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RESUME. Dans ce travail nous continuons notre étude de I'opérateur de
Harper, coshD+cosx dans LZ(IR), par des méthodes d'analgse microlocale et
de renormalisation. On obtient une description assez compléete du spectre dans
le cas ou h/21r est irrationnel avec un développement en fraction continue:
h/zm=1/(ap+1/(q+...)), si qj€2, lqjl=Cq et Cp>0 est assez grand. En
particulier le spectre est un ensemble de Cantor de mesure 0. Nos résultats
sont aussi valables pour certaines perturbations de 1'opérateur de Harper et on
donne une application & Vopérateur de Schrédinger magnétique périodique sur
RZ,

ABSTRACT. In this paper we continue our study of Harper’s operator
coshD+cosX in LZ(IR), by means of microlocal analysis and renormalization.
A rather complete description of the spectrum is obtained in the case when
h/2m is irrationnel and has a continued function expansion:
h/2w=1/(qo+1/(qy+...)) with 9j€2, lqjl 2Cq, provided that C>0 is
sufficiently large. In particular, the spectrum is a Cantor set of measure O.
Our results are also valid for certain perturbations of Harper’s operator and an
application to the periodic magnetic Schrédinger operator on RZ is given.
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0. Introduction.

This work is a continuation of our study, started in [HS1,2], of the
spectrum of Harper's operator, by the use of semi-classical methods. If heR,
h #0, then the problem is to study the union of the spectra, when 6 varies in
R, of the operators in $(12(2),12(2)), given by,

(0.1 Hgu(n)=%(u(n+1)+u(n-1))+cos(hn+6)u(n).

As a set, this union of spectra coincides with the spectrum of,
(0.2) Pg=cos(hDy)+cos(x)

in Z(LZ(R),L2(R)), where Dy=i"13/0x, so that cos(hDy)=(Th+T -p), Where
Thu(x)=u(x-h). Inspired by ideas of Wilkinson [W1], we obtained a partial
Cantor structure result for the spectrum, Sp(Pg) of Py under the assumption

that h/21 is irrational and,

(0.3) h/2mw=1/(q1+1/(ax+...)), qjeZ, 1=j<00,
and

(0.4) lqjlzco,
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for some sufficiently large constant Cy. (See Théoréme 1 in [HS1].) Roughly,
our result was that if £9>0 and if C»> 0 is sufficiently large (as a function of
€0), then outside (-80,80] the spectrum of Pq is contained in a union of
intervals, Jj of width exp(-~lqq[) and such that the separation between
neighboring intervals (on the same side of [-€¢,Eq]) is ~1/1qql. If Xj is the
increasing affine function that maps Jj onto [-2,2], then outside [-€q,Eq],
the set Kj(JjnSp(Po)) can again be localized into a finite union of closed

intervals, having widths and separations of the same order of magnitude as for
the Jj, but in terms of g2 instead of q;. This procedure can then be continued
indefinitely.

The proof of this result was obtained by applying first microlocal
analysis near a 'potential well’, i.e. a component of cos(£)+cos(x)=41,
where JL€[-2,2]\[-£€(,€Epl, in order to obtain certain discrete eigenvalues,

well defined up to o(e~1/Chy, 1t then followed that Sp(Pg) is localized to
certain intervals, Jj, exponentially close to these eigenvalues. After that we

analyzed the tunnel effect between the potential wells, and this permitted us
to describe Sp(Po)an as the spectrum of a certain infinite "'interaction’’

matrix. Exploiting certain translation invariance properties of the resulting
matrix, we could then reduce the study of it's spectrum to that of P(x,h'Dy),

the Weyl quantization of P(x,h’€), (and by definition, the h’~Weyl quantization
of P(x,€),) where P=Pj,h is a small perturbation of Po=cos(£)+cos(x). Here

h'/2m=1/(qp+1/(gz+...)). For P we could then start over again ... .

In this paper, we shall be able to eliminate the intervals, [-60,50], and
obtain a fairly complete description of Sp(Po), under the assumption
(0.3),(0.4) with Co>0 sufficiently large. When trying to make this
improvement at the first level of the iteration scheme, an obvious difficulty is
that for u =0, P51(;L) is close to the union of the lines £=%x+(2k+1)T,

ke2Z, and there is no more obvious localization into potential wells.
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As before, we can however study microlocal solutions of the
homogeneous equation, (Po-}L)u=o, and as a matter of fact, this was done

heuristically already by Azbel [Az]. Away from the saddle points, (km,1),
k+1€2Z+1, the characteristic set, Pg'(}l) is @ smooth analytic curve, and

near a point in this part of the set, the microlocal kernel of (Po- L) is a one

dimensional space, generated by a standard WKB solution. Near a saddle point
the space of microlocal solutions is two dimensional, and can be computed
more or less explicitly. If we choose for instance the point (0,1), then an
element of the microlocal kernel near that point, is determined by its
behaviour near the open segments J(-1r,21),(0,)[ and }(0,1),(m,0)[. Using a
microlocal study of Po— AL, we can then obtain a globally defined, well posed

""Grushin’! problem,
(0.5) (Po-MIu+R_u"=v, R u=vt,

where, u,veL2(R), u~,v* e12(22:¢c2). Roughly (thinking of the case, v=0),
the condition R_,,u:v+ fixes the microlocal behaviour of u near all segments of

the form J((k=1)1r,(1+ 1)), (kr,17)[, kK+1€22+1, and R_u~ provides a

one-dimensional inhomogeneity near each segment of the form,

Ik, 11m), ((k+ 1)1, (1+1)1)[. Denoting the solution by,

(0.6) u=Ev+E, v*, uT=E_V+E__v,,

where all operators depend on u, it is easy to show that jL belongs to the
spectrum of Pq if and only if O belongs to the spectrum of E_ .. Now E_ , may

be viewed as a block matrix, (E. . (, 8))«, gc22, Where each entry is a 2X2

matrix. By the same procedure as for the matrix W above, we then see that
0eSp(E_ ) iff 0eSp(P), where P is a 2X2 matrix of h’-pseudodifferential

operators. After rescaling, we see that (in the most interesting spectral
region) P falls into a certain class of '’strong type 2 operators’’. We also

define strong type 1 operators, as scalar h-pseudodifferential operators,
satisfying certain commutation relations and which are close to Pq(x,hD).

Fortunately, the study of strong type 2 operators is often very close to the
study of s—-type 1 operators, and we can again divide the problem into certain
potential well cases and a branching case.

An interesting feature is that we loose the linear dependence of the
spectral parameter, already after considering the first branching problem, so
we shall systematically work with operators P=P'u, and define JL-Sp(P) as

the set of J such that 0 belongs to the spectrum of P}l' Theorem 6.2 below

shows that the study of the yJl-spectrum of a strong type 1
h-pseudodifferential operator sufficiently close to Pg can, when h is

sufficiently small, be localized into into a union of closed disjoint intervals,
such that the further study of the JL—spectrum in each of these intervals leads
to an operator either of s—type 1 or 2. Theorem 9.2 gives the corresponding
result for s-type 2 operators. Theorem 9.3 is a combination of the Theorems
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6.2 and 9.2 and says that if we start with a strong type 1 operator
sufficiently close to Pg and if (0.3),(0.4) hold with Cq sufficiently large, then

we get a complete description of the j)A—Spectrum by means of an infinite
sequence of localizations into finite disjoint unions of closed subintervals and
rescalings. From the additional quantitative informations stated after the
Theorems 6.2 and 9.2 about the lengths and separations of the various
intervals appearing in those theorems, combined with Theorem 9.3, we obtain
the following result (which expresses only a small part of the very precise
information that our methods produce).

Theorem 0.1. Let P=P(x,hDy) be a self-adjoint h—pseudodifferential operator

such that the corresponding Weyl symbol, P(x,£) extends holomorphically to
the ""band” 1Im(x,€)1<1/¢, and satisfies:

(0.7) P(x,6)+2m)=P(x,£), for all de22,

(0.8) P(€,-x)=P(£,x%),

(0.9) [P(x,6)-(cos(€)+cos(x))| <€, when [Im(x,£)1<1/¢.

If (0.3),(0.4) hold with Co>0 sufficiently large, and if 0<€<€{ with £1>0

sufficienly small, then Sp(P) is of Lebesgue measure 0, has no isolated points
and is nowhere dense. (The last statement means that Sp(P) is dense in no
non-trivial open interval.)

As already mentioned, the method produces a much more precise
description of the spectrum, which is unfortunately rather lengthy to
formulate in terms of a theorem, but the interested reader will be able to
extract that information from the proofs. This refined description will no
doubt be useful when studying the Hausdorff dimension of the spectrum as a
function of the sequence (qj). From the point of view of applications, it is

important that our results apply also to small perturbations of Harper's
operator. In appendix e we show that under suitable assumptions, the
spectrum of .a periodic magnetic Schrédinger operator is near the bottom a
Cantor set of measure O.

In [HS2], the results of [HS1] where extended to the case when for some
N: lqjl =Cn(ay,..,aN,Eq) for j=N+1, but still with the same incompleteness as

in [HS1]. We believe that the techniques of the present paper rather
automatically lead to a more complete Cantor structure result also in that
case. One could probably generalize the result even to the case when there is
a sequence 1=j;<j2<jz<... of integers such that
lqjkl?.Cjk_jk_'(qjk_1+l,...,qjk_1), for suitable functions, Cy.

The plan of the paper is the following:
Section 1. Here we introduce and study certain auxiliary operators.
Section 2 contains a formal study of the iteration steps that we will
encounter, and we show that certain crucial symmetries are conserved.

Section 3. Here we treat the potential well problem for s—-type 1 operators by
suitable modifications of the methods in [HS1].
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Section 4 treats the branching problem for strong type 1 operators and we
obtain a '"renormalized” 2x2 system of h’-pseudodifferential operators.
Sections 5 and 6 contain some preliminary results for the renormalized
operator in section 4. It is showed that after rescaling and depending on the
spectral region, the renormalized operator is either of s—type 1 or 2. Theorem
6.2 gives the main iteration step for s-type 1 operators.
Section 7 treats the totally degenerate potential well case, which is the only
case genuinely non-scalar case for s—-type 2 operators. Here we use some
ideas from [HS2].
Section 8 treats the non—degenerate potential well case for s-type 2
operators.
Section 9 is devoted to the branching case for s—-type 2 operators. Theorem
9.2 gives the main iteration step for s-type 2 operators.

Various results are collected into 5 appendices:
Appendix a contains various general results in microlocal analysis. The
paragraph a.1 recollects the approach of [S1] to analytic microlocal analysis via
FBI-transforms. We refer to that book for a more thorough treatment. In
paragraph a.2 we developp a simple functional calculus for analytic
pseudodifferential operators. Paragraph a.3 may be of independent interest. It
gives a refined correspondence between unitary Fourier integral operators and
canonical transformations.
Appendix b, Here we give local normal forms for self-adjoint
pseudodifferential operators when the symbol has a saddle point or a
minimum. We only allow unitary conjugations and taking functions of the
operator. We believe that the results of this appendix will be useful in other
contexts.
Appendix c. Here we show that certain 2X2 systems of pseudodifferential
operators can be reduced to the case when the diagonal terms are scalars.
This is of use in section 7. See also [HS2].
Appendix d contains some justifications of the arguments in section 4.
Appendix e gives an application to magnetic Schrédinger operators. This is a
modification of the corresponding arguments in [HS1]. Since the symmetry
(0.8) was never assumed in [HS1], we have to add an extra symmetry to the
magnetic and electric fields and check that this leads to (0.8).

Some of the results of the present paper have been announced in [HS3]

We would finally like to thank A.Grigis for a large number of interesting
and stimulating dicussions with the authors during the preparation of this long
work.



L.Various operators with commutation relations.

In this section, we introduce various auxiliary operators, that will play
an important role later, and we study their commutation relations. Some of
this was already done in [HS1,2], but we think it is convenient to have all at
the same place. Let heR, h#0. All operators will act on L2(R). The first
operators we study are natural h—quantizations of the translations:

(x,6) = (x,€)+2ma, ®eZ2 (and sometimes even in R2). Let T=Toq denote
the operator of translation by 21; Tu(x)=u(x-21), let T* denote the
operator of multiplication by e2TiX/h and put

(1.1)  Tg=TtXeT*%2, for ae22.

Sometimes, we shall also use that there is a natural extension of the
definition of T to the case when o eR2, since there is an obvious definition

of real powers of T and T*. In a way, the crucial phenomenon that causes all

the interesting phenomena for Harper's operator, is that T and T* do not

commute in general. In fact, TeT*=exp(-i(21)2/h)T*-T. Let h'eR, be a

number such that,

(1.2) 2m/h=k+h'/2T,

for some integer k. Then T+ T*=exp(-ih’') T*+T, and more generally we get,

(1.3) TyTg= efh’o2 84 To+g

(1.4) TgTg= e o(BToT

for o(,BeZZ, where o denotes the standard symplectic form on IRZ, given by

o(x,€:y,N)=€EY-xM. (1.3) and (1.4) remain valid for o, 8 € RZ, provided that

we replace h' by (Zﬂ)z/h . The next operator we introduce is the unitary

Fourier transform Fp=93, which can be viewed as an h—quantization of the

map X: RZ— R2, given by,

(1.5) X(x,E)=(£,-x).

Later on we shall also need the maps Xy: RZ2— RZ, defined as rotation by the

angle t, so that X=X _ /2. By definition,

(1.6) Fu(€)=(2mh)~1/2[e~%E/h y(x) dx, h>0,

and as already mentionned, ¥: L2(R)— L2(R) is unitary, & ~1=*, where

F* denotes the complex adjoint in the LZ-sense. It is easy to check,

(starting with the operators T and T%,) that,

(1.7) FeTg=e 2 1) yorF,

for €22, and the same relation with h' replaced by (21)2/h, when e R2.
It will be useful in the following, to recall the relation between ¥ and

the unitary group associated to the harmomc oscillator, R—-—(h202+x2 h),

D=i"1(d/dx). Let Uy=etR7h, since ug=e~* 2/2h is in the kernel of R, we have

Uiup=ug. On the other hand, we know (Leray [L]), that U_ /2 and Fare

metaplectic (unitary) operators with the same canonical transformation;
X _-qr/2, and hence that U_y/2=WwW3F, for some W of modulus 1. Since
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U_qr/2Ug=Ug and Fug=ug, it follows that w=1;

(1.8) U_qr/2=F=Fp, h>0.

For later reference, it will also be convenient to know Up /4 explicitely. Using
that the phase Y(x,y)=-x2/2+(2)!/2xy~-y2/2 generates the correct
canonical transformation, namely X /4, We first see that

(1.9) Ugyqu(x)=Ch~1/2 [P (X,y)/hy(y) gy,

for some constant C. In order to determine this constant, we again use that
Usr/4Uo=Ug and that the corresponding integral in (1.8) can be evaluated

exactly, to obtain that, C=2~1/4x=1/2¢iT/8,

Let I denote the antilinear operator of complex conjugation; 'u= u.To
this operator we associate the transformation of phase-space:
(x,6)— (x,-€). We notice that this transformation is anti-canonical, in the
sense that the Jacobian is equal to —1. As a general rule we shall associate
anti—-canonical transformations to antilinear operators. The present
association is justified by the following fact. Let A=A(x,hD) be the h—Wey]l
quantization of the symbol A(x,ﬁ)eSO(R2)=(aeC°°(IR2); for all j,keN, there
exists Cj y such that IBLaEa(x,OI =Cj i, for all (x,€)€R2), defined by,

(1.10) Au(x)=(2mh)~1[[eiX=Y8/ha((x+y)/2,0)u(y) dyde, h>0,
so that A is ©(1) as a bounded operator on L2(R) by standard theorems. (See
for instance [HS1] for a non standard proof.) When we want to distinguish more
clearly between the operator and its symbol, we shall sometimes write Opp(A)
or simply Op(A) for the operator. The justification of the association is then
given by,
(1.11) Top(A)=0p(B)T,
where B(x,&)=A(x,-€). Notice that I'2=id, so that (1.11) may take many
equivalent forms.

Thus in a way, I' is a natural quantization of reflection in the x-axis.
We shall also need quantizations of other reflections, such as'in some of the
lines lg={t(cos®,sind); teR}. To define such reflections, it is natural to

rotate 1g by X_g to the x-axis (1), then reflect in the x-axis, and finally
rotate back again. More precisely, the quantization of reflection g in lg, is
defined by,

(1.12) Tg= UgTU_g,

so that 'g=T'. This corresponds to ¥g=Xg¥oX-g- From the definition of Ug,

it is easy to verify that,

(1.13) TUg=U_gTI (,and classically, ¥oXg=X-g¥0)>

which gives rise to several obvious equivalent forms of (1.12). We get the
general relations,

(1.14) I"bua=uo(l‘3 ’ xbxa=xde, if 2b-a=a+28.

Now it is a general fact, that

(1.15) U_gOp(a)ug=0p(a=Xg),
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and combining this with (1.11), we get, _

(1.16) AeI'g=Tge*B, if on the symbol level, A=¥g=B.

Again, we notice that 1"92=id, so (1.16) can take many equivalent forms.
Later, we shall make a particular use of V=y4er I'1r/4, Whose associated
transformation is ¥qr/4=des.8: (x,6) — (£,x). Using that

V=Ug pel'=TeU_y/2, it is easy to check, using (1.7),(1.6) that,

(1.17) VTy=elh'oidaTg v,

We finally notice that,

(1.18) (Tgulv)=(uTTgVv), u,velZ.



2.Formal study of the iteration process.

In the process that we are going to study, there will appear infinitely
often one of the following two types of operators, namely:
Type 1. P=P(x,th) is a scalar pseudodifferential operator with the following
properties:
(2.1) P commutes with the operators Ty, aez2,
This means that the Weyl symbol; P(x,£) of P is 21 —periodic both in X and in
€.
(2.2) PF=FP*, FP=P*%¥.
This means for the Weyl symbol, that Pex=F, where X=X _qr/2 is the map of
rotation of R2 by the angle -1/2, i.e. the canonical transformation
associated to . We also assume a symmetry under reflection in x=§:
(2.3) PV=VP.
Here we recall that V quantizes the reflection map (x,£) — (£,%), and is an
anti-linear operator. At the very first iteration step, P will be selfadjoint (for
real values of the spectral parameter jl), but that property will be lost later
on in the iteration and will be replaced by:
(2.4) PYP and PP3 are selfadjoint,
where Py and P, are bounded pseudo-differential operators, satisfying (2.1)
and :
(2.5) P1¥= ¥P%, Po¥ = FPY.
(2.6) Pjv= VP;, j=1,2.
In the beginning of the iteration, we take Py and P> to be the identity
operator, and later, they will be elliptic near the characteristics of P.
Tuype 2. P is @ 2X2 system of pseudodifferential operators :

LZ(R,C%IJ))-—' LZ(R,C%ZA)), where the subscripts indicate the coordinate

indices that we use for the two different copies of €2. We shall always think
of these indices, as defined modulo 4, and in order to simplify the notation we

write from now on c%dd=c%1,3), c%ven=c%2’4). Let T denote one of the

two operators T;: C%dd;’ Cgven orTp: cgven_’ c%dd’ where each one is
defined by the general formula (Tx)j=xj_|. Then the operator T2, defined
either as TyTo or T, Ty is given in the standard basis of €2 by the matrix :

(? é). We then assume that P satisfies (2.1) and

(2.7) PFT=FTP*, P*FT=FTP,

(2.8) VP=PVTZ,

Again, we assume that there are operators Py and P, satisfying (2.1), such
that (2.4) holds and we replace (2.5) and (2.6) by:

(2.9) P FT=FTP%, P,FT=5TP},

(2.10)  VPj=PjvTZ, j=1,2.
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It will be important later on,to observe that these two relations and (2.4)
remain valid, if we replace Py, Pp, by Py+tP, P> +tP for any real number t.

In this section, we study formally certain Grushin type problems for the
operator P either of type 1 or of type 2, and we shall see that we obtain in
each case a new ‘‘renormalized’’ operator which is again of one of the two
types. For each type there are two types of Grushin problems; either a
"potential well" problem or a '’branching’’ problem. As we shall see, the
potential well problem leads always to a renormalized operator of type 1,
(regardless of whether we start from an operator of type 1 or of type 2), and a
branching problem always leads to a renormalized operator of type two. Hence
there are 4 cases to check. The richest one is the branching problem for an
operator of type 2 (leading to a new operator of type 2), and the other 3 cases
are simple adaptations of this one. For an explanation of the terminology
"branching’’ and ''potential well’’, we refer to later sections dealing with
more substantial (microlocal) analysis.

Case 1. The branching problem for a type 2 operator. Let
ro,1eL2(R;C%|,3)) be a function, whose form will be specified later, and in

some sense (that we do not need to specify g.et) concentrated near the
segment 1(0,1r),(1,0)[. We put fo’j=(2FT)"Jro,1, for jeZ4=2/(4), and then

fat,j=Tofo,j » fOr €22, We put,
2.11)  Ryu(e,)=(ulfy,j), uel?, («,)e22x{1,3),
From the choice of the fy j, it will be clear that R, :

LZ(R;CEdd)—-’ 12(22x{(1,3)) is a bounded operator. Similarly, we define a
bounded operator
R_: 12(22%(2,41) — LAR;CZen), by

(2.12) R_u™= > ug,jfa,j-
z22x(2,4)
From the definition of the f jand from the commutation relations,

that we have studied earlier, it follows that,

(2.13) Txfd'j=exp(i’z{zo(1h') rd""lf.j'

We conclude that,

(2.14) TXR_=R..‘J‘75,‘J’XR+=R+T.5,

where Ty 12(22x(1,3)({2,4))) = 12(22x{1,3)({2,4))) is defined by,
(2.15)  Tyw(d,j)=exp(inyo(aty=%y)) w(a=%¥,j).

Using this together with (2.1), we obtain,

(2.16) ® Ty 0 \= [Ty O \p,
0 ‘J"K 0 ﬁ'x

where,
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(2.17) P= (P R‘>

Throughout this section, we shall assume that ® is bijective L2x12 —
LZx12 , and we denote the inverse by,

(2.18) &= (E E+ )
E_E_,

Then, (2.16) remains valid, if we replace ® by&. As a general fact, we
notice that if E_ , is bijective with a bounded inverse, then P: L2 — L2 has
the same property, and the inverse of P is given by E—E+(E_+)"E_.

Conversely, if P is bijective with a bounded inverse, then the same holds
for E_ 4, and the inverse is given by —R+P"R_. In particular, we know

that O belongs to the spectrum of P if it belongs to the spectrum of E_ .
The fact that & satisfies (2.16) implies in particular that

(2.19) TyE_ , =E_, T, ¥e22.

Now E_ . has a matrix E(«,j; 8,k), «,B€22,j=2,4,k=1,3, and if we

identify 12(22x{1,3)((2,4))) = lz(zzic%dd(even))» then we can also think
of the matrix of E_ . as an infinite matrix of 2X2 blocks ; E_ , (&, 8)=
(E- 4 (] 8,K))j=2,4,k=1,3 - Analyzing the relations (2.19), we then get
the equivalent statement,

(2.20) E_ (o, B)=exp(ih’Bo(aty-By)) flat-B),

where f is a matrix valued function on 22. we will always be in the
situation when f is exponentially decreasing; I f(a)ll <C exp(-|oal/C), for
some C>0, so we assume this property from now on. Noticing as in
[HS1],section 6, that E_ , is a convolution in the variables «; and that after

a suitable conjugation, E_ , may be viewed as a convolution in the variables
o>, we can show that O€ Spec(E_ ) iff 0€Spec(Q), where Q:

LZ(R;C%dd)—' L2(R; Cgven)v is the h'~Weyl quantization of the symbol,

(2.21)  Q(x,6)=F () exp(~icjotph’'/2) e~ 1<8(a),(x,6)>

where 8(x,£)=(€,x). Here we assume that 0<h'<2m. (When h'=0, E_ is a
convolution operator and the condition that O belongs to the spectrum is
equivalent to : 0€Q(R2).) In view of the exponential decrease of f, we see
that Q is a well defined analytic matrix-valued function, 21 -periodic both
in x and in €, so Q satisfies (2.1), if the T (as always on the renormalized
operator level) are defined with h replaced by h'. What we shall verify (in
each of the four cases), is that Q inherits all the invariance properties of P..
Before that, it will be convenient to make some general remarks about the
renormalization map :E_ . — Q, namely that this map respects

composition, and passage to the adjoint.
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Proposition 2.1. Let e:22 — Mat(nX1), and f:22 — Mat(IXm) be
exponentially decreasing functions, so that we can define the composition
E-F, of the two matrices,

(2.22) E(o(,b’)=exp(ih"52(o(1—’g|)) e(a=%),
(2.23) F(¥,8)=exp(ih’B20¥1~8)) 1(¥ - B).
Then,
(2.24) (E<F)(, B)= exp(ih’B(cty~ By e*N(x-B),
where by definition,
(2.25) exf(a-B)= By exp(ih'(¥2=B2) (et~ ) et =%~ B) .
Moreover, if we denote by Qg, Qf' Qe,r. the renormalized symbols, defined
as in (2.21), then for the corresponding h'~quantizations, we have,
(2.26) Qe’Q":Qe*r N
Proof. The proof is by straight forward calculation: We have,
EeF(at, B)= Ey exp(ih'(¥ 2(ct;=%1)+ B2(¥ 1~ B1)) et =¥ (¥ - B),
and in order to obtain (2.24),(2.25), it is enough to check that,
¥ (A =8+ B2(¥ 1~ B1) - B2l - B)=(¥2-B2) =% ).
If we compose the corresponding h'-Weyl quantizations, we find that
Qe'°f= £z e(o) 1(8) eXD(‘i(O(|d2+B1Bz)h'/Z) AO('B’
Ad’B-__ e—ide/Z,e—iO(1h'D.e-i(d2+Bz)X/2,e-iBﬂ'l'D .e"i;Bz)(/Z_
Using the relations:

e"id]h'D.e—iBZ}UZ = eiBzO(ﬂ’\'/Z,e—iﬁzx/z,e—id]h'D,
e—10ox/2,0=iB1h'Dog=ictpB1h'/2,¢-i1B1h'D.g—ictpx/2
we see that,
AC(, =
ei(BZdl‘dZBl)h’/z e~i(ola+ B2)%/2 e-i(d]+B])h'D e~ a2+ B2)%/2 =
ei(Bzd]-d2£1)h'/2 oph,(e—i((o(2+32)x+(ot1+B|)€),
where Oph'(...) denotes the h’'-Weyl quantization of ... . Hence,
Qe+Qg= Ty gl¥) e~ W1¥2N/2 opu(e~¥2X~¥16),
where,
g(¥)= eI /25, o elaf(Ble™ (X1 + B182 =B+ BN'/2,
Rewriting (2.25) on the form,
exf(¥)= Sy gogg oM X182 e(o0)f(8),
we see that g=ex=f, which gives (2.26). n

For the passage to the adjoint, we have,

Proposition 2.2. Let F(at, 8)= e‘h'ﬁz("‘l"ﬁi)f(o(-B), where { is an
exponentially decreasing function with values in the space of nXm
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matrices. If F* denotes the complex adjoint of F in the sense of infinite
matrices , then,

(2.27) F*(a, B)=eln'B2(a1=Bg(at- B), g(x)=ehF1¥2 1(-%)*,

where f(at)* denotes the complex adjoint of f(ct) for each fixed o. If Qs and
Qg denote the corresponding renormalized symbols, then we have

(2.28) Qg(x,£)=0g(x,6)* ,

and hence the corresponding relation for the h’—quantizations,

(2.29) Qg=0}‘ .

In other words, the map F — Qf respects passage to the complex adjoints.

The proof of this result is just a routine calculation, starting from the
fact that F*(o, B)=(F(8,))*, and we omit the details.

We now continue the study of the case 1, and we shall next look at the
Fourier invariance. From the commutation relations between the T and &,

and the definition of fo('-, we obtain,

(2.30) (FT)fg,j=e” M N%2 gy 51,

where we recall that X=X_ /2, denotes rotation by the angle /2. From
this and the definition of R4, it is easy to show that

(2.31) R,FT= 9R™ (implying FTR_= R%.9),

(2.32) FTR% =R_9(implying QR , =RLFT).

Here 3denotes (the only possible) one of the two operators :
12(22x(1,3)) — 12(22x(2,4)), 12(22x{2,4)) — 12(22x(1,3)),given in
both cases by,

(2.33) 9w(a,)=el' %2 wix=1(a),j+1).
Combining (2.7) with (2.31),(2.32), we get,

FT O\ popx( FTO\ 5 (FT O\ _ [ FTON(u
0 9 0 9 0 9 0 9

which implies the corresponding relations for &:

.34 (%7 %\ e= e* FT 0\ . TO) gx
0 9 09

TO
In particular, we obtam,

(2.35) QE. .= _+9, gE* =E_,9.

More explicitly, the last relation means that,

(2.35) E(at, B)= el (X1%2=B182) TeE(x(B),x(a))*o T T,

or in view of (2.20),

(2.36) f(X(a)= Tef(c)*eT"1.

Using the relations, tx=-x, 1§=8, x§=-8x, we get for the
corresponding renormalized operator,
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QeX(x,8)= T f() e-ld|o(2h 172 o=1<8(a),X(%,6)> =
£ (o) e~ 1% /2 o= 1<8K (), (%,6)> =
£ 1k~ 1)) 910(10(2h'/2 e~ i<8(a0),(x,6)> =
< f(xX()) eio(,dzh’/z ei(&(d),(x,€)>=
T( £ f(a) e~ 1A2h"/2 o =1<8(a), (x,)> )%~ 1= To*T-1,
(2.37) Qex=TQ*T"1.
For the h'-quantizations, this means that ¥ ~1Q¥ = TQ*T~!, or rather,
(2.38) QFT)=(FT)Q*.
This is precisely the relation (2.7) for the renormalized operator,(with the
only difference, that now ¥denotes the h'-quantization).
We shall next study the invariance under reflection in the line x=£. In
view of (2.8), we shall assume that it is passible (subject to verification
later), to choose )'0" such that,

(2.39) VT2f0.1=f0'].
USing the various commutation relations between the operators ¥, T, and
» it is easy to check first that Vfg 2=1p 4, VT2r0'3=r0'3 and then more
generallg that,
(2.40) VTZrd izelh'aydz g ,j)» for j odd,
Vig,j= e‘h 192 fy(, ), for § even,
where v(o,j)=(8(x),2-j). From this it follows that,
(2.41) VR_=R_V', R,VTZ=V'R,, where the antilinear operator V' is
defined by,
(2.42) V'w(a,j)= i’ (v(«, n.
We notice that V'2=id. Combining (2.41),(2.42),(2.8), we get,

2
VOo\ o _ pfVT?0
ov o Vv

which implies,

2
2.43) e VO)=(VT" 0\
oV o V/

In particular, we have,

(2.44) V'E_, =E_, V',

or more explicitely,

(2.45) E(v(a,j),(v(B8,k)= eih' (2= B182) E(«,j; 8,k).

For the corresponding matrix I(ot) (f(at;j,k)), we then get,

(2.46) 1(8(a);2-j,2-K)= eln'*1%2 fot:j,k),

which implies for the corresponding renormalized symbol, that

(2.47) Q(-€,-x;2-j,2-K)= Qx,€;j,k).

This does not use quite the reflection that we want, but iterating (2.37),
we get QeXx2= T2QT~2, and this relation can be written explicitely as,
Q(-x,~-€;j,k)=Q(x,€;j+2,k+2), and combining this with (2.46), we get
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a(€,x;4-j,4-k)=0Q(x,€;j,k), which can be written in matrix form as,
(2.48) Q(£,x)=Q-T2,

Here the left hand side is the symbol of the operator VeQeV, where we now
use the h'-Weyl quantization, so on the renormalized operator-level,
(2.48) can be written as:

(2.49) vQ=QVvT2.

This is the same relation (for the h'-quantizations) as (2.8).

To finish completely the case 1, we have to find natural operators Q
and Qp, satisfying the obvious analogues of (2.4),(2.9),(2.10). Under the

hypotheses above, we notice that the adjoint of ® gives the Grushin
problem,
(2.50) P*u+R%u, =v, R%u=v_,
which is well posed with inverse given by &*;
(2.51) u=E*v+E*v_

up=ESv+EX v,
Let us take v=0 in these relations, and multiply the first equation of
(2.50), by P. Using that P,P*=PP%, we get PP3u=-P,R% u . We can
view this as the first equation of a Grushin problem for PEu, and hence,
(2.52) P2u=-EPzR%u, +E R, P2y,

0=-E_PoR¥ u, +E_ R P3u.
Substituting (2.51) with v=0 into the last equation of (2.52), we obtain,
E_PoR%MEX ,v_=E__ R,P3EXv_, for all v_, and this means that
E_.,_(E_PZR’_‘,_)* is self-adjoint. If we replace (®,&,P5) in these arguments
by (P*,6*,P{"), we also get that EX (E% P{*R_)¥ is self-adjoint, or
equivalently, that (RXP{E)*E_ , is self-adjoint. Using the various
translation-invariance properties, it is easy to check that E_PRY and
R* P{E 4 commute with “Tx, so we can define the corresponding
renormalized operators (by the same procedure as E_ . — Q): Qp, and Q.
From the propositions 2.1 and 2.2, it is then clear that QTQ and 005 are
self-adjoint and that Q;, Q> commute with the operators TX (where we
now use the h'~quantizations). Moreover, if we repeat the arguments
leading to the other invariance properties for Q, we obtain the natural
analogues of (2.9) and (2.10), namely that,
(2.53) FT=9TQ%, Q¥ T=5Ta},
(2.54) VOj=QjvT?, j=1,2.
In fact, with Aj=R%P{E,, A,=E_P,R% , we first find A;9=0A%,
9A1=A%9. In general, if M and M’ commute with the 9y and M9=9M’, then
for the corresponding renormalized operators, we find,
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Qm(FT)~1=(FT)~!ap,, and this implies (2.53). To see that we have
(2.54), we first notice that (V'ulv);2={uTV’v);2, and that the analogous
relation for V has been obtained in section 1. The commutation relations for
R4 and V,VTZ,V’, then give, R*V=V'R*, VTZR¥=RXV'. Using this and
(2.43), we see that Aj commutes with V', j=1,2. From this we get (2.54)

by the argument leading to (2.49).
This completes the study of the case 1.

Case 2. The potential—well problem for a 2X2 system. Assume as in the
preceding case, that P is a type 2-operator. There are two subcases,
corresponding to whether the potential wells are associated naturally to
2122 or to 222+ (11, 1). Let us first reduce completely the second case
to the first one. Given P, Pj, we put p'=5-1ps, P3=S"‘PjS, where

S=T(%,%).u$ing the commutation relations between TX' F, V, itis easy
to check that (P',P',P’';) satisfies the relations (2.1),(2.4),(2.7)-(2.10).

