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YANG-MILLS-HIGGS FIELDS
IN THREE SPACE TIME DIMENSIONS

Yvonne Choquet-Bruhat
Dcpartcment de Mecanique, Universite Paris VI

INTRODUCTION.
The global existence on Minkovski space-time M^^ of solutions of
the Yang-Mills equations coupled with the Higgs equations for a scalar
multiplet has been proved for n = 1 or 2 by Ginibre and Velo ( 1 9 8 1 ) .
for n = 3 by Eardley and Moncrief (1981) on the one hand, by
Choquet-Bruhat and Christodoulou (1981) on the other hand (the global
existence in this article is proved only for small Cauchy data, but
includes also spinor sources and the corresponding gauge covariant
Dirac equation).
The proof of Ginibre and Velo rests on the local existence theorem
obtained by Segal(1978) using the temporal gauge and semi-group theory,
and on a priori estimates in this temporal gauge deduced from energy
conservation and "higher" energy non blow up for n = 1 or 2 . These
estimates are not sufficient to complete the proof in the case n = 3 •
The complete proof of Eardley and Moncrief uses, in addition.
estimates of the L°° norms of the fields and potential through the
use of another gauge (the Cronstrom gauge) and the properties of the
solutions of the usual d* Member t equation with a source on M/^ .
Choquet-Bruhat and Christodoulou use the conformal transformation of
M^ onto an open bounded set of the Einstein cylinder S3 x (R . The
proof of Eardley-Moncrief does not seem to extend in any easy way from

M^ to another lorentzian manifold. The proof of Choquet-Bruhat and
Christodoulou extends only to lorentzian manifold which are
asymptotically minkovskian at infinity. On the opposite, we shall show
in this article that the proof of Ginibre and Velo on M, or M ,
extends to a general globally hyperbolic manifold of dimension 2 or
3 . even if the Yang-Mills bundle is not trivial, when we use the
local existence theorem proved on such manifolds in temporal gauge by
Choquet-Bruhat. Paneitz and Segal ( 1 9 8 3 ) .
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1. FIELDS.
A space time ( ^ n » i » g) is a C00 manifold endowed with a lorentzian
metric, that is a pseudo riemannian metric of signature
( - . + . + . . . . ) .
We denote by P a C°° principal bundle with base V^^ and group a Lie
group G . We suppose that G admits a non-degenerate bi-invariant
metric, for instance is the product of abelian and semi-simple groups.
The Lie algebra 0 admits then an Ad invariant non degenerate scalar
product, denoted by a dot, which enjoys the property :

( 1 . 1 ) a . [ b . c] = [a . b ] . c .

When we shall prove global existence, we shall suppose moreover that
this scalar product is positive. A Yang-Mills connection (or
potential) is usually defined as a 1-form ( • ) on P with values in £>
enjoying various properties. Its representant in a local
trivialization of P over U c V . ,

< P : p ^ ( x . a ) , p f E P . x e U . a € G ,

is the 1-form s" (0 on U . where s is the local section of P
corresponding canonically to the local trivialization,

s ( x ) = <p-1 ( x . e)

called a gauge in the physics litterature. Let A . and A be
representants of (0 in gauges s^ and s, over U^ and U . . then in
u , n u , :

(lf2) \n - ̂ Ip ^ j ) + <• QMC

is the transition function between the two local trivializations :

S| = H,, S j , R^ right translation on P by u^ ,

The property ( 1 . 2 ) leads to the following definition, equivalent to
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the usual one.

Definition 1 : Given the principal bundle P -» V^^^ , a Yang-Mills
potential A on V^^ is a section of the (fibered) tensor product :

T V , ® P.... c ,n * 1 \i A f f , }J '
• n 4 1

where P A r r , 5 is the orrin^ bundle with base V^^ and typical fiber Q
associated to P via the relation ( 1 . 2 ) .

Note : Let A be a given Yang-Mills potential on V^^ , then A - A
is a section of the tensor product of vector bundles :

T ^.i v0 ^\^0 .

where p ^ ^ , 0 = p ^ <J is the vector bundle associated to P by the
adjoint representation of G on Q .
remark : There is a scalar product in the fibers of P^ Q . deduced

from the Ad invariant scalar product on 9 .

The curvature 0 of the connection oj considered as a 1-form on P is
a 9 -valued 2-form on P . Its representant in a gauge where d) is
represented by A . ^ . is given by

^•^ "( i) = ^(i) + l^d) . A ( i ) ] .

and the relation between two representants is

(^O F ( I ) = Ad(u^ 1 ) F^, in U^ H U^ .

