Mémoires de la S. M. F.

ALBRECHT FRÖHLICH C. T. C. WALL Equivariant brauergroups in algebraic number theory

Mémoires de la S. M. F., tome 25 (1971), p. 91-96 http://www.numdam.org/item?id=MSMF 1971 25 91 0>

© Mémoires de la S. M. F., 1971, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Colloque Th. Nombres [1969, Bordeaux] Bull. Soc. math. France, Mémoire 25, 1971, p. 91 à 96

EQUIVARIANT BRAUERGROUPS IN ALGEBRAIC NUMBER THEORY (*)

by

A. FRÖHLICH and C.T.C. WALL

-:-:-:-

1. - The Equivariant Brauergroup

This section contains the bare minimum of general theory required in the sequel. We shall avoid going into the categorical generalities which underlie a systematic treatment. (See however our paper in the Proceedings of the Hull conference on K-theory (Springer Notes 108) for the notion of a group graded category \mathcal{C} . Those familiar with this paper will realize that what we are considering here are examples of categories Rep(\mathcal{C}).

We give ourselves a pair (\mathbb{R},Γ) , where Γ is a 2-graded group whose underlying group we shall denote by Γ_+ with grading map $\omega: \Gamma_+ \to \pm 1$ (units of Z) and where R is a commutative ring (always with 1) and a Γ_+ -module, Γ_+ acting by ring automorphisms. We shall be interested specifically in two particular cases, namely (a) direct action when $\omega = \varepsilon: \Gamma_+ \to 1$ is the null map, i.e., " $\Gamma = \Gamma_+$ ", and (b) involution when $\omega: \Gamma \cong \pm 1$ is an isomorphism.

$$f(r m) = {}^{Y}r f(m)$$
, $r \in \mathbb{R}$, $m \in M$.

In the case of direct action an (\mathbb{R},Γ) -module (M,g) consists of an \mathbb{R} -module \mathbb{M} and a homomorphism $g: \Gamma \to \operatorname{Aut}_{\mathbb{Z}}(\mathbb{M})$ so that, for all γ , g_{γ} is of grade γ . In the case of involution an (\mathbb{R},Γ) -module (M,g) consists of an \mathbb{R} -module \mathbb{M} and a non-singular Hermitian form \mathbb{H}_g on \mathbb{M} over \mathbb{R} , with respect to the involution on \mathbb{R} induced by the generator γ of Γ . There is of course a general definition applying to all cases, but we shall not need this here. We shall however give the general definition of an (\mathbb{R},Γ) -algebra (A,g). This is an (\mathbb{R},Γ_{+}) -module, with A as \mathbb{R} -algebra, and so that the g_{γ} act on the ring A by automorphisms when γ is even (i.e., $w(\gamma) = 1$) and by antiautomorphisms when γ is odd (i.e., $w(\gamma) = -1$). Thus in case (b) A is just an \mathbb{R} -algebra with involutory antiautomorphism compatible with the involution on \mathbb{R} .

(*) This is a version of the talk given by Fröhlich at the Bordeaux Colloquium. A detailed account of the underlying theory and its applications will be published elsewhere. No proofs will be given here. The (R,Γ) -modules (M,g) for which M is an R-progenerator form a category $\mathfrak{Gen}(R,\Gamma)$ with product \otimes_R (diagonal action of Γ) and identity object given by R. The morphisms of $\mathfrak{Gen}(R,\Gamma)$ are to be just the isomorphisms of grade 1 (of course commuting with the Γ -action). Similarly the (R,Γ) -algebras (A,g)with A central separable, and their isomorphisms of grade 1 form a category $\mathfrak{U}_Z(R,\Gamma)$ with product \otimes_R and identity object. The isomorphism classes in each of these two categories form an Abelian monoid, which we shall denote by $\mathrm{Gen}(R,\Gamma)$, and $A_Z(R,\Gamma)$ respectively. The classes in $\mathrm{Gen}(R,\Gamma)$ with underlying modules of rank one form the maximal subgroup C (R,Γ) of $\mathrm{Gen}(R,\Gamma)$, the <u>equivariant class-</u> <u>group</u> or Picard group. Moreover one can define in general a product preserving functor

End :
$$Gen(R,\Gamma) \rightarrow \mathfrak{U}_{\mathcal{T}}(R,\Gamma)$$
.