Since S is a natural quantization of the translation by (1, 1), we get a
complete reduction to the subcase n%1. To describe the kind of
Grushin-problem that we shall study in this case, let {5 | be an

Lz—runction suitably concentrated to the component of the characteristic
set of P in RZ, which is ''close to'’ (0,0) (in a sense that will be made
precise later). As we shall see later, it will be possible to choose fO,I in

such a way that,

(2.55) (FT)?fg 1=%fg,1,

which we here take as an assumption. We now let the index j vary in
25=2/(2), and put 10'2=(:}’T’)"r0,,, where for convenience T' is defined
as T when the +sign is valid in (2.55) and defined as iT in the other case.
Then in general, fo j=(FTYK"Jfy \, and since T4=id, we also have
(Th4%=id. Following closely the case 1, we define 70(,j=To(f0,j- and the
operators R, :L2(R;€2) —12(22), R_: 12(22) — L2(R;C2), by:

(2.56) Ryu(e)=(ulfy,p,

(2.57) R_w=Zw()fy 2-

As in the earlier case, we shall assume that the corresponding operator ®
EE,

E_E_,

Repeating the argument of the case 1, we then obtain,

(2.58) TyR_=R_Ty, RyTy=TyR,,

(2.59) TyE_ =E_, Ty,

where ¥ : 12(22) —12(22) is given by the obvious modification of (2.15),
and where we now notice that E_ , is given by an infinite matrix

is bijective and has bounded inverse &=
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(E- 4 (o, 8)), where E_ (o, B) are scalars rather than 2X2 blocks. We still

have (2.20) and we can define the renormalized operator as before, having
the crucial property that 0 belongs to the spectrum of P iff it belongs to the
spectrum of Q. Now Q is a scalar pseudodifferential operator instead of a
2X2 system. Repeating the earlier arguments, we also find,

(2.60) FT'R_=R%9, RIFT'= 9R,,

(2.61) QE_,=E* .9,

where 9: 12(22) —12(22) is defined by the obvious simplification of
(2.33). As before this leads to the relation Q=X =Q for the renormalized
symbol, and hence for the corresponding h'-quantizations,
(2.62) Q¥ =F0Q*.
In order to treat the invariance under reflection in the line x=£, we add the
assumption that
(2.63) VT2fg 1=1o,1 -
Then using the commutation relations and (2.63),(2.55), we get after a
simple computation,
(2.64) Vf0,2=f0,2.
Using again the commutation relations, we obtain from (2.63),(2.64),
(2.65) VT21y = e %2 150y 1, Vig, 2= e %2150y 5,
and as in the case 1, this leads to
(2.66) VR_=R_V', R VTZ=V'R,,
where the antilinear operator V' is defined by,
(2.67) V'w(a)= elh' &2 F(8()).
Continuing as in case 1, we then obtain (2.44), which now means more
explicitely that,
(2.68) E(8(a),8(p))= el (2= 8182) F(«, B).
For the correspondi’ng matrix f(a) , we then get,
(2.69) f(8(a))= eI X2 fla),
which implies for the corresponding renormalized symbol, that
(2.70) Q(-€,-x)= Q(x,6).
This does not use quite the reflection that we want, but iterating the
relation QeX=0Q , we get Qex2= Q, and this relation can be written
explicitely as,
(2.71) Q(-x,-&)=qa(x,£),
and combining this with (2.70), we get,
(2.72) Q(€,x)=Q(x,6).
Here the left hand side is the symbol of the operator V.Q-V, where we now
use the h'-Weyl quantization, so on the renormalized operator-level,
(2.72) can be written as:
(2.73) aQv=va.
This is the same relation (for the h’-quantizations) as (2.3).
To finish completely the case 2, we have to find natural operators Q,

and Qy, satisfying the natural analogues of (2.4)-(2.6). The first part of
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the corresponding argument in case 1 is completely general, and as there,
we see that E_ (E_P»R%.)* and (R*.P{E_)*E_  are self-adjoint. Again

E_PyR*and REP{E, commute with Ty, so we can define the corresponding
renormalized operators Qy and Qq. It is then clear that QjQ and QQ% are
self-adjoint and that Q;, Q; commute with the operators T'& (where we
now use the h’'~quantizations). Moreover, if we repeat the arguments
leading to the other invariance properties for Q, we obtain the natural
analogues of (2.5) and (2.6), namely that,

(2.74) ;¥=%0%, Q;¥=%0Q7,

(2.75) VQj=QjV, j=1,2.

This completes the study of the case 2.

Case 3. ranching problem for a t 1-operator. This case is a
complete repetition of the case 1, with the obvious simplification that all
the invariance relations before renormalization, do not involve any
operators ''T''. As in case 1, the renormalized operator is of type 2.

Case 4. The potential well problem for a type 1-operator. This case is a

complete repetition of the case 2, with the obvious simplification that all
the invariance relations before renormalization, do not involve any
operators T''. As in case 2, the renormalized operator is of type 1.



The potential— roble ra type 1 operator.
Let P be of type 1, as defined in the section on the formal study of the
iteration process, and let Py,P5 be corresponding operators such that P’,‘P,

PP% are self adjoint et ¢ . We shall assume that P, Pj depend analytically on a

real parameter jl€]-4,4[, and more precisely that

(3.1) P=0Dh(P(}l,X,€)), PJ=0ph(PJ(}l,Xv€))’

where P,Pj are holomorphic in D(€)= (l; [ | <4)x{(x,6)eCZ; Im(x,€£) <1/},
for some sufficiently small £€>0.In this domain and with the same €, we also
assume that,

(3.2) IP-(cos€+cosx- )| =€, IPj—llse, for (J4,X,€E)eD(e).

We formalize this by introducing the following definition.

Definition 3.1. We say that (P,P,P5) (or simply P) is of strong type 1, if it is
of type 1 in the sense of section 2, and has the properties above. If (P,P{,P5)
is of strong type 1, we let £(P) (or rather £(P,P{,P2)) be the infimum of all
£>0, such that (3.2) holds.

In this definition, P(x,£) and Pj(x,g) may depend on many more
parameters than jl . Then £(P) will depend on these parameters also. The goal
of this section (and the following ones) is to obtain results which are uniform
with respect to all these additional parameters, valid when €(P) is sufficiently
small. Among the additional parameters we may also have h, but the most
important h—dependence, and the only one that we explicitly take into account
in our notation, is the one resulting from the fact that we work with
h-quantizations.

Definition 3.2, If the operator P is bounded in some Hilbert space, and depend
on a parameter jJl €M, then we define )\ —Sp(P) as the set of )L in M, such that
0eSp(P).

In this section we shall assume that (P,P{,P>) is of strong type 1, and
that 0<h=21. Notice that if £(P) is sufficiently small, the operators Pj are

bijective on L2, 500 belongs to the spectrum of P iff it belongs to the
spectrum of Hy=PP (or equivalently, if it belongs to the spectrum of
H,=PP%). Recall that Hy and H, are selfadjoint, and intertwined by &. In
particular,

(3.3) HiF2=52Hy,

where we recall that ¥2 is a quantization of X2 which is the reflection in
(0,0). Also recall that,

(3.4) VH]=H]V,

where V is a quantization of reflection in the line x=§. V is antilinear and
v2=1. From (3.2) it follows that Hj also satisfy (3.2) withanew €£>0, ina

region defined as before with this new €. The new € tends to 0, when £(P)
tends to zero. The Weyl symbol Hy is real valued for real J and (3.3) and (3.4)

imply that Hy(J,x,£) is invariant under reflections in (0,0) and in the line
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x=€; Hi(-x,-€)=H(x,8), Hi(x,£)=H{(£,x)= H{*8(x,£). Moreover Hj is
2t -periodic in x and in €, and Hy(x,§)+ L is on the real domain an arbitrarily

small perturbation in C2 of the symbol cos{+cosx. We start by discussing the
symbol Hy+ M on the real domain, following closely the argument of section 7

in [HS1]. Module 2122 there are precisely 4 critical points of this symbol,
namely a non-degenerate maximum close to (0,0), a non—-degenerate minimum
close to (1, 1) and two non-degenerate saddle points close to (0,1) and
(1,0) respectively. From the invariance under the map (x,£) — (=%, =€), it
follows that the point of maximum is equal to (0,0). Using also the translation
invariance, we see that the symbol is invariant under the maps

(x,6) = (2w -x,2w =€), (X,6) — (-x,27-€), (X,£) > (217w-%,-€), which are
respectively the reflections in (1, 1), (0,1) and (1r,0). From this we conclude
that the point of minimum is (1r,1r) and that the two saddle points are (0,1r)
and (17,0). The map & leaves Hy invariant and exchanges the two saddle

points, hence we have the same critical value at the two saddle points.
Summing up, we have,
Proposition 3.3, For real jl's, the symbol Hy of Hy=PP is invariant under

reflection in any of the points (k1r,11r), k,1€Z, under translation by 21 in x or
in €, and under reflection in the line x=€ (and more generally in any of the
lines £=*x+k21; keZ). Modulo 2122 there are precisely 4 critical points,
all non-degenerate; a maximum at (0,0) with H{(0,0)+ =2+0(t), a minimum

at (1, 1) with Hy(mr, ™)+ =-2+0(¢), and saddle points at (0, 1) and (,0)
with H(0, )+ L =H{(1,0)+ L =0O(E).

Let c(j)=Hy(,0)+ L =0(e). The discussion below will be uniformly
valid, provided that £(P)>0 is sufficiently small, that =c()+€¢ for some
arbitrary but fixed £3=0, and finally that 0<h=hg(€() for some hp(€g)>0.
The assumption that Jl=c()+€q can also be written; Hy(1,0)<-€q, so the
real characteristic set of Hy avoids the saddle points (km,1m), k+1€2Z+1. For
Ade(p), let Ug=Uy(N\) be the component of (Hy+x4-2)~1(0) in R2, naturally
associated to a€22, and let Hy+)L be a modification of Hy+ L obtained by
filling all the potential wells Uy (c(J)+€¢) for o # (0,0) but leaving H;
unchanged near Ug and in the compact domain to which Uq is the boundary. For
the moment, we can do this by stgndard C*®-theory as in section 2 of [HSI1].
We know that the eigenvalues of Hy+l in the interval [c(J)+€g,o[ are
simple, bounded from above by H{(0,0)+ 1 +O(h), and mutually separated by a
distance =h/Cq for some constant C. Moreover, if we use (3.2) and ordinary

perturbation theory, we see that each such eigenvalue A(Jl) will depend
analytically on . with a holomorphic extension (as well as for the
eigenfunction) to the strip |ImyL|<h/Cq. Moreover, in this strip, we have

dA(J1)/diL=0(¢e), so if J is close to A(j) to start with, then there will be a
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simple real zero ) =)Ly of ;)l=A(}), and from now on we restrict the attention
to an interval Jj)l1—h/Cq, J1+h/Cql, where we may choose Cq as large as we
like. It is then clear that Hy=Hj+ -4 has an inverse of norm ©(1/ [ -¢1),
for j complex with 0<| =411 <h/Cq. If we do the "filling’’ with some care,

using quantizations of the modifying operators based on superpositions of
Gaussians, then we also know that the spectrum of Hy+ Al in

IX()=h/Cq, A(J)+h/Cgl for Cq sufficiently large, is concentrated to an

exponentially short intervall centered at A(JL), when J is real. (More details
about gaussian quantizations will be given in section 4.) Let Ty be the

associated spectral projection. Writing M, 3s2a contour integral with the
resolvent of Hy+ L, we see that the definition of Tr}l extends holomorphically
to [Imu1<h/Cp, and we have lldtr ), /dull =0(e/h).

We shall now fix J)A=J; for a while, and we start by recalling the
definition of certain distances as in [HS1]. With Uy=Uy(sLy), we now put
uj="x(u(j,k))= the x—-space projection of U(j,k)- Then for X real between Ug
and Uy , the complex zeros of Hy(x,£) are of the form £(x)+2mwk*i®¢'(x), keZ,
where €(x) is real and (x,£(x)) tends to a point of U¢g o), when x tends to the
right boundary of Ug, and &;'(x)=0. We then extend ®; to a C' function on R,
such that &{(x) is 21 periodic and vanishes on Ug. Finally, we put
Dy(x,y)=1®(x)-®¢(y)|. Since Hi(-x,-€)=H¢(x,£), we obtain that &, is odd,
and hence that Dy(-x,-y)=D(x,y). Let us define D, associated to Hy in the
same way. As we shall see (or rather recall) solutions to the equation Hju=0
will often have weighted estimates in terms of Dj. Since & exchanges H; and
Ho, the Fourier transforms of solutions of Hju=0 will satisfy estimates in
terms of Do and vice versa. Since our weighted estimates will allow for losses
=(9(e8/h) for every £>0, we can often replace Dy and D, by one single
distance function by means of the following observation: We have that
Hy(x,£)=0 implies P(x,£), P(x, &), Ho(x,€) =O(h), simply because on the
operator level, P=(P’]‘)"H| and so on, and the composition formula for the full
symbols is reduced to multiplication, up to an error ©(h). If we add the
assumption that d¢Hy(x,£) #0, then there is a unique €'=€+0(h) such that
Hz(x,ﬁ')=0. Completing this argument with a simple discussion of what

happens in a small neighborhood of the x—projected wells, we see that
®o(x)=P¢(x)=0(1)(1+ Ix]) uniformly, when h— 0. Thanks to this we will

usually be able to replace Dy or D, by D'-'der.%(Dl"'Dz)-
We choose Y=V (where 0=(0,0)) the same way as the function g¢ in
[HS1],section 4, to be a suitable Gaussian of LZ-norm O(h"NO), such that
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(3.5) fo=1,Po has norm 1,

(3.6) fo» Flo= &(e=1/h),

in the sense that for every £>0, there is an hg >0, such that

Ie(1=8)/hs | =0(e€/h) for 0<h<hg, and similarly for Ffy. Here
f(x)=ming ¢z D(Uy,x)+volKkl, where 0<vg=<Sg=ges D(0,21). Without
changing the growth estimates for fg, we shall next modify this function in

order to fulfill some symmetry relations, required in our formal iteration
scheme. Microlocally, we know that fq is concentrated to a neighborhood of

Ugp and by construction, we also know that Hfg is exponentially small in Lz,
and in particular, it makes sense to say that fo belongs to the kernel of H;
microlocally near Ug. (See appendix a.) Now this kernel is one-dimensional (in

a sense that we leave to the reader to define, possibly after reading [HS1]),
and invariant under the operator 2, Hence, fo= it}’zro up to an exponentially

small error in LZ, and without changing any of the essential properties of fg,
we can then replace this function by 3(fo+32fo)=1 (F(Po+F2Pg)). Since
F4=1, the new function fo will satisfy:
(3.7) F2fo=1fp.
We can also add symmetry under V. Microlocally near Ug o, we have Vo~ Wfg
for some complex W of modulus 1, since V commutes with Hy. Writing this as
Vu)‘;fro~u)"a‘ro, (since V is anti linear,) we get approximate V-invariance by
replacing fo by u)'.%ro, and this does not destroy any of the earlier properties.
If fo denotes this new function, we make a last modification by replacing fo by
%(r0+Vf0). This will not alter (3.7), since V and ¥2 commute, and we have
gained the property,
(3.8) Vio=To-
Recall now that the subscript 0 stands for O in 22, and in order to use the
notation of section 2, we put fo,1=f(o,0),1=fo, and from this function, we
define fo,j for ®ez2, j=1,2, as in case 4 of that section, (which is an
obvious modification of the case 2 in the same section,) as well as the
corresponding operators R and R.. The corresponding Grushin problem is
then,
(3.9) Pu+R_u~=v, R u=v,,
and we shall first study this problem microlocally near the potential well Ug
for Jk=4y. We then get the problem,
(3.10)  Pu+uT(0)fp 2=v,

(ulfo,1)=v,4.(0).
Since Jl=4L1, we know that fg | is microlocally in Ker P{P=Ker P, and
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fo,2€Ker PP = (Im PP%)-L =(Im P)-L. Here we proceed formally and we leave

to the reader to give a precise sense to the arguments by introducing the
convenient error-estimates and pseudodifferential cutoffs. (See also appendix
d, where a more complicated Grushin problem is treated.) In order to solve

(3.10), we write u=u'+xro'1, u'e(ro,‘)-'-, v=v’+gr0'2, v'e(fo'z)-‘-= Im(P),
x=(ulfg,1)y Y=(vifo,2). We notice that P:(fo )L — (fo 2)L is microlocally a
bijection, and that the inverse E is of B(LZ,L2)-norm ®(h~1). We then get
the microlocal solution,
(3.11) u=Eqv'+v4(0)o,1s

u=(0)=(vlfg,2),
so the inverse of,

r=(PR_

R0

is microlocally of the form,

(3.12) 6o=(Eo Eo,+ \={Eo R%\ =f0th~) o
Eo,- Eo _ R*_0 o) o ,

and by standard microlocal cutoffs et c, (or by microlocal apriori estimates as
in appendix d,) we see that ® also globally has an inverse of the form (3.12)
up to an error ®(h®), and where the description of Eg is nhow only microlocal

near the wells Uy. By ordinary perturbation theory, we see that if we let
vary in the complex disc D(}.{,€qh) of center \ and radius €gh, then P
defined above is still bijective, with an inverse,

(3.13)  e=(E Ey4 >= o).

Representing & by a perturbation series in the usual way, we see that,
(3.14)E_ 4= ((P=P)fg, 1110, 2)1+O(v2/h3)+O(h®),

where we put v=p-y, P=P(),x%,hD), Po=P()ly,%,hD). Let us study the first
term to the right in (3.14). In view of (3.2), we have :

(3.15) f0’1=P]f0,|+(9(€).

Using the selfadjointness of P{Pq and PoP% and the fact that Pofg 1=0(h™)
(and even exponentially small if we are careful), we see that
PoP%P1f0,1=0(h%), so Pyfp 1=Wfg, 2 +0(h®). From this and (3.15), we
conclude that,

(3.16) f0’1=0)fo’2+(9(5)+®(h°°).

Since fg,2=()FT,1, and ((NF)?fq 1=1o,1, We can permute fo yand fo 2 in
(3.16). It follows that we may assume that w2=1, so finally,

(3.17) r0’1=iro’2+®(e)+®(h°°).

(3.2) and Cauchy’s inequality give,

(3.18) P-Po=-vI+0(ev),
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and from this and (3.17) we obtain:

(3.19) ((P=Po)o,1110,2)=Fv(1+0(E)+O(h™)).
Substitution in (3.14) gives,

(3.20)  E_ =(Fv+0(evI+0(v2/h3)+0(h™).

This gives interesting information about the behaviour of the diagonal part of
E_ 4 when v<<h3, and this region contains the possible values of v in

[-h/Cq,h/Cpl such that 0 is in the spectrum of P. We restrict the attention to

this region from now on. After a translation by ©(h®) (and even by an
exponentially small quantity), we may assume also that the diagonal part of
E_ 4 vanishes for v=0. This is possible since the diagonal part of E_ | is

constant by translation invariance, real by reflection invariance with respect
to x=€ (,see section 2, case 4, which is the analogue of case 2), and given by
(3.20). We recall (3.6) and the subsequent definition of f and of vg. Thus, if

z(v)1 is the diagonal part of E_ ., we know that z(v) is real for real v, (since

z(v)=£(0) and we have (2.69),) and we may assume that
(3.21) 2(V)=(Fv+ (V)1 +O(v2/h3).

The next problem is to study the off diagonal part of E_ . Using the

techniques of section 7 in [HS1], it is clear that we have the following result:
Let F be a real C®-function with all derivatives in L, such that
(3.22) IF'() 1 =(ID'(x) -8) .,

(3.23) IF(Uk)—F(Uj)ls(I-S)volk—jI,

for some §>0. Then if F*((j,k))=F(uj), P is bijective from
L2(R;e2F(®)/hyx12(e2F*/hy onto itself for sufficiently small h, and the inverse
8 isp(h") in the associated operator-norm. (Here 12(e2F /h)=(w:

wef /Ne12), we also have an analogous result with weighted spaces on the

Fourier transform side, and using both results, we obtain,
(3.24) E_+(dy;8)=(9(e"('_ )Vold_Bloo/h),

for every §>0. Here |l go=max(l«yl,l21). From this it follows that 0 can

belong to the spectrum only if |v| is exponentially small.
Recall that (REP{E)*E_ . and E_  (E_P2R’.)* are self adjoint. Put

A1=RZPE,, Ap=E_P,R% . The matrix of A, is given by

A, B)=(P(E 8 g 11y, 2)=0(e~(1=8Vol &=B1/h) ror an §>0, and by
translation invariance, Ay(a,)=A(0,0). For v=0, we get,
A1(0,0)=(Pyfg,11f0,2) ignoring errors which are ®(h®), so

A1(0,0) =const.>0. The reflection symmetry in x=¢, implies that,
Aj(S(ot),S(B))=eih'(°‘1°<2'5132)§j(o(,,B), which implies that Aj(et, o) is real
valued. For the corresponding renormalized operators Qj, it follows that
Oj=Aj(0,0)+®(e"/C0h) in a complex strip [Im(x,£)| =1/Cqh, and replacing Qj
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by Aj(0,0)"Qj this will imply after rescaling in the L —variable, that the part-
of (3.2) concerning Qj is satisfied with € replaced by Cqh.

Following section 4 in [HS1], we shall now improve the estimates on
E- 4(c,8) when v=0, so that z(v)=E_ , («,x)=0. Define 8 4€12(Z2) by
8x(B)=1 when B=ct and =0 otherwise. Put g 1=E (8 ), 9o, 2=EZ (8 ),
and notice that Qo(,j and their Fourier transforms satisfy the same growth
estimates as fy,j. Since RLE, =1, we get,

(9o, 1118,10=(E L 8118, )=RLEL 8(B)=8¢, (Kronecker's delta):
(3.25) (Qa,1118,10=8, 8-

Similarly, using that RXEX =1I:

(3.26) (gd,2|f3,2)=8d”3.

Applying, PE_ . +R_E_ =0 to SB' we get

(3.27) P93,1+2q#BE—.;.(O!,B)fo(,Z:O,

which with (3.26) implies that,

(3.28) (Pgg,119,2)=~E- 4 (a, B).

Taking the adjoint of the identity E_.P+E_ R =0, and applying it to SB we
get,

(3.29) P*9g,2+Eq 7 gE- 4 (B, 1=0,

which also implies (3.28).

We are looking for improved estimates for small values of « and 8, so it
will be natural to adopt the following terminology; we say that
A(o(,,B)=(§(e‘a(°"=B)/h), where a is a real-valued function, if for every §>0,
and for every bounded set K in 22, there is a constant C>0, such that

[A(o, 8)1 sCe(8+a(°‘u8))/h, we shall also use the analogous terminology for
functions of one variable «, and for functions of a real variable x we change
the earlier convention, into: u= @J(e"f(x)/h), if for every >0 and every
compact set K in R, the LZ-norm of uef(")/h on K is bounded by a constant
times eS/h, for sufficiently small h. In all that follows, the bounds near
infinity in X or in o, 8 will be unchanged, but play an important role in the
iteration process. Let us assume by induction that,

(H.1) E_ 4 (c,B)= @)(e‘a(ld‘:ﬁlw)/h), where a:N* — R, satisfies,
(H.2) Osa(k+1)-a(k)=vg,

(H.3) [a(1) =Sg=ges.D(0,21).

(H.4) la(k)| =vgk.

The assumption, (H) is satisfied with a(k)=vgk, and we also recall (3.24),
which gives additional information about E_ , near infinity. Our object is to

increase the function a. By translation invariance it is enough to assume (H.1)
for =0 or for 8=0, and also to prove (H.1) for a new function a for such
values of «, 8. Let us first study Pgo,y and P¥gg 2 with the help of (3.27) and

(3.29). The two cases are completely parallel, so we concentrate on Pgo,,.
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We recall that gy i, Tt = S(e~1x=2ma)/hy 1t follows from (3.27) and
(H.1) that,
Pgo |=@)(e-(a(l)+f(x))/h)+251#o@(e-(a(lB:I)+r(x—21'r3|))/h),
so
=®&(a—F(X)/h
Pgo,1= O(e )
where F is the even function given by,
F(x)= min(a(1)+1(x),ming, »o(all By )+1(x-21 B9)).
Thanks to (H.2)-(H.4), we get for 2mk=|x|=2m(k+1):
F(x)=min(a(k)+D(21k, |x|),a(k+1)+D(2m(k +1), [x])).
Here we use the convention a(0)=a(1). We also have the same estimate for
P¥go,2-Now recall (3.28) for g=0:
(3.30) E- 4(,0)==(Pgg,119¢,2)-
Assume o1 #0 and for instance that o> 0. We write,
(3.3]) "'E..+(d,0)=
(XPgo,119a,2)+(g0,11 (1= X)P*ger, 2)- (g0, 1 1 [P*, X1gr, 2) =1+ 11+ 111
Here X=1]_0,7] is the characteristic function of ]-c0,X\l, where \ is to be
chosen conveniently in J0,2moyl.
Casel, o« =1. We choose A=1r, which gives the same estimate for I and II:
I+1I= @(l)e"(a(')*“'o)/h, where now &(1) simply means ©(ed/h) for every
fixed §>0. To estimate III, we also follow [HS1], but with the following slight
simplification, based on the observation that [P*,X]= (1-X)P*X-XP*(1-%).
This means that we can rely on the boundedness of P in weighted LZ—spaces,
developed in [HS1],section7, and we obtain, [P*,X]gd'2=@(e'D("vZW)/h) for
%<1, and = ®(e ~D(X;0)/hy ror x> 1. From this we see that 11I=&(e~So’/h),
and hence, E._ ,(«,0)=8(1)e~min((all)+vo,So)/h,
Case 2, oy is even =2, If we choose A/2m=«,/2, then we will get the same
bound for I and II, but for III we only get &(e~YoX1/) which is no

improvement compared to the initial function a. Instead, we take
X/2ﬂ=(d‘+1)/2, which will produce a worse bound for I and a better bound

for II, so it is enough to estimate I and III: We find I (and II) =
B(exp(-(alaty/2)+voay/2)/h)), and 1= B(exp(-(vo(aty~1)+S)/h)), so
E_ +(d’0)=@(1)e—min(So+Vo(d|-l),a(d1/2)+Vod1/2)/h_

Case 3, &y is odd 23. We choose N/2w=«;/2=[/2]+1/2. Then

1,11= &(1)e~(allets/2D)+volat-ler/21))/h,

n1=8@1)e~((X1=Dvo+So)/h ¢

Ez 4(,0)= @(I)e"min(((dl")VO+SO).(B([0(1/2])+ Vo(0(1—[0(|/2])))/h_
Notice i_hat this estimate also covers the case II.

Working with Fourier transforms, we get the same estimates with «;
-eplacgd by o2, so finally,
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E_ (o, 0= B(1)e=DlIale0)/h,

where,
b(1)=min(a(1)+vg,Sq),

b(j)=min(Sg+( j-Dvq,allj/2D+ve( j-1j/2D)/h, j=2.
As in [HS1], we check that (H) is verified with a replaced by b, and that after a
finite number of iterations of this procedure, we get a function a(j) with
a(1)=Sg, a(j)>Sq for j>1. (An infinite iteration leads to a(j)=Sq+(j-1)vp.) In
other words, we have achieved that,
(3.32)  E_ (o, B)=8(e=S0/) for |t~ B oo=1, and = (e~ (So+E0)/hy for

la-Bloo22,
for some £¢>0.Moreover, for «;=1, we have,
(3.33)  E_,(«x,0)=(gg,1[[P*,X]gy,2)+O(1)e ™ (So+Ea)/h=

-(IP, X190, 119, 2)+O(De ™ (So+E0)/h

with X=1]—°°,t]v with t close to 1. In order to study the last scalar product,
we shall sh‘gl‘mtlg modify the function X (as in section 7 of [HS1]. Let
Ms(x)=Cih~ 2~ Ps(X)/h where Y (x)=Po(x-s), YPo(x)=iCoxZ, with C4>0
sufficiently large but fixed, and C;=Cy(Cq) the constant such that ﬁTs(x) ds=
1. Pqtting K=f)((s)ﬂ'sds, it is easy to check, using the growth estimates on
90,1:9«,2+P90,1:P 9,2, that we can replace [P, X] in (3.33) by ¥IP K]y,
provided that Cq is sufficiently large. Here 1yeC%°has its support near 1r and

is equal to 1 near that point. (We now take t=1.) As in section 7 of [HS1], we
obtain on the other hand,
(3.34) [P,Mg]=h0Qg/3s+Rg, for Ix-sl+ly-sl=1, x,yeC,
where, ) .
Qg=Ch~3/2 [eil(x=Y)0+z(Ps(x) +P(YN/h q(L(x+y),0, H(x+y)-s,h)de,
Re=h~3/2 [eil(x-0)0+3(Ps(X) + PN/ R(L(x +y),0, 1(x +y)-5,h)d8,
where Q is a realization of a classical analytic symbol of order 0, defined for
X,y in the region in (3.34), and for |Im6|<C(t), where £ is the parameter in
(3.2) and C(c) tend to oo when € tends to 0. R is halomorphic and
=0(e~€0/h), where £ depends on Cq. We have,

o
(3.35) YIP,KIY=hyQny+[ __ YRsYds.

In view of the properties of the symbol of Ry, we see that the contributions
from the integral in (3.35) to Y[P,KIy (replacing [P, X] in (3.33)) is negligible,
and we obtain,

(3.36)  E_ .(a,0)=-h(¥Qr¥gp, 11gy,2)+ 0~ (So+E0)/h),

Now recall from [HS1] that Qy is the solution of a division problem, and that the

leading part q of the symbol Q, is obtained by:
(3.37) P(x,0+ic)-P(x,6-ic)=Cooq(x,6,0).
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As in [HS1], section 5, one can show that gg j=co(h)alx,h)e"P(X)/h on
[x4+8,m+80l, 9(1,0),2=C1(Mb(x,h)elY XN on [11-84,21-x_-8], for every
8§>0 and for some fixed 85> 0, where a,b are realizations of elliptic analytic
symbols of order 0, co,c,,cg',cf':@(n, ﬁx(U(o’o))zlx_,x_,_], and Y,y are
the solutions of the eiconal equations, Hy(x,¥')=0,H(x,¥’)=0, satisfying
Imyp’>0, Imy’<0, Y(x)— 0, Y(x)— €, when x\x ., ¥(x)—0,

Wix)— €_, when x /21 +X_. Here € + are the unique values, such that

(e
4

x+,64)€l(g,0)- By symmetry considerations, we have
(3.28) Im(P(x)+Y(x))=Sq, ReP(x)=Rey(x)+const. .
Since, agH;(x,\p')#O, we obtain from (3.37) that q(x,')#0, and by analytic
stationary phase (see [S1]), we obtain
(3.39) YAy V¥go,1=ca(h)d(x,h)el(Pw(X)+PEN/h near x=1r,
where cp has the same properties as cg and ¢y, and d is a realization of an
elliptic analytic symbol of order 0. By the continuity of Q4 in weighted
L2—spaces, we also have
(3.40)  YAp¥go,1=B8(ei(Ps()+P()I/h),
Combining this with the WKB-form of 9(1,0),2» and analytic stationary phase,
we get,
(3.41)  (¥Qy¥ao,119(1,0),2)=c3(h)e 507N, c5,e51=6(1).
When o5 #0, we use that gd,2=e'ih'°‘2ezm°‘2x/2g(l,0),2, and by contour
deformation, we obtain,
(3.42) (YA ¥go,119q,2)=0(e~(So+Ea)/h),
for some £¢>0.

Summing up the discussion so far, we have for Jl=4ly in addition to
(3.24), that
(3.43)  E_ . («,0)=0(e~(So+€a)/hy for || >1,
(3.44)  E_  («,0)=a(ce~S0/h, for || =1, where a(a),1/a(et)= &(1).
Here latl=lay|+ 121, and €¢>0. The corresponding renormalized operator,

Q which is invariant under 2 and V, is then of the form
(3.45) Q=Qo+R,

where on the symbol l_evel, ' ‘ '
Qoze"SO/h(a(I,O)e“C+a(-l,O)e‘c+a(0,1)e"x+a(—l,0)e‘x), and
R=0(e~(S0+€0)/hy in a complex strip |Im(x,€)| <€g/h. From the invariance

under 2 , we deduce that a(-o)=a(at), and from the V-invariance, that
a(1,0)=a(-1,0), so with ag=a(1,0), we get,

Qp=2e~S0/N(agcosE +agcosx). We now recall that we have already found Qj,
j=1,2, such that QTQ and QQE are self—adjoint and on the symbol-level,
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Qj=l+®(e'€0/h) for [Im(x,€)l <e€qg/h. This implies that Im(a0)=®(e"50/h),
so after multiplication of Q, by the real non-vanishing factor,
esO/h(ZReao)", we are reduced to the case when

(3.46)  Q=cos€+cosx+0O(e~Eo/h),

So far J has been fixed=jl;, and it only remains to study E_ , for neighboring
values. Combining (3.24) with (3.43),(3.44) and the Cauchy inequalities, we
get for |-l =€ph,

(3.47)  E_ . («,0)=0(e~(So+€0)/hy L o(| - q1/h)B(e~VolXle/hy,
lal =2,

(3.48) E_  («,0)=a(x)e~So/heo(1m-puy1/h)&(e~vVol®lo/hy for o] =1,
Also recall that z(v)=E_ (0,0) has a simple zero at v=0, i.e. for k=4, and
that the behaviour near v=0 is given b% 3.21). From these three facts, we
see that 0 ¢ Spec(E_ ) if I;l-}lﬂze( =S0)/h and h=h(8), where §>0 may be
arbitrarily small. We then restrict the attention to the values of yi such that
(JUEIIeY| <e(5'5°)/h. As a new rescaled spectral parameter, we take,
}1'=e50/h(2Reao)"z(v). Then we get for the corresponding renormalized
operator, (given by (3.46) when Jl=41,)

(3.49) Q=0+ cosé +cosx)+O(e~€0/hy, for |Im(x,€)] <€qg/h.

This together with the information already obtained about the Qj shows that
(Q,Qq,Q5), is of strong type 1 with £(Q)=h/¢gg.

Let us sum up the results of this section in the following
Proposition 3.4. Let (P,Py,P5) be of strong type 1 and 0<h=21. Then for

0=€(P)=€<0 sufficiently small, the symbol H; of P{P has non-degenerate
saddle points, all with the same critical value, c(J0)- ., where c(u)=0(e(P))
is holomorphic in D(0,4)={eC; |J|<4}. There is a unique real value
Ho=Mo(P)=0(e(P)), such that Jg-c(flg)=0. For every £;>0, there exists
C1>0, such the following holds when 0<€(P)=<¢gg, 0<h=1/Cyz
}l—Sp(P)CU_N_sjsN+ Jj» where Jj are closed disjoint intervals labelled in
increasing order (so that Jj, 1 is the neighbor to the right of Jj), with the
following properties:

10 If a=infJ_N_, b=sup Jy, , then a=-2+0O(e(P))+0(h),
b=2+0(e(P))+0(h).

2° The distance between Jj and Jj+l is of the order of magnitude h.