We have therefore for the Yang-Mills field equivalent to the
curvature :

Definition 2 : The Yang-Mills field is a section of the vector bundle
A2 T' ^.i ^ ® ^d.Q S^en by

( 1 . 5 ) F = dA + i [A . A] .

where ( 1 . 5 ) means that ( 1 . 3 ) is satisfied in each local
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trivialization.
We also say that F is a 2-form on V^^ of type (Ad . Q) .
In local coordinates on V^^^ , and for a choice of a basis ( £ ^ ) of Q
a representative of F has components F'^ given by

^ = ̂  A?. - ̂  AX . C^ A^ A^ .

where C^ are the structure constants of G .
In addition to the Yang-Mills field, many physical theories consider a
scalar multiple! or "Higgs field".
Definition 3 ^A Higgs field 'I1 is a section of a vector bund]e P

r . C ^
over V^^ with typical fiber C^ (or Vt^ ) associated to P via a
unitary (or orthogonal) representation r of G : the representants
4̂  ̂  ̂  and 't^ , ^ are linked by

' ^ ( i ) = ^ " i j ) ^ ' ( J ) in u! n "j •

A particular case when G is itself a unitary group U ( N ) in matrix
representation is

r(u^) .̂  = u^ ^j, . action of u^ on 4^ G ̂  .

In all cases, we have a scalar product in the fibers of P
r^

deduced from the hermitian scalar product in ^ , invariant under the
unitary group.

2. COVARIANT DERIVATIVES.
We call P-tensor a differentiable section of a vector bundle

E - ̂  T- V,^ ® P, .
" n * 1

where Pp is a vector bundle associated to P by the representation
P of G . If V^^ is endowed with a metric g . the vector bundle
®P T* v^^ has a natural connection, deduced from the riemannian
connection of g . while Pp has a connection deduced from the
connection A of P . with representative SA , . if A is represented
by A ^ ) ^ £ Q . S being the mapping from Q into the Lie algebra of
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p(G) deduced from p . The covariant derivative of a P-tensor f is

defined by using these two connections : if f = h ® k we define for

any tangent vector v to Vp+ i ;

( 2 . 1 ) V, f = V, h <S> k + h 0 V^ k .

where V is the riemannian covariant derivative, and V k the usual

gauge covariant derivative. The derivative V^ f is extended by

linearity to all sections of E . It is also a section of E , and

depends linearly on v ; we define V f as the section of

T* V^ j ®P T' V^ , ® Pp

obtained through this linearity. If A . ^ . is the representative of the

Yang-Mills potential in a local trivialization of Pp , and f . ^ the

representative of f , a p-tensor with values in a fixed vector

space, we have :

V f , , , ' 7f , , . . S A , , . f,,,

which we often write, omitting the index (i) :

V f = V f + S A f

The same reasonning applies to sections ©p T V^^ ® Pp .
^i* iExamples :

1' The Yang-Mills field F is a section of ®2 T* V^^ ® P ^
n * 1Its covariant derivative is :

V F = V F + [A , F] .

2' If G is a unitary group U(N) . and the Higg's field is a section

of the vector bundle P .„ with fiber C^ the representation space
(i d . C" )

of G . then :

V «t» = V ^ + A 't« .
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3. EQUATIONS AND IDENTITIES.

The simplest way to obtain intrinsic equations for the fields is to

derive them from an intrinsic lagrangian. The physical lagrangian

densities, leading to second order equations for the potential A and

the field 't' , are of the form :

( 3 . 1 ) L = i F.F + V «1\V 4' + V ( 1 ' M 2 ) .

where the dot denotes the scalar product in the fibers of the relevant

vector bundles and

(3.2) I'M2 = <M. ;

V is some smooth function (self interaction potential).

We shall moreover suppose that V(0) = 0 . The case V(0) ^ 0 (for

instance the "cosmic strings) can be treated by alterations of the

present method, or by working directly in local spaces.

The stationnary points (A . *t') of the lagrangian of density ( 3 . 1 ) .

with respect to arbitrary variations (&A , &'t») . with compact support

in V^^ , are the solutions of the following intrinsic equations.

1 ' Yang-Mills equations. (Ad , Q) valued vector equation on V ^ ^ ^ :

(3 .3 ) &F = J . i .e. V^ F^ = J^-

where the current J11' is the (Ad , G) valued vector with components :

O.^i) J"- = (S'l«. ^ 4' + ̂  ^'.S't') .

2° Higgs equation, (r , C1^) valued scalar equation on V ^ ^ ^ :

(3.5) ^ ̂  't» = V ( N - J 2 ) •{• ,

where V is the derivative of V .

It is well known that the Yang-Mills field, curvature of the

Yang-Mills potential A , satisfies the Bianchi identity :

(3 .6) d F = 0 .

where d is the totally antisymetrized covariant derivative, that is,
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in coordinates on V ^ :

(3.6) ^ P^ + ̂  F^ + % F^ E 0 .

It also satisfies the identity :

(3.7) &2 F E 0 , i .e. V^ Vp F^ E 0 .

The equation (3.5) implies that the current J satisfies the

equation :

(3.8) &J = 0 . i. e. V^ J1-1- = 0 .

hence the system ( 3 . 3 ) » ( 3 . 5 ) ^s coherent.