We only describe it in our two special cases. When the action is direct, then End(M,g) is just $End_{R}(M)$ with Γ acting by conjugation, and in the case of involution then it is $End_{R}(M)$ with the adjoint involution of h_{g} . We now get a monoid map

End : Gen(R,
$$\Gamma$$
) $\rightarrow A_{\tau}(R, \Gamma)$,

whose cokernel is a group, the <u>equivariant Brauergroup</u> $B(R,\Gamma)$. To establisch the group property one has to generalize the known isomorphism

$$A \otimes_{R} A^{op} \cong \operatorname{End}_{R}(A)$$

Finally forgetting the Γ -action one gets a map from $B(R,\Gamma)$ into the ordinary Brauergroup B(R), and we shall write

$$B_{A}(R,\Gamma) = Ker[B(R,\Gamma) \rightarrow B(R)].$$

It is this group in which we shall be interested mainly.

The cohomology groups of the graded group Γ with coefficients in U(R) (group of units) and in C(R) (ordinary Picard group) are defined via the obvious action of Γ_+ twisted by the grading ω . Thus if $(Y, u) \rightarrow Yu$ is the originally given action of Γ_+ on R, then the twisted action of Γ on U(R) used to define $H^i(\Gamma, U(R))$ is $(Y,u) \rightarrow (Yu)^{\omega(Y)}$. Thus in case (a) $H^i(\Gamma, U(R)) = H^i(\Gamma_+, U(R))$, in case (b) $H^i(\Gamma, U(R)) = H^{i+1}(\Gamma_+, U(R))$ ($i \geq 1$). Similarly for C(R).

From now on assume Γ finite.

92

Equivariant brauergroups

THEOREM 1. There is an exact sequence

(1)
$$0 \rightarrow H^{1}(\Gamma, U(R)) \rightarrow C(R, \Gamma) \rightarrow H^{0}(\Gamma, C(R)) \rightarrow H^{2}(\Gamma, U(R)) \rightarrow B_{\Lambda}(R, \Gamma) \rightarrow H^{1}(\Gamma, C(R)) \rightarrow H^{3}(\Gamma, U(R))$$
.

<u>Remarks</u> 1) This is the top row of a larger diagram involving $B(R,\Gamma)$ and other versions of the Brauergroup.

2) The sequence (1) is derived from an infinite exact sequence

$$0 \rightarrow H^{1}(\Gamma, U(R)) \rightarrow \dots \rightarrow H^{i}(\Gamma, U(R)) \rightarrow H^{i}(\mathfrak{C}(R,\Gamma)) \rightarrow$$
$$\rightarrow H^{i-1}(\Gamma, C(R)) \rightarrow H^{i+1}(\Gamma, U(R)) \rightarrow \dots$$

where the $\operatorname{H}^{i}(\mathfrak{C}(\mathbb{R},\Gamma))$ are cohomology groups of a certain complex. One gets (1) via suitable isomorphisms for the lowest terms. We shall describe one example of this (cf. (2)). The only property of the $\operatorname{H}^{i}(\mathfrak{C}(\mathbb{R},\Gamma))$ we shall need is

THEOREM 2. The groups
$$\operatorname{H}^{1}(\mathfrak{C}(\mathbb{R},\Gamma))$$
 are annihilated by card Γ .

This result is of interest in connection with

THEOREM 3. Every class in $B_{O}(R,\Gamma)$ is represented by an (R,Γ) -algebra $(End_{R}(M),g)$ with rank $(M) = card \Gamma$. If R is connected then the class in $B_{O}(R,\Gamma)$ of any (R,Γ) -algebra $(End_{R}(M),g)$ is annihilated by rank (M).

Examples (i) - If
$$\omega$$
 is null, R/R^{Γ} Galois with group Γ then
 $C(R^{\Gamma}) \cong C(R,\Gamma)$, $B(R^{\Gamma}) \cong B(R,\Gamma)$
Ker $[B(R^{\Gamma}) \rightarrow B(R)] \cong B_{o}(R,\Gamma)$

and our sequence (1) yields one which looks like that of Chase-Harrison-Rosenberg.

(ii) - When R is a field then (1) yields an isomorphism $H^2(\Gamma,\,U(R))\cong \ B_{_{\rm O}}(R,\Gamma) \ .$

It is instructive to interpret this explicitly in the well known cases

(a) Γ acts directly as Galois group, (b) Γ acts trivially on R with direct action, (c) $\Gamma \cong \pm 1$ with non-trivial involution, (d) $\Gamma \cong \pm 1$ with trivial involution.