30 Jo=[g-€1+0(h),ho+E1+0O(h)], and 3Jo C - Sp(P).
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For j#0, the length oij is e"lj/h, where 1j~l (that is of the same
order of magnitude as 1), and if )L — xj(}.l)=J.1' is a suitable
increasing affine map, then xj(}l—Sp(P)an)=}l'-Sp(0), where Q=0;
is the h'-quantization of a strong type 1 symbol, with £(Q) — O as
h— 0. Here 2/h=h'/21 mod 2, 0<h’<21r. (When h'=0, the
h'-quantization is defined as the multiplication by Q on L2(R2).)



4, The branching problem for a type 1 operator,
Let (P,Py,P2) be of strong type 1 with e(P)<€>0 sufficiently small ,

0<h=21. We then recall from Proposition 3.3, that the Weyl symbol H; of
Hy=P}P has saddle points at (1r,0),(0, 1) with the same critical value

c() -, where c(J)=0(e). In section 3, we studied potential well Grushin
problems for P when lc(p,)-;uzco, for any fixed €4 >0, provided that £>0,

and h>0 are small enough. In this section, we study the case when
le()-Ml=€p, and £9>0, £>0, h>0 are sufficiently small. The real

characteristics of Hy are then included in a thin neighborhood of the union of all
segments s(o,j), Ae22, jeZ4, where s(0,1) is the segment [(0,1),(1,0)],

s(0,j)=x!"J(s(0,1)), s(o,j)={2m«}+5s(0,j), where as before X denotes
rotation around (0,0) by the angle — /2.

stto!)

The new difficulty is then to make a microlocal study of the dperators P, H;
and Hy near the saddle points (k,11), k,1€2Z, k+1 odd. Because of the

invariance properties of our operators, it will be essentially enough to
concentrate on what happens near the point (0,1r). Let us start with Hi. We

recall from Proposition 3.3 that the symbol H; is invariant under reflection in
the point (0, ). On the operator level, we have, CH;=HC, where C=Tg |Cq is
a quantization of reflection in (0, 1), and Co=%2 quantizes the reflection in
(0,0). The real symbol Hy+ L -c(j) has critical value 0 at (0, ) and applying

the results of the section b of the appendix, we obtain a real valued analytic
symbol f(jd,t,h)=fg+fih+.. of order O, defined for u,t near (0,0), with

fo(M,0)=0, 3fp(x,0)/3t>0, and a unitary analytic Fourier integral operator
U, whose associated canonical transformation X;; maps a neighborhood of
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(0,0) onto a neighborhood of (0,1), such that,

(4.1 U™ TG, Hy + ) - (), h)U=P o =$(xhD +hDx).
Moreover, we can arrange so that,
(4.2) cu=ucy,

and so that X maps the part of the negative {-axis in the domain of

definition, into a small neighborhood of s(0,1). Formally, we observe that if
u=Uv and u is a microlocal solution of Hju=0 (which is equivalent to Pu=0),

then Pov=U~11(L, 1 - c(u), h)Uv=1(u1, )}~ c(}1), h)v microlocally near (0,0).
The map

(4.3) M= =100, ) -c(), h)

is invertible and its inverse is given by,

(4.4) H=g(’,h),

where g is a classical analytic symbol of order 0.
The relation (4.1) will also allow us to treat the inhomogeneous
equation Hyu=w microlocally near (0,1). Indeed, let t+— k()L,t,h) be the

inverse map (where k is an analytic symbol) of the map

s f(J, s+ —c(L),h). Then from (4.1), we get,

(4.5) U~ THU=k(u,Pg,h).

Now k(j,’,h)=0, where J.'(jL,h) is given by (4.3), and we can factorize:
kKOG, t,h) =10, t,h)(t= ()L, h)), where 1(J4,t,h) is an elliptic analytic symbol of
order 0. Using this in (4.5), we get,

(4.6) U~ THiU=10,Pg, h)(Po-1").

Here 1(}4,Pq,h) is an elliptic operator, so we see that the microlocal inversion
problem for Hy can be reduced to the corresponding one for Po- ',

We now write U=Uj and we shall see how to obtain an operator U;
which reduces Hp. Let V be the antilinear operator, introduced in section 1,
and put A=V, B=T0’|3~’2VE}“, which are antilinear realizations of the
reflections in the £-axis and in the line =1 respectively. Using the
invariance properties for type 1 operators and the appropriate commutation
relations of section 1, it is easy to check that
(4.7 A2=1, B2=1, B=CA=AC,

(4.8) AH{=H>A, -BHy;=H>B.

Put Ag=V=T%, and let Bo=Uz /2" be a quantization of reflection in x+£=0.
Then we have,

(4.9) Ad=1, B§=1, By=CoAq,

(4.10) [Ag,Ppl=[Bg,Pgl=0.

Let Uy be the unitary operator defined by,

(4.11) UiAg=AlU,.

It is then easy to verify that we also have,

(4.12) UiBp=BUy,
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(4.13) CUp=U5yCyp,
(4.14) U5 fOL,Hp+ M -c(u),hUp =Py .

The next step will be to study Pg=JL', and we start by exhibiting
suitable solutions to the homogeneous equation. The equation
(3(xD+Dx)-0)u=0 has four solutions u, ,u_,v, v_, given by:

(4.05)  up(0=HERQ X EH1%, 5y L (O)=H(£E) €] =3~ 1%=T4(6),
where ¥y denotes the unitary Fourier transform defined in section | for h=1.
The last relation can also be written vi.=3'|"r‘ui. The general solution in &'
is of the formu=o u, +X_u_.=8_,v, +B_v_, where the coefficients are
related by,

(4.16) (§f> = Aq(gj)
(4.17 ) Ag=
T(§+i0)(21) ™ 2(exp(Tret/2 =i/ 4y +[exp(- Tt/ 2+ 71/ 4y 2+
lexp(-trat/2+ i/ )]y 1+ lexp(mra/2-Tri/ D)3 ),
where [a]j,k denotes the 2X2 matrix whose only non-vanishing element is a in

the j:th row and k:th column. Using the reflection identity
[(3+ia)T(-ix)=1/ch(ra), we see that Ay is unitary (when o is real).

In the case of solutions to (Po-.')Ju=0, we can apply the above with

o<=}.1’/h, but it will be convenient to make also two renormalizations. The
first one is due to the fact, that we prefer to work with ¥ =%, instead of &y,

and the second renormalization is due the fact that we wish u_ to enjoy

additional approximate symmetry under reflections in the line x=£, when

M'>0. Assuming i'>0 (which is no essential restriction, as we shall see

below), this leads to the choice,

(4_18)ug(x,“:)=em'(1-1ogg')/2h+in/aH(ix)|x|—-‘2—+m'/h,
wl=-1rud= vug.

Then using the method of stationary phase, (or (4.20) combined with the

complex version of Stirling's formula, that we shall recall later in this
section,) we check that,

(4.19)  vul=@+0th)ug +ohiug,

uniformly for ' in any compact interval in ]0,00[. From (4.16),(4.17), we
obtain that the general (temperate) solution u of (Pg=}")u=0 can be written

u=al ud + «_u@ =y, wl+ y_wl, where,

(4.20) <§+)= (h/3 YR TheiCpd PhaTr/ady <:+) .

As a second preparation concerning Po-’, we study the
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inhomogeneous equation. We look for an inverse of this operator which

propagates singularities in the forward Hamilton field direction. Following a

well known procedure, we put, ,

(4.2)  E=(i/n)f, e~ 1tPo= 1V hat=(i/n) [ Zuyat,

where Uy can be constructed by the standard WKB-procedure for the strictly

hyperbolic Cauchy problem. We geg

(4.22)  Upu(x)=(2n)~z[ele” XN/h ot(i'/h=3) gry(m) am=
et(il'/h=Dy(e-ty).

When J’ is real, there is no hope that E should be a globally L2- bounded

operator, but if we put Hg(R)={ue &'; <hD>Suel?), KE>= (1+§2)2.

LZ(R)={ue 4';<x>SucL?}, then we shall see that E is bounded:

1§, forevery 8>0. The B(Hi, s, L..__g) norm of Uy is equal to

the B(L2,L2)-norm of the lntegral operator with kernel

(4.23)  ky(x,M)= (21h)~zele” XN/h g=t(z+Imp! /M ¢x>=3-8¢m> 3-8,
and if we estimate this LZ2-norm (brutally) with the corresponding
Hilbert-Schmidt norm, we get,

(4.24)  WUthx(Hy)p44,L2,2-5)SCsN "2
Using this in (4.21), we obtain:

(4.25) IlElI3(H|/2+5,Lz_i/z_s)scsh'yz,irlmu'/h+%zs>0.

In appendix d we have defined wavefront sets for microlocally defined
operators, and computed WF'(E).

Let ug ¢ be a WKB solution of Pu=0, defined microlocally near the
interior, Int(s(0,1)) of the segment s(0,1) defined above. Since P{P is of real
principal type in this region, and since we work microlocally, and hence
neglecting exponentially small errors, we know that ug i (in this region) is
unique up to a constant factor, and can therefore be expressed as a multiple of
uwQ. Let Xo,1€C&°(R2) be equal to 1 near (0,1)= the end point of the
segment s(0,1), equipped with the orientation of the Hamilt'on field of
cos€+cosx, and with support in the disc of radius (3/4)(2)z1, centered at
(0, ). (Following a general terminology, (17,0) will be called the starting
point of the segment s(0,1).) Define Xo,j and more generally Xo(,jv by the
relations,

(4.26)  Xo,j*X'J=Xo,1» Xa,j*:6)=Xo,j((x,6)-2Te).

We also choose )(0,, invariant under reflection in the point (0, 1), which
implies that X j=Xg,k if the segments s(at,j) and s(B,k) have the same last
end point. Taking a suitable quantization of Xo(,j using superpositions of
gaussians,(see below for more details,) we can also arrange so that on the
operator level,

(4.27)  Xo,joF!"I=51-J. Xo 10 Xet,j* T=Ta* Xo, j,

and again Xo(,] Xg,k if the segments s(a,j) and s(8,k) have the same end

+8_’|—

L o-t(E+Imu'/n),
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point. The scalar product (ilHy,Xg,1lug,1luo,1) is well defined modulo an

exponentially small term, since we see that the essential contribution to this
expression must come from the intersection between the cut-off region,
X0,|(x,€) ¢{0,1} and the real characteristics of Hy, close to s(0,1). It is clear

that this scalar product can be evaluated by stationary phase, and we get
(ilH1,Xo,1lug,11up,1)>0. After multiplication of ug ; by an elliptic analytic
symbol, depending on h and ;1' only, we may assume that,
(4.28) (i[Hl,Xo,ﬂUo,,on,]):L
We shall then say that ug ¢ isa normalized microlocal solution of Hju=0,
defined near int(s(0,1)). We notice that (4.28) is essentially independent of
the choice of Xg,1, because if X €C§ vanishes near both endpoints of s(0,1),
and if X is a corresponding gaussian quantization of X,
(i[H1,X]Uo,1 luo’1)=i(Xuo'1 |H1u0,1)—i(XH|uo'1 | u0,|)=0, since Hyug 1=0
microlocally near int(s(0,1)).

We now put fo,1=i[H|,Xo,|luo,1. which makes sense (modulo an

exponentially small uncertainty) as a globally defined function on R,
exponentially decreasing outside the intervall [§,1-8], for some §>0, and
generate fy jand uy jas in section 2,
(4-29) fo'ij‘_jfo'l, rd'j=Tdf0,j,
(4.30) UO,j=3"-jUO,‘, ud’j=Tduo'j ’
Here uy, j is defined microlocally near int(s(«(,j)). Using the appropriate
invariance and commutation relations of sections 1,2, it is easy to see that
U, j is a normalized microlocal solution of Hyu=0 if j is odd and of Hou=0, if j
is even. (More precisely, for j even we have (ilHz, X, jlug,jlUe,j?=1, and for j
odd we have the same relation with H, replaced by Hi.) Moreover, we have,
(4.3|)fd'j=1[Hl,‘Xd,jlud’j , rd,j=i[H2’Xd,j]ud,j y
for j odd and even, respectively.

With these functions fo(,jv we define R ,R_ as in the case 3 of section

2. Microlocally, fo(,j is non-orthogonal to Ker P= Ker Hy, when j is odd, and
non-orthogonal to Ker P*=Ker Hp, and hence not in Im P when j is even. This

makes it plausible that the corresponding operator ® is bijective. In order to

be completely in the case 3 of section 2, we have also to arrange so that (cf.

(2.39)),

(4.32) f0,1=Vf0'|.

To have this we choose Xg 1 real-valued and such that Xq 1°8=1-Xg, near

s(0,1). We also need to be more explicit about the choice of Gaussian

quantization. Let I= [ yda be a resolution of the identity, where Wy=1y p

has the kernel,

(4.33) Ch—3/25i((x-y)oty +i(X=0lx)2/2+i(y-olx)2/2)/h =
Ch™3/2y y(x) Ve (Y-



38 B. HELFFER, J. SJOSTRAND

Here C>0. By definition, the Gauss quantization of Xo,, is then,

(4.34)  Xo,1=JXo, ()T dox.

Using that vq is invariant under &,V,T", and that vy =Ty /24V0,» We check

that To/2nTMaTg Vo =Toeys FMaF 1=y (o)s VTV =T g(q)- This

shows that the Gauss quantization behaves as the Weyl quantization under

conjugation by T.&,SJ’,V, and in particular, by the choice of Xo,lv we obtain,

(4.35) VXo,1V=I-Xo,1, near s(o,1).

Using also that V commutes with Hy, we obtain,
VfO,‘=—iV[H],‘XO']]UO’1=i[H|,'Xo']]VUO’].

After multiplication of uo,1 by a suitable scalar, we may assume that

Vug,1=Ug,1, and then we get (4.32).

So far, (4.32) is only a microlocal relation, but we can make it global and
exact by replacing fo 1 by (fo 1+Vfo,1), and then we have modified fq 1 only
by an exponentially small quantity.

We shall next see how certain WKB-considerations near the branching
points, imply the wellposedness of our Grushin problem, and give the
possibility to compute the leading contributions to E_  appearing in the

inverse & of P. First we notice that microlocally, P%: Ker(Hp) — Ker(H;), Py:
Ker(Hy) — Ker(H>), and that these maps are bijective. Microlocally, near
Int(s(0,1)), we have the function ug iy, defined as a multiple of u1w(l , and
since the function wO is defined globally, we can extend the definition of Vo, 1

in Ker(P) to a full neighborhood of the branching point (0, 1), and then to
neighborhoods of Int(s(0,2)) and Int(s((0,1),4)), by standard WKB
constructions. We then have a microlocal solution ug 1, defined in a

neighborhood of Int(s(0,1))U{(0,m)}UInt(s(0,2))UInt(s((0,1),4)), which has
its wavefront set (defined in appendix d) concentrated to a much smaller
neighborhood of this set. Outside the point (0, 1), Uo,1 is of simple

WKB-form, and there are constants «, 8,%,8, such that,
(4.36) up,1=8P3up,2 near Int(s(0,2)),

uo"=dPEU(0"),4 near Int(s((0,1),4)),

u(o,1),3=¥P%up,2 near Int(s(0,2)),

U(O'I),3=8PEU(0'1)’4 near Int(s((0,1),4)).
Here, we have extended u(g 1) 3 to a neighborhood of (0,1), in the same way.
When AL is real, it is clear from the reduction to Po~pl’, that o, 8,%,8 exist

and are O(1), and we shall compute these coefficients later.
Now consider the Grushin problem,
(4.37) Pu+R_u~=0, R u=8q i,
where Sd'j(ﬂ,k)=l if (8,k)=(a,j), and =0 otherwise. Microlocally, near
Int(s(0,1)), an approximate solution is given by u=ug y, still withu™=0. In
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order to get a global approximate solution, we extend ug ; across the
branching points (0,1r) and (1r,0) and then we truncate ug,q suitably on the
segments s(0,2),s((0,1),4),s(0,4),s((1,0),2). Let us discuss the details of
this only near (0,1r). Let )?0,2 be a cutoff operator, =I microlocally near
(-1,0), and =0 near (0,1), such that §0,2P§=PEXO,2- Near s(0,2), we put
u=(l—f0,2)u0,1. Then near the interior of that segment,
Pu=8P(1-Xo,2)P3u0, 2=~ 8PXo,2P3u0,2=
- BPP%X0,240,2="~8[H2,Xo0,2lu0,2=1810,2-
Similarly, let X(q,1),4 have its support near (1,21), such that
5('(0"),4P§=P§X(0,1)'4. Then near s((0,1),4), we put, u=(1—f(o,|),4)u0'|,
and essentially the same calculation gives Pu=id{f(g 1), 4 near that segment.
Similarly, we can extend u to a neighborhood of (1r,0), such that
Pu=const.fg 4, and Pu=const.f(y o), 2 respectively near the corresponding
segments. Summing up the discussion so far, we have solved the problem
(4.37) with exponentially small errors, and the corresponding u™ has only 4
non-vanishing components, out of which, we have computed 2. In appendix d
we show how to obtain from this discussion via some apriori estimates the
following result.
Proposition 4.1. For real Ji, ® is bijective with an inverse
8=[E]|,1+[E+]1,2+[E_]2,1+[E_+]2'2=®(h"3/2). Moreover, E_ , =0(1), and
there is an £4>0, such that,
(4.38)  E_,(«,j:8,K)=0(e~(1+I=B1€a’hy uniformiy for al
(o,j),(B,k) such that s(e,j)ns(B,k)= @.
(4.39) E. .((0,0),2;(0,0),1)=-iB, E_ ,((0,1),4;(0,0),1)=-i«,
E- 4+(0,0),2;(0,1),3)=~i¥, E- . ((0,1),4;(0,1),3)=-i8.
Here the last two relations of (4.39) are proved as above by considering
the problem (4.37) with 8¢ { replaced by 8(o,1),3-
In block matrix ror_mlwe can write,
(4.40)  E_ («,B)=eih'B2(ci=Big(x-p),
where f(«) is exponentially small for |at| >1. Using the invariance properties
(2.36),(2.46) (valid also in the case 3), we get,
(4.41) 1(0)=Iblp 1 +[Bl 3+[bl4 1 +Iblg, 3 , and modulo O(e~Eo/h):
11,0 =[alz, 1,5((~1,00)=[aly, 3,7((0,1)=[aly1,1((0, - 1))=[al; 3.
Here, we see that,
a=E((O,!),4:(0,0),1)=E((0,‘1),2:(0.0).3);
a=E((1,0),2;(0,0),1)=E((-1,0),4;(0,0),3),
b=E((0,0),2;(0,0),1))=E((0,0),4;(0,0),3),
b=E((0,0),2;(0,0),3)=E((0,0),4;(0,0),1).
Comparing this with (4.39), we get, —-ix=a, —i8=b. Using also (4.40), we
get, -1y =1((0,-1);2,3)=a, -i8=1((0,0);4,3)=b, and hence,
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(4.42) oA=%, =8, a=-id, b=-iB.
Before the actual computation, we shall see to what extent the matrix,

(8%)- (23 €3
is unitary. Let vo { be a normalized WKB solution of Hv=0 in the sense of
(4.28), defined near Int(s(0,1)), and generate VoL, jr the same way as we
generated the Ugt,jr Then, in view of (2.2),(2.5), VL, is a normalized solution
of Hov=0 when j is odd, and of Hyv=0, when j is even. Near Int(s(0,1)), we
can write Pjug 1=Avg 1, where X,1/A=0(1). Using (2.5), we get
P]ud,jz)\va’j, when j is odd, and PE“o(,j=)\Vo(,jv when j is even, so from

(4.36), we get,
(4.43) up,1=ABvg,2 near Int(s(0,2)),

uo,,=)\dV(0’,),4 near Int(s((0,1),4)),

u(o,1),3=A¥vp,2 near Int(s(0,2)),

U(o,1),3=A8v(0,1),4 near Int(s((0,1),4)).
Consider the general solution u=xjug +X3U(0,1),3=Y2v0,2+Y4Y(0,1),4 °f
Hju=0, defined near (0, ). Here we extend ug { near (1,0) and vq 1 near
(0, 1) and (1r,0) the same way as we did with Up,q near (0,1r), by using
microlocal models. Then the coefficients x and y are related by

wc
Let X be a pseudodifferential cutoff, =I near (0, 1) and with support close to
that point. From the trivial identity 0=(i[Hy,Xlulu), we get after summing the
non-exponentially small contributions from each of the four segments,
meeting at (0,1): 0=Ix12+|x313-1y,12- Ig4l4+®(e"5°/h).
This means that,

(4.44) B 75)= iX(b El)is unitary up to an exponentially small error,
o8 ab

in the sense that the adjoint of this matrix differs from the inverse by an
exponentially small term. It is then an easy exercise to see that there
are a’, b’ with a-a’ and b-b’ exponentially small, such that x(b'l a:)
a'b
is unitary.
We now attack the WKB-problem. We first notice that the problem
(4.36) is independent of the normalization of the function ug { (and of

condition (4.32)), so we may assume from now on that,
(4.45)  ug y=U; w2 near Int(s(0,1)).

We choose,
(4.46) V0’1=U2WQ..

This may affect X in (4.43) by a factor of modulus 1, since UU;™! maps
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normalized solutions of Hju=0 onto normalized solutions of Hov=0. Our main

problem, will then be to determine Ac, AB in (4.43). We recall the definition
of the operators A,B,C,Aq,Bq,Cq, earlier in this section and the symmetry

relations between these operators and Hy,H»,Pg,U;,Uz. Put,

(4.47) EO,Z=AUO.]€KGF(H2),

(4.48) ;0,2=AVO’1€KEF(H]).

The problem of determining A 8, can then be decgmposed into two problems:
(4.49) Find }‘l such that Uo’l=)\lAVo"=)\|V0,2 near Int(s(0,2)),
(4.50) find X2 such that Avg 1=Xpvg 2 near Int(s(0,2)).

Then we will have Ag=2X1X,. Notice that |Xp]=1since Avg jand vg  have

the same normalization. In view of all our symmetry relations, the first
problem reduces to a similar one on the model, namely to find A such that,

(4.51) WO,_=)\‘U0’_ near I'p,
where I'y is the open negative {-axis, and rj=xl'"(r‘|). Now the solution of
(4.51) is A\y=o_ given by (4.20), with ¥ _=1, ¥, =0, and we get,
(4.52)  N=(u/n)IN'/hzm)=3r(d-ig//hye 1M /h+ T/ 2h
For x>0, we can write,
(4.53)  uQ.(x,1")=ax,1',h)e Polx,,.)/h,
where a is an analytic elliptic symbol, defined for x>0, |J'| =const., of the
form,
a=elM/8 x| =% c(,h),
where c()L,h)>0 is a normalization factor, and
Yo=2M1'(0-Tog("))+ ' Toglx].
We have analogous representations for u‘?_, S’WQ_.. In particular,
2Fw9(€)=a-(—€,J.l',h)e'i\oo(’gv}l’)/h, €<0, and hence
F-lw =ae~1Po/h €50, so vo=U,(ae~ o/ near s(0,1).
By stationary phase, we then obtain the representation,
(4.54)  vg,1=alx,p,h) e/,
microlocally near Int(s(0,1))\(a neighborhood of the starting point of this

interval). Here the new analytic symbol, a is defined for |}4'| <const., and we
have the following geometric description of Y: Recall (4.14), which implies,

Uz 'g(H)Up=Po-s',
where, g(t)=g(u’,t,h)=1(, t+ L ~c(),h)=f(L, ;L —c(M),h), so that g'(0)>0,
g(0)=0. Let Xy, be an associated canonical transformation in the precise
sense of section a in the appendix. We may choose Xy, satisfying the natural
intertwining relation resulting from (4.13), and so that the corresponding
phase in Uy (generating )cuz,) is a classical analytic symbol. It is only after

these choices that the symbol and the phase in (4.54) are completely defined
by the stationary phase method, and if Ayp={(x,P%(x))}, then
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Ap=Xy,°K(A_y ). Since the symbol of g(Hp) is goH2+®(h2), and Xy, is a
well adapted canonical transformation, we get gono)(u2=x§—;1'+®(h2),
gono)(u2-)<=—(x§+}1')+(9(h2). It follows that  satisfies an eiconal
equation: Hp(x,¥%)=0, where Az =Hp+O(h?) is defined by
geHa Xy, =xE- ', Since )'>0, the real characteristics of Hy near (0,1) is
the union of two disjoint curves, one which is close to s(0,1)Us(0,2) and the
other which is close to s((0,1),3)Us((0,1),4). It is then clear that we can
extend the definition of \p to negative x as a solution of the eiconal equation.
Let &(x,y)=&(x,y,M’,h) be a generating function for the transformation
XyeX. Since Xy(0,0)=(0,1), we have 3,&(0,0)=1, 3,%(0,0)=0, and we
may assume that ®(0,0)=0. Then \P(x)=vcg(<1>(x,g)—\Po(g)), and for x=0, the
critical point y()') is the projection of (y(uu'), N(sL’)); the intersection in the
4:th quadrant of the curves ym+p'=0 and (Kuo)c)"‘(C—axis). The last curve
is of the form, M=-2z(y,"), with z analytic, z(0,1")=0, agz(o,p\') close to 1.
Using the reflection symmetries with respect to the points (0,1r) ar1\d (0,0),
we also see that z is an odd function of y. It follows that y(u)=p'zg("),
where g is analytic with g(0)>0, and a simple calculation gives,
(4.55)  w()=0(u",
and this is again an analytic function of u'.

The transport equation for ag will conserve the argument of ag, thanks
to the fact that the eiconal equation for the phase makes use of the full Weyl
symbol Hp +©(h2). (See appendix a.) Examining the geometry, we also see

that 85@)0, and with the representation of F-1wQ above, this leads to:
arg(ag)=1/8, if ag denotes the leading part of a in (4.54). Here we assume
that the leading amplitude in Uy =1 at (0,0) is >0. (Substracting

Y(0)=0(4’) from the generating function of this operator, we may even
assume that the right hand side in (4.55) is 0.)
Let (x}_l,x“) be the unique point of this form on the characteristics of Hp,

close to (1r/2,1/2). Let us study (4.50) at the point RITe Since
Au(x)=u(-x), we get,
(4.56) Avo_l(-x“)=E(X}L,}.l,h)e‘i‘!’("}u}l)/h .
On the other hand, by the method of stationary phase, we find,
(4.57)  vo,2(=xy)=F"1vg 1(-x))=

(L, h)axy 40,0) + O(h))e PR, I/ =111/ 4 =i, 2/h,
where J>0 is an elliptic symbol of order 0, defined for | 1’| <const.. We
already know that |X,| =1, and if we compare (4.56),(4.57),(4.50), we get,
(4.58)  arg(Xz)=xA/h-29(x;,)/h+0(1),

where ''O(1)"’ hides a real valued analytic symbol of order 0, defined for
)/ =const.>0. (With the additional normalizations indicated after (4.55),
we may reduce the O(1) term to ®(h).)
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Here we can make the following geometric interpretation: Let A(J) be
the area of the domain limited by the -axis, H 1(0) and the line €=x. Let

B()1) be the area of the additional region, which is required to fill up the
triangle with corners, (0,0),(0,1),(1r/2,1/2). (We think of the appropriate
component of Hz"(O) as lying below s(0,1), otherwise just modify what we

just said by introducing domains with negative area!). Then
B(W)+A()=12/4. Since Y(0,)=0(L"), we have Pxy)=
fOme'dx+o(u')=A(u)+xﬁ/z+o(;1'). Hence,
(4.59) arg(A2)=-(2A0L)+O(U"))/h+0(1).
Combining this with (4.52), we get,
(4.60)  AB=A|Ap=
(}l'/h)m'/h(zﬂ)--é-p(_é__m'/h)e(-i}.l’+Tf}.l'/Z-iZA(}L)+i(9(}l'))/h+i(9(1)_
(With additional normalizations indicated above, we may replace O(1) by ®(h),
and suppress completely the ©(') term.)Here, we write,
-2A()/h=-12/2h+2B(L)/h, w2/2h=h*/8=h'/B+kT/2mod(2T1Z), keZ4,
(where h* and h'€l0,21r] are defined by 21r/h=h*/21r=h'/21 mod(212),) and
we obtain,
(4.61) AB= (211)‘51“( =il /h)x
o1(J1"10g1/h+2B(jL) + 1L Iog}i')/h+ﬂ}1'/2h ih*/8+10(")/h+i0(1)
where O(1) indicates a real valued analytic symbol of order 0, defined for J’ in
a neighborhood of 0, and (9(}1’) indicates a real valued analytic function defined
near 0. In order to evaluate the singularity of B(J1) at J1'=0, we let
¥ =Xy, (negative {-axis), and let B'()L) be the area obtained the same way as
B()L), but with s(0,1) replaced by %¥. Then,
(4.62) B'(J)-B()=0(E),
is an analytic function of Jl, and € is the parameter in the condition (3.2). By
canonical transformation, we see that B’(J1) is equal to the sum of an analytic
function =0O()L"), and the area of 0=<y=<1, 0<M=<min(z(y,),'/y), which
gives,
(4.63) B'(J)= -5 Togp + "1,
where f is analytic. We conclude that,
(4.64) 2B(L) + i Togul ' =21( )+ O(e),
so (4.61) gives,
(4.65)  AB= (2m)" I (A-ip'/h)x
eipd log(l/h)/h+Tr}.l'/2h+i(®(}l')+(9(e))/h ih*/8+i0(1)
where O(}L’),0(e) are analytic functions of ', and ©(1) is a real valued
analytic symbol of order O.
We now recal] Stirling’s rogmula in the complex (see [0]):

(4.66)  (2m)"EIM(2)=e~ 222~ 3(1+1/122+1/28822+...),
valid uniformly asymptotically when |z| — oo, arg(z)<n’ -8, for any §>0.
writing the asymptotic sum in the parenthesis as ek(2)/ Z, where k is
holomorphic and bounded in any domain largzl<mw-§, IzI =const., and
real-valued on the real axis, we get,
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(Zﬂ)‘EI‘( '/h)=
el- §+1,u'/h i(L'/h)og(F—1M'/h) + k(=" /h)/(F-ip'/h)
Here, log($-ip'/h)=log(jL'/h)=im /2 +ih/2p'+(h/ ") 21(ih/41"), where 1 is
holomorphic near 0 and real valued on the real. We then get,
(4.67) (Zﬂ)'ir‘ '/h)=
e KL Tog(! /)= T/ 2 K/ F(U'/h))
where F is a bounded holomorphic function, defined in a domain,
largz|<const.>0, |z|>const. Substitution into (4.65), gives for
J'/h>const.>0:
(4.68) AB=
o= 10U /M) 1og(U ) +i0(L")/h+i0()/h+10(1) -ih*/8+ i(h/ L' IF (L' /h))
Here we recall that the ©O-terms indicate real-valued analytic symbols of
order 0, defined for ' in a small neighborhood of 0.
The reflection identity, I'(z)I*(1-z)=1/sin(1rz), gives
P/ /M (E -+’ /h)=1/ch(mr ' /h). Combining this with (4.67) and its
complex conjugate, we get for }J.’/h>const_.>0,
eI /h/2en(rr ' /h) = eI/ WF QL /h) = F(u!/h))
from which we conclude that,
(4.69)  Im(F(U'/h)=0(1'/h)e~ 211 /h
J'/h=const.>0. Reinsertion in (4.68), then shows that,
(4.70)  IABl=1+0((e~2TH /),
Naturally, all our calculations, so far are valid only up to some exponentially
small error, ®(e~1/Ch)_ After modmcatlon of )\B Ao by such exponentially
small terms, we know that the matrix AB A s unitary.
Ao AB
This, means that
(4.71) INB12+ ] at|2=1, arg(Ap)-arg(Aa)=£1/2.
Combining (4.65) and the reflection relation, we know on the other hand,
that,
(4.72) |)\Bl2:'3(ch(n'u'/h))"e"}l'/h (up to an exponentially small
error),
so from the first part of (4.71), we conclude that,
(4.73)  InalZ=Hch(mru'/h)~le= TR /N,
Combining this with (4 65) and the second part of (4.71), we get,
(4.74) )\ot— (er)‘il"(—-\p.'/h)x
eiM'log(1/h)/h- 17;1’/2h+i(®(}1 )+0(e))/h-ih*/8+i0MFin/2,
where the O -terms are the same as in (4.65).
We shall next extend our asymptotic results to the case j1'<0, by
symmetry arguments. For €R2, let Fy= =TT Ty 1, so that Fyisa

quantization of rotation around 2o by the angle -11'/2. Put

P=%¢ %P(G’o .é)"l and define P~j, j=1,2, similarly. Define I-Tj as before. Then
Hj can also be obtained from HJ by conjugation by ¥o L e* It is easy to check
that, Ty & =eln *ocy, 10)F ¢ Ty -1(5)s Where the function © does not need to
be explicited. From this relation we immediately obtain,
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Ty 1) F &' =e "0, 0 31T, and it is then easy to check that,
(4.75) P, Pjcommute with Ty for all .

In order to investigate the Fourier invariance, we first find that
FF(0,f)=e ~ih /43’0 1To,1¥, which implies,
eih® /4(3’0 ‘) lg= =T ,1F(Fo, ‘) 1. Using (2.5) it is then easy to check that,
3’P|-P28’ as well as the other parts of (2.2),(2.5) for P, PJ.

In order to check the reflection invariance, we first see that,
VF0,4=T1 oF ~IT_1 oV, which implies that, V(Fo, 1)~ 1=T¢ oFT_41 oV.
Then we get,

VP=T1 0¥ "1T_L oPTL 0FT-4 oV. Using that 52 commutes with P, we
get VP=KPK~1v, where K=T%,OSY"T_L,OE’Z=e‘W3‘0'.éT,L].flsing the
translation invariance of P, we get KPK™'=P, and hence, VP=PV. This is the

analogue of (2.3) and the analogue of (2.6) is obtained the same way.
In conclusion, we have checked that P together with Pj is of type 1.