Remark : The intrinsic lagrangian ( 3 . 1 ) is invariant under

diffeomorphisms of V^j (with induced transformations on ©p T* V^^

and g ) and automorphisms of P (with induced transformations on the

associated bundles). The "conservation" (3«o ) of the current J is a

consequence of the second invariance. The first invariance leads to

the conservation of the stress energy tensor which we shall use later.

for a priori estimates.

^ . CAUCHY PROBLEM.
We suppose, in this article, that the manifold V , is of the type
S x IR . with S,_ = S x { t } space like for g . and x x {IR} time like.
We denote by X the tangent to x x {IK} , and by n the normal to S^ .
Adapted local coordinates will be x° = t , and ( x ' ) . i = l , . . . . n .
local coordinates in S .
The Cauchy problem for a Y . M . H . system is the determination of a
solution from data on the submanifold Sy E S x { 0 } . These data are
Cauchy data.
I 6 A section a over Sy of the bundle T' Sy © P^^. Q ;
2° A section a,, over Sr, of the bundle P* <• r c ;o o A i r . y
3' A section E over Sy of the bundle T V^^ ® P̂  c> , i . c . a
tangent vector to SQ of type (Ad , 9) ;
^' A section <p and a section <p over Ŝ  of the bundle P ^ , i . e.
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scalar multiplets of type (r , C^) .

A solution (A , F , '1') of the Y.M.H. system is said to take these

initial data if :

r
('LI) i* A = a .

where i* is the pull back T* V -» T" Sy deduced from the inclusion

mapping Sy -» V ^ , ^ ;

2"

(^.2) ^'SQ = ^

(where the dot denotes the interior product between T* V and TV

defined by the metric g ) ;

3°

F . n l ^ = E
"o

(i. e. F^ n^lg = E "̂ . we have E° = 0 . E is tangent to Sy ) ;

4-

4'L = <p . X.V 4'L = <p
"o so

5. CONSTRAINT.

It is easy. to see, in coordinates adapted to the slicing V = S x IR ,

that the equation

( 5 . 1 ) ^ F^0 = J° restricted to Sy

depends only on the Cauchy data. It is therefore a constraint to be

satisfied by these data. It reads in local coordinates and gauge.

since F is antisymmetric :

———c^ (F-l° N\fg~) + [Aj , FJ°] = J° on S^
N\[g

with g the metric induced by g on Sg and. in our signature :
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|g00|-i/2 , j g ( x . n ) l = N = - n^
hence
( 5 . 2 ) pJ° NL = - EJ .° o

and the constraint reads ( V metric derivative in the metric g ) :

V, E.1 . [aj . EJ] - JO n,l^ .

which can be written intrinsically :

( 5 . 3 ) div E = q . q = J .nL ;" o

J is given by ( 3 . ^ 0 . hence q is a quadratic polynomial in the Cauchy
data <P . <p .
It can be proved that the operator div is the L2-ad joint of the
operator grad mapping scalars on V^^ of type (Ad . Q} into 1-forms
on ^+1 of ^P® (Ad • ^) * given in any representation by

f -» grad f = df + [a . f] .

and that the operator A = div grad is an elliptic operator on V
In appropriate functional spaces depending on S . we shall have a L2-
orthogonal splitting saying that-the constraint ( 5 . 3 ) has solutions E
for any q orthogonal to the kernel of the operator grad . In
particular, if this kernel is empty (we then say that the potential
a is "ge n e r i c " ) , the equation ( 5 . 3 ) has solutions E for arbitrary q
Examples of generic potentials on a compact manifold S are given in
Chequet-Bruhat and Christodoulou ( 1 9 8 1 ) . For an asymptotically
euclidean (S , g) . and in appropriate functional spaces capturing
the asymptotically zero character of the fields :

grad u = 0 implies u = 0

(because grad u = 0 implies grad lul 2 = 0 ) . and the constraint
( 5 . 3 ) has solutions for arbitrary q in appropriate functional space
(for instance, a weighted Sobolev space).



82 Y. CHOQUET-BRUHAT

6 . TEMPORAL GAUGE.
To solve the evolution problem of a Y . M . H . field from Cauchy data one
chooses a gauge, that is one imposes an extra condition on the
potential such that the Y . M . H . truncated by using this extra condition
becomes a hyperbolic system with domain of dependance determined by
the null cone of the metric, in order to satisfy the relativistic
causality requirement. Since we are interested in non trivial bundles
P , we shall adopt the active view point for gauge transformations.
that is we consider them as automorphisms of P . The temporal gauge
for a potential A will be defined with respect to some given smooth
potential A on V^^ .
Definition : The potential A is said to be in A-temporal gauge, if
the vector ( A - A ) ^ of type (Ad . 5) is orthogonal to the time line.
that is :
( 6 . 1 ) A^ - AQ = 0 .