2. - Algebraic integers with involution

To begin with R can still be an arbitrary commutative ring , ω : $\Gamma\cong$ \pm 1 , and γ denotes the generator of Γ .

Consider pairs (P,f), P a rank 1 projective, f an automorphism of P of grade γ with $f^2 = 1$. If Q is any rank 1-projective and ${}^{\gamma}Q$ its image under some bijection $q \mapsto {}^{\gamma}q$ of grade γ then for $P = {}^{\gamma}Q \otimes_{R} Q$ we may take $f({}^{\gamma}q_{1} \otimes q_{2}) = {}^{\gamma}q_{2} \otimes q_{1}$. Call this a trivial pair. The isomorphism classes of pairs (P,f) modulo those of trivial pairs form an Abelian group under \otimes_{R} and this is $H^{2}(\mathfrak{C}(R,\Gamma))$ in our simple case. The general construction is really quite analogous. (There is also a special feature of the quadratic case tying up equivariant classgroups and Brauergroups for opposite gradings).

Next we describe the isomorphism

(2)
$$\psi : H^2(\mathfrak{C}(\mathbf{R},\Gamma) \simeq B_{\mathbf{A}}(\mathbf{R},\Gamma)$$

Let a pair (P,f), as above, be given. The associated Brauer class is then that of the pair $(\operatorname{End}_{R}(M), i_{h})$ where (i) M is an R-progenerator, (ii) $h: M \times M \to P$ is a non-singular pairing which is R-linear in the first argument and so that $h(m_{2},m_{1}) = fh(m_{1},m_{2})$ (in other words h is a "non-singular Hermitian from over (P,f)") (iii) i_{h} is the adjoint involution of h in $\operatorname{End}_{R}(M)$ (this exists !). Note that by Theorems 2 and 3 we could manage with an M of rank 2 and, except for the trivial class, not with M of rank 1. In fact we can choose

(3)
$$M = R \oplus P$$
, $h((r_1, p_1), (r_2, p_2)) = r_1 \cdot f_2 + {}^{\gamma}r_2 \cdot p_1$.

Viewing ψ as an identification the relevant maps of (1) have now an obvious description. Namely $B_o(R,\Gamma) \rightarrow H^1(\Gamma,C(R)) = \hat{H}^o(\Gamma_+,C(R))$ (Tate cohomology) takes cl(P,f) into cl(P). On the other hand let $u \in U(R)$, $\gamma_u \cdot u = 1$. Then under $H^1(\Gamma_+, U(R)) = H^2(\Gamma, U(R)) \rightarrow B_o(R, \Gamma)$ the class of u goes into the class of (R, f_u) , $f_u(r) = u$. Yr. The module M in (3) is now free, $End_R(M)$ is the 2 ×2 matrix ring over R and

Every full matrix ring over R with involution is Brauer equivalent to one of this type and criteria for equivalence can be derived from (1).

Equivariant brauergroups

From now let R be the ring of integers in a finite algebraic number field L. If first the involution on R is trivial then (1) reduces to

(4)
$$\begin{cases} C(R,\Gamma) \cong (U(R)/U(R)^2) \times C(R)_2\\ B_0(R,\Gamma) \cong \{\pm 1\} \times (C(R)/C(R)^2) \end{cases},$$

where the subscript 2 denotes the kernel of multiplication by 2. If the involution is non-trivial then (2) yields

(5)
$$B_{0}(R,\Gamma) \simeq Cok \left[\hat{H}^{0}(\Gamma_{+},L^{*}) \rightarrow \hat{H}^{0}(\Gamma_{+},I(R))\right],$$

where $L^* = U(L)$, I(R) = group of fractional ideals. Hence $B_0(R,\Gamma)$ is an elementary 2-group and

(6)
$$\begin{cases} \operatorname{card} B_{o}(R,\Gamma) = \sup (2,2^{d}) \\ d = \operatorname{number} of ramified prime ideals in R/R^{\Gamma} \end{cases}$$

3. - Algebraic integers with direct action of a Galoisgroup

L is again a finite algebraic number field with subfield K, $\Gamma = \text{Gal}(L/K)$, with null grading $\omega = \varepsilon$, R = integers in L, T = integers in K. The subscript p denotes completion at p, with respect to a prime p in the base field K. Thus if p is finite then $R_p = \prod R_p$ (all \mathfrak{P} in L above p). One knows that $B(R_p) = 0$ whence $B(R_p, \Gamma) = B_0(R_p, \Gamma)$. Also $B(R) \rightarrow B(L)$ is injective, and we may identify B(R) with the group of those Brauer classes over L which split at all finite primes. Moreover, as by (1) $H^2(\Gamma, U(R_p)) = B_0(R_p, \Gamma)$, these groups vanish at all non-ramified prime ideals. Beyond this one has