Since the symbols of these operators are obtained by rotation by —1/2 around
(0,1r), we also see that -P, Pj satisfy the more precise assumption (3.2)

with J replaced by -jL. To make this even more precise, we also introduce
G,=3‘o,%U13’“, which is a unitary Fourier integral operator such that

c G;: GICOv and whose associated canonical transformation is close to that of
Uy. Since Py and ¥ anticommute, we get,

(4.76) U T Hy Uy = =100, -Pg, h)(Po+ 1),

where 1is the same function as in (4.6). This shows that all the results,

obtained above for P when j1'>0, are valid also for P when M<o.
Recall that the general microlocal solution of Hyju=0 near (0,1r), is of

the form u=xyug 1+X3U(0,1),3=Y2v0,2+Y4v(0,1),4» Where
t(512,94)=([')\B]1'|+[}\<>(h,2+D\o<]2,|+[)\B]2,2)t(x,,)(3). Using that the matrix
here is unitary, we get xy=Xo, xz3=A B, if y2=0, y4=1. In other words,
(4.77)  v(0,1),4= N ug | near Int(s(0,1)),

and v(o,1),4= ABU(0,1),3 near Int(s((0,1),3).
The functions Go,|=3'0,.é.V(O,I),4, 3'0,]=:}‘0'%U(0,|)’4 are microlocally in
the kernel of H, and Hy respectively. (We get here a permutation of the

indices 1,2, that will not cause any essential difficulty in the following.) From
these functions, we generate ua Jr Yo 8 as before. The analogue of problem

(4.43) is then to determine 5, o such that,
(4.78) “0 =8 vo 2 near Int(s(0,2)),

”0 1-O(V(0 1),4 near Int(s((0,1),4),
U(o,1),3= % Vo, 2 near Int(s(0,2)),
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5(0’1),3=EU(0,'),4 near Int(S((O,]),4).
Since }l has been exchanged with -}1', we can apply the earlier results in the
case when ;L <0, and obtam,
(4.79) B= (Zfr)'il"( =+il’'/h) X
o-il10g(1/h)/h=T141//2h=ih*/8 +10 (") /h+10(e)/h+10(1).
where as before the ©-terms are real valued analytic symbols, of order O,
defined ror;L ina neighborhood of O.

Let us now relate B and o. Applging 3’0 to the first relation of
(4.77), we see that we need to compare "0 2 and F0,3U0,1- BY definition,
Vo,2=F 1%, 1T0,1Fup,1=T- 1 1FUg 1, While o, '—e“h /4T_1 15, s0
we get,

(4.80) 3’0 ‘Uo |=e'ih*/4\70 2.
Comparing this w1th (4. 77) and (4.78), we get,
(4.81) B=Xxe-ih*/4

which together with (4.79) gives for j'<0,

(4.82)  Aa=(2m)~Er($-ip'/h)x
eillog(1/h)/h~- TUJ'/Zh ih*/8+10(L')/h+10(e)/h+i0(1)FiT/2,

This is the same type of expression as (4.74), but it is not immediately clear
that the analytic symbols hiding in the ®-terms are the same. Using again the
unitarity, we obtain from (4.81) that a formula of type (4.65) is valid also for
JL'<0, although we can not be absolutely certain that the ©-terms contain the
same analytic symbols.

After deformation to the case when P=H;=Hy=cos(hD)+cos(x)- L,

Pj=l. and some more detailed computations following the same ideas, it is

possible to show in the model case and hence in general, that

(4.83) the + sign is valid in (4.71), hence the - sign is valid in (4.74).

In this model case, we can take ug 1=vg 1, A=1. For M=M'=0, we have
P=-P, so d=d, 8=, and (4.81) gives, latl=181,

argo+argf+h*/4=21mk, keZ. Since argg =arga+1/2, we get,

argo=mk-1mw/4-h*/8, argB=1k+1/4-h*/8 in this special case.

We shall next extend our results to the case when |Imu'| <€¢h for some
51<"i- Recall that P, Pj depend holomorphically on jL. For complex ), we put,
Hi (W) =P{*(JOP(U), Ha(u)=P(RPZ(J1) so that Hj depend holomorphically on
M. Restricting the attention to a square |Imul1<€q, IRep1<Eq, (where £4>0

is small but fixed and independent of €' in (3.2)), we first notice that we can
choose the WKB-solution ug,1» SO that the phase depends analytically on j,

and so that the symbol is a classical analytic symbol with J\ and x as base
variables. Here X is restricted to some neighborhood of /2. (Earlier in this
section, the normalization of Up,1 was choosen in such a way that the phase

had a logarithmic singmaritg at JL'=0, but this was for computational reasons
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only and did not affect the final results concerning the problem (4.43).) We
may also arrange so that ug 1 is normalized. We now restrict the attention to

a ''strip’’ [Imp'I<Ch, IRep’'I<Eq. We have,

(4.84)  1=(ug 1 ilH(), Xg, 1lug, ().

Define fot,j and “o(,j as for real values of jJL. Again fo(,j is no more a microlocal
function, but we may arrange so that it depends holomorphically on jL, and so
that we have the same growth estimates for fo(,j and S’fd’j as in the case of
real Jl. Then (4.31) remains valid, and U, j Is @ microlocal solution of Hiu=0
when j is odd and of Hou=0, when j is even. We extend the definition of R_ in
the obvious way, and we extend R, holomorphically, by putting
(R+u)(o(,j)=(ulud,j(ﬁ)). Restricting J further, by imposing |11 <g4h, with
0<g <3, we see that the existence of an inverse for the corresponding Grushin

problem can be proved the same way as in the case of real J., and the inverse
6 is ©(h=3/2) uniformly. Moreover, we see as before that the matrix
elements E_ , (a,j; 8,k) satisfy (4.38). The coefficients a, b defined in (4.41)

are now holomorphic functions of j{, and if we choose vg | by (4.45),(4.46),
then A =elfUL,N)/h where 1 is an analytic symbol of order 0, such that Imf is

of order <-1. This implies that A8 and Ao are holomorphic functions of J of
at most temperate growth when h— 0, for [u'I<gqh, IRep’I<Eq. Put u=Ag.

According to (4.65) there is a holomorphic function u_., defined on the same
rectangle and of temperate growth there, such that u-u_ is uniformly of
exponential decrease on the intersection I' | of our rectangle and the positive
real axis. Similarly, as indicated after (4.82), there is a function u_ with the
same properties, such that u-u_ is exponentially smallon I"_, which is the
intersection of the negative real axis with our rectangle. From the maximum
principle, it follows that if we decrease slightly our rectangle by decreasing
€p and €1, then u-u4 is exponentially decreasing in
Us={p'eC,dist(l’,I"4)<€qh). For instance to get such an estimate for u-u,
in a disc D(0,€2h), with €5 slightly smaller than the original €4, we introduce
the subharmonic function g=|og|u—u+ |, and after some changes of scales, we
get a subharmonic function §wilh only finitely many log-singularities,
defined in a neighborhood or~the closure of the d~omain Q={zeC; |z|«1,
0<arg(z)<21r}, satisfying g(x)< -1 for 0=x<1, g(z)=<0 for [z|=1. By the
maximum principle, (comparing with the harmonic s~olutfon of the
corresponding Dirichlet problem,) we then obtain, g=al<0 for |zl <€,/€,, and

after rescaling back, we get the reguire,d exponential decrease.
We also know that u+/u_=e‘a()-’~ sN)/h where a is a real valued

analytic symbol of order 1. From the exponential decrease of u~u4 on the
interval [-g¢h,€&h], it follows that a is exponentially small on the same
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interval (after adding an integer multiple of 21). We conclude that a is a
realization of the 0 symbol, hence a is exponentially small on the whole
rectangle. The conclusion is then that we have extended the validity of (4.65)
to the whole rectangle. The same then holds for Ao, and we have proved,
Proposition 4.2, There is A=elf(};h)/h where 1 is an analytic symbol of
order <0 such that Im f is of order <-1, such that the following holds for
o=ali, B=b/i: Let £9> 0 be sufficiently small, and let 0<e1<%. Then (4.65)

and (4.82) hold uniformly in the rectangle |Impu'I <gqh, IRep'I <Eq, where as

before, the ®—terms indicate realizations (possibly with an exponentially
small imaginary part) of real valued classical analytic symbols of order 0,
which are the same in both expressions. Moreover up to exponentially small
errors, we have (4.71), where the + sign is valid.

We shall next study the new self-adjoining operators. Let Aj=R%PE .,
Ao=E_P,R%, so that the operators Q;,Q5, defined in section 2, are the
renormalizations of Ay, A>. Repeating the arguments of that section, we get
the following results (forming intermediate steps in the verification of the
properties (2.7),(2.8) for Q,Qy,Q5.)

(4.85) 9A1=A%9, A|9=0A%,

(4.86) V'Aj=AjV'.

The fact that Aj commute with the T implies on the block—-matrix level,

that,

(4.87) Aj(o(,B)=eih'BZ(dl'Bi)aj(o{-B),

and expliciting the properties (4.85),(4.86), we get,

(4.88) a(k(a))=Teaz(a)*e T, ay(k "W (c))=T "Teay(a)*oT,

(4.89)  a,(8(x);2-j,2-k)=elh' 123 (a;j,k).

As with E_ ., we see that a,(«) is exponentially small, except for || =1, and

for || =1, the only non-exponentially small entries are a,((1,0);2,1),

a,((0,1);4,1), a,((-1,0);4,3), a,,((0,-1);2,3). Using (4.88), (4.89), it is

easy to check that we have,

(4.90) 31(0)=ax(0)= [x]2,1+[>'<']2,3+[x—]4,1+[x]4,3.

Similarly, we get for |o| =1,

(4.91) av((l,O))E[Z_JZ'h 3y ((0,-M=lzly 3, av((-l,O))E[Z_]4_3.
a,((0,1))=[zl4 1, modulo ©(e~€0/h) for some £4>0.

(These relations could also have been obtained directly, by using (2.7),(2.8)
for Qj and studying the trigonometric polynomial of degree 1 in the Fourier

series expansion of the symbols Qj. Looking at higher order contributions, we
also see that there is no reason to suspect that Q,=Qz.)
The next problem is then to study x=A,(0,2;0,1), z=A},((0,1),4;0,1).

Applying the definitions of the various operators, we get,
x=(P1E (80,1 110,2)=NB(P((1- X0, 2)v0,2110,2),
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2=(P1E (80,1 11(0,1),4)= NP {(1-X(0,1),4)¥(0,1),411(0,1), 4)-
Recall that the corresponding coefficients b,a for E_ ,, are given by

b=i“3, a=i“o(, so we get the same coefficients, multiplied by a common
factor,

0=1\(P(1-Xo,2)V0,2!f0,2)=1A(P1 (1= X(0,1),4)¥(0,1), 4 1(0, 0,4
Recalling that Avg 2=P%up 2, we can also write
—I(P|(l—'Xo,z)quo'zl)'o,z)—i(Pz(I-Xo,|)P1uo,1 Ifo,1)=
i(PEP](Ion,])UoJ 110,1)
where )'('0 1P1=P1Xo,1- Here P3P maps Ker(Hy) to itself, so P3Pjug 1=pug 4
for some complex number J.. Since V commutes with PJ and PJ, and since
Vug,1=up,1, We find PZPIUO,I-}Wo,lv and hence M is real. Using (1.18) and
the fact that v2=1,
(P’Z‘P](i—Xo,|)uo,1 |fo’|)=(V2P’2’P1(I-Xo,|)uo,1 [fo,1)
=(VPE P]( 1- Xo’|)Uo’| |Vf0’|) = (PEPIXO,IUOJ | 10,1)'
Here we also used that VXO,]V“=I—X0’1 and that Vug {=ug 1, Vo, 1=10,1-
Putting {=(P%3P(1-Xo,uo,11fo,1) it follows that
S+ T=(P%Pyug, 1110, 1)=Mug 1110, =K,
(proving again that u is real). Since jJL #0 by the ellipticity of Pj, we deduce

that, Re§ #0, and hence that Imé #0. More precisely, we have showed that in
the same rectangle as in Proposition 4.2, we have, x=b9+0(e'|lc0h),
z=20+0(e~1/Coh), where 6 is an analytic symbol of order 0, such that Ime is
elliptic. Here Cy>0. Recall that the renormalization Q of E_ | is the

h’-quantization of the symbol Q, given by (2.21), and that the
renormalizations Q] are obtained from A) by the formula,

(4.92)  Qy(x,6)=E aj(oe ™ IX12N"/2 ¢ =1<E(), (X, 6D,

We then get,
Proposition 4,3. There is a constant Cy>0, such that for ' in the rectangle

of Proposition 4.2 and for |Im(x,£)| <1/Cgh, we have,
(4.93)  ax,&)=[b+ 5e'i€]2,1+[B-+ae"‘]2'3+[5+ae'ix]4,1+lb+ a-ei§]4'3
+(9(e-1/Coh),
(4.94)  Qj(x,6)= 6b+83e ™61, 1 +[85+0ae™y 3+[8b+0ae~ ]y 1+
[ob+8aeit], 3+0(e!/Coh),
Here it is understood that a, b, © denote the holomorphic extensions of the

complex conjugates of a, b, © on the real domain.
We have already observed in section 2, that Qj may be replaced by any

real linear combination of Q and Qj with coefficients that do not depend-on j.

Since Im® is elliptic, this means that we may assume (4.94), where 6 is any
(convenient) complex number. Let us denote by Q° and Qjothe explicit matrices
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appearing to the right in (4.93),(4.94). After modification of a,b, by
exponentially small quantities, which do not affect the validity of the last
proposition, we may assume that,
(4.95) arg(b)=arg(a)+1/2,
so that ba/i>0, and b2-a2=(|b|2+|al2)ei2arg(b), Then we get,
(4.96) detQO(x,£)=2i(1b]2+ lal2)sin(2arg(b))+2balcos(£) + cos(x)) =

= 2ba((ba/i)~1(Ib12+ 12l 2)sin(2arg(b))+ cos(€) +cos(x)),
(4.97)  detaftx, )=

2le12ba((ba/i)~1(I1b12+ lal2)sin(2arg(eb))+cos(£)+cos(x)).
Recalling that b=8/i=(X8)/(\i), and similarly for a, we obtain from our
earlier results, . o, , ,
(4.98) b=(2ﬂ)‘§[‘(-§——ip’/h)e‘}1 log(1/h)/h+ 1! /72h + ()L ,h)/h,
(4.99) a=(2ﬂ)—%p(%_iM//h)ei}l'log(l/h)/h—Tr).l'/2h+)'(}.L',h)/h-iTr/Z,
where f is a classical analytic symbol of order <0, such that Re(f) is of order
<-1. From this it follows that,
(4.100)  lal2+|bl2=e2Re(N)/h p3yi=e2Re(N/h/2en(rrin’/h),
when JL is real. Using this in (4.96), we get:
(4.101)  det(Q9)=2ba(2ch(mr'/h)sin(2arg(b))+cos(£)+cos(x))

The formulas (4.98),(4.99) are a little less precise than earlier
corresponding ones, but as we shall see later, they carry enough information,
in order to continue the renormalization procedure.

Let us finally formulate the main result of this section,

Proposition 4.4. Let (P,P{,P5) be a strong type | operator with 0<h=21r and

with 0=<€e(P)<&g, where £¢>0 is sufficiently small. Define ) o(P)=0(&(P)) as
in Proposition 3.4. There exists h{>0, such that for 0<h=h, we have an
analytic diffeomorphism }L—>}1‘ from a neighborhood of [ to a neighborhood
of 0 such that J'(j)g,h)=0(h). J’ and its inverse are given by classical
analytic symbols of order 0. Moreover, for h{>0 and €4>0 surricientlg small,
the J1'~spectra of P and Q coincide in the interval [-€¢,€4], if Q denotes the

h'-quantization of the matrix symbol Q, given by (4.93). Here 21w/h=h'/21
mod(2), 0<h’'<21r, and a, b are given by (4.98), (4.99) (satisfying also
(4.100)). For every 6€C, there exist symbols Qj satisfying (4.94), such that

(Q,Q¢,Qp) is a type 2 operator in the sense of section 2. (Here Qj also denote
the corresponding h'-quantizations.)




Preliminaries for the renormaliz rator ion 4

In section 4, we proved that the renormalization of E_ . is given by:

(5.1) Qx,€)=[b+ 5e“i§]2,1+[5+aei"]2,3+[l§+ae"“‘]4,|+[b+ Eei€]4'3
+0(e~1/Cohy,

when [Repl'|<€q, IImu'I<€¢h, for some sufficiently small £g and h>0, when
€1 is fixed in 10,2{. Here,
(5.2) bz(zﬂ)-%p(%_i}_l'/h)ei().l'/h)log(l/h)+Tf}.L'/Zh-l-if(}.L',h)/h'
(5.3) a=(2ﬂ)—%l—'(%- ml/h)ei(}l'/h)log(l/h)- ﬁ}l’/2h+if(J-L',h)/h-i1T/2’
where f is a classical analytic symbol of order <0, such that Imf is of order

<-1. After multiplication of Q by e!Mf/N times the identity matrix, we may
assume from now on that f is real valued. Then for real }1':

(5.4) lal2+1bl2=1, arg(b)-arg(a)=1r/2,
(5.5) Ib]=eTH'/2h(e MU' /h o= /hy=1/2,
(5.7) lalIbl=1/2ch(tryL’/h).

Using the complex version of Stirling’s formula, we also had,
(5.8) b=elM'/n=i('/h)log(u ) +iCh/j JF (' /h) +if(1’ ) /h

for j1'/h=const.>0, where F(z) is a bounded holomorphic function in a sector

|Imz|<Re(z)/C, Re(z)>C, and,

(5.9) . ImF(U'/hy=0()('/hye=2TH'/h,

when J1'/h>C. This relation can also be differentiated with respect to u'.

Consider the function B=i"'log(b). Then for IRey'/h| <const.,

IImp'/h| <€y, we get from (5.2):

(5.10) 3),/B=h~Nog(1/h)+O(h~1)=(1+0(1)h~ Mog(1/h), h— 0.

For Rejt'/h=const.>0, |Imu'/hl<€q, we can apply (5.8):
a}llB=-h"Iog}i'+F'(J.1'/h)/J.L’—h(}1')"2F(}.l'/h)+8}llr(}l',h)/h.

Restricting this to the real axis, we get for j).’/h=const.>0:

(5.11) 8MIB=(h"log(l/u')+(9(h"))+i(9(}l"‘+h“+).L'h’2)e'21T}l'/h.

For complex jJ.’' with Reyl’/h=const.>0, we get,
3,B=-h"Nogu '+ O’ [ ~T+hlp'172+n7 1),

which we can write as,

(5.12) 3,/B=-h"hogI ' +0(h D).

Combining (5.10) and (5.12), we get,

(5.13)  3y:B=h"Nlog((h+ ' DN+,

and this relation is also valid for Rejl’'/h=<-const.<0, and hence everywhere in
the rectangle [Rel'[<€q, IImu’I<€qh. In view of (5.11), we also know that

3),/ImB is o(h~Te=H'/Cohy for 14'/h=const.>0.

Put,
(5.14)  Qo(x,6)=Ib+3e~iCl, +[b+aeiX], s+lb+ae~ ]y +[b+aeibly 3.
Then for real j1/, we get from (4.101) and (5.7),(5.4),
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(5.15) det Qo(x,€)=(i/ch(trud'/h))2ch(1r ' /h)sin(2arg(b)) +cos€ +cosxl.

The real characteristic set of Qg is non-empty precisely when,

(5.16) ch(tru’/h)sin(2arg(b))el-1,11.

" Cases of special interest appear when,

(5.17) ch(T4'/h)sin(2argb)= -1, then (detQq)~1(0)=2122,

(5.18)  ch(mu'/h)sin(2argb)=1, then (detQq)~1(0)=2w22+(m,m),

(5.19) ch(TrjL’/h)sin(2argb)=0, then (detQq)~1(0) is the union of the
lines £x=(2k+1)1, keZ.

In order to understand the structure of the set of real j1’ such that (5.16)
holds, we split the discussion into two cases:1°, |'/hl <Cq, 2°,

I/l =Cq. Here Cq will be choosen sufficiently large in the discussion of

case 29, In the discussion of the case 1° it may be arbitrarily large, provided
that h>0 is sufficiently small.
10 I)'/h1 <Co>0. Put &(u’,h)=ch(mr'/h)e21arg(d), since
aurarg(b)=(l+o(l))h"log(1/h), and by Cauchy'’s inequalities,
(8.hlarg(b)=®(h’jlog(l/h)), it follows that,

auig(u',h)/g()i',h):ZiU+o(1))h"]log(1/h),

3RS h)/8 (! h) = = 41+ 0(1)(h ™ Mog(1/h))2.
The curvature of ' — ¢(J',h)eC~R2, is given by,

13,181~ 2Re(3%,18 131 E)=8(1+0(1)(h ™ Nog(1/n))3,
so for h>0 small enough the curvature is strictly positive. Moreover
1204’ h) | =ch(rd’/h) =1 with equality precisely for j)'=0. Now (5.16) holds
precisely when Img(j1',h)e[~1,1], so it follows that the set of J’ satisfying
(5.16) is a union of closed intervals of length ~ h/1og(1/h). All these intervals
are disjoint except possibly two. This exceptional situation can appear only
when sin(arg(b))=#*1 for j)1'=0, i.e. when arg(b(0,h))=1/44+n1/2, n€Z. Then
the two intervals have J'=0 as a common boundary point. In a region, where
IJ'/h] zconst.>0, the distance between two consecutive intervals is of the
same order of magnitude as the length of these intervals. In the region where
[J'/h] is small, if 0’ is between two intervals, then the distance between
the two intervals is of the order of magnitude, (2h/log(1/h))|sh(1r.’/h)|.
Also, notice that jJ1'=0 always belongs to one of the intervals.
20 [J'/h[=Cqy>0. Then ch(ri’/h)=const.>1, and we rewrite

(5.15),(5.16), as,

(5.15) det Qg =il2sin(2arg(b))+(ch(1ry'/h)) ~ (cos€ +cosx)],

(5.16) sin(2arg(b))e[-1/ch(1ryl'/h),1/ch(1r)d'/h)].

In the region |'/h| =const.>0, [sin(2argb)| <const.<1, we have,
Ia}llsin(Zarg(b))l~h"‘|og(l/Iu'l)))ﬁw(l/ch(ﬂp'/h)), so the set of u’
satisfying (5.16) is a union of closed disjoint intervals, such that if )’ is in
the separation of two such intervals, then the separation is of the order of
magnitude h/10g(1/14’1), and if )’ is in such an interval, then the length of
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that interval is (2+0(1)he =T X' I7h(1og(1/1 147 1))~1 when h— 0, 'l =0,
h/l'l —o.

Still in case 29, we notice that either |bl/lal=const.>1, or
lal/Ibl=const.>1, and Qo(x,£) can never vanish completely for real x,§. In
other words, the worse that can happen is that Qg(x,£) (or Q(x,£)) has a

1-dimensional kernel for some real x,€.
In the case 19, let us look for the special situations when Qo may

vanish completely for some real j1’,x,£. Assuming we are at such a point,
since both a and b are 70, we get from b+ae~1€=b+aei€=0, that e~ 16=ei¢,
so £=k1r, keZ. Similarly, we must have x=11r, 1€ Z. We then get
b+(-1)ka=0, b+(-1)!a=0, and comparing the last equation with the complex
conjugate of the first one, we see that (=1)K=(-1)!, so k and 1 must have the
same parity. Since Qg is 2 -periodic both in x and in §, it suffices to study

the cases of complete degeneration at (0,0) and at (1, 7). The complete
degeneration at (0,0) appears iff b+ a=0, and it is easy to see that this
happens precisely when J'=0, and arg(b(0,h))=31/4+n1, neZ. Complete
degeneration at (1, 1) appears iff b-a=0, which happens precisely when
M'=0 and arg(b(0,h))=1/4+n1. The complete degeneration is a rather
exceptional case, but if |J'/h| is small, then lal=|bl, and Qy(0,0) and
Qo(1,1) become small respectively, when arg(b)~31/4+nt, and
arg(b)=1/4+n1. These cases appear near the end-points of the intervals
given by (5.16)".

We end this section by giving some qualitative statements, which are
more easy to carry on in a general iteration scheme. Let Pgy(a,b;x,£) denote
the matrix given by (5.14).

Definition 5.1, The triple of h-pseudodifferential operators (P,P{,P5) is of

strong type 2, if it is of type 2 and if for the symbols, we have
IP(x,€)-Po(a,b;x,£)| <€, le(x,q)-Po(ia,ib:x,C)lse for 1Im(x,€)1<1/¢e,
1)1 <4. Here it is further assumed that P,Pj,a,b depend holomorphically on J,

that a=a(jL) and b=b(yL) satisfy,
(5.20) lal2+1bl2=1, larg(b)-arg(a)l =1/2, for } real,
and
(5.21)  b(L)=b(0)(1+O(e))ei(1+0O(E)),
where each O(t) indicates a holomorphic term of modulus <€, which is real
when JL is real. We define £(P) to be the infimum of all € satisfying the above
inequalities, and we define C(P) as max(1/]a(0)1,1/1b(0)1]).

In this definition the number 4 could easily be replaced by any fixed
strictly positive number.

From the discussion above and Proposition 4.4, it is easy to obtain the
following result,
Proposition 5.2. Let (P,P,,Pz) be a strong type 1 operator with 0<h=hg and

e(P)=gq, with hg,€0>0 sufficiently small, so that we can define the new
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M'=variable as in Proposition 4.4. Fix 0<C<Cy. For Cohs|p o'l <Cth, we put
M= - 1o"h " Nog(h~1). Then for 0<h=h;>0 sufficiently small, depending
on Cy and for |}1''1<4, we can express J)L—=Sp(P) in the j1''-variables as
H''~-Sp(Q), where (Q.Qj) is a strong type 2 h'~pseudodifferential operator

(with J\ replaced by j.'’ in the definition above) with £(Q)— 0 as h— 0 and
with C_(Cq)=C(Q)=C . (Cy), where C4 only depend on Cq and Cy respectively,

and where C_(Cy) — +00 when Co— +00. We also recall that 2m/h=h'/2m
mod(2Z), 0<h'<21.



6, Reduction to Lgne | operators,

Let Q be as in section 5. We shall here study the case when |J'/h| is
bounded from below by some sufficiently large constant. In the case when
1'>0, we have |bl>>|al and Qg is close to a constant matrix. In the case

H'<0, lal>>|bl, and the variable part of Qg dominates. We shall first exhibit

some symmetries that show that the second case is actually equivalent to the
first one.
As before, we denote by Pg(a,b;x,£) the expression (5.14) and we shall

use the same letters to denote the corresponding h'-Weyl quantizations. We

recall that the matrix Po maps Czodd into Cgven , and define L:

2 2 2 2
Ceven— Ceven» and M: Coqq — Codd» bY

L=[ei(x-€)/2]2'4+[ei(-x+C)/2]4’2' M= [ei(X+C)/2]"3+[ei("x-€)/2]3’l_

Recalling the definition of T: €244 — €Zyen» €2yen— € 24q in section 2, we

check that,

(6.1) FTM=LFT, FTL=MFT.

A long but straightforward computation shows that for the h'-Weyl
quantizations, . .

(6.2) LePg(a,b)=Po(e 1N /4p,e1h'/43)op,

This gives in particular a unitary equivalence between the cases |b|>>|al and
lal<<1bl. In order to complete the symmetry discussion, we let P,P,P5 be
of type 2 as defined in section 2, and we define P’,Pj', by:

(6.3) LP=P'M, LPj=P;'M.

It is then straight forward to check that P’, Pj' commute with the T, that
P{*P' and P'P5" are self-adjoint, and with the help of (6.1) and (2.7),(2.9),
we also obtain (2.7),(2.9) for P’,Pj’. Finally, we check that, .

(6.4) VL=LV, MVT2=VT2N,

and using (2.8),(2.10), we obtain the same relations for P',Pj’. Hence P',Pj' is
of type 2 and if P=Po(a,b)+0(e), Pj=P(8a,6b)+O(E), then P'=
Pote~Th'/45,e=1h"/43) L o(c), Pyi'= Pote~1'/455,e~1"/458)+ 0(e). The
conclusion of this discussion is that it suffices from now on to consider the
case when J.'/h>0.

Let Q be as in section 5. We shall now study Q for jt' in the region
Ch='<1/C, where C is some sufficiently large constant. Let j1'g be in this

interval with sin(2arg(b(j'g)))=0, so that

(6.5) arg(b('g))=n1/2,

for some neZ. We rescale by introducing a new variable y"/,

(6.6) M=o =(h/log(u'y ",

and restrict the attention to a region where |1''| is bounded by a constant.



56 B. HELFFER, J. SIOSTRAND

For 1/C and h small enough, we then have, "
6.7) b(L’,h)=(1+ O )b(HL g, h)ei(1 +OENLY
(6.8) (!, h)=(1+0(EL " Na(pt’g,h)elll +OENUY

where £>0 can be chosen arbitrarily provided that C and 1/h are sufficiently
large. Put §=1la({’g,h)]. Then Ib(’'g,n)I =(I—82)'é', and choosing C (and 1/h)
large enough, we may assume that,

(6.9) Q(X,C)=Qo(x.€)+®(82). [Im(x,6) | <1/¢€.

Recall (4.101),(5.7):

(6.10) det(Qg)=2ba(lab| ~Tsin(2arg(b))+cos(£)+cos(x)).

This quantity is non vanishing for real (x,£) except when )’'=0(8), and the
same is true for det(Q), in view of (6.9).

Let bg=einT/2, Po,0=P0o(0,bg). Then Py ¢ is independent of (x,£) and

1 1
= =(2-3.(-)+lx-3 i

Ker(Pg,0)=(ep), where eg=(272,(-1)"*'272), and we also notice that Py g
is equal to i times a self adjoint matrix. We now define
R4 :LZ(R;€2)— LZ(R), R-: LZ(R) — LZ(R;€2), by R u(x)=(u(x)leg)¢2,
R_u~(x)=u"(x)eg. Let Po=I[Pq oly,1+[R_Ij,2+[R 17 1 L2(R;C2)XLE(R) —
L2(R;C2)xL2(R), and define ® similarly with Po o replaced by Q. In view of
(6.7)-(6.9),
(6.11) P-Po=0(S+11"1),
in the sense of L2 bounded operators, and also in the sense of Weyl symbols
defined on |Im(x,€)| <1/e. (Here we work with the h’—quantization.) Now ®g

has a bounded inverse, 8o=[Eqly 1+[Eq, 4];,2+[Eg, -]2,1, SO it follows from
(6.11) that the same is true for ®. We write
P-1=6=[El | +[E ]y, 2+[E_12 1 +[E- ]2 2. As earlier, O belongs to the
spectrum of P iff it belongs to the spectrum of E_ .. We have the Neumann
series,
(6.12) 8=8o(I-(P-P)8o+((P-P0)8p)2-...).
In view of (6.11) we get:
(6.13) 8-80=-80(P-P)Eo+O(82+[11"12),
for the symbols in the strip |Im(x,€)[<1/¢€. In particular,
(6.14)  E_,=-Ep, -(Q-Pg,0)EQ,++O(82+ 1" 12)=
-Eo,_(Po—Po,o)E0,++®(82+ [11"12)

Here Eg . u—u(x)eg, Eg -:v—(v(x)leg), so the first term of the last
member of (6.14) is equal to
(6.15) ’((Po(X,ﬁ)"Po,o)eoIEo)="(Po(X,C)Eo|BQ)=

~[b+(-1)"+154+ acos(€)+(-)N+1acos(x)].

Using that b(u')=(1-82)ZiM, a(l’g)=8i""1, we get from (6.7),(6.8):

(6.16)  b()=(1+O(eu))(1-§2)zineil1+O(ENU",
(6.17)  a(u)=(1+0(en")sin—lei(1+0ENL",
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Here all the ®-terms are real for J1" real, and the ones in the exponents are
the same. Combining this with (6.15) and (6.14), we get,

(6.18) E— 4 (x,£)=i""1[2sin((1+ OENU) + (- 1)NE(cos(€) +cos(x))]+
O(82+11"12),
and possibly after increasing €, this relation remains valid in the complex
strip, [Im(x,§)I=<1/¢.
For [J11>>8, the first term in (6.18) dominates, so E_ | is bijective in

this region. When |J1'| =(Const.)§, we have,
(6.19) E— 4 =iN"18[(2/8)sin((1+O(EN ") + (- 1) (cos(€) +cos(x)) + O(8)],

for |Im(x,€)| =<1/¢. Introducing £(2/8)sin((1+0(€))’’) as a new spectral
parameter, we see that E-_,_/(i""’&) satisfies the first part of the condition

(3.2) for type 1 operators with a new parameter €, that can be chosen
arbitrarily small. As in section 2 we see that (RXP{E)*E_ and

__,,(E PZR )* are self- adjoint. Choosing 6=i for QJ it is easy to check by
the same argument as above, that the self-adjoining operators in~ ‘R’iQ,E+
and i“"'E_QzR’_‘,_ after multiplication by a common real factor satisfy the

second part of (3.2). Moreover, it is easy to see that all the invariance
properties for a type 1 system are satisfied, so E_ . can again be studied by

applying the results of section 3 and 4. More precisely, we have,
Proposition 6.1, There exist hg,€(,C>0 such that the following holds: Let

(P,Py,P2) be a strong type 1 operator with £(P)=<€gq, and 0<h=hg. We can then
introduce the new jl’'-variable as in Proposition 4.4, and for C>Cg, we have
H=Sp(PIN{J’;Ch=p'<1/C)CV <j<N, Jj» Where Jjare closed disjoint
intervals, labelled in increasing order such that the width of J] is of the order
of magnitude he ™ TH'/h(og(1/")) =1 (,where p 'eJj), and the separation

between two consecutive intervals is of the order of magnitude h(log(1/s'))~!
(,where j' is in the separation). Moreover, if Xjt ' — " is a suitable
increasing affine map, then X;j(Jjnpl'-Sp(P))=u"'-Sp(Q), where Q=Q; is a
strong type 1 h’'-pseudodifferential operator with £(Q)— 0 as h,1/C— 0,

uniformly with respect to j and with respect to the choice of P as above, with
e(P)=<€q. The analogous result holds in the region -1/C=p'<-Ch. Here

2m/h=h'/21 mod(Z), 0<h’'=<2r.

It also follows from the discussion in this section, that if Q is a strong
type 2 h'~pseudodifferential operator, 0<h’<21r, (and writing ).’ instead of
M), then if C(Q)=Cgq, where Cq is sufficiently large, and if £(Q)=a(C(Q)), for

"some strictly positive decreasing function, o on [Cq,o0[, then ).L'-Sp(O)=U-Jj,
where Jj are closed disjoint intervals such that for each j, there is an affine
map X: ' — 1, such that )cj(Jjn}L'—Sp(Q))=}.l"-Sp(5), where 5:6} is a

strong type 1 operator with £(@)=<8(C(Q)). Here B(C)— 0 as C— +00.
Combining this with the propositions 3.4, 4.1 and 5.2, we get,
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Theorem 6.2, There exist £4>0 and functions, F:]0,11—[1,00[, hq:]0,1]—
10,11, o2 10,112 — 10,1] with (g ,h) — O when h — 0 for every fixed €, such
that if £€]0,1], and P is of strong type 1 with £(P)<€q, 0<h=hg(€), then
u-sD(P)CU_N_5j5N+ Jj » where Jj are closed disjoint intervals, labelled in
increasing order, such that for each j, there is an affine increasing map
Kj:;.L—-»}l" such that:

a) For j#o0, )<J-(Jjn}.L—Sp(P))=}.l"—Sp(Q), where Q=0j is a strong type I
h'-pseudodifferential operator with £(Q)< 8(C).

b)  Forj=0, Xo(JoNM-Sp(P))=x""-Sp(Q), where for every ;g €Xq(Jp), Q
is a strong type 2 h’-pseudodifferential operator with £(Q)<a(g,h),
C(Q)=<F(e), as a function of i''= p"' - gel-4,4l[.