In the case where P is trivial, it is possible to work with
representations globally defined on V^^ . and to choose A such that
its representative is zero.

Lemma : For an arbitrary potential A , there is an automorphism of
P , such that its transform by this automorphism is in A-temporal
gauge.
Proof : We want to find a mapping u ; Vyi^i ~* ̂  suc^ that the
(Ad , 9) valued scalars Ay and Ap are linked by. in physicist
notation :
( 6 . 2 ) u-1 AQ u + u-1 ̂  u = Ay ;

this is a differential equation for u which can be solved from
initial data on S , for instance uig = n . the unit of G ( c f . I.
Segal (1 9 7 9 ) tor the case V^, = M " 4 1 , Ay = 0 ) .
The Y . M . equations truncated by the A-temporal gauge do not appear at
first sight as a hyperbolic system. We set :

B = A - A , (Ad . Q) valued 1-form on V^j

We have, by a straightforward computation :
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(6.3) F^ = F\p. + ^ B^ - ̂  B^ . [B^ . B^] .

where V is the riemannian, and A covariant derivative, and F the

curvature of A ; then :

( 6 . 4 ) ^ F^ = ^ F^ ^ [B^ . F^] .

In A temporal gauge, B^ = 0 . and the Yang-Mills equations with

unknown B split into the constraint :

(6.5) ^ Fxo = ^ ̂  ^ - vx ^o B?. + vx ^x . 80^
. V^ F^ . [B^ , F^] = J^

(we have left Bg in the formula because the riemannian part of its

covariant derivative does not necessarily vanish, it may contain B ^ .

but not its derivative) :this equation does not contain second

derivatives of B^ transversal to the S^ , and the evolution

equations :

(6.6) ^ F^ = ̂  ̂  B, - ̂  ̂  B^ . ^[B^,BJ . [B\F^] = J, ;

the operator on the B^ s in these equations is not hyperbolic, it is

a non diagonal operator with multiple characteristics : its

characteristic cone at a point of Vn*i ls (n ~ ^-) copies of the null

cone of the metric g and two copies of the tangent to the time line.

We obtain a hyperbolic operator for B^ by combining equations (6.5)

and (6.6) . If (6.5) and (6.6) are satisfied, Bj satisfies a system of

the form :

(6.7) ^o J! - v! ^ = ^0 ̂  ̂  B! + h! .

where the h^ depend on the B,' s , and their derivatives only up to

second order.

Expressed in terms of the given A and the unknown B . the Higgs

equation reads, since

(6.8) V 4' = V 4* + S B 4' .

(6.9) V^ V^ 4' = V^ V^ 'p + H = V ( 1 4 ' ( 2 ) 4'
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where H depends on 4' and B and their first order derivatives.
The equations (6.7) together with the equations for the Higgs field
form at each point of V^^ . and in any representation a hyperbolic
system in Leray's sense, with characteristic cone one copy of the null
one and one copy of the tangent to the time line, interior to the null
cone by hypothesis, the domain of dependance is therefore determined
by that cone.

7. REGULARLY HYPERBOLIC MANIFOLDS.
The Leray theory of hyperbolic systems is formulated for sets of
numerical valued functions over a manifold V^^ . Such a system is
globally hyperbolic, if it is hyperbolic at each point, and the set of
time like paths ( i . e . with future tangent interior to the future
characteristic cone. the manifold is supposed to be "time oriented")
is empty or compact, in the set of paths. When the system is semi
linear, the characteristics, hence the global hyperbolicity, does not
depend on the solutions. When moreover the outer sheet of the
characteristic cone is the null cone of g , the hyperbolic system is
globally hyperbolic if, and only if, the manifold (V^ , g) is
globally hyperbolic. It is known (Geroch, 1969) that V^^ is then a
product S x IR with S^ = S x { t } space like and { x } x IR time like.
We shall make somewhat stronger hypothesis on (V^^ . g) . which we
shall call "regular hyperbolicity".
A manifold (V^^ , g) will be said to be regularly hyperbolic (it is
then globally hyperbolic), if ;
10 Vp^i = ̂  x ̂  is the direct product of a smooth manifold S of
dimension n and (R .
2' The metric g is of signature ( - . + . + . . . . ) .The submanifolds
S^ = S x { t } are space like ; their unit future directed normal is
denoted by n , g(n , n ) = - 1 . The curves { x } x IR are time like.
Their tangent vector is denoted by X . g(X , X ) < 0. We suppose that:
( a ) There exist numbers a > 0 and P > 0 such that. on V ^ :

( 5 . 1 ) a < lg( X , X ) 1^ < lg ( X . n ) I < ft .

Remark : On a lorentzian manifold with our signature hypothesis, we
always have. since X and n are time like and future directed
(increasing t ) :
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(5.2) g(X . n) < 0 . lg(X . n)l > lg(X . X) 1^ lg(n . n)I

We set N = - g(X , n) (lapse function).