THEOREM 4. The sequences

$$0 \rightarrow \operatorname{Ker} \left[B(T) \rightarrow B(R) \right] \rightarrow B_{0}(R,\Gamma) \rightarrow \Pi \qquad B_{0}(R,\Gamma)$$

$$p \text{ finite} \qquad p \text{ finite}$$

$$0 \rightarrow B(T) \rightarrow B(R,\Gamma) \rightarrow \Pi \qquad B_{0}(R,\rho,\Gamma)$$

$$p \text{ infinite}$$

are exact and

$$B_{(R,\Gamma)} \rightarrow B_{(L,\Gamma)}, B(R,\Gamma) \rightarrow B(L,\Gamma)$$

are injective.

Let $J_{T_{.}}$ be the idele group of L and

 $U_{L} = \prod_{p \text{ finite}} U(R_{p}) \times \prod_{p \text{ finite}} U(L_{p})$.

Then we have

THEOREM 5. In the commutative diagram

the first row is exact (and so is of course by classfield theory the second row).

Let for the moment $B_{O}(L/K)$ denote the subgroup of B(K) of Brauer classes which split in L , as well as at all finite, non-ramified p and which have at all finite ramified primes cocycles in the group of units. From the last theorem we have an isomorphism

(7)
$$\theta: B_{O}(L/K) \simeq B_{O}(R,\Gamma)$$
.

We shall describe θ explicitly.

Let A be a central simple K-algebra whose class lies in $B_{o}(L/K)$. Then A \otimes_{K} L \cong End_L(V), V an L-vector space. The Γ -structure, given by the action on L , is reflected in a Γ -structure on $\operatorname{End}_{T_{i}}(V)$ given by conjugation with automorphisms f_{γ} of grade γ on V, so that $f_{\gamma}f_{\delta} \equiv f_{\gamma\delta} \pmod{\frac{1}{2}}$. One can then construct an R-lattice M spanning V and fractional R-ideals a_v so that $f_V M = a_V M$. This yields an R-algebra $\operatorname{End}_R(M) \subset \operatorname{End}_{\Gamma}(V)$ stable under the f_{γ} . Its class is the required image in $B_{0}(R,\Gamma)$. Moreover the ideal classes cl(a_{γ}) define its image under $B_{\rho}(R,\Gamma) \rightarrow H^{1}(\Gamma,C(R))$.

We shall finally compute the order of $B_{\rho}(R,\Gamma)$. Let \mathfrak{P} be a finite prime in L , L_{B} the completion, U_{B} the group of units of R_{B} and consider the exact valuation sequence

$$\theta \rightarrow U_{\mathfrak{P}} + L_{\mathfrak{P}}^{*} \rightarrow P \quad \mathbb{Z} \rightarrow 0 \quad .$$

If $e_{\mathfrak{P}} = e_{\mathfrak{P}}$ is the ramification index over $K_{\mathfrak{P}}(\mathfrak{P}|\mathfrak{p})$ then $v_{\mathfrak{P}}|K_{\mathfrak{P}} = e_{\mathfrak{P}}v_{\mathfrak{P}}$. It follows that effectively $H^{2}(\text{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{P}}), L_{\mathfrak{P}}) \rightarrow H^{2}(\text{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{P}}), \mathbb{Z})$ is multiplication by $e_{\mathfrak{P}}$ and hence that $H^{2}(\text{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{P}}), U_{\mathfrak{P}})$ is cyclic of order $e_{\mathfrak{P}}$. Going over to the global field and taking into account the infinite primes we conclude that $H^{2}(\Gamma, U_{\mathfrak{L}})$ id the direct product of cyclic groups of frder $e_{\mathfrak{P}}$, \mathfrak{p} running through all primes of K, with the obvious meaning of $e_{\mathfrak{P}}$ for infinite \mathfrak{p} . On the other hand the image of inv from $H^{2}(\Gamma, U_{\mathfrak{L}})$ clearly has order the least common multiple of the $e_{\mathfrak{P}}$. Hence finally

card $B_{o}(R,\Gamma) = \frac{e_{p}}{LCMe_{p}}$

(8)

\$

University of London King's College Department of Mathematics Stand, W.C.2. (Grande-Bretagne)