This is is the main result, concerning type 1 operators. We also notice
that in terms of the variables j’ introduced in Proposition 4.4, the length of
the interval Jg is of the order of magnitude h (when C is fixed) and that the

lengths and separations of the other Jj's in the domain of the j.'-variables are
given by Proposition 5.2. Finally outside the domain of the y'-variables, the
lengths are e~ Ci/h with Cj of the order of magnitude 1 and the separations are
of the order of magnitude h.



Here and in the next two sections we shall consider a general
h-pseudodifferential triple, (P,P{,P2) of strong type 2, and the corresponding

(original) spectral parameter will be denoted by ). Let Pg(a,b;x,£) be as in
Definition 5.1. Using that lalZ+|b|2=1, larg(b)-arg(a)l =1/2 we get for real
values of M,

(7.1) det(Pg(a,b;x,€))=2ia(at " Isin(2arg(b)) +cos(€) +cos(x)),

where «=ba/i is real and of absolute value <1/2.

In this section, we are interested in the case when P may come close to
the zero matrix for some real (x,£). As we saw in section S, Py(a,b;x,€£) may
vanish completely, only if |al=|bl. In the case, arg(b)-arg(a)=1m/2, we saw
in section S that Pgy(a,b;x,£) vanishes completely at (x,£)=(0,0), when
arg(b)=3m/4+n1r, and at (1, 1), when arg(b)=1/4+nT. These are the only
points of complete degeneration in that case. When |al= IbI—Z'E,
arg(b)-arg(a)=-1/2, the same discussion shows that Py(a,b;x,£) vanishes
completely at (x,£)=(0,0), when arg(b)=1/4+n1, and at (1, 1), when
arg(b)=3m/4+n1, and that these are the only points where Pq vanishes.

The eight cases can be treated the same way and in order to fix the
ideas, let us assume that
(7.2) arg(b(y1))-arg(a(u ) =1/2,

and we wish to study P in a region where |b| =2 -3 2, arg(b)~31m/4. More
precisely, we shall assume that,
(7.3) arg(b(0))=31/4, Ilb(O)I-Z"El<e,

and the discussion below will be uniformly valid for J. in some small fixed
neighborhood of 0, provided that £(P),€,h>0 are sufficiently small. Without
any loss of generality, we may assume that,

(7.4) e(P)se.
Combining (7.3),(7.1) and Definition 5.1, we get,
(7.5) detPo(x,§)=i(l+(9(8))[cos§+cosx—2+4}12+®(€)+@(u4)],

for 1(x,€)1,11=1/Cq, where Cq is large but independent of €. When M is

real, we also know that the expression inside the bracket is real. When ;Lz/t:
is larger than some constant, we see that (x,£) — detPq(x,£) vanishes on a

1
Jordan curve around (0,0) which is close to a circle of radius 82| |.
It is easy to check that detP;#0, for [J1=1/Co, (x,6)1=1/Co.

Consider then the self-adjoint operator, H|=P*|‘P. On the symbol level,

(7.6) Hi(x,6)=P{(x,E)P(x,£)+O(h).

H(x,&) is a selfadjoint matrix for J and (x,£) real. Combining (7.5),(7.6) and
the fact that detP-detPy=0(€), (which follows from (7.4),) we get,

(7.7) detHy(x,£)=1(x,€, )lcos€ +cosx-2+ 412+0()+ 04 +0(h)],

where f is a non-vanishing real-valued analytic function. Assuming from now
on that 0<h=1/Cq, we see that when J is real and M2/(e+h) is large, then
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detH; vanishes on a Jordan curve around (0,0), close to a circle of radius
B%I}LI. According to our results on normal forms for systems in appendix c,
there exist classical analytic symbols Z(x,&, L ,h), C{(},h), C2(,h) of order
0, defined for |J11=1/Cq, |(x,6)1=1/Cq (and varying in a bounded set of
analytic symbols, if P,Pj depend on additional parameters, but remaining
within the bounds that we have specified for P, and Pj), such that in the sense
of classical analytic pseudodifferential operators,

(7.8) U*H1U=[C1]1']+[C2]2,2+[Z]|'2+[Z*]2,].

Here U is an elliptic classical analytic Fourier integral operator of order O as in
Proposition c.3, depending analytically M in the sense that it can be realized

with a phase Y(x,y,0,) which is analytic in all variables, and with an
amplitude, a(x,y,6,M,h), which is a classical analytic symbol. The principal

part &(x,€,p), (of 2) satisfies 1&1~1(x,£)] and i~1(¢,&}>0, and Cjare
real-valued. Again, if ;12/(5+h), is large, the determinant of the symbol of
(7.8) vanishes roughly on a circle of radius || around the origin, and we
conclude that in the same region,

(7.9) Cy(M,h)Co(M,h) = pu 2,

Using that P(0,0)=0(€), when JL=0, we also get,

(7.10) Cj(o,h)=(9(c+h).

Let cj(}.L) denote the principal part of Cj. Considering the Taylor expansions
cj(u)=cj(0)+cj’(0);1+O(;.lz), we get from (7.9), that,

(7.11) ¢y'(0)c5'(0)>const.>0.

We may assume that cj'(0)>const.>0, and we are then in the situation when
Cj are both strictly increasing functions of M changing sign somewhere in the

interval [-C(e+h),C(e+h)].

In order to study the operator (7.8), we first consider the operator
2%z, According to our results on normal forms for scalar pseudodifferential
operators in appendix b, we can find a real valued analytic symbol F=F()L,t,h)
of order 0, and a unitary Fourier integral operator W, such that,
(7.12) W IF(U,Z%2,h)W =P = $((hD)2 +x2 - h).
Using this, we can define the k:th eigenvalue of 2*Z (microlocally) by,
(7.13)  FOU, A, h)=kh,
provided that kh=1/Cq (,where Co>0 is some new fixed constant). Since Z has
a one-dimensional kernel (microlocally), it is clear that )\0=0, and hence,

(7.14) F()L,0,h)=0.

Recalling that 94F(u,0,h)>0, we let G=G(j,s,h) be the inverse of the map
t—F, so that G is also a classical analytic symbol of order 0. Then (7.13),
can also be written,

(7.15) Ak=6(,kh,h).

A normalized eigenfunction uy of Z*Z is obtained (microlocally) as a multiple of
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WUE, where uQ is the k-th normalized eigenfunction of the harmonic
oscillator, Pg:

(7.16) Z*Zuk=kkuk.

Then,

(7.17) 22%(2up) =N (Zuy),

and for k=1, we have [|Zuyll ?.(h/Const.)% » S0 we conclude that X{,X2,... are
also among the eigenvalues of ZZ*. Conversely, let ZZ*v, =l vy, microlocally,
near (0,0). Then (Z*2)Z*vy =4, Z*vy, and since 1Z*vll =(h/Const.)ZvIl, we
conclude that Jy is an eigenvalue of Z*Z. The conclusion of this discussion is

that the low eigenvalues of ZZ* (defined modulo ®(e~1/Ch) by reduction of zz*
to Pg) are the values Ay,X2,..,7k,.. , kh=1/Cqy. From here to (7.38), our

arguments are slightly heuristic. They could easily be made rigorous (to the
price of a few more pages ...), by introducing microlocal parametrix
operators, starting by introducing mu=(uluglug and E (self adjoint), such
that I=m +E(Z*Z-2). Let J(ZZ¥,%p), k=1, and J(Z*Z,%y), k=0, denote the
corresponding 1-dimensional eigenspaces. If vy denotes a normalized element
of J(ZZ*,X\), then,

(7.18) ZUp =V, Z*vk=,8kuk, e Br=Aks

for k=1. Since oty =(Zuy | vy)=(uy1Z*vy)= By, we may assume after changing
Vi, that,

(7.19) o =Br=A}2.

Suppose now that for some value of j, the kernel of the operator (7.8) is

microlocally nonempty. In other words, there exist a normalized vector t(f,‘.ll),
such that microlocally,

(7.20) Cif+29=0, Z*f+Cpg=0.

Here Cq and C, are scalars, so if we apply Z* to the first equation, and use the
second one, we get, Z*Zg=CCg, and similarly, ZZ*f=CyC>f. This gives the
necessary condition,

(7.21) CiCa=Xg

for some k=0, and when this condition is verified with k=1, we must have
f=XKVk» 9=YgUk for some Xy,yg€C. The problem (7.20) is then equivalent to
the system,

(7.22) CiXg+okyg=0, ByXk+CoUx=0,

which has a 1-dimensional space of solutions, since o 8 =CC2 in this case.
When k=0, we have C{C>=0, and we notice in this case that we must have
C2=0. In fact, otherwise C2 #0, C{=0, and (7.20) becomes,

(7.23) 29=0, Z*f+C5g=0.

Applying Z to the second equation and using the first, we get 2ZZ*f=0, and
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since ZZ* is bijective, we get f=0. Then since C2#0, we get g=0 from the
second part of (7.23).
On the other hand, if C,=0, (7.20) becomes

(7.24) Cyf+2g=0, 2*f=0,
and the one-dimensional solution space is generated by f=0, g=ug.

It follows from the earlier discussion, and in particular from (7.11), that
the function )L — CyC> has a strictly positive second derivative, and that the

minimum is <0. Using also the fact that ajgk:oo\k) uniformly for every
fixed j, we see that the values of ) such that CiCo=Xy for some k=1, or
C»=0, are isolated and the gap between two consecutive values is of an order

1
of magnitude varying between h and h2, with the exception of one gap
(neighboring the value where C5=0) whose order of magnitude is at least of

the order of h‘é‘. At these values the microlocal kernel of Hy is 1-dimensional.
From now on we shall work near one of these values, g, but our arguments
will be uniform, with respect to all such possible choices. For i close to j,
Hy has a simple isolated (microlocally defined) eigenvalue E=E(}L). We want to
study BHE(J.lo). The arguments in the section on reduction to normal forms of
systems still work, if we add one more parameter E€R, and give,

(7.25) U*(Hy-E)u= [Cﬂ],]+[C2]2,2+[Z]|,2+[Z*]2'],

where now Z,Cj are analytic symbols in x,£,,E and U depends analytically on

M,E in the same way as explained after (7.8). Differentiating (7.25) with
respect to E, and putting (x,£)=(0,0), we get,
(7.26)  9gCj<0,

and more precisely, that aECj are negative elliptic symbols of order O.
When k=0, E(J1)=Eq(i) is determined by Co()L,Eq(}L),h)=0, and in view
of (7.26) and the fact that 3,,C>>0, we see that,
(7.27) aMEo(A,h»O,
and more precisely, that Bqu is a positive elliptic analytic symbol of order O.
When k=1, E=Ey(jL,h) is determined by,
(7.28) Ci(J,E,h)C2(L,E,h) =X (J,E,h).
(Actually, there are two such solutions.) It is easy to see that
a}lxk,aEka(xk), and if we differentiate (7.28), we get,
C1a}lC2+Cza}lC]+(CIaECZ+CzaEC])a'uEk=®0\k).
Here Cy and C, have the same sign, and we may assume for instance that they
are both positive. Then €49, C+C29,,Cy and -(C|85C2+C1285C|) are both
positive and of the same order of magnitude as Cy+Cp2=X 2/Const. . It then

follows that,
(7.29) a}lEk= "(C|3}_LC2+C23}1C| +®()\k))/(C1aEC2+C23EC|)~I .
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In order to control also the domain of definition of Ey as a holomorphic function
of )., we add some arguments. Let f()1,E)=Cy(}L,E)Co(L,E)= X (,E), Which

is a bounded holomorphic function, defined in a 2—-disc of fixed radius centered
at (J,0), where Jlg=}o(0) is one of the two real solutions of

Cq(J,0)C2(H,0)-XK()=0. The computation above is then valid for J =10,
E=0, and shows that a=d‘eflagr(;10,0)l ~ I3Mr(}10,0)| is at least of the sar‘ne
order of magnitude as X 2. Moreover |f"'| <const. . Then for |-}l <8;hZ,
IE] s&zh%, where 8,/85, and & are sufficiently small, we have
19g1()L,E)=Of(hg,0) 1 <<a, 1(}1,0)] s(Const.)S@h% , and it follows that
there is a unique solution E=E () with |Eyl sSzh% of the equation f(j4,E)=0.
Thus in addition to (7.29) we know that Ey is a well defined holomorphic
function of L in I}l—}.lolsh’é‘/Const. such that [E| <(Const.)h3.

If we let Y be a normalized element (defined microlocally near (0,0))
of the kernel of Hy, then,
(7.30) aME(}lo)=(3“H](}lo)‘Pol\Po)-

Next, we recall some invariance properties. From (2.7),(2.9), we get,
(7.30HFT=FTHy, HyFT=FTH,.

Using (2.8),(2.10), we also get,

(7.32)  H{VTZ2=VT2ZH;, HpV=VH,.

If P§=FT"Pg, then,

(7.33) H¥ 5 =0, microlocally near (0,0),

and \93 is also normalized. Here, we recall that T'=T, when the + sign is
valid in the general identity \po=i(:}‘T)2\po, and that T'=iT in the - sign
case. Since PYy=0, P*PH=0, we have P*PyPo=P{PY(=0, so

(7.34)  PiYo=a¥},

for some non-vanishing a€C. Similarly,

(7.35) PE\P’6=,B\00,

for some non-vanishing 8 €C. Combining this with (7.30), we get for =9
(with d=3),): 3E= ((BPPPYo 1Y)+ (PT(RP)Yo 1Y) = 0+((3P)Po IP1Y() =
«((BP)PolYY). Then using also (7.29), we conclude that,

(7.36) 13, (PYo YR ~1, for =40.

We now have to pass from microlocal results near (0,0) to global
results. Still with li=4q, let us define UB’ BeC2 as the real component

close to 21 B of detH(x,£)=0. In order to define a suitable distance, let us

recall that the "leading parts’’ of P,Pjare Po(a,b;x,£), and Po,j=

Po(ia,ib;x,€) respectively, and that with ba=i«, «>0, we have,
detPg=2i(sin(2arg(b)) + ctcos€ + olcosx),



64 B. HELFFER, J. SJOSTRAND

detPgq 'j=2i(— sin(2arg(b)) + alcos€ + ®cosx).

Since we are far from the '‘branching case’ when sin(2arg(b))=0, we see that
det Pj#o, near the complex characteristics of P. As in section 3, we then

define D(x,y)=1®(x)-®(y)|, where &'(x)=0 on the projections of the potential
wells, and &'(x)=Im&(x), between these projections, where {(x) is the
complex root with positive imaginary part of the equation det(H{(x,8))=0,

depending continuously on x, and such that (x,{(x)) tends to a point in Uj,Ov
when x decreases towards the projection of Uj,o. Here Uj.o is the closest
projected well to the left of X. In this definition, we have privileged H over
H, but as in section 3, we use the fact that the roots of det(H|) are close to
those of det(Hy), and that Hy and Hy are intertwined by & T, so defining D from
Ho would give no essential difference. Notice that D(x,0) is an even function of
X, since the characteristics of Hy are invariant under reflection in (0,0).
Becausé of the presence of possible real characteristics of Hy far away
from those of P, we shall avoid the use of spectral projections of Hy. The
treatment will therefore be slightly different from that in section 3. Let Yy,
\p*(‘) denote realizations of Y, \p*{), obtained by superpositions of Gaussians.

(To be more precise, let S: L2(R) — H(C:e~2%0/hy pe a globally defined
unitary FBI-transform with a quadratic phase (see appendix a and [S1]). Then
SY¥q and S\pa‘ are well defined (modulo exponentially small contributions) as

elements of Hloc(e"z‘:’o/h) in a neighborhood of 1y °Xg(Ug o) , and
exponentially small outside that set. If X€C8°(C) has its support close to
Ty°Xgs(Up, o) and is equal to 1 near that set, then we can take as realizations,
S*(XSYo) and S*(XSY{).) Then we may arrange so that,

(7.37) 90,95, FPo,FPE=8e~1/h),

where f is a Lipschitz continuous non-negative function, vanishing precisely
on Wy(Ug, o), such that f(x)=vD(0,x)/D(0,21) and |'(x)| <13,D(x,0)]. (To

get this near 'rrx(uo,o) we repeat the arguments of the proof of Proposition
S.11n [HS1].) Here 0<v=D(0,21). Recall that in section 3 we had a similar
function f with the crucial property that f(x)=D(0,x), in a neighborhood of
[-m,m].

Since \po=i(3’T)2\po microlocally, we may also arrange that the
realization Y has the same property in the exact sense. This implies that
YE=H(FT)2P¥. We can also arrange so that VT2 o=, which implies that
VY5=Y0. PUt Yo =ToWo, Y =To¥hr Rpwa)=(ulPy), Rou™=S ugy.
Then as in section 3, we see that the corresponding operator ®:
L2x12 — L2x12 is bijective for IM-Hol=h/Cq, with an inverse e=0(h"".
Let as usual E_ , denote the lower diagonal element of the square matrix of &,
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and let E_ (o, B) denote the corresponding matrix. From reflection and
translation invariance, we then see that E_  («,)=2(J1) is independent of «,
and real valued when L is real. Using (7.36), we obtain as in section 3, that,
(7.38) Ia}lz(n)l-v\. for J)=)q,

and it also follows from the construction, that z(xg) is exponentially small.
After an exponentially small real correction of \lg, we may then assume that
Z(JL9)=0. Cauchy’s inequalities imply that z”(}J,)=®(h‘3), so for

1 -Hol<<h3, we have 19,,2(30) -3, 2} ) [ < <1, and it follows that jLq is the

only zero of z(jL) in this region, which is the only interesting one since it
follows from the results above that 0 may belong to the spectrum of Pg only if

M is exponentially close to (one of the values) s . Repeating the argument of

section 3, we see that 8=0(h~!) as an operator in
LZ(R;EZF(X)/h)X]Z(eZFi/h), where
(7.39) IR =(18'(x)-8) .,

(7.40) IF(X)-F(2mk) | =(1-8)f(x-21k), keZ,
where 8>0 may be chosen arbitrarily small, and where f was introduced in
(7.37). Moreover F*(a)=F(14(Uy)). Using the Grushin problem based on

Y0,¥ 0, We shall now improve the functions Yo, V5. Let sl=41p. As a new
function Yo, we take Yh=aE . (8¢), where a is a normalization constant,
exponentially close to 1. Then \po=\pb microlocally near Ug o, and using the
boundedness of & in weighted spaces plus the fact that,

(7.41)  PYh=-aTg4oE- 4 (8,00¥g,

we get:

(7.42)  Ph,59h=81/M,

where f! is even, and given by,

(7.43)  {1x)=min(D(0,x),vo+1(x),ming e 2\ (0} | kI Vo +F(x-217K)).
Here, we also use the fact that E_ , («(,8)=8(e~Vol%=Ble/h) which is

consequence of the boundedness in weighted spaces.
From v} we generate Wl W, *, as before, and we then consider the

new Grushin problem with R ,R_ defined, using these new functions. Let &,
E_ , correspond to this new problem. After an exponentially small correction
of }lg, it is then clear that &, E_ _ will have the same properties as before,

but with f replaced by ﬂ. Iterating this procedure, we obtain a sequence of
functions Wh, ¥%,.. , with,

(7.44) K, xpk= Se-T*/h),

where,

(7.45)  K+I(x)=min(D(0,x),vo+1K(x),mim e z\ (0) |11 Vo +TK(x-2TD).

Here f°=r=voD(0,x)/D(0,21'r), and if we put 1®(x)=minjc z(11lvg+D(211,x)),
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then it is easy to check that rosyksr“. We can rewrite (7.45) as

(7.46)  fK+1)=min(1®(x), A(K)),

where A(f)=min(vg+1(x),min; 2o 11lvg+f(x-211). Notice that,

Amin(et, 8))=min(A(«), A(8)). 1f g0=1, gk+1=A(gK), then it is easy to see
that, gk(x)=kvo+min”| <kf(x-211). Now we claim that,

(7.47)  K=min(f®,gk).

In fact, this is true for k=0, and if it is true for some k, then rk+’=
min(f%, A(min(f,gK))= min(f®, A(f®), A(gk)) = min(f®,gk+1), since
A(f®)=1%. From the behaviour of gk, we see that if 0<v{<vq, and k is
sufficiently large, then rkzmin](vllll +D(2m1,x%)). Then, after replacing vq, by
some smaller number, and Yq by \0'6, for some sufficienly large k, we may
assume that (7.37) holds with,

(7.48) f(x)=minjczI1lvo+D(211,%).

Putting fo,1=¥o, f0'2=\p*5, we are now completely at the same point as in

section 3 at (3.24), and we can now repeat the arguments of that section
without any essential changes until (3.37). 9, j have the same growth
estimates as before, an_d WKB-representations, va]id in the same intervals,
(7.49)  go,1=co(h)eP®)/ha(x,h), go 2 =cy(h)e!¥ () hp(x,h),

where detP(x,P'(x))=detP*(x,¥'(x))=0, cj,cj“=®(e5/h), for every §>0.
Notice that since on the symbol level, P*(x,£)=P(x, £)*, we have ¥'(x)=y'(x)
for real x, and hence we may assume that,

(7.50) Im(¥+vY)=59=D(0,21), ReY=Rey.

As in section 3, a and b are classical analytic symbols of order 0, but now
with values in C2. The leading parts agp, bg are non-vanishing, and satisfy,
(7.51) P(x,¥9'(x))(ag) =0, P*(x,¥'(x))(bg)=P(x,¥'(x))*(bg)=0.

We still have (3.39), where d is an analytic symbol of order 0. If do(x) is the
leading part, then do(ﬂ)=Q(Tr,\p'(ﬂ))ao('rr)=co(8€P(1'r.\p'('rr)))(ao(ﬂ)). where
Co is a non-vanishing constant. Instead of (3.41), we have,

(7.52)  (¥QrV¥9o,1190,2)=c3(Nk(h)e~So/h,

where k is an analytic symbol of order 0, with leading part,

(7.53) (@¢P(mr, P (mag(m) Ibo(m)g2.

Here bo(T)e(Im(P(1r,p'(m))))L. We claim that the expression (7.53) is non

vanishing. In order to prove this, we have to verify that
agP(ﬂ,w’(ﬁ))(ao(ﬁ))e’ Im(P(1r,Y'(1r))). Working at the point (1r,y/(1r)), we

start from C°PeP=det(P)I, which we differentiate, and get,
(°°8€P)'P+C°P°(3€P)=(8€det(P))I. Here we know that acdet(P)#o. Since

Pag=0, we get, S0P (3¢P)ag=(3¢det(P))ag. If (3¢P)(ap)eIm(P), there is a
vector cg, such that (3¢P)(ag)=P(cq). Then, COP<P(co)=(3¢det(P))ag, or
equivalently, det(P)co=(8€det(P))a0. Here the left hand side vanishes, since
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det(P)=0, while the right hand side does not, so we have a contradiction. This
proves that k is an elliptic symbol of order 0. Then we obtain (3.43),(3.44),
exactly as in section 3, and we can finish the discussion as in that section.

Summing up, we have,
Proposition 7.1. There exist €g,hg,M >0, such that if P is a strong type 2

operator with €(P)<¢gq, O<h=hg, Ilb(O)I—Z"é'lst:o, arg(b(0))=m/4+nm/2,
for some neZ, we have: J-Sp(P)N[-}o,MolCU_N_<j<N, Jj» Where Jjare
closed disjoint intervals of width e~1/Cih, where Cj~1, and the separation
between two consecutive intervals is at least~h/C for some fixed CZO. More
precisely, Jj is exponentially close to a point Jj, where the points Jj are given
by Cl(Jj)Cz(Jj)=G(~.'l.j. 1jlh,h) when j#0, and by C2(Jp)=0 when j=0. Here Cy,
C> are analytic functions defined in a fixed neighborhood of 0, (varying in a
bounded set of such functions,) satisfying C]’zConst.>0, and G(}L,\,h) is a
real valued analytic symbol of order 0, satisfying G(),0,h)=0, 34G>0. For
each j, there is an affine increasing map )cj:;i — ', such that
xj(}l-Sp(P)an)=;l'—Sp(Q), where Q=Q; is an h'-pseudodifferential operator

of strong type 1 with £(Q) — 0 as h— 0, uniformly with respect to the other
parameters.



8. Simply degenerate type 2 operators in the potential well case.
Let (P,Py,P2) be a strong type two operator with C(P)<Cq where Cy>0

is fixed. Let [ot, B]C[-3,3] be an interval such that,
(8.1) [IbGu) =272+ larg(b()) - (/4 +n1/2)| 21/Cy,

(8.2) larg(b(M))-n1/2|21/Cyp,
for every Jelo, Bl and everyneZ. Assuming E(P)s€q, 0<hshg, where
€020, hg>0, we shall then study -Sp(P)n[ot, Bl. The assumption (8.1)

implies that we are not in the totally degenerate case, studied in the
preceding section, and the assumption (8.2) implies that we are not in the
""branching case’’, that will be studied in the next section. In order to fix the
ideas, we may assume that sin(2arg(b(u1)))<0 on [«, B]. Again Py j=1,2 are

elliptic near the complex characteristics of P. Moreover, the selfadjoint
operator Hy has the property that if det(H(x,£))=0 for some real (x,£) close

to the characteristics of P, then Ker(H(x,£)) is one dimensional. The same
holds for Hp. The part of the real characteristic set of Hy (for J. real) which is

close to the characteristics of P, is then either empty, or of the form
Ugez2Uy, where Uy is either equal to 2o, or equal to a simple Jordan

curve around 2. We here assume that all points in [o(, B] are close to an
interval where det(Py(a,b;x,£) may vanish for some real (x,£). Indeed, if J is

far from such a value then P is elliptic and J is also far from JA-Sp(P). In the
case when det(H;) has no real zeros, we see that det(H{(0,0)) is small and we

define Uy to be {2mal).

Microlocally, near uo,o, we can apply the results on
block -decomposition of systems, developed in [HS2] and in section a of the
appendix, to see that there is unitary 2x2 system of classical analytic
pseudodifferential operators, U=U(),%,hD,h), such that,

(8.3) U*H]U'—' [Q]|'|+[h|]2,2’
where q, hy are scalar classical analytic selfadjoint pseudodifferential
operators of order 0. Moreover q is elliptic (near uo'o).

We now restrict jJ1 to a neighborhood of a real value Jl g, With the
property that Ug o # @. In the case when U0,0=(0,0) for =4 ¢, then for
that value of J, we have hy(0,0)=0(h), h{(0,0)=0(h), h{'(0,0)~ -1, and
8Mh1 #0. We may assume for simplicity that 8“h|>0. If uo,o is diffeomorphic
to a circle around (0,0) (for ;l=4l¢), then hy vanishes on a circle of distance
O(h) from UO,Ov that we shall from now on identify with UO,O' On this circle
dx,ehy #0, and hy is positive inside the circle. Moreover 9y.hy #0 on Ug ¢ and
in order to fix the ideas, we may assume that auhpo. (AN this follows from
the fact that hy is close to a non-vanishing factor times det(Pg).)
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Microlocally, near uo,o, the eigenfunctions of hy, associated to small
eigen—values can be obtained by WKB-constructions, and they are given by,
(8.4) F(J4,E,h)=kh, keN,
where F is an analytic symbol of order 0, with leading part f(j4,E), given by,
(8.5) f(,E)=Vol(((x,6);h =ED).

(A more complete statement would require the introduction of microlocal
spectral projections and partial parametrices, as we also mentioned in section
7 after (7.17).)

At this point, we recall, that if T(E)=T(E,d)>0 is the primitive period
of the Hhi-rlow in hy=E, then T is analytic in (E, ) and,

(8.6) dgVolthyzE)=-T(E).
Hence, in the case when Ug g is close to (0,0), we see how (8.4) follows
from the results in the end of Appendix b. In the case when UO,O is a circle,

the formula (8.4) was obtained in the analytic case in [HS1]. In the C*°
category, it was earlier proved by Helffer-Robert [HR1,2]. When
Up,0=Uo,0(Mp) is a circle it is clear that f(j,E) is analytic near (}1¢,0).

When Ug o(plo) is a point, we see that f(j,E) is analytic near ({q,Eq) when
-Egp is small and positive. Intégrating (8.6), and using the analyticity of
T(E,J), we conclude that f(),E) is analytic near (j1y,0) in this case too. In
both cases we have,

(8.7) 3,,1>0, Bgf<0, for u=4¢, E=0.

Let us now assume that jl is one of the interesting values, namely that,
(8.8) F(Jo,0,h)=kh, for some keN.

For |Jl-gl/h=1/C, with C>0 large enough, let E=E(}L,h) be the solution of,
(8.9) F(,E,h)=kh,

where k is the same number as in (8.8). In view of (8.7) this definition makes
sense, and E(),h)=0(h) is holomorphic for |-l <h/C. Moreover,

(8.10) aME>O.

Since U is unitary, we get the same (microlocal) eigenvalues for H;. Let ¥0,0
be a normalized function defined microlocally near Uy o, such that Hipg =0
for )i=}1o. We then have (7.30), and from this point on the discussion of
section 7 applies without any essential changes. We then obtain,

Proposition 8.1. Let C»>0. Then there exist €5>0, hp>0 such that if P is a
strong type 2 h-pseudodifferential operator with C(P)<Cq, £(P)<€g, 0<h=<hy

and (o, B1C[-3,3] is an interval on which (8.1),(8.2) hold, (with the same
constant, Cq,) then H=SpPInlet, BICU << Jj» where Jjare closed disjoint

intervals, labelled in increasing order. The separation between .Jj and Jj+l is
of the order of magnitude, h , and the width of Jj is e~ 1/Cih where Cj~1.
Moreover, for each j, there is an increasing affine map )<j: M —);1’, such that
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xj(u-Sp(P)an)=u'—Sp(Q), where Q is a strong type 1 h’~pseudodifferential

operator (depending on j), such that £(Q) — 0, when h— 0, uniformly with
respect to the other parameters.
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Let (P,Py,P2) be a strong type 2 operator such that,

(9.1 sin(2arg(b(0)))=0 ; arg(b(0))=n1r/2, ne2.

If C(P)=Cy, for some arbitrary but fixed constant Cy, then our study will be
uniformly valid for |\l =g, E(P)<€Eqg, 0<h=hg, where Jlo,Eq,hg are strictly
positive and depend on C;.

We start by some general remarks on the reduction of certain 2X2
systems to scalar ones. Let H=H(x,hD) be a selfadjoint 2X2 system of
analytic pseudodifferential operators defined near (xo,ﬁo)eT*R. We assume
that H(xp,€0) is of rank 1, and to start with, we shall work microlocally near
(xo,ﬁo). Let us repeat some arguments developed for the block decomposition
of systems of pseudodifferential operators. See [HS2]. Let ¥ be a small circle
around O with positive orientation and put,

(9.2) T=(2mi) ™! o (z-H)"Tdz.
Then TT is an analytic pseudodifferential operator whose Weyl symbol
satisfies,

(9.3) TT(XO,CO)+®(h2)= the orthogona!l projection onto the kernel of
H(x0,€0)-

Moreover,

(9.4) T*=T, M2=1, HW=TH.

Let R be a 2X1 system of pseudodifferential operators of order 0, such that
TIR is elliptic. Then R*TIR is a positive elliptic scalar pseudodifferential
operator of order 0, and we put,

(9.5) S=TIR(R*TIR) " Z.

Then,

(9.6) s*s=I, TS=sS.

Similarly, we can construct a 2x1 system, S’, such that
(9.7) s'*s'=1, (I-m)s'=s’.

Since $'¥S=0, S*S'=0, we see that the 2x2 system 4=(S S') is isometric,
and hence elliptic and unitary. Hence 4 8*=1,
(9.8) SS*+ s'g'*=1.
Applying T to this relation, we get, TSS*=TI. Since (I-T)SS*=0, we
conclude that,
(9.9) SS*=Tr.
Similarly,
(9.10) S/s'*=1-Tr.
Put H=S*HS. Then,
(9.11) SH=HS, HS*=S™H.
Here the two relations are equivalent and the first one follows from a straight
forward computation: SH=SS*HS=TTHS=HTIS=HS.
If u is a scalar function satisfying Hu=0 (near (xg,€q)), then with

v=Su, we get Hv=S Au=o0. Conversely, if v is a €2 valued function such that
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Hv=0, then TTv=v, SS*v=v, and u=S*v satisfies Hu=0. Hence the problems
Hv=0 and Hu=0 are equivalent (microlocally).
We now return to our type 2 operator P,Py,P5. We know that P is

elliptic outside a small neighborhood of Us(«,j), and after replacing Pj by
(ReO)P+(Im9)Pj for a suitable 6, we can assume that Pj are elliptic in that
region. Define Hy, Hy as usual. We shall make a reduction of Hj to scalar
operators in a neighborhood of Us(«,j). In this region Hy(x,£) is of rank 1
whenever det(H;(x,£)) vanishes. The invariance properties of P,Pj imply that,
(9.12) HiFT=FTHp, HpFT=FTH;,

(9.13)  HVT2=VT2H,, HpV=VHy,

(9.14) TyHj=H{Ty, j=1,2, ¥ez2.

Notice that (9.12) implies,

(9.15) [Hj,(FT)?]=0.

We now concentrate on Hy for a while. We shall construct Sy in a neighborhood
of Us(«,j) adapted to H; as above, such that,

(9.16)  (FT)25y=15,%2,

(9.17) VT25,=15,V,

(9.18) TxS1=51Tx, ¥ €22,

where 1==*1, will be determined below.

Suppose, that we have found a 2X1 system R of order O, such that TR
is elliptic near Us(a,j), where Ty is the projection associated to Hy as in
(9.2), and such that,

(9.19) (FT)2R=1RF 2,

(9.20)  VTZR=1RVY,

(9.21) TyR=RTy.

Taking the adjoints of these relations, and using the fact that (9.1‘3)-(9.15)
carry over to Ty, we see that R*TT4R and consequently (R¥T4R)~ 2 commute
with V, 52, T, and hence,

(9.22)  §;=THR(R*TR)"Z,

has all the desired properties.

The problem is then to construct R satisfying (9.19)-(9.21). Identifying
the Weyl symbol R(x,£) with R(x,é;)(l)eu:z, we see that the problem is to
construct an analytic vector R(x,&) such that T(x,£)(R(x,£)) #0, and such
that,

(9.23)  R=1TZRecy,

(9.24)  R=1T2r(R-8),

(9.25) ReTomy=R,

where co(x,8)=(-x,-£), 8(x,6)=(£,x), Tomy(x,6)=(x,£)-2my, and T’
denotes complex conjugation in C2. Recall that § describes the reflection in
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where co(x,8)=(-x,-€), 8(x,8)=(§,x), Toqy(x,6)=(x,6)-2my, and T
denotes complex conjugation in C2. Recall that § describes the reflection in
the line x=¢, and that §=8+cp=cq°8& is given by &(x,£)=(-¢£,-x) and
describes reflection in the line x=-€. (9.23),(9.24) imply,
(9.26) R=T'(R«§),
and more generally, any two of (9.23),(9.24),(9.26) imply the third.