(b) The properly riemannian metrics g^ . induced on each S^ by the

metric g . are all uniformly equivalent to some smooth riemanninn

metric g : there exists k^ > 0 and k^ > 0 such that :

(5.3) k^ g (^ , TI) < g^ . -n) < k^ g (^ . •n) . v r e IR . s. . ^ e TS

We suppose the metric g has a non zero injectivity radius (hence is
complete).

We have :

Lemma : On a regularly hyperbolic manifold, there exists a smooth

properly riemannian metric e defined by the contravariant tensor
(recall g(X . n) = - N ) :

(5.^) e^ = g^ + N(X ® n + n ® X) .

8. GAUGE INVARIANT SOBOLEV SPACES.
Local existence theorems for the solutions of the Cauchy problem for
sections of bundles over V^^ of the type considered in previous
paragraphs can be obtained by working with representatives in open
sets U c V^^ over which P is trivialized, for which the usual
theorems with ordinary Sobolev spaces apply, and using uniqueness
theorems to glue together these solutions. However, it is more in the
spirit of the theory to work with gauge invariant objects, and it
becomes fundamental for the proof of global existence theorems.We
first define the Sobolev space W^ for tensors of type (Ad , 9) or
( r , Ĉ  on (S , g) . given some smooth Yang-Mills potential a on
S .We now suppose the Ad-invariant scalar product in 0 positive
definite.
Definition : The space W^ of tensors of some given order and type
over S is the completion of the space C^° of C°° such tensors with
compact support with respect to the norm :
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urn = { S f ^ np drt }1 /?
^ 0<k<s vs

1 < p < oo , s non negative integer, d|t volume element of g . Df

g riemannian and a gauge derivative. 1 I norm at a point

corresponding to the scalar products deduced from g and the Ad-

invariant scalar product in Q .

We set H^ = W^ . It is a Hilbert space. W^ is a Danach space.

It can be proved that the usual Sobolev inequalities and

multiplication theorems are valid for these spaces W^ , as well as

the Gagliardo-Nirenberg inequality :

llfll < Cllfll1-0 ' llDfir .
L" î  LP

1 1 - o- (1 n
— = ————— + <J — - — , 0 < (7 < 1
q r [p n)

l < p < r , q < q ^ . q ^ = + o o i f n < p ,

np
q, = ———— if n > p .1 n - p

C a constant depending only on (S , g) .

Let now a be another, non necessarily smooth Yang-Mills potential.

Lemma : If a - a 6 W^ . f G W^ and s > n- , then :

f ^ }llfll. = i 2. iivx flip [ i /p
^ [o<k<s ^p J

is finite ; moreover there exists a constant C such that :

llfll^. < C(l . lla - all̂  Hfll^ ) .

Proof : Uses the relation between V and V and the Sobolev

multiplication theorem.

Moreover, it can be proved that the Sobolev and Nirenberg-Gagliardo

inequalities are valid when II II is replaced by II II-
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We denote by V^ (T) the manifold S x (- T . T) .and by ^ (T) a

space of P-tensors of some given type on V^i^ which is the

closure of the space of C^° such tensors with respect to the norm :

llfll,, = sup ^ f S IV»< f l2 d|t,
ItKT J°t 0<k<s

E^ (T) is a Banach space.

Remark : Vp* ! = S x (R . hence admits an atlas with domains of maps of

the type IL ̂  x IR , IL ^ . homeomorphic to IR" . The principal fiber

bundle P can therefore be trivialized over u / i ) x ^ • the transition

functions are of the form :

" ( i j > : (", nU j ) X R - . G .

If we suppose, to simplify our work, that the bundle structure is time

independant, that is that there exists a family of local

trivializations covering P , called admissible, such that the

transition functions do not depend on t . There exists then Yang-

Mills potentials A whoserepresentation in every admissible local

trivialization is such that Ag = 0 and a = i^ A does not depend on

t , where i^ is the embedding of S^ in V^^ . By strengthening

moreover regular hyperbolic!ty to boundedness of curvature and an

appropriate number of its derivations (cf. Choquet-Bruhat,

Chrisfcodoulou and Francaviglia, Cagnac and Choquet-Bruhat, and for

full details and proofs, Cagnac), we can show that :

E<,(VT) - 0^3 ̂ ^ < ̂  ' ^(S)) .

