L, L_{\mathfrak{B}}$ the completion, $U_{\mathfrak{B}}$ the group of units of $R_{\mathfrak{P}}$ and consider the exact valuation sequence

$$
\theta \rightarrow U_{P} \rightarrow L_{\mathfrak{P}}^{*} \rightarrow P \quad Z \rightarrow 0
$$

If $e_{P}=e_{p}$ is the ramification index over $K_{p}(\mathcal{P} \mid p)$ then $v_{p} \mid K_{p}=e_{\mathfrak{B}} v_{p}$. It follows that effectively $\left.H^{2}\left(G a l L_{P} / K_{p}\right), L_{\mathfrak{P}}^{*}\right) \rightarrow H^{2}\left(G a l\left(L_{P} / K_{p}\right), z\right)$ is multiplication by $e_{\mathfrak{P}}$ and hence that $H^{2}\left(\operatorname{Gal}\left(L_{\mathfrak{P}} / K_{p}\right), U_{\mathfrak{P}}\right)$ is cyclic of order $e_{\mathfrak{P}}$. Going over to the global field and taking into account the infinite primes we conclude that $H^{2}\left(\Gamma, U_{L}\right)$ id the direct product of cyclic groups of frder e_{p}, p running through all primes of K, with the obvious meaning of e_{p} for infinite p. On the other hand the image of inv from $H^{2}\left(\Gamma, U_{L}\right)$ clearly has order the least common multiple of the e_{p}. Hence finally

$$
\begin{equation*}
\operatorname{card} B_{o}(R, \Gamma)=\frac{\pi_{e_{p}}}{\operatorname{LCMe}_{p}} \tag{8}
\end{equation*}
$$