The first problem will be to construct a continuous vector, R(x,£)
satisfying (9.23)-(9.26). Let A(x,£) be the small eigenvalue of Hy(x,£). The

ellipticity requirement will then be fullfilled if we can find R(x, )
non-vanishing in the kernel of H{(x,£)-X(x,£)1, satisfying (9.23)-(9.26).

On the level of Weyl symbols (9.13)-(9.15) give,
(9.27)  Hy=T2I(H=8)r'T2,
(9.28)  Hy=TZ(Hyeco)T2,
(9.29) HI°T:ZTT‘K=HI'
We conclude that I'TZ maps Ker(Hi-Xy)(x,€) onto Ker(H{-X)(8(x,€)), and that
T2 maps Ker(H;-\)(x,£) onto Ker(H{=\)(cq(x,£)). From (9.27),(9.28), we
also get, B ‘
(9.30)  Hy=T'(H;- &)r,
from which we conclude that I" maps Ker(Hy-X)(x,£) onto Ker(Hl—k)(g(x,Q)).
Let us shorten the notation by writing Ker(x,£) instead of Ker(Hy-X)(x,£). By
periadicity, Ker(0,mw)=Ker(0,-1), so T2 maps Ker(0, 1) onto itself. The
eigenvalues of T2 are 1 and -1, so the restriction of T2 to Ker(0, ) is *1 and

we define 1 to be that number. We can compute 1 by putting j1'=0 and
noticing that Ker(0, 1) is then close to Ker(Py(0,1)). Hence 1 is also given by
the restriction of T2 to this space. When =0, we have, b=|blin,
a=lalin¥!, An easy computation shows that Ker(Po(0, 1)) is_generated by L
-1) when n is even, and by t(l 1), when n is odd. Hence 1=1 when n is odd and

equal to -1, when n is even.
From the commutative diagram,

Ker(o, )

r \ rr2
Ker(-1r,0) Ker(1r,0)
rT2 r
Ker(0,-1r),

where all maps commute with Tz, we conclude that TZ2=1 also on the kernel
of Hy-"\ at the points (,0),(0,-m),(-,0).
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We next notice that 1I'TZ maps Ker(1r/2,1/2) onto itself. This map is
antilinear and conserves the €2 norm, so there is a non-vanishing element ug
of Ker(1/2,1/2) such that 1I'T2ug=uq. Put R(/2,1/2)=uq. We extend the

definition of R(x,£) by continuity to the closed segment s(0,1), in such way
that (9.24) holds. Then there is a unique way of extending the definition to
s(0,3) so that (9.23) holds, and it is also easy to check that (9.24) extends
to s(0,3). We then also have (9.26) on s(0,1)Us(0,3). Now let
vo€Ker(-1/2,1/2) be a non-vanishing element such that I'vg=vg. We put

R(-1/2,m/2)=v and extend the definition by continuity to s(0,2) in such a

way that (9.26) holds on s(0,2) and so that R(x,£) takes the already
prescribed values at the endpoints of this segment. After that we extend to
s(0,4) by using (9.23). Then (9.23) holds on Us(0,j), and we get (9.26) on
s(0,4) and hence on Us(0,j). We have then obtained (9.23),(9.24),(9.26) on
Us(0,j), and by construction, we have R(0,1)=R(0,-1), R(1,0)=R(-1,0).
We can then extend the definition of R to Us(c,j) in such a way that (9.25)
holds. If (x,£)=(y,M)+21mYy, (y,N)eUs(0,j), then co(x,E)=cnly,N) and

8(x,£)=8(y,M) modulo 2122, so we have (9.23)-(9.26) for the extension.
Let R be an analytic function defined in a neighborhood of Us(«,j) such

that R-R is small on Us(«,j) and such that (9.25) holds. Then R is close to

R=3(R+1T2(Recq)), which satisfies (9.23) and (9.25). If

R’=%(§+1T2I‘(§°8)), then (9.23),(9.25) remain valid, and we also obtain
(9.24). R' can be chosen arbitrily close to R (on Us(a,j)) so TyR' is elliptic

near Us(«,j). Writing R instead of R’ we have then the required properties,
and as we have seen, this gives an operator Sy satisfying (9.16)-(9.18) and

(9.31) 51S¥=T, S¥s;=I.

Put H;=SFH;S,, so that,

(9.32)  SyH;=H;Sy, H;SF=STH;.

Combining this with (9.16)-(9.18) and (9.13)-(9.15), we get,
(9.33)  [¥2,Hl=0,

(9.34)  [Vv,Hl=0,

(9.35) [Ty, Hl=0.

In view of (9.12), we next define the isometry S, by,

(9.36)  FTS|=5,5.

Then FTS,=(FT)25,F ~1=15,F:

(9.37)  FTS,=15F.

If 5 is the projection associated to Hy as in (9.2), we still have (9.12) after
replacing Hy,Hp by Ty, o, Then S,8%=(FTS;F~IN(FTS;F~NH*=
FTGHFIFSHFT) I=F TS sHFT)  I=FTI(FT) =T,
(9.38)  Sp5%=T,, $35,=1.
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Using (9.16)-(9.18), we get,
(9.39)  (FT)25,=15,52,
(9.40) VS,=S5V,
(9.4'}'1’7‘52:521’8.
Put Hp=S%H»S,, so that,
(9.42)  SpHy=H»Sp, S3H,= HpS%.
In conclusion, Hy, H> have the same invariance properties as the operators
Hy,Ho of section 4.
We next recall that,
(9.43) det(Pg)=2ilal Ibl((sin(2arg(b)))/(lal Ibl)*(cos(£)+cos(x))),
and that det(P)=det(Pg)+O(€). It is clear that ﬁj are modulo O(h) equal to

elliptic factors times det(P), so if we consider F(sin(2arg(b)))/(lalIbl) as the
new spectral parameter, M, then,

(9.44) ﬁj=aj(x,C)(cos(§)+cos(x)+®(£)+®(h)—}1),

where aj are elliptic and real valued of order 0. It is no restriction to assume
that aj>0. Repeating the argument of section 4, we see that the symbol Hy is
invariant under reflection in the point (0, 1), aﬂd that (0, ), (,0), (0,-1r),
(-1r,0) are non-degenerate saddle points for Hy with the same critical value
d(jJ1). We have,

(9.45) a}ld(}l)<0,

and d(j1) has a simple zero for some ) =0(€)+O(h). After another change of
the spectral parameter, we may assume that d(Jd)=-p. For J4=0, we also
know that the real characteristics of FI, close to the (complex)

characteristics of P, are contained in an arbitrarily small neighborhood of
Us(a,j), when € and h are sufficiently small.
Let Xo(,j be as in section 4, satisfying (4.26),(4.27),(4.34). Let up,

be WKB solution of Hju=0, defined microlocally near Int(s(0,1)), and extended
to neighborhoods of (0, 1) and (1r,0), as in section 4. The choice of extension
is obvious, if we rec~all that,
(9.46)  ug,1=Sy o,
where, o
(9.47) H|U0,1=0.
We shall assume that J'o'] is a normalized solution of (9.47). An easy
computation then shows that, B

_ (i[Hl'XO,l]uO,l |U0,|)=(i[ﬁ],STXo’lslll:lvo,] | u0'|)=1,
since Xo,1=571Xo,1S1 is equal to 1 near (0, 1) and equal to O near (1,0).
Hence ug { is a normalized solution of Hju=0. Notice that this notion has the
same invariance properties as in the scalar case.
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Imitating section 4, we define f Jjr Y, j by, fo,1=ilH1,Xo,1lu0,1»
(9.48)  fo,;=(F ) 1o 1, ug,j=(FT) " Jug 4,
(9.49) rd,]_Tdro,]' uo(,]"To(uO,]

Again, uy jis a microlocal solution of Hju=0 if j is odd and of Hpu=0, if
j is even. Repeating the arguments in section 4, (using the fact that we can
always reduce ourselves to the scalar case near the characteristics of P,) we
see that the corresponding Grushin problem for P is well posed. In order to be

completely in the general framework of section 2, we need (2.39) rather than
(4.32). We obtain this by using that X, 1°8=1-Xg,{ near s(0,1) as in section

4: Since VT2 commutes with Hy, we obtain:
VT2fg,1==1VT2[Hy, X0, 1lug,1=1lH;, X011V T2ug 1.

Here VTzuo'I is also a normalized microlocal solution of Hju=0. The space of

these solutions being one dimensional, we may assume after multiplying ug ,

by a complex scalar, that VT2u0,1=u0,l. Then VT2r0’|=r0'1 microlocally,

and as in section 4, we can turn this into an exact relation.

Introducing again the WKB problem, (4.36), we obtain Proposition 4.1,
as well as (4.43),(4.44). Here A has the same properties as in section 4, so
again the problem is to find A, AR satisfying (4.43). We recall here that
¥=a«, §=P. Again vq  is a normalized microlocal solution of P*v=0, and VoL, j
are generated from vq | the same way as uy j were generated from ug ;. Put
v0,1=52 Vo,1» Where v 1 is a normalized solution of Hpv=0. Then it is
easy to check that,

(9.50) U, 1=Stlg,1» Yo, 2= 152 U, 21 Uet, 35151 U, 35 Uot,4=52 Ut 4
(9.5 vg,1=52Y0,1» Vo, 2551V, 20 Vo, 35152V, 30 Yot,4= 151Vt 4
Substitutmg this into the problem (4.43), we get the equivalent problem,
(9.52) uo 1=A8 vo 2 near Int(s(0,2)),

Up,1=12a Vo, 1),4 hear Int(s((0,1),4),

U(O’l)'3—l)\0( V0,2 near Int(s(0,2)),

U(0,1),3=28 V(0,1),4 Near Int(s((0,1),4)).

It is then clear that the computation of A8, Aot in section 4 applies without
any change to A8, 1A, and we see that Proposition 4.2 remains valid, with
only one modification: We can no longer state that the + sign is valid in
(4.71). The study of the new selfadjoining operators goes through almost
without any change, we just have to replace V by VT2 at certain places, and
we see that Proposition 4.3 remains valid. So does the discussion after that
proposition, with the obvious changes in (4.95),(4.99) due to the fact that
now arg(b)-arg(a)=+1m/2.

Summing up, we have,
Proposition 9.1, There exist functions, Eo:[l.oo[—> 10,11, fl():[l,oo(—-’ 10,11,

F:10,11—[1,00[, hg:10,1]1x[1,00[ —10,1], &:]0,11X[1,00[x]0,11—10,1], with
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d(g,C,h)— 0, when h— 0 for every fixed (€,C), such that if 0<g =<1, C=1, and
P is a strong type 2 h-pseudodifferential operator with C(P)=<C, £(P)= €¢(C),
0<h= HO(C,C), arg(b(0))=nTr/2 for some ne2, then
}1—Sp(P)n[—;:l'o(c),flo(c)]cu_N_SjsN+ Jj » where Jj are closed disjoint

intervals, labelled in increasing order, such that for each j, there is an affine
increasing map X;: — 41"’ such that one of the following holds:

a) )Cj(Jjﬂ}l—SD(P))=}l"—SD(Q), where Q=0j is a strong type 1
h'-pseudodifferential operator with £(Q)<¢.
b) Xj(JjnUu=Sp(P)) ="' ~Sp(Q), where for every yig€ Xj(Jj), Q is of strong

type 2 with £(Q)=< o(€,C,h), C(Q)<F(e), as a function of j''=
H'-ugel-4,4[.

Combining this result with the propositions 7.1 and 8.1, we get the
following result, which is the analogue of Theorem 6.2 for type 2 operators,
Theorem 9.2. There exist functions, €q:[1,00[—]0,1], F:]0,1]— [1,00],
h:10,11x[1,00[ — 10,11, &:]0,1]x[1,00[x]0,1]— 10,11, with &(€,C,h)— 0,
when h— 0 for every fixed (€,C), such that if 0<€=<1, C=1, and P is a strong
type 2 h-pseudodifferential operator with C(P)=<C, £(P)= £4(C),
0<h= HO(C,C), then H'Sp(P)n[—3'3)CU—N_sjsN+ Jj , Where Jj are closed
disjoint intervals, labelled in increasing order, such that for each j, there is an
affine increasing map S — 1 such that one of the following holds:

a) Xj(Jjnu=Sp(P)) =" ~Sp(Q), where Q=Qj is a strong type I

h!-pseudodifferential operator with £(Q)=<E€.
b) Kj(Jjn}L—SD(P))=;L"-Sp(Q), where for every ;L(’)'e)cj(Jj). Q is of strong

type 2 with £(Q)= «(€,C,h), C(Q)<F(e), as a function of M=
H'-pmpel-4,4l.

The discussion in section 7-9 also gave information about the sizes of,
and separations between the intervals: Let P be as in the theorem with € and
C fixed. Then the intervals Jj may be subdivided into groups, UJjC Uly, where

Iy are closed disjoint intervals of width ~1 and at most 1 +O(e(P))+O(h). The

1
separation between two neighboring intervals is at least h2/(const.) and at
most 1/(1+const.), where ""const.’ indicate two strictly positive constants,
which only depend on C. In each Iy there is at most one Jj=Jj(k), such that b)

of the theorem applies, and Jj(k) is of width ~h and situated at a distance
O(e(P))+0O(h) from the middle point of Iy. This interval exists if the middle of
I is in [-3,3] and at a distance >>€(P)+h from +3. As for the other intervals
in Iy, their sizes and separations are as described after Theorem 6.2, with
only one modification: If Ik=[a’,al, and Ik+|=[b,b’] are two consecutive
intervals such that b-a is very smali (but larger than h%/const.), and a,b
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belong to some intervals Jjand Jj (,which we always can assume after
shrinking Iy and Iy, 1), then if J1>b is close to b and in the separation of two
consecutive J-intervals, the size of that separation is of the order of
magnitude, h/((b-a)+(JL-b)). The analogous statement holds for the
separation between two consecutive intervals slightly to the left of a; just
replace Jl—-b by a-u.

The theorems 6.2 and 9.2 may be combined into an infinite iteration
scheme. Without loss of generality, we may assume that the function F is the
same in both theorems. Let £¢>0 be as in Theorem 6.2 and let
0<hy=min(hg(€q), ho(Eg,F(EQ))) be sufficiently small, so that if 0<h=<hy, then
max(o((t:o,h),&(CO,F(CO),h))s EO(F(CO)). Then we obtain:

Theorem 9.3, Let 0<h=hy and define h’€]0,21] by 2w/h=h'/21 mod(2).

Then,

(A) Let P beastrong type 1 h—operator with €(P)<€q. Then after
restriction to suitable subintervals and after suitable affine maps,

the study of JL—Sp(P) can be reduced to the study of

M"-sp(@)Nn[-3,3], where Q is either a strong type 1 h’'-operator

with £(Q)=<€q, or a strong type 2 h'~operator with £(Q)= €¢(F(€g)),

C(Q)=F(eq).

(B) Let P be astrong type 2 h~operator with e(P)= EO(F(CO)),

C(P)<F(gg). Then for J-Sp(P)n[-3,3], we have the same conclusion

as in (A).

This theorem, together with the more precise quantitative information,
that we added after the theorems 6.2 and 9.2, give Theorem 0.1 in the
introduction, in the case when all the qj in (0.3) are positive. The following
discussion shows how to extend this result to the case wvhen aj have arbitrary
signs.

Let us first extend the definition of the auxiliary operators to the case
case when h<0. The definition of To(=To(,h is as before, and we check that,

(9.53) To,-h=Tx (), h

where we recall that ¥ (ot)=(aj, - ). The extention of Fp, to negative h is
given by: . )

(9.54)  Fhu@)=(2mIh)"2[ e ¥E/N u(x) dx.

Then,

(9.55)  F_p=pl,

so if we put R=h20)%+><2— Ihl, then also for negative h, we have,
(9.56)  Fp=e”IMR/Zh=y__ /) .

Here, we write Uy ,=eitR/h, As before, we put:

(9.57)  Vp=TFh=FFT=Uy/q,nlU-1/4,n >

and we notice that,
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(9.58) V_oh=VhFE=FEVp,
where Z}'ﬁ is independent of h. If P(x,£) is a symbol, we still define the
h-Weyl quantization of P as the standard Weyl quantization of P(x,h¢). By a
change of variables:
(9.59)  P(x,hD)u(x)=(2m Ih|) 71 [[ei(x~YI8/hp(L(x+y),0)uly)dyde.
The commutation relations of section 1 then extend to the case, h<0. An
h-pseudodifferential operator can also be viewed as an
(-h)-pseudodifferential operator, and the relation between the corresponding
symbols is simply: §=Pox. The rules for computing the symbols of of I'PT,
VPV, ¥ TIPS are the same for negative h (provided that the conjugating
operators are quantized with the same h).

The definition of (strong) type 1 and 2 operators now extends naturally
to the case when h<0, and for type 1 operators, we have:
Proposition 9.4. If (P,P,P5) is of (strong) type ! in the sense of
h-pseudodifferential opertators, then the same is true in the sense of
(-h)-pseudodifferential opertators.
Proof. Let us first check that the invariance properties are satisfied also in
the (-h)-quantization: Using (9.53), it is obvious that P and Pj commute with

To(,—h- Let &, V denote the h—quantizations and ¥ -, V_ the

(-h)-quantizations. Then combining (2.2),(2.5) with (9.55), we see that
(2.2),(2.5) hold with & replaced by ¥ —. Since P,Pj commute with V (by

(2.3),(2.6)) and with F2, they also commute with V&Z=V_. Hence, if
(P,P‘,PZ) is of type 1 as h—-operators, the same is true in the sense of

(~h)-operators. Since cos(£)+cos(x) is even in €, it is also clear that the

notion of strong type 1 operators is independent of the sign of h. |
For type 2 operators, the situation is a little more complicated. Recall

the definition of the operator T in section 2, and let S dencte one of the two

operators S;: C‘z)dd—> Cgvenv Sp: Céven - C%ddv both given by the identity
matrix, for the natural bases. Then S is real and,

(9.60)  TST=S, s2=1, s*=s" =g,

Proposition 9.5. If (P,Py,P>) is a type 2 h-operator, then (P, Py, Pp)=
(SP*S,SP3S,SP{*S) is a type 2 (~h)-operator.

Proof. P P=SP,52P*S=5P,P*S=5SPPJS, which is self adjoint. Similarly, we
see that 555 is self adjoint. It is obvious that 5, 51, 57_ commute with T.
Let's check the Fourier invariance: Py -T= SP3s¥~1T= P35 -1T Is=
SP3(FT)"!s= s(¥T)"'P;S= ¥ ~1TSP|S= F_TP3. The remaining two Fourier
invariance relations are proved the same way. The three reflection invariance
relations are also proved the same way, so we only treat one case: P,V_T2=

SP3SVF2T2= 32T2spSsv= F2T2vT2spP3s=V_F.
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Proposition 9,6, If (P,PI,PZ) is of strong type 2 with respect to y,h, then
(5,- 51,— 52) (defined in the preceding proposition) is of strong type 2 with
respect to -4, -h, and we have £(P)=¢&(P), C(P)=C(P).

Proof. If P(x,£) denotes the h-symbol of P, then the (-=h)-symbol of SP*S is
SP(x,—-£)*S. Here we recall that S is given by the identity matrix for the
standard bases, so from: P(x,£)=Pq(a,b;x,£)+0O(c), we get

SP(x,-£)*S=Pq(a,b;x,-€)*+0(e)=Pq(a,b;x,6)+O(E). The same
computations work for - Py, - P2, and the proposition follows. T

Propositions 9.4-9.6 permit to extend Theorems 6.2 and 9.2 to the
case when h and h' are in [-21,0l. (In the statements, we simply have to
replace all upper bounds on h by upper bounds on |h|.) Also, if we start with
h>0, and 21r/h=h'/27 mod(Z) with |h'| <1, h' #0, then the arguments of
sections 2-6 work without any changes, so Theorems 6.2 and 9.2 are valid
also if we suppress the assumption that h' should be positive. This also holds
for Theorem 9.3, and we then get Theorem O.1.



a.Mi ocal analysis
In this section, we treat various generalities that will be needed in the
main text. We shall first recall the general approach to (analytic) microlocal
analysis, based on FBI (or generalized Bargmann) transforms in [S1]. Then we
develop a simple functional calculus for analytic pseudodifferential operators,
and finally, we make some remarks on the Weyl quantization of symbols.

a.1. FBI transforms and microlocal analysis. We shall essentially recall some
of the theory of [S1], with some modifications, in order to treat global

questions. As a general rule, the large parameter \ in [S1] will here be equal
to 1/h, with 0<h=2r,

Let QCCN and let P be a continuous real valued function, defined on Q.
A function u(x,h) on 2x]0,21] (or possibly with 21 replaced by some smaller
constant, >0) belongs by definition to the space HY,IOC(Q), if,
(a.1.1) u is holomorphic in X for every h,
(a.1.2) For every compact KCQ and every £>0, there is a constant

C>0, such that lu(x,h)| <Ce(P(X)+€)/h on K x]0,27].

We also define H\O(Q) to be the space of functions u on 2X]0,21] satisfying
(a.1.1), such that u(.,h) belongs to LZ(Q,e'z‘P/hL(dx)) for every h. Here L(dx)
denotes the Lebesgue measure on 2. Notice that the properties of belonging to
H\PIOC is an asymptotic property, while the property of belonging to H\p(Q) is
of interest for every h, (and sometimes we shall use the property ueH\P(Q) for
individual h's or for a much smaller set of h’s (by abuse of terminology)). We
call a(x,h)=20°°ak(x)hk a (formal) classical analytic symbol (c.a.s.) of order
0, if the ay are holomorphic in the same open set, Q and if for every compact
Kcf, there is a constant C>0, such that lay(x)| =CK*+1kK for every xekK,

keN. (Sometimes we may also allow k to vary in the half integers.) A
classical analytic symbol of order meR is an expression of the form
h~Ma(x,h), where a is a c.a.s. of order 0. If a is a c.a.s. of order m, then for
every open QCC%Q, we can define a realization, aeH\p'OC(Q), well defined
modulo ®(e~1/Ch) for some C>0. (This is done by summing the first (const.)/h
terms in the formal sum giving a, and choosing the constant suitably. See [S1],
page 3, for more details.) In the main text we will also have lots of
parameters. A family of c.a.s. of order 0, ay(x,h), x€A on Q, is by definition
bounded if for every compact K in 2, we can choose a constant C as above,
which is independent of «. A c.a.s. a, of order O is elliptic, if the leading
term, ag in its formal series expansion is non-vanishing.

We next define local FBI transforms (as in [S1], chapter 7). Let Y(x,y)
be a holomorphic function, defined in a neighborhood of (xg,yg)€ CN"XRN, such
that,

(a.1.3) ‘Py'(XO,go)=-Tlo€]Rn,
(a.1.4)  Imp " (x0,Y0)>0, (in the sense of symmetric matrices),
(a.1.5) det(\px“g(xo.go)) #0.



82 B. HELFFER, J. SJOSTRAND

Let t(x,y,h) be a realization of an elliptic c.a.s. . Let YCRN, XCCN be small
neighborhoods of yg and xq respectively, and let X€C,%°(Y) be equalto1ina

neighborhood of yo. Assuming these quantities chosen suitably, we can then
define for ue H'(Y), xeX,

(a.1.6)  Tu(x,h)=[e™CGU/N t(x,y,h)X(yuly)dy,
and if u is independent of h, we get Tuqu,‘OC(X), where,

(a.1.7) ®(x)=supy e y(-Im(P(x,y)).

The same conclusion is valid, if u=up depends on h, but some Sobolev norm of
up is of at most temperate growth when h— 0 and bounded on every compact
h-interval.

Viewing T as Fourier integral operator, we can associate to it the
canonical transformation xT:(g,—\Og'(x,g))—v (x,¥,'(x,y)) from a complex
neighborhood of (yg,Mg) onto a complex neighborhood of (xg,§). Here
€o=-2i0®(x)/0x, and more generally, if we introduce
Ag={(x,-2i3®(x)/3x); xeX}, then (locally near (xg,£p),) Agp=XT(R2N).

Using FBI-transforms, we get a convenient setting for the microlocal
theory of Fourier integral operators. We restrict the discussion to germs, but
using classical theorems on the resolution of the d-operator, it is easy to
extend the discussion (by partitions of unity) to the case of pseudo-convex
domains equipped with plurisubharmonic weight functions.

Let Y(x,y,6) be a non-degenerate phase function defined near
(%0,Y0+00)€CNXCNXCN, in the sense that,

1° P is holomorphic,

2° dy’'e,,..,dYP’g, are independent on the set Cg defined by dgP=0.

We assume that (xo,go,eo)eC\P, and put ﬂ0=—\0g'(x0,go,60), €o=

¥, (X0,Y0,80). Then A\pz((x,\px’(x,g,e);g,—\pg'(x,g,e)); (x,y,0)eCyp)C
Cn(x,g)xcn(g,n) is a canonical relation, that is: a Lagrangian manifold for
S(x,€)~O(y,M)» Where o(x ¢)=Zd§jAdx;jand similarly for o(y 7). Let us
assume that AXO is the graph of a canonical transformation, and let ®(y) be a
plurisubharmonic CZ function defined near Yo satisfying, No=-2i0®(yg)/3y.
Then X(Ag) is of real dimension 2n, and if the projection of this manifold to
C,N is a local diffeomorphism, then it has the form Ay, for some c2 function
Y. If we assume that the hessian ¥'/(xq) is plurisubharmonic, then ¥ is

plurisubharmonic everywhere, and after changing ¥ by a constant, we have
‘i’(x)=v.c.(g’g)(-lm\P(x,g,GHtI»(g)), where v.c.(y,g).. means "critical value
with respect to the variables (y,®) of the function .."", and where it turns out
that the critical value is taken at a non-degenerate critical point of signature
0, that is at a saddle point. Conversely, if we know that

(y,6) = ~-Imy(xg,y,0)+®(y) has a saddle point at (yp,8¢), then the critical

value ¥, defined as above will be plurisubharmonic, and Ay =K(Ag).
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If a(x,y,6,h) is the realization of an c.a.s. in a neigborhood of
(xo,go,eo), then for suitable neighborhoods Y,X of Yo and xg respectively, we
can define the Fourier integral operator,

(a.1.8)  Au(x,h)=[[el¥P(X,4,8)/h 5(x,y,6,h)uly,h) dyde,

as an operator A:HQIOC(V)—-» H\PIOC(X), by choosing a suitable integration
contour, and introducing suitable cut-off functions. A different choise of
contour and cut-off will change Au only by a term which is exponentially small
in a neighborhood of Xg. There is a natural composition result for these

Fourier integral operators, and it is also possible to show that the class of
operators we get by varying a essentially only depends on X and on the
normalizing value Y(xg,Yg,0¢g). As a particular case, we get the classical
analytic pseudodifferential operators, when xg=yg, N=n and

Y(x,y,0)=(x-y)6 . The standard quantization of a symbol a is then,

(a.1.9)  Au(x,h)=(2mh)~N[[ei(X=Y8/h 5(x 6 h) u(y) dyde,

while the Weyl quantization of a symbol b is

(a.1.10)  Bu(x,h)=(2mh)~N[[ei(x=Y)8/h p(L(x+y),e,h) u(y) dyde.

The standard symbol, a and the Weyl symbol b are uniquely determined from
the operators A,B, and we get the same operator, A=B if and only if

(a.1.11)  b=e~1DxDe/25 3=¢ihDxDe/2p,

where we also know (by analytic stationary phase) that e¥1DxDe/h are order

preserving maps on the space of formal analytic symbols in an open set. We
say that the pseudodifferential operator A is of order m if the corresponding
symbol (either standard or Weyl) is of order m. In the natural composition
result for analytic ps.d.o. we then also know that the order of the
composition of two operators is equal to the sum of the orders of each factor.
The (standard or Weyl) symbol of the composition, C=A+B is also given by the
standard composition formulas,

(@.1.12) =2,k 1@ DYK(alx, E)b(Y, M) | (y, )= (x,€)s
(@.1.13)  c=2,%(k!)~!(Fio(Dy,De:Dy, DK (alx, E)b(Y, M) | (y, 1) = (x, )
for respectively the standard symbols and the Weyl symbols.

If A is a Fourier integral operator, with an elliptic symbol, associated
to the canonical transformation X, with X(yp,Mg)=(xg,£¢), then we can find
a Fourier integral operator B associated to X~ such that BeA=I, AeB=I, in
the sense that the pseudodifferential operators BeA and A-B , defined
respectively near (yg,Mg) and (xg,6q) have symbol 1. (This implies that the
corresponding realizations on suitable Hq,loc-spaces, are simply the identity

operator modulo exponentially small errors). Applying this to the
FBI-transform, T in (a.1.6), we can find an “inverse’ S=T~!, of the form,
(a.1.14)  sv(y,h)= e~ PXY/hs(x, y,h)v(x) dx,

and if we denote by m(t) and m(s) the orders of t and s respectively, then
m(t)+m(s)=n. If T is a second FBI transform with X §(yo,No)=(Xg, &o), and

if @ and & denote the weightfunctions associated to T and T respectively, by
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(a.1.7) and it's analogue for T, then if u=upeD'(Y) is a family of distributions
of temperate growth, as specir~ied after (a.1.7), ang if l{_denotes the Fourier
integral operator composition TeS, we have near Xg, Tup(x,h)=UTup(x,h)
modulo an exponentially small error in HQ‘OC. Naturally, since the behaviour of
Tup(x,h) near xg only tells us anything about the phase space behaviour of up
near (go,'ﬂo), there is no hope to be able to recover u, from only that
inrormation. Ihis information is however sufficient, to predict the behaviour
of Tup near Xg, and it justifies the terminology:‘/Let u=uy, be a distribution
defined microlocally near (yg,Mg)"’. BY this we mean simply, that each time

we choose an FBI transformation T as above, then up to an exponentially small
uncertainty, we have an element Tu of class H(,,‘fJc defined in a neighborhood of

Xq, the various elements being related by Tus(TeTI)(Tu).

If a(y,M,h) is a c.a.s. defined near (yg,MNp), then we can associate a
formal pseudodifferential operator A, using either the standard or the Weyl
quantization. By "Egorov’s theorem’’, which is valid in our setting, B=TAT !
is then again a pseudodifferential operator with a c.a.s. (either for the
standard or for the Weyl quantization) defined near (xg,£¢), so we can define
the action of B: Hgl0C(Q)) — H,g10C(Q5), where Qy, and Q2 are suitably chosen
neighborhoods of xg. In other words, we have then defined the action of A on
functions that are defined microlocally near (go,’ﬂo). Similarly, if X is a real
canonical transformation from a neighborhood of (go,'ﬂo) onto a neighborhood
of (29,%0), given by the non-degenerate phase function, ¥(z,y,6), defined
near (z¢,Y0,90), and if a is a c.a.s. defined near the same point, then we can
define the action of the corresponding Fourier integral operator A, mapping
functions that are defined microlocally near (go,'ﬂo) to functions defined near
(zo.go). Again, we have the natural composition results, including Egorov's
theorem.

Somewhere in the proofs of these results in [S1], it is made use of a
certain resolution of the identity, which permits to represent a distribution
locally and not only microlocally as a superposition of Gaussians. Instead it
would have been possible to use a global FBI-transform, (which is essentially
a Bargmann transform). Such a transform is given by,

(a.1.15)  Tulx,h)= e/ t(h) u(y)dy, xe€n, ueL2(RM,

where ¥ is a second order polynomial, satisfying (a.1.3)-(a.1.5) (which now
automatically become global conditions), and where t(h) is of the form ch—m,
C #0. The function &, defined as before, now becomes a strictly
plurisubharmonic second order polynomial on CN. Choosing m=-3n/4 and C
suitably, we can arrange so that T becomes isometric: LZ(RN) — Hg(CN) (by

verifying that T*T is the identity operator). Using also that the orthogonal
projection Tz LZ(CN;e~22/NL(dx)) — Hg(CN) has a simple explicit integral
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kernel, (that can be obtained by choosing a suitable contour when writing the
identity as a pseudodifferential operator, see [S1]), it is also easy to check

that TT*=T=10on Hg(CN), so T is unitary. We also notice both in the global
and in the local case, that if T is an FBI transform, then TX is also an FBI
transform. Here & denotes the unitary Fourier transform, defined in section 1.
In the global case, it is possible to choose Y in such a way that & becomes
rotation invariant, and T¥ =R T, where Rv(x)=v(ix).
a. unctional calculus for analytic pseudodifferential operators

Let P be an mgXmg matrix of formal analytic pseudodifferential

operators of order O, with a c.a.s. defined in a neighborhood of (xoﬁo)elRZ".
Let p=pg(x,£) be the principal symbol, that is the leading term in the
asymptotic expansion in powers of h, of the symbol of P. (Notice that p does
not depend on whether we take the standard or the Weyl quantization.) If
zeC\Sp(p(xg,€p)), then (z-P)~ 1 is a formal analytic pseudodifferential
operator of order 0 whose symbol is defined in a neighborhood of (xg,£¢). If
F(z,h) is a c.a.s. of order m, defined in a neighborhood of Sp(p(xq,€p)), then
we define F(P,h) as the formal analytic pseudodifferential operator of order m,
given by,
(@.2.1)  F(P,h=2m) " f3q F(z,h)(z-P) 1dz,
where 32 is the oriented C® boundary of a small neigborhood, €2, of
Sp(p(xg,€)). When F is a polynomial in z, it is easy to check that the
definition coincides with what one expects in that case. In the general case,
let f(z)h~M be the leading contribution to F (i.e; the principal symbol of F).
Then the principal symbol of F(P,h) is f(p(x,£))h~M, If G is a second symbol
with the same properties as F, we check, by choosing a smaller 2 in one of
the representations of F(P) or G(P), that,
(a.2.2) F(P,h)eG(P,h)=(FG)(P,h).
Finally, if F is of order O, and if G is a c.a.s. defined in a neighborhood of
Sp(f(p(xg,€0)), then we have,
(a.2.3) G(F(P,h))=(G+F)(P,h).
In fact, let «, B8 be contours around Sp(f(p(xg,§q))) and Sp(p(xg,€q))
respectively, such that if ze 8, then f(2) is in the interior of . Then,
G(F(P)=(211) ™! [ G(w)(w-F(P)) ™! dw=
(211) =2 [ [gG(w)w=F(2)~dw (2-P)~ldz=
(2mi)~! [g GeF(2)(2-P)~1dz= (G+F)(P).

We finally notice that if the various symbols depend on parameters, but vary in
bounded sets, then the same is true for the resuiting symbols.