9 . LOCAL EXISTENCE.
The usual functional machinery can be used together with the
definitions of § 8 to prove the existence of the solutions of the
Cauchy problem on a small enough time interval I.
Theorem 1 (local existence in temporal gauge) : The Y . M . H . system in A
temporal gauge admits a solution in E^ (T) on Vj- = S x ( - T , T)

taking the Cauchy data on S :
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b , <p € ̂  ; fc , ^€ Ĥ  , s > 2 .

i/ s > — QMd r is small enough.
T depends only on the Hg x Hg _ ̂  norm of the Cauchy data. with SQ

the smallest integer such that SQ > — , Sg > 2 .
The solution depends continuously on the Cauchy data. The support of
the solution is in the future of the Cauchy data ; its trace on S^ ,
It I < T , is compact if the support of the Cauchy data is compact.
Hence a solution in Eg ( T ) is a limit of solutions in C^°(T) .
Remark : The proof that we have given is valid only for s > 2 ; it is
no further restriction than s > — if n > 1 . For n = 1 , one can
prove the following corollary :
Corollary : In the case n = 1 , the solution exists on V.p , T small
enough if :

b . <P , E - E € H^ , <p € L2

The solution is in Eg(T) . if the data are respectively in H and
" S - 1 •

Theorem 2 (local existence for the original system) : The solution in

^^(VT-) of the Y . M . H . equations in A-temporal gauge satisfies the
original Y . M . H . equations, if the Cauchy data satisfy the constraint.

Proof : Denote by f̂  = V^ F^ - Ĵ - = 0 the original Y . M . equations.
The equations we solved are, in addition to the Higgs equation ( 3 . 5 ) :

( 9 . 1 ) VQ f! - v! ̂  = 0 •

It can be proved, using ( 9 . 1 ) . ( 3 . 5 ) . and the identities ( 3 . 7 ) . that
the fp. satisfy a linear homogeneous system which take zero Cauchy
data if the original Cauchy data satisfy the constraint.

10. ENERGY ESTIMATE.
Standard reasonning shows that the solution will exist on V . if we
can find a continuous function C on 1R such that any local solution
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on a manifold V.p satisfies the a priori estimate, with f = (B . 4»):

llfll^(T) < C ( T ) . s >J- .

The backbone for the obtention of such estimates is the energy

inequality, energy conservation in the case of a stationnary

space-time.It is sufficient to prove the estimate for solutions in

C^°(T) , since any solution in Eg (T) is limit of such solutions. The

lemma of § 8 proves moreover that it is sufficient to obtain these

estimates for the Eg(T) norms.

Definition : The stress energy tensor of a Y.M.H. field with self

interaction potential V is the usual 2-tensor on V . (dots are

products in the scalar product deduced from the Ad-invariant one, we

have written indices to explicit the g scalar products) :

(10.1) T^ = F^.Fp, - ^g,p F^.F^

+ J (^a ^P ^ + Vp 4'. V^ 4«

- Bo^X ^ ̂  ^ + V ( l . f l 2 ) ) } .

Its covariant divergence V^ T010 = 0 modulo the Y.M.H. equations, as

could be foreseen (cf. § 3 ) .

The energy momentum vector relative to X is :

(10.2) p01 = Tj? X^ .

and the energy density relative to S,_ is found to be :

(10.3) € = T^p n^ X^ = N—— IFI2 + IWI2 + i v ( l « t » 1 2 ) .

where the norms at a point of V^ of a P-tensor is taken in the

positive definite scalar products deduced from the Ad-invariant

product in Q and from the properly riemannian metric (5.4) on V ^

The energy density is positive if :

(10.4) V ( ^ ) > 0 for ^ > 0

which we shall suppose from now on.
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The energy at time t exists, for It I < T . if the fields F and Vt*
as well as V ( 1 4 ' 1 2 ) are in Eg (T) , and is given by :

•Js.
y(t) = e di-i,

J°fr

We suppose from now on that :

( 1 0 . 5 ) V ( 0 ) = 0 .

The energy is then defined for fields whose support has a compact
trace in S^ .For solutions of the Y . M . I I . system in C^°(T) . we deduce
from the equality :

^ pa = ̂ (^ xp + vp xa) = T.LX .

the energy equality :

( 1 0 . 6 ) y ( t ) = y ( 0 ) + [t [ T.LX 6\\ 6r .

hence the energy inequality, with Cp some constant depending only on
(V^i . g) and X :

( 1 0 . 7 ) y ( t ) < y( 0 ) + C^ Ĵ  y ( T ) dT .

If X is a Killing field of (V^^ . g) . then Ĉ  = 0 ; the energy is
conserved. If Cp ̂  0 , the inequality implies that the continuous
function y satisfies on V^. (Gronwall lemma) :

( 1 0 . 8 ) y ( t ) < C ( t ) with C ( t ) = y ( 0 ) exp(Co t) .

This estimate bounds the Ey norm of F and W . hence the L2 norms
of B = A - A in A-temporal gauge and the norm of ^ in such a gauge,
by using the relations

v B + rJ B = F - F v <t' - v «t»•o "i ' o i °j ^oi ^oi • 'o • ~ -o '

which are first order differential operators along the time line when
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FQ, and VQ 4' are given and lead to the inequalities :

11B112 < 11B112 + C p { I I B I I ^ + IIBII^ ( I IFII^ + IIFIIJ) dT .

where C depends only on (^i • s) . a"d 11 11,, stands for

II II , . and :
L ( s t )

IPN2 < 114'H^ + 2 f1 11'MI^- IIVo *t'll^ dT .