The Weyl composition formula (a.1.13) implies that
c=ab+(h/i){a,b)+®(hZ), when a and b are of order 0. Using this, it is easy to
verify that the symbol of (z-=P)~!is (z-P(x,€)) "'+ ®(h2), in the case when P
is a scalar symbol, so if F is a symbol of order 0, then the Weyl symbol of
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F(P,h) is F(P(x,€),h)+O(h2).
ntizati jugati ier i loperat

The results of this subsection are valid either in the category of
ordinary classical C*® symbols on the real domain, when the corresponding
phase functions are real, or in the category of analytic symbols, either on the
real domain with real phase functions, or on the complex domain, with
complex phases. The assumptions in each case will be local and the obvious
ones. To fix the ideas we choose the real case (analytic or C*). To start
with, we examine the simple case of conjugation by an elliptic factor. Let
P(x,€) be defined near (xo,ﬁo)elkzn. (We could also let P be a classical
symbol of order 0). Let Y(x) be a real valued smooth function , defined near
Xp, such that Y/(xg)=q. Let P also denote the Weyl quantization of P. We are
then interested in the Weyl symbol of the pseudodifferential operator
Q=e'i‘P(X)/hoPoei‘P(X)/h, which is defined near (xg,£0-% o). We proceed

formally, by first writing the integral kernel of Q as,
@.3.1)  Kqx,y)=[ellx=9)e-0Px)=PWYN/h p((x+y)/2,6) db,

de=de/(2mh)".
Using the standard trick, we write,
\P(x)—\P(g)=(x—g)(\Px'((x+g)/2)+(9((x—g)2). After a change of variables, we
then get,
(2.3.2)  Kq(x,y)=[elX=W0/h p(L(x+y),p'(F(x+y))+0)+0((x-y)?) de.
Here the ®-term contributes to the Weyl symbol of Q by ®(h2) (i.e. by a
classical symbol of order -2), so if we denote by Q also the Weyl symbol, then
we get,
(3.3.3)  Q(x,6)=P(x,E+P'(x)+0O(h?).

If a=a(x,h)~ag(x)+a1(x)h+... is a classical symbol defined near xq,
then by formatl stationary phase,

(a.3.4) Q(a)~Q(x,o)a(x)+(h/i)(D‘g(x,O)a’(x)+%EQX"jgj(x,O)a(x)HO(hz).
Assume now that P is real valued, and that P(xq,£0)=0, P'e(xg,{0) #0. Let Y
be real valued and satisfy the eiconal equation,

(a.3.5)  P(x,¥'(x))=0.

We then want to construct a such that e~ "¥$/hp(ei¥P/ha)=0 (in the sense of
formal classical symbols). Then combining (a.3.3) and (a.3.4), we get the
leading transport equation,

(3.3.6)  qg(x,0)3y'(x)+32a," ;¢ (x,0)a0(x)=0,

where q(x,€)=P(x,¥'(x)+£) is real valued. It follows that ag has constant
argument along each bicharacteristic curve, associated to P,¥.

We now attack the more general question of conjugation with F.1.0.'s.
Recall that if A,B are classical pseudodifferential operators of order 0, defined
microlocally near (0,0), and if C=[A,B], then for the corresponding Weyl
symbols (denoted by the same letters), we have,

(a.3.7)  C=(h/i){A,B)+0O(h3).
We shall exploit this fact in order to give a refinement of Egorov's theorem.
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Let X be a canonical transformation from a neighborhood of (0,0)eR2N onto
another neighborhood of the same point, and assume in order to fix the ideas
that x(0,0)=(0,0). Then, we can find a smooth 1-parameter family of
canonical transformations, Xy, tel0,1], with the same properties, such that
Xop=1id and X{=X. We have,

(3.3.8)  3X(x,6)=Hq, (xt(x,£)),

where Qy is a smooth family of smooth real valued functions, defined in a
neighborhood of (0,0). (Here Hgq denotes the Hamilton field of Q.) Let Qy also
denote the corresponding Weyl quantization, so that Q*{=Q, where the formal

adjoint is taken with respect to the standard inner product on L2(RN). We can
then define a family of unitary Fourier integral operators, Uy associated to Xy,
defined microlocally near (0,0), and given by,

(3.3.9)  hDUy+Q{Uy=0, Up=1I, where Dy=i"'3/3t

Let P be a pseudodifferential operator of order 0, defined near (0,0), and
define Py by,

(a.3.10) PyUy=U¢P.

For the corresponding Weyl symbols, we claim that,

(3.3.11)  PyeXy=P+0(h2).

The interesting fact here (as well as in (a.3.3)) is that we have ©(h2) and not
just ©(h).

To prove (a.3.11), we start by differentiating (a.3.10) with respect to
t: (atPt)Ut+Pt(atUt)=(atUt)Pt. Then (a.3.9) gives, atPtz(i/h)[Pt,Qt]. and
using (a.3.7), we get for the corresponding symbols, atPt=(P(,Ot)+®(h2),
which we can also write as,

(a.3.12) atPt+HQtPt=®(h2).

Since 34 (P(X¢(x,E)=(@P)(X¢(x,£))+(Hq P)(X¢(x,£)), we conclude that,
(3.3.13) 3y (P(X(x,E))=0(h2),

and after integration of this estimate, we get (a.3.11).

We now consider the converse question of associating a suitable
canonical transformation to a given unitary Fourier integral operator. The
basic idea is that if
(a.3.14)  Uu(x,h)= [[eP(,4,0)/ha(y y,6,h)uly) dyde,
is such an operator, where a is a classical symbol of order m, then we can
always replace Y by Y+hy(x,y,6,h), where ¥ is a classical symbol of order
0, since the new amplitude, e~ 1Vais again a classical symbol of order 0. One
then gets an associated canonical transformation, X which depends on h and
satisfies X=Xq+O(h), where X is the standard one. In the main text, the

phase functions, will already depend on h in some complicated way (but
varying in a bounded set) so X will be as natural as Xg.

Let U be a unitary F.I.0. whose associated standard canonical
transformation, X maps (0,0) to (0,0). Taking an intermediate family of
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canonical transformations, Xy as above, we can then construct a smooth
family of unitary F.1.0.'s, Uy such that Ug=1I, U;=U. We then use (a.3.9) to
define the pseudodifferential operators Qi of order 0. Then Qy=(h/i)(3;Upu*¢,
s0 Q- Q * =(h/N(BUU> +U (B Uu*))=(h/1)3(UU *)=0, so Qy is self
adjoint. We can then define X by (a.3.8), with initial condition, Xg=id. Then
we still have (a.3.11), if Py is given by (a.3.10), and for t=1, this shows that
if we associate to U the canonical transformation, X=X, then if P and P are

two pseudodifferential operators of order O, related by,

(a.3.15)  Pu=up,

then, for the Weyl symbols,

(a.3.16)  PeX=P+0(h?).

By varying P, we see that X is uniquely determined modulo ®(h2). (This means
that in the correction of the phase Y in (a.3.14) it is enough to take ¥
independent of h.

It would be interesting to give a more explicit description of the relation
between a unitary F.1.0. and the corresponding canonical transformation, X
given (modulo ®(h2)) by the relations (a.3.15),(a.3.16). A reasonable guess
would be that if we write a given unitary FIO in such a way that the leading
amplitude has constant argument, (by adding a term hy/(x,6) to the phase,)
then the corresponding phase gives the more precise canonical
transformation. We have not checked this however.

Let us here only investigate to what extent U is uniquely determined by
X. In the following we shall say that X is associated to U, if (a.3.15),(a.3.16)
hold. Let us first notice that if )<j is associated to uj for j=1,2, then UyeU, is
associated to Xj°X,. Now let U and V be associated to the same canonical
transformation X. Then A=U.V~lisa unitary pseudodifferential operator,
which is associated to the identity:

(a.3.17)  [P,Al=0(h?),

for every pseudodifferential operator of order 0. This means on the symbol
level, that VA=0(h), so A=w+0(h), for some WweC of modulus 1. Hence two
unitary FIO are associated to the same canonical transformation (in the
precise sense) iff there is a number weC with |wW| =1, such that U=AV,
where A=w+0(h).



b, Normal forms for some scalar pseudodifferential operators,

In this section, we shall give normal forms for some scalar, classical
analytic pseudodifferential operators, valid near a critical point of the symbol.
Contrary to the usual case in the theory of local solvability and hypoellipticity
and so on, we do not (,at least not to start with,) admit muiltiplication by
elliptic factors, but only conjugation by Fourier integral operators and passage
to a function of the operator. Thus the general question here is: “Given a
certain selfadjoint operator P, find a real function f and a unitary operator U,
such that U*f(P)U takes a simple form.’’ There will be two cases (closely
parallel): the case when the symbol has a saddle point, and the case when the
symbol has a non-degenerate minimum. The second case has already been
treated in [HS2], but here we give a second approach especially adapted to the
analytic case.

We start with the saddle point (or "’branching’’) case, and we consider
first on the level of principal symbols, the model symbol p0=xC on C2. The

associated Hamilton field is Hp0=xa/ax-¢a/ac, and
exp(tho)(x,C)=(etx,e'té). teC.The flow is periodic with period To=21ri. If
po(x,£)=E# 0, then (x,C):exp(tho)(g,g), where gz=E and
t=log(x/y)+21ik, k€Z. The complex curve I'g: £=x has the property that
exp(%ToHpo)(r‘o)ﬂ‘o. and as we just saw, every point with po(x,€) #0, is of
the form exp(tho)(g.g) for suitable t and y. We also notice that I'g is the

complexification of its intersection with R2. Let now p(x,€) be a real-valued
analytic function defined in a neighborhood of (0,0)eR2 and having a saddle
point at (0,0), with p(0,0)=0. If we let ", and I"_ be the stable outgoing and
incoming manifolds for the Hp, flow (see [AM]), we know (see for instance
[S2]), that I' | and I'_ are analytic curves, intersecting transversally at
(0,0), and after composing p with a suitable real and analytic canonical
transformation, we may assume that I' | is the x—-axis and that I'_ is the

€ -axis. Then, it is easy to see that we have reduced the problem to the case
when

(b.1) p(x,€)=a(x,€E)xE,

where a>0 is a real-valued analytic function. Replacing p by f(p), where
f(t)=Ct, C>0, we may assume that a(0,0)=1. If we replace x by
(const.)a(x,€)x, we get an analytic diffeomorphism, that transforms p onto
(const.)pg. In particular, we know that the surfaces p=E; and po=E, have the
same topological structure when intersected with suitable neighborhoods of
(0,0), provided that Ej and E; are non-zero and small. In particular p=E is a

connected curve for E¥0, so if (xg,§¢) belongs to this curve and
expTHp(x0,€0)=(xo,C0) for some TeC, then expTHp(x,§)=(x.€) for all (x,€)
on this curve, and T=T(E) is a period for the Hp flow, restricted to the energy

curve p=E. To see that such non-trivial periods exist, let E=}12 be small but
non-vanishing and make the change of variables (x,£)=(y, M M). Put
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DM=}.1"2D(}19,}11]). Then (x,€) belongs to p~WE) iff (y,M) belongs to p““‘ .
Moreover, Hp is the direct image under the map (y, M) — (x,£) of Hp“, $0 an
equivalent problem is then to study periods of the Hamilton flow of Pl in the
surface of energy 1. Since p“=p0+®(}1) (uniformly in every fixed compact
set) we conclude that the Hp=flow in p~(E) has the period T(E)=T0+®(E‘/2),

for small non-vanishing values of E€C. Since T(E) is holomorphic in E outside
the origin, we have a removable singularity at E=0. Hence E is holomorphic in
a full complex neighborhood of 0, and

(b.2) T(E)=Tqo+O(E).

Since p is real-valued, it is easy to see that 1_'(E)=-T0+®(E) is a period when

E is real. On the other hand - T(E)= T(E)+O(E) is also a period, and since two
different periods cannot be too close to each other, they have to agree;
T(E)=-T(E), for E real, so T(E) is purely imaginary for real energies. By the
unique continuation property we get more generally,

(b.3) T(E)=-T(E),

when E is complex. We now look for a real canonical transformation, that
transforms p into pg. An obvious necessary condition is that T(E)=T, for all
E, and we can easily reduce ourselves to this situation, by replacing p by fep,
where f is the real-valued analytic function given by,

(b.4) df(E)/dE=T(E)/Tg, f(0)=0.
Hence, we shall assume from now on, that
(b.5) T(E)=To.

We next study the Hp trajectories for real times. For such a trajectory,
we have x'=(a(x,0)+0(£)x, €'=-(a(0,£)+0(x))€, and we first see that the
flow is expansive in X and contractive in £, in the sense that for t=s:
Ix()12e(t=8)/Cx(s)|, 16(t) <e~(t=S)/Ce(s)|. (Here, we restrict the
attention to a trajectory which stays in a region: x| <gqg, |€1=<€q, for some
sufficiently small £(.) Consider now such a trajectory (x(t),£(t)), 0<t<T,
with 1x(0)/€(0)1€l1/2,2]. Then | E(t) I =2Ix(t)], and we get,
x'=(1+0(x(1)))x(t). Using that [x(t)] seoe"(T"t)/C, we can integrate the
earlier relation, and obtain, R

x(V=exp(t+0(Deg [, e~ (T=5)/Cys) x(0),

and hence,
(b.6) x(t)=e(t+O(E0))x(0).
Since the flow is 2tri-periodic, this relation extends to the case when teC,
O=<Ret=<T. We also have an analogous estimate for £(t), when Ret=<0.

We next observe that, locally near (0,0),
(b.7) exp(3ToHp)(R2)=R2.
In fact, the set of conjugate points of the left hand side is equal to
exp(-3ToHp)(RZ)= exp(3ToHp)(R2), since T is a period. Hence the left hand
side of (b.7) is invariant under complex conjugation. Since it is a
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twodimensional surface, close to R2 in the C! topology, the only possibility is
that we have equality in (b.7).
Let [o={(x,6);x=¢€) and recall that exp(zToHp XTg)=Tg. Let f be 2

real valued analytic function vanishing on I'g, with df(0,0) #0, for instance
f=€-x. Then g=r°exp(%T0Hp) satisfies dg(0,0)=-df(0,0), and if we put
h=f-g, then dh(0,0)=2f(0,0)+#0, and hoexp('gToHD)=—h. Hence '=h~1(0) is
a complex curve, equal to the comlexification of a real analytic curve, tangent
to I'p at (0,0). We have,
(b.8) D|r=q2. Do|p0=(qO)2,
where q,qq are holomorphic on I" and I’ respectively, satisfying
dq(0,0)=dqy(0,0), qolx,x)=x.

Let Ug={(x,6)eC2; Ix|, 1€l =<€q) for some sufficiently small £o>0.
Then every (x,é)euo\po“‘(o) can be written (x,C)=exp(tho)(p),
pelgnUg.Here p is well-defined up to a choice of sign; we can replace p by
-p if we change t to t+1i. Once the choice of p is fixed, then t is well defined
up to a multiple of 21ri. We now define the map X: Ug\p,~!(0) — U\p~1(0),
where U is a suitable small neighborhood of (0,0), by:
19 If pelg, then X(p)eT is given by q(X(p))=qq(p).
20 If (x,€)=exp(th0)(p), as above, we put x(x,ﬁ):exp(th)(x(p)).
Since |Ret| may be very large here, we have to verify (A); that exp(tHp(p)) is
well-defined and belongs to a small neighborhood of (0,0), and (B); that the
definition of X(x,€) does not depend on the choice of p,t in the representation
of (x,€). Assuming (A), the verification of (B) is immediate, using that
exp(%ToHp)(I‘)=1", and that Tg is a period for the Hp flow. (A) follows from
(b.6) and its analogue for £(t), which imply that X(x,£) is well-defined, and
even that lx(x,g)lseG(Co)I(x,C)l (if we use 1 -norms). We have
constructed a single-valued bounded holomorphic map X:
Uo\po"‘(o)—> U\p"'(o), which then clearly has a holomorphic extension to:
Ugp — U. Moreover, by construction,
(b.9) peX=pg,
and X is symplectic, mapping the real domain into the real domain, and we
have dx(0,0)=id. .
Let now P(x,t‘;,h)~2j20 pth denote a formal classical analytic symbol,
defined in a neighborhood of (0,0), with leading part pg=p, and assume that
the corresponding formal pseudo-differential operator P(x,hD,h) is formally
self-adjoint.(We here take the classical quantization, but nothing changes in
the arguments, if instead we take the h—Weyl quantization.)

From what we have done so far, it follows that there is a formal unitary
Fourier integral operator, associated to the canonical transformation X, and a
real-valued analytic function f(t), with f(0)=0, 1(0)>0, such that u-tsPiu
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has the principal symbol x£. From now on, we assume that already p=pg=x¢.
Since the Hp—rlow is To-periodic, we find formally that,

(b.10) e~ 1ToP/h=p,

where R is a formal analytic elliptic pseudodifferential operator of order 0.
Since To=21ri is non-real, we have to be a little careful, in giving a sense to
(b.10). We do this in the following way. Let &g be a strictly subharmonic
quadratic form on C, close to 0, and define (as in [S1]);
Aq,o=((x,(2/i)8§>0/8x): x€C)}. Then for t imaginary, we can define Ai’t:
exp(tHp)(Ag,), and @y is again a strictly subharmonic quadratic form close to
0. Using the theory developped in the first sections in [S1], we can then define
unambiguously a classical Fourier integral operator ut=e‘"P/h, that can be
realized as an operator from Hy, ,10€(Qq), to Hg '°¢(Ry), where Q¢ and 24
are suitable complex neighborhoods of 0. As a matter of fact, this is just the
standard construction, except for the fact, that due to an embarrassing
imaginary part of the phase-function, there is no reasonable way to define
this operator acting microlocally in the usual L2 space. Nevertheless we have
@To=¢>o, and we see that R is a pseudodifferential operator. If
o(=(o(x,<x€)€1R2 belongs to a small neighborhood of the origin, we put

U (x,h)=el((x =)oty +i(x=at:)2/2)/h  Then for «, 8 sufficiently close to
(0,0), the scalar products (UtudIuB)Lz are well-defined up to exponentially
small terms, and up to such a term, we have (UtudluB)Lz = (UdlutUB)Lz , as

we can see, using the selfadjointness of P and the fact that we now restrict
the attention to imaginary values of t. Since the functions uy fillup a

microlocal neighborhood of (0,0) (,in a sense that can be made precise by
using an FBI-transform), it follows that R is formally self-adjoint, so the
principal symbol, r is either >0 or <0 on the real domain. As already
mentionned, Uy is formally obtained by the standard WKB-procedure, which in

this case gives us, .
(b.11) Ugu(x)=(2mh) =1 [ e 0P, X, M=y ha(t,x, M, hyu(y) dyd,

where \O(t,x,‘ﬂ)=e'txn, and where a is a classical analytic symbol of order
0, determined by the standard transport equations. Notice that
\p(To,x,Tl)=xT1 as we could expect. Analyzing the first transport equation (as

we shall do below), we see that the leading part, ap of a, satisfies,
a0(T(,0)<0. This supports the belief that r<0, but we have to be careful,
since the realization of the operators Uy involves the choice of certain
contours, and this may be responsible for an additional factor -1 . However,
we can deform P continuously into P0=%(th+th)=th+h/2i, and in the case
of Pq the corresponding group is given by Upu(x)=e~t/2u(e~tx), so we see in

that case that R=-id. Hence, in general,
(b.12) r<o.
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It is also easy to check that [P,R]=0. Microlocally, where P is of
principal type (and hence reducible to hD), it is easy to see that R=F(P,h),
where F is an analytic symbol of order O, elliptic and real valued on the real
domain. Since R and F(P,h) are both well defined analytic symbols on a
neighborhood of (0,0), which agree on some open set, they have to agree on a
full neighborhood of (0,0), and hence,

(b.13) R=F(P,h).

Since F is negative on the real domain, there is a real valued analytic symbol
G(t,h), of order 0, such that,

(b.14) elToG(L, M= _F(t,n),

and hence,
(b.15) e—iTo(P+hG(P,h))/h=_id_

Replacing P by P+hG(P,h), we have now reduced the problem of normal forms
to the case when,
(b.16) e~ 1ToP/h=_jiq,
Solving the first transport equation for ag (cf (b.11)),
(b.17) dtap+Xxdzag +ip_1(x,3,P)ag=0, ap(0)=1,
we obtain, since we now know that ag(Tg,x)=-1:
(b.18) exp(if T p_1(x(1),E()dt)= -1,
or equivalently,
(b.19) Jo T p_(x(1),E()dt=(2k+ 1)1, keZ.
In the case of Py, we have p_y=1/2i, and k=0 in (b.19). This is then also true
in the general case, since by self-adjointness the subprincipal symbol
p—1-(1/2i)32py/3xd€E = p_y-1/2i, is real, and T is imaginary. Hence in
general,
(0.20) [ Top_y(x(1),E(W)dt=mr,
and in particular p_(0,0)=1/2i.
We next look for an elliptic pseudodifferential operator Rg of order 0,

such that,
(b.21) PoRo=RoP modulo an operator of order -2.
For the principal symbol rg, we then obtain the condition,
(b.22) iy (re)=(p_y=1/2i)rg=0,
so we can take
(b.23) ro=e'q,
where q solves,
(b.24) Hpo(@=(p_y-1/21),
Here we make a general remark on the equation Hpo(a)=b. If b is given, we
put a= - To(1-1/T¢) beexptHy, dt, then

Hpo(@)= = [ TO(=1/Tg)(d/dt)(beexptHy )dt=b-To [ T0 beexptHy dt. We

have then a solution, if the last integral vanishes. The vanishing of this
integral is also obviously a necessary condition for solvability. In the case of
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(b.24) the condition is fulfilled, in view of (b.20), so a solution q exists.
Moreover, since p_,—l/Zi is real valued, we may choose g real. And this
means that we may choose Rg unitary in (b.21). We are now reduced to the
case when P-Pgis of order -2, and (b.16) holds. We then look for a
pseudodifferential operator R of order -1, such that,

(b.25) Po(I+R)=(I+R)P.

We rewrite this equation as

(b.26) LR=P-Py,

where TR=PyR-RP. By a formal WKB construction, we can define e”“‘n/h,

acting on formal analytic pseudodifferential operators, and since,
(b.27) e~ tB/h g = ¢=itPo/h g (itP/h

we see that e'its,hR is again a classical analytic pseudodifferential
operator, and that

(b.28) e~ iToZ/h=jq,

If B is an analytic pseudodifferential operator of order k, then,

(6.29)  A=(i/n) [ To (1-t/To) e~ 1tT/h B at

is an analytic pseudodirrerentiql operator of order k+1, and we have,
(b.30)  BA=B-(1/Tg)[e 1tB/h B dt.

As before, a necessary and sufficient condition, in order to solve LA=B, is

that the integral in (b.30) vanishes. Let us verify this condition in the case of
(b.26):

J’OTQ e—itl:/h(p_po)dt= J‘oTo e-itPo/h(p_po)eitP/h dt=

IOTO(d/dt)(e—itPo/h eitp/h) dt= 0,

where the last equality follows from (b.16), which is also verified by Pg.

Hence, it is clear that we can find R of order -1, solving (b.26). Changing

notations, we have now found an elliptic analytic pseudo-differential operator

R of order 0, such that,

(b.31) RP=PyR.

It remains to see that we can take R to be unitary. If we let R* denote the

complex adjoint of R, then, since P and P are formally selfadjoint, we get

from (b.31),

(b.32) PR*=R*Py,

and hence,

(b.33) (R*R)P=P(R*R).

The operators (R*R)i"/z, defined by the functional calculus of appendix a,
then commute with P, and we put U=R(R*R)~1/2, Then,

(b.34)  U*U=(R*R)"1/2R*R(R*R)~1/2= 1,

so U is unitary, and an easy computation gives,

(b.35)  PoU=UP.

Let us sum up what we have proved so far:
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Theorem b.1. Let P(x,hD,h) be a formal classical analytic pseudodifferential
operator, of order O, formally selfadjoint, with symbol defined in a
neighborhood of (0,0). Let p be the principal symbol, and assume that p has a
non-degenerate saddle point at (0,0) with critical value 0. Then there is a
real-valued analytic symbol; F(t,h)~20°°1j(t)hj. defined for t in a

neighborhood of 0, and a formal unitary analytic Fourier integral operator,
whose associated canonical transformation (in the classical sense) is defined
in a neighborhood of (0,0), and maps this point onto itself, such that

(b.36)  U*F(P,h)U=Pg=3(xhD+hDx).

To end this section, we study the case when P has additional
symmetries. We start with the most important case, when P commutes with
C0=8'2. which is a Fourier integral operator, whose associated canonical

transformation is given by cq(x,£)=(-x%,-£), and which satisfies CZp=1. We
notice that Py also commutes with Cq, and the natural problem is then to
choose U in (b.36) so that U commutes with Co-. Examining the proof of the

theorem, we first observe that it is possible to choose U, such that the
associated canonical transformation, X commutes with cg. We now fix such

a canonical transformation X and we let ‘IL(KO) be the set of unitary Fourier
integral operators satisfying (b.36) (with a fixed F) with X as their
associated canonical transformation. If U,VeW(Xq), then u-lvisa
pseudodifferential operator which commutes with Pg, so by an argument

already given above,

(b.37)  Vv=Uei6(Pg,h),

where G is a real valued analytic symbol of order 0. (Here we work with
associated canonical transformations in the classical sense. We could also
have chosen the more precise correspondence of appendix a. The we would
have G=const.+(operator of order <-1).) Conversely, if Ue W(Xgp), and V is

given by (b.37) with G as above, then VeW(Xq).

We now fix Ue W(X(). Then CoUCheWU(K(), and hence CoUCqH=
UeiG(PO'h),with G as above. Iterating this relation and using that C02=I, we
get U=C0ucoeiG(P0vh)=UeiZG(P0-h), and hence there are only two

possibilities, either G=0, or G=1 modulo a multiple of 21r. In the first case,
we get CoUCqp=U, or rather CoU=UCg, which is the desired commutation

relation. In the second case, we obtain CoU=-UCq. Let us apply this equation
to the function ug(x)=e~*>/2h noticing that Cou(x)=u(-x). We then have
CoUp=Ug, and Uug=a(x,h)eMPX)/h where a is an eliptic symbol of order 0,
and ¥ is analytic with Im(\)=0. We then get,

a(-x,h)e™P(=X)/h=_a(x,h)e™P(X)/h which for x=0 contradicts the ellipticity
of a. Hence only the first case can appear, and we have proved,
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Proposition b,2, In addition to the assumptions of the preceding theorem, we
also assume that P commutes with Co=%2. Then it is possible to find U as in

Theorem b.1, which commutes with Cg.

At least in the case of the first step in our general iteration procedure,
the operator P will satisfy more elaborate symmetry relations, that we also
want U to respect. We shall now assume in addition to the assumptions of
Theorem .1., that,

(b.38) FP=-P¥, and TP=-PI.
where I'=I"g denotes the operator of complex conjugation. This assumption

implies that the principal symbol p changes sign after composition by
X=X_q/2 or by reflection in one of the axes. It follows that p is invariant

under reflection in the line x=€, that is: pe&=p, where &(x,£)=(£,x). Using
that peX=-p, it is easy to see that the period T(E), introduced in the
beginning of this section, is even, and hence the function f, such that the
period of f(p) is constant, is odd. This implies that the symmetries for p
deduced from (b.38), are also valid for f(p).In the earlier construction of
X=X, we can then take the curve I" to be the curve I'g:x=£. It then becomes

clear that Xy commutes with reflection in x=€ and with c0=)<2. If we also
impose the condition that d)(u(0,0):id, then we see that X is the unique
canonical transformation determined by this property and r(p)°)<U=p0,
Kye&=8X. Now write: r(p)o)("o)(uo)c= =f(p)eXyeX= -pp°X=pg,

X~ lexoxe8= x7lexecge8ox= X lecge8oxyex= 8o~ loxy oKX, which
shows that x"oxuox has the same properties as X, and hence is equal to
Xy- In other words,

(b.39) KyeX=XeXy.

We next reexamine the construction of the real valued analytic symbol F(t,h)
with leading part f, such that exp(-iTgF(P,h)/h)=1. In fact, the requirement

that F be real-valued, implies that F is uniquely determined with this leading
part. If we supress the - sign in the last relation, and conjugate with &, we
get in view of (b.38): exp(-iTo(_—-F(~Po.h))/h)=I, and knowing that f is odd,

the earlier remark on the uniqueness of F, shows that F(-E,h)=~F(E,h). It
follows that F(P,h) satisfies (b.38). In the following, we may then assume
that F(E,h)=E, and work directly with P instead of F(P,h). We fix Xg=X; as

above, and define W(Xq) to be the set of unitary Fourier integral operators U
associated to Xy, and such that PeU=U<P. In view of the properties of X,
we see that if Ue W(Xg), then FUF ~TeW(Xg), so by an earlier argument,
(b.40)  FugF-l=uei6(Pg,h)

where G is real and of order 0. Testing this relation on the same function ug
as before, we see that the leading part Go(E) of G satisfies G(0)=0. Iterating
(b.40), and using that P satisfies (b.38), we get
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F2yus-2=5ei6(Pg,h) g -1=gyg -1ei6(-Pg,h) = 4ei(G(Pq,h) + G(-Pq,h))
Conjugating this with &2 and using that F4=1, we get
U=Ue2i(6(Po,M)+G(=Po,h)), Hence 6(Pg,h)+G(~Pg,h)=1rk, keZ. Since
Go(0)=0, we have necessarily that k=0, so

(b.41) G(-t,h)=-G(t,h).

we now look for V=UeM(Po:N ew(xq) which commutes with &. A

straightforward calculation shows that FyF-l=v if
G(t,h)=J(t,h)-J(-t,h)+ 21Tk for some keZ. In view of (b.41), we can take
J=3G and k=0. Thus, VY commutes with & and in order to save notations, we
shall assume that already U commutes with &. Let V=UeU(P0-h)€‘u(Ko) be a

second element which commutes with ¥. Then a simple computation gives the

sufficient condition on J: 0=J(t,h)-J(-t,h)+ 21k for some ke 2. Taking t=0,

we see that k must be 0, so the condition on J is simply that J be even. Now

look for V=Ue“(P0'h), with J even, such that

(b.42) rvr=v.

First, we notice that TUT e W(Xg), so PUr'=UelK(Po:h) with K real. Iterating

this and using that I'2=1, we get K(t,h)-K(-t,h)=21n. Again t=0 implies

that n=0, so K is even. A simple computation shows that (b.42) holds if

K(t,h)=J(t,h)+J(-t,h)+21n for some neZ. Since K is even, we can take
=1K. We have proved,

Proposition b.3. In addition to the assumptions of Theorem b.1, we assume

(b.38). Then in the theorem it is possible to take F to be odd, and U to

commute with ¥ and I'.

Remark b.4. If we assume that P=P}l depends on the real parameter

M eneighborhood of 0, in such a way that PH(X,g,h) is an analytic symbol in

M,%,€ . Then, possibly after shrinking the neighborhood in J1, we can
construct U, F, depending analytically on j in the sense that all
phase-functions and canonical transformations are analytic in j, and all
symbols remain analytic symbols after addition of J as an independent
variable. This is valid for all the results above. Moreover, if P depends on
additional parameters «, in such a way that P or P}l varies in a bounded set of
analytic symbols, then all symbols, phases, and transformations, will also
vary in bounded sets.

Remark b.S. Assume that P=P)_l depends analytically on . as in the preceding
remark, that P}L is selfadjoint for real yi, but that the assumptions of the
theorem are satisfied only for ) =0. Let Py denote the principal symbol of
P;l- Then PuL has a saddle point (x“.é}l) depending analytically on y, and
after conjugation by a unitary Fourier integral operator, we may assume that
(x}l,gu):(o,o). Then PM-DM(O,O) satisfies all the assumptions of the
theorem, so there is a real-valued analytic symbol F(j4,t,h) and unitary
operators UM depending analytically on L, such that

Uu_'F(H'P;L'pu(xuvﬁu)'h)up=Po- If u=U v is a microlocal solution of the
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equation P u=0, then P0v=F(A,—p}l(xH,CM),h)v, and conversely.

We shall now look at the second case when (0,0) is a non degenerate
minimum, so we keep all the assumptions of Theorem b.1, except that we
replace the assumption that (0,0) be a (non degenerate) saddle point by the
assumption that (0,0) is a non degenerate minimum for p, again with critical
value 0. Consider first the symbol po=3(62+x2), Hyo=€3y~xd¢. Then the
Hamilton flow is periodic with period Tog=21. If Fo={(x,x)}, then every real
point (x,£) can be written (x,é):exp(tho)(g,g), for some real (y,y) and some
teR. Here y is unique up to the sign and once y has been fixed, t is unique up
to a multiple of 21. If we take (x,£) complex, we have the analogous result,
provided that po(x,€) # 0. Also notice that exp(3ToHp)(I'g)=T.

Returning to the symbol p, we see as in the beginning of this section,
that there is a real and analytic function T(E), such that T(E) is a period for
the Hp flow restricted to the energy surface p~I(E), and we may assume that
T(E)=To+O(E). Replacing p by f(p), where f'(t)=T(t)/T, we may assume
that,

(b.43) T(E)=Tq.

As before, we construct an analytic curve I' tangent to I'g at (0,0), such that

exp(3ToHp)T) =T, and we write,

(b.44)  p|r=0a?, po|r,=0?0,

where q and qg are analytic on I" and ' respectively, and dq(0,0)=dq0(0,0).
1

qo(x,x)=2'ix. Using this, we can proceed as before, and construct a real

valued analytic canonical transformation X, such that,

(b.45) peX=pg, dx(0,0)=id.

(In the estimates of the flows, the roles of Re(t) and Im(t) are now permuted,

and the stable manifolds for the HDo flow are now given by £+ix=0.) This

means that we may assume that p=pg.

Consider now the full operators. As a model operator, we take
Po=3((hD)2+x2-h), and we notice that,

(b.46)  e~iToPo/h=p,
where we no more have to use the Hg spaces to justify our arguments. As

before, we can construct a real valued analytic symbol G(t,h) of order O, such
that,

(b.47) e-iTo(P+hG(P,h))/h=I.

Contrary to the earlier case, G is uniquely determined only up to an integer.
Replacing P by P+hG(P,h), we have then reduced the problem to the case
when,

(b.48)  e~iToP/h=]

Comparing the first transport equations, given by (b.46) and (b.47), we get,
(b.49) [ Top_y(x(1),€(0) dt- [ To-1/2 dt=21rk,

for some ke€Z. After modifying G by an integer, we can assume that,
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(b.50) k=0.
We can then repeat the earlier arguments with almost no changes, and obtain,

Theorem b.6. Let P(x,hD,h) be a formal classical analytic pseudodifferential
operator, of order O ,formally selfadjoint, with symbol defined in a
neighborhood of (0,0). Let p be the principal symbol, and assume that p has a
non-degenerate minimum at (0,0) with critical value 0. Then there is a
real-valued analytic symbol; F(t,h)~20°°rj(t)hj, defined for t in a
neighborhood of 0, and a formal analytic Fourier integral operator, which is
unitary, and whose associated canonical transformation is defined in a
neighborhood of (0,0), and maps this point onto itself, such that

(b.36)  U*F(P,h)U=Pg=3((hD)2+xZ-h).