These inequalities lead to estimates :

II'N^ < C( t ) , I I B I I ^ < C ( t ) .

when such estimates are known for F and W* .

The estimates in Eg -norm of B . F , 4* , Vt> is not sufficient to

obtain an estimate of W , and is not sufficient to have global

existence even for n = 1 .

11 . SECOND ENERGY ESTIMATE.

To bound the derivatives VP and V2 «t» , one considers the 2-tensor

T«p» E e^{7, F,,. V^ F^ - ^ V, F,,. V^ P^}

t Re(7^ 7, •f.V^ Vp 4- - I- g,p ̂  V, .{-. ^ V .).)

We have :

T^p) X01 n^ = -N- 1 IVF12 + IV2 •M2 .

and we show, by using the Ricci identity, that, when the Y.M.H. field

equations are satisfied, V^ ^T?) ls a sum 0^ t'e^ms °^ tne form, where
juxtaposition denotes scalar product. Lie bracket or action of the

constant linear operator S :

f f V f . f = F o r V ^ .
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and. if g is non flat or Vn V- 0 . terms f V f . and moreover, if

V ^ 0 :

V ( 1<M 2 ) V '1» V2 4« and V"( 1 4 ' 1 2 ) 4» 4» V 4' V2 •!• .

The integration of the relation :

^(•T?) Xp) . Xp 7,^, . IT,,, .LX

leads to an inequality of the form, with C . C^ , C^ constants

depending only on ^n*! » S • p) (remark ; C ,' == 0 if

(Vn.l . 6) = ^.l ) ''

(11.1) y ^ ( t ) < y i ( 0 ) + C [t y ^ ( T ) dT + C^ F f I f I2 I V f l dt^ dr
vU </0 J^T

+ Ci p i If I IVfl d|i.̂ - dr + C^ p f {IV ( 1 4 ' 1 ) 2 I IWI IV2 4»1
<j T J ̂ T

+ IVU't'l2)! r<t»12 IWI IV2 4 ' 1 } dix^- dT

where

( 1 1 . 2 ) y^t) = f IVfl2 di-t,
tPt

with

( 1 1 . 3 ) IVfl2 = -N-1 IVP12 + IV2 •t'l2

We have :

( 1 1 . ̂ ) f Ifl IVfl d|.t̂  < llfllr IIVfll̂ .
J^T

To estimate

( 1 1 . 5 ) f If l2 IVfl di-î  < llfll2. IIVfIL
JS<r T L^S^)

through the estimate of llfll^ obtained in the previous paragraph, we

use the Gagliardo-Nirenberg inequality when n < 4 :

( 1 1 . 6 ) llfll /, < C llfll1^ llVfll^

with
1 1 - o- (1 1) n
^-T-^ ?-^p i- e- a = Z T * n < z < •
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which gives :

f If l2 IVfl d|.i- < C llfll^-"^ IIVfll " / 2 + 1

JS^- L ' (S^) L'(S^.)

This inequality, inserted in ( 1 1 . 1 ) , will lead, when the estimate of

y( t ) from the previous paragraph is used. to an inequality containing

no power > 1 of y^( r ) if :

"• + 1 < 2 . i.e. n < 2 .

Therefore :

Lemma : If n < 2 and V = 0 . the function y i ( t ) satisfies an

estimate :

y i ( t ) < C ^ ( t ) .

where the continuous function C^ : 1R -» IR depends only on (S .g .P)

and, continuously, on y ^ ( 0 ) .

12. GLOBAL EXISTENCE THEOREM FOR n = 1 .

When n = 1 , the local existence theorem is valid for

b . E , <p € H^ , <p € L2 . A n a priori estimate of the E^ (T) norm of

the solution for F and W is sufficient to obtain the global

existence. The previous paragraph leads to this a priori estimate if

V = 0 .No further restriction on V than V € C2 with V > 0 and

V(0) = 0 supposed in previous paragraphs is necessary to obtain the a

priori estimate of y i( t ) if n = 1 . Indeed, the estimate of y( t )

and a Sobolev inequality shows that. for our C^°(T) fields, the L°°

norm of 't' admits an estimate :

ll't'll oo < C(t) .
L ( S ^ )

The function V( l ' t »1 2 ) . V ( 1 4 * 1 ) and V" (14 ' l ) . admits estimates of

the same type. if V is C2 .

Theorem : The Y.M.H. equations uith regular bundle P over a V^,

regularly hyperbolic manifold admit a global solution, if : '
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(a) The potential V is C2 , non negative, and V(0) ' 0 ;

(b) The Conchy data b , <p are in H^ , E , '<? are in H^ , and

satisfy the constraint.

13. GLOBAL EXISTENCE THEOREM FOR n = 2 .

For n = 2 , the local existence is valid for b . <p € H^ ,

E , <p c 1^ . However, since we have no way of finding directly a

priori estimates for B , but have to use the relation giving B in

terms of F , we need to find a priori estimates for F in E^ . This

estimate is obtained by considering the tensor :

•p(2) ^ X 1 P > 1 e^^fV V F" V V F a - ^ V V F V V Fpc'^ e e vx^^^^a • V^V^PP 4 ' x ^ ' x ^ ^ p o - • ^i t-^

+ 2Pe V^ V^ V, ^ . V^ V^ Vp 4. - g^ \\^ ^ . V^V^Vp ^

then :

T^> X01 n13 = -N- 1 Iv2 F l 2 + 173 •fri2 ,

while Vo, T^^ is found to be. modulo the Y.M.H. equations, a sum of

terms of the form, with f = F or W» :

f V f V2 f .

and, if g is non flat :

Riem(g) V f V2 f , V Riem(g) f V2 f

We set, for C^°(T) fields :

(12.1) y^t) = f IV2 f l 2 d|.i, .
J^t

and we find, by the same method as in previous paragraphs, that. if

V = 0 :
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(12.2) y , ( t ) < y,(0) + C, ^ y^-r) { L IVt l 2 I f l 2 d|̂  dr

+ °2 IS ̂ ^ + yls(T)) y21( T) dT + °3 J^ [s ^ v t ( l ' t ' 1 2 ) l lv2 <t>l

+ V'd'l'l^l'PKIWI2 + I't'llV2^!) + V'd'M^I^I^ IWI2} |V3 4»1 d|.i,-dT

We use again the Cauchy-Schwarz and the Gagliardo-Nirenberg

inequalities to obtain, if n < 4 , here with n = 2 , L'1 standing

for I/MS^) :

{ f IVf.l2 If I2 d|-i-}^ < llfll , IIVfll . < C llfll^- IIVfll - 11V2 fll^-
JS^. L' L4 L2 L2 L2

which leads to an integral inequality containing only powers — and

1 of y^ , when the estimates previously found for y and y. are

used.
Note that the use of the more general Gagliardo-Nirenberg inequality:

l̂  ull < C HD"1 ull^S Hull1;0 , Q : ^ ! . , . " - . - 1 ! - ^ ^ - < a < l
î  L" L" m 2m pm m

does not lead either to an estimate of y^ + y^ when n > 2 .

Lemma 2 : If n = 2 and V s 0 , the function y^ satisfies an

estimate :

y^( t ) < C^( t )

with C^ : IR -» IR a continuous function depending only on

(Vn^ i • 6 • p) ^d. continuously, on y(0) . y^ (0) and y^(0) .

We now consider the case V ^ 0 . We deduce from the estimate of y( t )

and a Sobolev inequality that. for a C^°(T) field we have, if n = 2

(12.3) ll't'll q < C( t ) . 2 < q < oo .
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hence the coefficient of C^ in ( 1 1 . 1 ) is bounded by :

( 1 2 . 4 ) [t ( IKIVd-t ' l2) ! <• IVd'M2)!!^!2)!^!!^ 11V2 .1.11^} dr .

which will lead to a term at most linear in 11V2 't'll2. . hence linear in

y, ("r) , through the use of the Gagliardo-Nirenberg estimate for V't*

and (12 .3 ) if V is C2 and its derivatives V and V" have at most a

power growth, that is. there exist constants C > 0 and numbers p .
1 < p < co . such that ;

(12.5) I V - ( p ) I . l V ( p ) l < C p P for p > l .

(Note that V and V" are bounded for p < 1 , since continuous.)

The inequality (12.2) will lead to an inequality at most linear in

y^(-r) , if V is C3 . and satisfies in addition to (12 .4 ) :

(12.6) I V " ( p ) l < C p P for p > 1 .

From these results, and inspection of y(0) , y^ (0) . y^(0) . we

conclude :

Theorem : The Yang-Mills-Higgs equations with regular bundle P over a

regularly hyperbolic manifold (V^^ , g) uith bounded curvature and

curvature gradient admit a global solution, if :

1' The Cauchy data b , <p are in H^ and E , <p are in H^ , and

satisfy the constraint.

29 The Interaction potential is C3 , non negative, V(0) ' 0 , and
V satisfies ( 1 2 . 5 ) , ( 1 2 . 6 ) .

CONCLUSION.
The proof of global existence of solutions of the Y . M . H . system, or
even of the sourceless Y . M . equations on a general regularly
hyperbolic manifold of dimension 4 does not follow from the standard
use of Sobolev and Gagliardo-Nirenberg inequalities in view of
obtaining the required a priori estimates.
The Eardley-Moncrief method for proving L°° estimates of F and 4'
does not seem to extend to non conformally flat space-times. The
problem is therefore open to know if the Y . M . equations admit, or do
not admit, global solutions on a general regularly hyperbolic manifold
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