¢. Normal forms for 2x2-systems.

For typographical reasons, we denote by [A]j,k' j,k=1,2, the
2x2-matrix (ag, gl <o, g<2» With ag, g=A if (, 8)=(},k), and a, g =0
otherwise. We shall first discuss reductions to normal forms on the level of
principal symbols, and we start with the case of an analytic hermitian
2x2-matrix p(x,£), defined for (x,€) in a neighborhood of (0,0) in RZ, which
satisfies,

(c.1) ~det(p(x,€)~x2+€2, p(0,0)=0.

Here ~ denotes ''of the same order of magnitude as'’. On the principal symbol
level, we allow transformations p— a*pa, where a is invertible and analytic,
as well as real, analytic canonical changes of variables which preserve the
origin. Applying the reductions of [HS2], we then have a first reduction to the

case when p=[§]|,2+[§]2,|+®((x,€)2), ¢=€+ix. After replacing ¢ by
L+0((x,6)2), we can then write,
(c.2) p(x,8)=[cy(x,6)]y 1+[ca(x,6)]p 2+ 2+[Cl7 1,
with cj=®((x,§)2). We then look for aj,a;=0((x,£)), such that,
(c.3) (I+[a]]|’2+[32]2’])D(I+[a|]],2+[32]2’])*=[§']|,2+[§']2’].
with '=2 +0((x,€)3). To obtain (c.3), it is enough to solve the system,
(c.4) c1+a;8+3a18+1ay12c,=0,

cp+azt+ayl+lasley=0,
and we will then have {'={ +a;cp+aja,8 +cja. The equations in (c.4) are
independent, so we may concentrate on the first one. We write,

(c.5) c1=102+182+29¢%, a;=hg+ke.
It is then enough to find analytic function h,k such that,
(c.6) f+k+cohk=0,

2g+h+h+cp(hh+kk)=0.
Here g and c, are real and since ¢ is very small, if we shrink the

neighborhood of (0,0) under consideration, the implicit function theorem gives
a unique analytic solution of (c.6), if we impose the additional assumption that
h should be real.

Thus, a symbol p satisfying (c.1) can be reduced to,
(c.7) Po(x,6)=18]y 2+[8]2 1, L=E+ix+O((x,6)?).
We now consider a new selfadjoint analytic symbol p=pg+0O(€), where O(¢)
refers to a perturbation whose L% norm over a fixed complex neighborhood of
(0,0) is ©(¢). Changing ¢ by ®(€), we can then write,

(c.8) D(X,€)=(C](X,€)]|’|+[C2(X,€)]2'2+[§]1,2+[§]2‘|, Cj=®(E),
and we look for aj=(9(e) such that,
(c.9) (I+[aghy, 2 +[azlz Pp(+lag)y 2+[aplp *=

[eyly, g +1e2 12,2418, 2+182 1,
with £-¢'=0(e?), cj—cj'=®(e), and ¢j' is constant. More explicitly, we have
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to find aj=®(£), such that,
(c.10) cy+a;&+38 + lay12cp=cy'=const.
cp+at+ayE+lazlley=cy'=const,

and again we may concentrate on one of the equations, for instance the first
one. Write {=x+iy, and notice that x,y can be used as local coordinates. If

we write a;=f(x,y)+ig(x,y), then a;+a;¢=2(fx+gy), and the first equation
in (c.10) takes the form,

(c.1) 1 (%, Y) +2(f(x, Yx+g(x,y)Y) + c2(f2 + g2)=d; = const.

Let us assume for simplicity, that cj are holomorphic and bounded in
D={(x,y)€CZ;IxI<1,1yl<1), and that licjll eo(py<€. If F is a bounded

holomorphic function on D, we obtain by successive divisions and the
maximum-principle that F(x,y)-F(0,0)=A(x,y)y+B(x,y)x, where
AN eo<2lIFll oo, IBI<2lFll 0. As a first approximate solution of (c.11),

we can take f{,gq holomorphic on D, with
201 0,209y = lley(x,y)-¢4(0,0) I =2¢€, such that,
(c.12) cq(x, )+ 2(f1(x,y)x + gy (x,y)y)=c(0,0).
Then,
(c.13) cy+2(fix+g1u)+co(f21+921)=¢y(0,0) + co(f21+g?1), with
e (F21+g2D <2e3. Assume by induction, that we have found fi» Gk With
(c.14) cp+2(fex+ g,y +c2(f, 2 +9,2)=dy +ry,
where dy is constant (and real), 2l fi ll, 2l gl =My, Irgll =my. Then we choose
fk+1+9k 41 real with,
(c.15) 2((fg 41~ TIx+(gg 4 1~ 9 IY) = = (r(x,Y) - (0,0)),
(c.16) 2N s1- Tl 20 g 1- gl =2lrg l <2my,
sO N fg 41l lag 4ol =Mg+mp=des Mg 4. Then,
(c.17) €1+ 2(fj 4 1%+ G4 19+ 2Py D2+ (G 1P =1+ T4y
where dy ;. 1=dy+1(0,0), r 4 1=c2((12 41 =Pk + 9%k 41~ %K) . Here,
I2k 1= PPk = D+ IR Dy = T = 2(My +mydmy, and similarly for
9%k +1-9% and hence, lIrg (Il <4e(M+mImg=ger My q. With the initial
choice fo=gp=0, we have My=0, my=2€, and we are led to study the
recurrence relations,
(c.18) Mic41=4E(M +miImy,

Mg+1=Mg+my .
Assume by induction that mjszl‘je, 0=j=<k, which is certainly true for k=0,
Then Mg=mg+..+my=<4e, and
my 4 1=4e6e2! “Ke=(48e2)2! ~(k+De <21 -(k+1)e  if a8e2x<1, so the
induction procedure goes through, if £>0 is small enough, and f,,gy converge
to f,g; analytic solutions of the problem (c.11) with f,g=0()(lcyll +lco ).
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This implies a solution of the problem (c.10). :
Now let P be a formally selfadjoint classical 2X2 pseudodifferential

operator of order 0. We assume that the principal symbol p satisfies

Ip-pgol=¢ in a fixed complex neighborhood of (0,0), where pg is hermitian,

and satisfies (c.1). If £€>0 is sufficiently small, the preceding discussion
implies that there is an elliptic scalar Fourier integral operator U of order O
and an elliptic 2X2-system of zero order pseudodifferential operators, A,
such that (AU)*P(AU) has the principal symbol
(c.19) [eyh 1+1ezlz, 2+18)y 2 +IE15 ¢, where cj=O(e) are constants, and
L=E+ix+0((x,6)2).
By further conjugations, we shall now see that we can arrange so that the full
symbol also has diagonal elements which are independent of (x,£). We may
assume that already P has the principal symbol (c.19). Then,
* : : .
(I+[A]y, 2+[A2)2 DPI+[A]) 2+[AZ]2 ) will have this property, if we can
find classical analytic pseudodifferential operators, Aj of order -1, such that
(c.20) Ci+A1Z*+ZA %+ A CoA" =Const. ,
Co+A2Z+Z*A*2+AC1A*2=const.
Here, we have written P=[C|]j',+[C2]2,2+[Zl|'2+[2*]2,, , o the principal
symbol cj of Cj is constant, and Z has the principal symbol . Again the two

equations can be treated separately, and it is quite easy to see that there are
classical pseudodifferential operators, Aj which satisfy these equations. The

difficulty, is to verify that Aj are analytic pseudodifferential operators, i.e.
we have to show the usual growth conditions on the asymptotic expansions of
Aj.
Let ¢, tg=t=<t be an increasing family of relatively compact open sets
in €2, such that dist(Qy,C\Q)zs-t, for s=t. If a(x,£,h)=E,®ay(x,£)hK is
an analytic symbol defined on Q,, we put A(x,€,Dy,h)=a(x,£+hDy,h)=
£,%°hKA,(x,€,Dy) (as in [S1]), so that A is a differential operator of order
<k. Let fi(A)20, be the smallest constant such that | Al =
f(AKK(s-1)K, to=<t<s=ty, where | Al ¢ denotes the operator norm of Ay:
Hol(R2¢)NL*(24) — Hol(2)NL*(24), and Hol(R) denotes the space of
holomorphic functions on Q2. If a is an analytic function defined in a
neighborhood of ﬁh' then for p>0 sufficiently small, llallp=der_21k(A)pk is
finite, and conversely, if the a are all holomorphic in ¢, and ||a||P<oo for
some p>0, then a is an analytic symbol in Qy,. We recall from [S1], that if a
and b are analytic symbols, then IIaobIIPs IIaIIPIIDIIP. Here a<b is the symbol

of the composition of the corresponding pseudodifferential operators.(In this

section we do not use the Weyl quantization, but rather the "classical’’ one.)
Before attacking (c.20), we analyze two simpler division problems. Let

Qy={x; [x1<t)x{€; €1 <t}. We start by looking at division to the left by x. If
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a(0,€,h)=0, we can write a(x,£,h)=xb(x,£,h), where for the corresponding
operators A, B, we have Agy=xBy. By the maximum principle, if

ueHo(Q{)NL®, and llully denotes the corresponding L% norm, then
lAgully=tlIBgully, which implies that lIBkIIt,s=t"‘IIAkIIt,Ss to~ Akl s

and hence,
(c.21) bl p=ty~Tlall 5, when a=xb.

Next we look at division to the right by hD. Assume that a(x,0,h)=0.
Then we can write; a(x,hD,h)=b(x,hD,h)hD, or simply, a(x,£,h)= b(x,£,h),
which gives, A= Be(£+hDy)= £,%hKB, (x,£,D)(€+hDy)=
Zowhk(CBk+Bk_1Dx), with the convention that B_y=0. In other words, A=
€By+Byg - Dy, or rather, By =A,-By _Dy, and as in the case of division by x,
we obtain, IBylly ¢=to~1(HAKN s+ IBg1Dyllt,s). Here, by Cauchy's
inequality, B 1Dyl ¢= rk_I(B)(k—-I)k"(r—t)'(k")(s-r)", for t<r<s.
Choosing r such that r-t=(k-1)(s-t)/k, we get IB_Dyll{ ¢=
fk=1(BYKK/(s=)K, s0 tofi(B)=fi(A)+f—1(B). Multiplying this by pK and
summing over p, we get tollbllps IIaIIP+pllb|IP, and hence,
(c.22) Ibllp=(to-p)~Mlall,, if p<to and a=be.
Lemma c.1. If a is an analytic symbol on Qt‘ of order 0, with IIaIIP<00, for
some sufficiently small p>0, then we have a decomposition,
(c.23) a=2a(0,0,h)+%xc+b¢,
where b and c are analytic symbols of order 0, with IIblIPsZ(to—p)" Fallp,
IIcIIPSZtO“IIaIlP. We also have 1a(0,0,h)ll 5<llall 5, and the choice of b, ¢
is unique if we impose the additional assumption, that c=c(x,h) is independent
of €.
E_rr_Qg_Q_I_._ The estimate on lIa(O,O,h)IIP follows easily from the definitions. We
also have IIa(x,O,h)lIPs IIaIIP. With the additional condition that c is
independent of £, it is clear that the unique choice of ¢, b is given by,
(c.24) xc(x,h)=a(x,0,h)-a(0,0,h), a(x,£,h)-a(x,0,h)=b(x,£,h)E.
Again, it follows from the definitions that IIcIIPSZ’tO" IIaIIP. (Notice that the
operator C associated to ¢ is simply multiplication by (a(x,0,h)-a(0,0,h))/h,
s0 Cy=ay(x,0)=A(1)(x,0). Hence ICy Il s=lay(x,0)ly=Nall=1A DI =
IAgl¢,s-) The estimate of IIbIIP follows from this and from (c.22). ]

As a preparation for the handling of complex adjoints, we also need to
study the behaviour of the ’p-norms’’, when we take commutators with x and
with hDy. Let us first estimate b=[x,al, where the composition is that of the
corresponding operators, and where a is an analytic symbol of order O with
Ilallp<oo for some p>0. Let A=2hkAk, B=2thk, be the corresponding
operators introduced before. Using the explicit form,
Ak=2j+d=k(d!)"aédaj(x,ﬁ) D%, and similarly for B, one finds that
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Bk=il3¢,Ax-11=1(@g oA _1-Ak-1°3¢). Using that 193¢y s=1/(s-1), we get
1By I =2u~ 1y 1 (AYK=1K=1y=(K=D "or all u,v>0 with u+v=s-t. choosing
u=(s-t)/k, v=(k-1)(s-t)/k, we obtain f (B)<2f, _1(A). (Notice that B4=0,
since b is of order -1.) This implies that,

(c.25) Ile.a]IIpsz,oIIallp.

The estimate of b=[hD,al, works the same way, since for the
corresponding operators A, B, we have, By=[Dy,A,_4l, and we obtain,
(c.26) II[hD,a]IIPSZpIIaIIP.

Now return to the decomposition (c.23). We write
a=2a(0,0,h)+xc+hDb-[hD,b], where [hD,b] is of order -1 and
IhD,bll o <2plibll 5 <4(p/(to=-pDllall 5. Taking p so small that
4p/(tg-p)=<1/2, we redecompose [hD,b] as in the lemma, et c. . Eventually
we then obtain the general decomposition,

(c.27) a=d(h)+xc'(x,h)+hDeb’(x,hD,h),

where d, c’, b’ are analytic symbols of order 0, such that,

(c.28) Ildllp.llc'llp.Ilb'IIPSCo“allp, when p<1/Cg.

Here Co>0 only depends on ty. Again, it is easy to see that d,c’,b’ are unique
(with the requirement that ¢’ should be independent of €).

We can now combine decompositions and adjoints. If a is an analytic
symbol, we let a* denote the symbol corresponding to the complex adjoint,
and we put, IIaIIP’= lallp+ IIa*IIP. Notice the general inequality:

IIaobIIP's IIaIIP'IIbIIP'. Taking the adjoints of the decomposition (c.23), we
get a*=2a(0,0,h)+xc*(x,h)+hDsb*(x,hD,h), which is of the form (c.28), and
hence we get for the decomposition (c.23):

{ ! ] ]
(c.29) IIa(O,O,h)IIP +lblp +lIcI|P s[:ollall)o .

We now return to the problem (c.20). There are analytic
pseudodifferential operators F,G of order 0 and F_,,G_ of order -1, such
that,

(c.30) hD=FZ+Z*F*+F_y, x=6Z+Z*G*+G6_,.

Moreover F_y and G are selfadjoint. Let a be an analytic symbol of order O,

and let b,c be as in the decomposition (c.23). Substituting (c.30) into (c.23),

we get,

(c.31)a-const.=(bF+Gc)Z+2*(bF +Gc)* +R(a),

where,

(c.32) R(2)=6[Z,cl+[b,2*IF*+bF _1+G_jc+2%[b,F*]+
Z*F*(b-b*)+2*[G*,cl+2*(c-c™)G™.

Now assume that a is selfadjoint. Then b-b* and c—-c* are of order -1, and

hence R(a) is of order -1 and we obtain,

Lemma c.2. Let a be an analytic symbol of order m=<0, defined in Qt, with

IIaIIP'<oo for p<pg, where pp>0. If a is selfadjoint, we can find analytic

symbols A of order <m and R(a) of-order =m~-1, such that
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(c.33) a=AZ+2*A*+R(a)+const.,

and IAll,"+ IR@)I 5=Collall 5, for p<min(pg,1/Co). Here Cq is independent

ofa, m, p.
If C, D are selfadjoint of order O, and D has a constant principal part,
we next want to find an analytic symbol A of order -1, such that
(c.34) AZ+7*A* +ACA*=D+const.,
which is nothing but the second equation of (c.20) (with A=A,, D=-C5,

C=Cy). Trying A=A_+A_2+.. with A_j of order —-j, we get by successive

use of Lemma c.2 the following recursive system:
A_{Z+Z"A*-1=D_y+R(D_q)+const., (where D=D_q+const.),
A_oZ+Z*A_p=-R(D_1)-A_|CA*_1-R(R(D)+A_ CA*_y)+const.,

A_NZ+Z*A*_N=D_pN+R(D_p)+const.,
where, .
D_N=-RO_N4&)-(A_CA*_N41+A_SCA*_Ny2+..+A_N1CAT ).
Put m(n,p)=ID_pll )'. Then for p=<1/Co: NA_pll )" <Cym(n,p),

(*)  m(N,p)s Com(N-1,p)+

CollCh,'(m@1, pIm(N-1,p)+m(2,p)M(N-2,p)+..+m(N-1,p)m(1,p)), and we
make the induction hypothesis,

(N-1)  m(k,p)<Ek~2FK, k=<N-1.

This hypothesis is fulfilled for N-1=1, if EF=[ID_ IIP' .

Substitution into (=) gives,
m(N,p)=CoUICl,  E2FN(E) < <y—1 kT 2N=K)"2)+E(N-1)72FN= )<
CoCrlICN'pEZFN/NZ 4 CoEFN=T(N-1)2,
where Cy is a universal constant. The hypothesis (N) will then be satisfied, if
COC,EIICIIP+4C0/F51. This can be achieved, if we first fix E sufficiently
small so that CoCyEICH 'ps%, and then choose F sufficiently large. (We then

also get the induction hypothesis (1).)

Hence there is a choice of E,F, such that m(k,p)sEk'ZFk forallk=1. It
follows that A=A_ +A_>+.. is a well defined analytic symbol satisfying
(c.34). We have thus solved the second equation of (c.20). The first equation
can be handled the same way, and this completes the proof of:

Proposition c.3. Let pg be hermitian and satisfy (c.1). Let P be a formally

selfadjoint 2X 2 system of classical analytic pseudodifferential operators,
whose complete symbol is defined in some fixed complex neighborhood of (0,0)
in R2. Assume further that the principal symbol p satisfies, Ip-poli=et, in
that neighborhood. Then if £>0 is sufficiently small, there exist an elliptic
2X2 system, A of classical analytic pseudodifferential operators of order O,
(with symbol defined in a fixed € -independent neighborhood of (0,0)), and an
elliptic scalar analytic Fourier integral operator of order 0, (whose associated
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canonical graph is closed in an € -independent neighborhood of ((0,0),(0,0)),)
such that,

(c.35) (AW*P(AW=ICq]y 1 +1Colp 2 +12] 2+12%17 4,
where Cy and C5 are analytic symbols of order 0, independent of (x,£), and Z is
of order O with principal symbol §=§+ix+®((x,€)2).



d, Parametrix for the Grushin problem of section 4.

We shall first develop a simple theory of WF and WF' in the microlocal
setting of section a.1. Most of this material is already in [S1] and in [GrS]. If
QCCN is open, and ®: 2 — R is continuous, we slightly modify our earlier
definition, by letting Hg4'0€(Q2) denote the space of functions, u(x,h) on

Qx]0,21], such that,
1° u is of class C*® with respect to x, and for every compact set, KCQ,
there exist £=€y>0, and C=Cy >0 such that | d ul<C e(@(X)-€)/h

on Kx]Jo,21].
2° For every compact set KC and all £>0, and o, B€ NN, there exists

aconstant C=Cy ¢ «, g8, Such that, 13%FBul <C e{@(X)+E)/h g

Kxlo,21].

We also say that two elements uj, up €Hgl0¢(Q) are equivalent, and
write uy=u,, if for every compact set KCQ, there exist C,£>0, such that,
(d.1) lup-uy | =C e{®(X)=€)/h on kx]0,21].

If @ is strictly plurisubharmonic, and if Q'CCQ is strictly pseudoconvex,
then for every ueH@|°C(Q), there exists u’€Hg10C(Q’), holomorphic in x, such
that u=u’ in Hgl0C(Q’). A family (uy) of elements in Hg'0C(Q) is said to be
bounded, if for u=u,, we can choose all constants in 1° and 2° independent of

o. Similarly, we define the notion of equivalent families.
If {uy) is such a bounded family, we define 2({uy}), to be the largest

open subset Q'CQ such that {uy}=0in HQIOC(Q'), and we put
WF({ug D=2\ 2{uy)). Restricting to a single element, we also get a definition
of WF(u), when ueH4'0¢(9).

We next extend these notions to the case of kernels, and for simplicity,
we only discuss the case of single elements, the extension to the case of
families being immediate. Let @jéC(Qj,R), j=1,2, where Qj is an open subset

of CNj. Let p denote the map y— y, and put (&1+®,°p)(x,y)=
21(x)+@2°p(Y). If K(x,y,h)eHg!0 ¢, & ,. 5 (21X p(Q3)), then we put
WF'(K)={(x,9); (x,y)eWF(K)}. WF'(K) is the smallest closed set in 2;xQ5,

such that e~ (21(x)+®2(y))/h K(x,y,h) is locally uniformly of exponential
decrease in it's complement. We can associate to A a formal integral
operator,

(d.2) Au(x,h)= [K(x,§,h)uly,h)e = 22204/ (dy),

We shall write K=K, and WF'(A)=WF'(K). If uen 2'°,¢(R7) and if the
projection WF/(A)N (X WF(u))>(x,y) — x€Ry is proper, then Au is well
defined up to equivalence in Hg'o ¢ (), and WF(AU)CWF'(A)(WF(u)), where

WF'(A) is interpreted as a relation. The equivalence class of Au only depends
on the equivalence classes of A and of u. Similarly, if B is given by a kernel
K=Kge Hg'° ¢, & ,. p (22Xp(R3)), and if the projection,
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(WF'(A)XWF'(B)) Ny X diag(Q2o X ) X3 — QX N3 is proper, then we can
define the composed kernel,

(d.3) Kaop(%, Z,h)= [Ka(x, 0,h)Kp(y, Z,h)e " 22204/ N (qy),

and we get WF'(A=B)CWF'(A)*WF'(B).

From now on, we assume that all domains are bounded, and that the
weight functions are analytic and strictly plurisubharmonic in a neighborhood
of the closure of the corresponding domains. For such a couple, (R2,®), it is
well known that there exists a unique holomorphic function ¥(x,y), defined in
a neighborhood of {(x,X); x€ 2}, such that W(x,x)=&(x) and that this function
has the property that,
(d.4) L@ (x)+D(y)-Rew(x, P~ Ix-yl2.
A classical analytic pseudodifferential operator A of order m with symbol
defined in a neighborhood of Aq,| Q » can be realized by a kernel of the form,
(d.5) KA(x,g_,h)za(x,g,h)ez‘y(xvg)/hx(x,g),
where a is a classical analytic symbol of order m-%n, defined in a
neighborhood of {(x,X); x€ ). Here X €C%(C2ZN) is equal to one near the set,
{(x,%); x€ ). This is obtained (see [S1]) by representing A as a formal Fourier
integral operator with a suitable phase function, and then choosing a suitable
integration contour. In particular, when A=I, (d.S) become an approximate
Bergmann kernel. Using such an approximate Bergmann kernel, we can extend
the result above to the case when A is a Fourier integral operator of the type
considered in section a.1, with an associated canonical transformation X
mapping Ag, to Ag, and such that &y(xg)=-ImP(xg,Y0,00)+P2(yo) i
X(yg,No)=(xg,€0), and if Y is the phase used in the description of A. If 2,
and 25 are suitable neighborhoods of xg and yg respectively, then we can
realize A by a kernel of the rorrr] (d.5), where now W and a are defined in a
neighborhood of T"y, which by definition is the (x,y)-projection of the graph of
the restriction of X to Aq,,, where X is equal to 1 near I' and where
LB () + Do (y))-Re W (x,y)~dist((x,y),T'y)2. In particular, we see that
FAR 2 X
WF(A)CTy.

Using this observation, and the fact that different representatives of a

microlocally defined function (as in section a.1) are related by elliptic Fourier
integral operators, we see that if u=up, is a function, which is defined

microlocally in an open set VCRZN, then we can define in a natural way, its
wavefront set WF(u) as a closed subset of V. In the case whenu is a
distribution independent of h, defined in some open set XCRN, and we take V
to be XXRN, then WF(u)=(Supp(u)x{0})UWF4(u), where WF5 is the classical
analytic wavefront set. (See [S1].) Similarly, let VjCIRZ"j be open and let T]-
be FBI-transforms, permitting to represent microlocally defined functions in
Qj as Tjuj in H@'O’c (Qj). If K(x,y,h) is a kernel as above, then we can think of
K as a kernel of an operator, A, which takes certain functions, with compact
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wavefront set in V; into functions, defined microlocally in Vy. and we get a
corresponding definition of WF'(A) in VyXV5. Using the natural change of K
under changes of FBI-transforms, we see that this notion is independent of
the choice of such transforms, and concerning the possibility of defining Au or

A+-B we have the obvious analogous results to the one stated above for Kernels
and in the frame work of the Hg10C spaces.

As an example, we shall compute WF'(E}ll), where E=E}L' is the
parametrix of Pg- ', given by (4.21). Put,
(d.6) Ug,rux)=e~t/2y(e~tx),
so that Ug ¢ is unitary, and Ut=em't/huo,t=def. Uy’ t- We choose the global
unitary FBI-transform,
(d.7) Tu(x,h)=Coh~3/4 [e=(x=y)2/2h y(y) gy,
where Co>0 is a suitable normalization constant, and where the associated
weight is,
(d.8) ®(x)=3(Imx)Z,
and the associated canonical transformation is,
(d.9) K1:(y,N)— (y=in, 1.
The adjoint of T is then, _
(d.10)  T*v(y,h)=Co h=3/4[e=(Z2-W2/2h y(z) e=220(2)/h | (g2),
so the kernel of TUg T™ is,
(d.1) Kt(x,z_,h)=lC0l2e"tlzfe‘F(XrZ—’U)/h dy,
where,
(d.12) F(x,2,9)=3((x-y)2+(z-e " ty)2).
The gaussian integral can be computed, and we get, _
(d.13) Kt(x,z_,h)=C,h"e't/2(1+e'21)'% e~G(t,x,2)/h
where,
(d.14)  6(t,x,2)=5(1+e~2H " I(Z-e )2,
We get,
(d.15) ®o(x)+Pp(2) +Re(G(L,x,2)=
30+e~2H 7 (e~ tRex-Rez)2 +(Imx-e ™~ timz2)2),
from which it follows that,
(d.16) WF’(TUo,tT*)C((x,z); Rex=elRez, Imx=e~timz).
Using (d.9), we conclude that,
(d.17) WF(Up, 1) C{(x,6;y, M eRZXRZ; x=ely, €= tN).
Combining (d.13),(d.15), we also get,
(d.18) WF'(‘K.“’)CClosure of {(x,2)eCZ: there exists t=0 with
Rex=elRez, Imx=e~timz),
where, % is defined to be the kernel of,
(d.19) (i/h) Jo® Tuyr ¢ T™ dt.
By contour deformation, we see that if
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(d.20) Rexg=eloRez, Imxg=e~toImzq, for some to>0,

and if at that point,

(d.21) 3 (it -6(t,x,2)) #0,

then (xq,20) € WF'(X)y /). In order to study this condition, we first notice that

the map t — Re(G(t,xq,2¢), has a critical point at tg, so it is enough to study

9¢Im(G) at (to,xo,z_o). Making use of the relations (d.20), we get,

(d.22) atIm(G(to,Xo,Z—o))':“(lm)(o)(ReXo).

so (Xg,20) € WF'(‘KM') if )’ # -(Imxg)(Rexg). Similarly, for )’ #0, we can

eliminate any point (xg,2zq) outside the diagonal with

(Imxg)(Rexg)=(Imzg)(Rezp) =0, by contour deformation near co. For j' #0

(d.18) improves to,

(d.23) WF‘(‘.K.M')Cdiag(CZ)U((x,z)e02; J'=-(Imx)(Rex), and there
exists t=0 with Rex=etRez, Imx=e~timz},

and for )I'=0, we get,

(d.24) WF'(%,) Cdiag(C2)u{(x,2) € €Z; (Imx)(Rex)=(Imz)(Re2)=0,
[Imx|=<|Imz|, [Rex|=IRezl, (Imx)(Imz)=0, (Rex)(Rez)=0}.

Since X1 maps yMN|Rr2 to -(Imx)(Rex), we finally get for JIRELOR

(d.25) WF/(E); ) Cdiag(RZXR2)U{(x, €5y, M); xE=yN=4" and there
exists t>0, such that (x,C)=exp(th0)(g,'ﬂ)).

Here po(x,6)=x€. For j)1'=0, we get,

(d.26) WF(Eg) Cdiag(RZXR2)U{(x,£:y,N);xE=yN=0, [€I=INI,

Ix1=1yl, xy=0, £€N=0).

Denote the right hand sides of (d.25),(d.26) for )’ #0 and J'=0 respectively
by I'(J"). If we use the notion of WF' for bounded families, we get,

(d.27) WF'(E Nt eDC U elT (Y,

for every compact interval IeR. These results can easily be transported by
Fourier integral operators, to give (unique) microlocal parametrices for P, *P
and PP,* in section 4, near the branching point (0, ) (as well as the other
branching points).

As a second preparation, we consider a formally self adjoint analytic
classical pseudodifferential operator, P of order O, defined microlocally in an
open set QC]RZ, and such that the real principal symbol, p has the property
that p~1(0)=%(la,bl), is a bicharacteristic strip. Microlocally in X, we can
then define the forward and the backward parametrices, by,

(d.28)  E=(i/n[" e‘oitF’/h dt,
(d.29)  Ep=-(i/m[__"e”itP/hge,

We also put, .
(d.30) G=EI'ED=(Vh)f-ww e—itP/h 4y .

Here e~ 1tP/h s 3 microlocally defined unitary Fourier integral operator,
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associated to the canonical transformation )<t=exp(tHD). Working on the

FBI-side, it is also easy to see (and well known) that G is a Fourier integral
operator, of the form,
(d.31) Gu(x,h)=[a(x,y,h)el(PI=PUN/h y(y)dy,
where the phase P satisfies p(x,P'(x))=0. The relations PG=0, GP=0 give
two transport equations for a, and we conclude that a(x,y,h)=b(x,h)c(y,h),
where b,c are classical analytic symbols of order %, satisfying P(aei‘P/h)=0,
tP(be'i‘P/h)=0. Undoing the FBI-transform, we see that G is a Fourier
integral operator associated to the canonical relation,
I‘=((exp(th)(p),p)eQ><s‘2; p(p)=0}, and,
(d.32) Gu=iC(uluglug, where
Up is a microlocal normalized solution to Pug=0, and C=C(h) is an elliptic
c.a.s. of order 0. It is easy to see that G*=-G, so it follows that C is real
valued.

Writing, I‘=I‘rUI‘D. where I"f corresponds to t=0 and I'y, corresponds to

t=<0, we also have,

(d.33) WF'(Ep)Cdiag(R2XR2)UT'y, WF'(Ep)Cdiag(RZXR2)UT,.
pro=exp(toHp)(;10), with p(}Lo)=0 and tp> 0, this implies that Er=G and
Ep=0 microlocally, near (pg, o). In order to determine C, we let X be a

pseudodifferential operator of order 0, such the symbol is equal to 1 in a
neighborhood of p and equal to 0 near fl . (We may work with a gaussian

quantization of this symbol, so that Xu is well defined microlocally, and
VlF(Xu)CWF(u) for every microlocally defined function, u.) Put,
E,r=(I—X)E]r+Er[P,X]Er. If WF(u)C CR, we know that Ey can be applied to u,
and WF(Equ) CWF(u)UT'((WF(u)). We also know that EqP and PE¢ reduce to the
identity on such functions. Hence, Efu=ErP Eru. Since
PEg=(1-X)~[P,XIEf+IP, XIEg=(1-%), we get, Eg=E;(1-X). Hence microlocally
near (pg,Hg), we have E)':Ef:G' On the other hand we see from the definition
of Eg, that Eg=G[P,X]G near the same point, so there we have G=G6[P,XIG.
This means that if WF(u) is close to J.q, then near py, we have,
iC(uluglug=(iC)2(ulug)(IP, Xluglugdug. This means that iC=iC2(ilP, Xlug lug),
and since ug is normalized, (ilP,Xluglug)=1. Hence C=CZ, and since C is

elliptic, we must have C=1. Hence,
(d.34) Gu=i(uluglug,

if ug is a normalized solution of Pug=0.

We shall now establish the wellposedness of the Grushin problem of
section 4, by using a priori estimates. The first step will be to establish
microlocal estimates near Int(s(0,1)), then near (0, 1), then near Int(s(0,2)).
Patching together these estimates, we get an estimate in a neighborhood of
the closed square with corners, (-m/2+m,w/2+1), and combining translates
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of this we finally get a global a priori estimate.

Let D(r)'=D((1T/2,11/2),r) be the open disc with center (/2,1/2) and
radius r</22, sufficiently large so that WF(roJ)CD(r). In D(r) we then know
that Hj, j=1,2, are of principal type and as above we can define the
corresponding forward and backward parametrices, Er(j), Eb(j), j=1,2. Also
put 6= E,(J')-Eb(j). Once and for all, we fix a global FBI-transform, say (d.7)
and let &g be the corresponding weight function. For simplicity, we write
H(Q) instead of Hq,o(Q) and the corresponding norm will be denoted simply by
I Iq. By means of wyeXy, (where my,:C2(x, ¢)— Cy is the natural
projection,) we shall identify sets in RZ with sets in C. For simplicity, we
shall identify operators, (A) with their conjugates under T, (TAT ™). In the
case of pseudodifferential operators, if ''c c’ are open with smooth
boundary, (and automatically pseudoconvex since we work in one complex

dimension,) and Q is a formal analytic pseudodifferential operator with Weyl
symbol defined in a neighborhood of Q' (i.e. near Ag,| ' after conjugation by

T), then we can find a natural realization, H(Q') — H(R"), (see [S1],[GrS],) and
two such realizations will differ by a term which is G(e"/Ch) in norm for
some constant C>0. Such a natural realization will always (tacitly) be chosen
and will be denoted by the same letter. At a later stage in our estimates, we
will have to specify the relation between the globally defined operator, P and
it's local realizations.

As a microlocal approximation near Int(s(0,1)) of the full Grushin
problem, we consider the problem,
(d.35) Pu=v, (ulfo P=v,,

where ueH(D(r)), veH(D(r')), ve'C and r'<r with r-r' small. Composing the
first equation by P,*, we get with a new slightly smaller r':
(d.36)  Hy(u-viug =P *v+0(lv, le~1/Chyin H(D(r),
(u—v+u0,,|ro.1)=o.
Now H]Xo,l(u—V+UO,])=X0']P|*V+[H|,X0'|](U‘V+UO'1)+®(|V+ Ie"/Ch),
(where we work with the Gaussian realization of X 1, Which has a natural
local realization,) and in in view of the properties of WF(Xg 1(u-v ug 1)), we
can apply EI=Er(I) to the last equation, and get,
(d.37) X0'1(u—v+uo,])=
ErXo, 1Py *v+EqlH), Xo,1)u=v 1ug, P+~ /CClullp(ry+ v, 1),
in H(D(r')), with a new slightly smaller r'. Here we notice that,
(d.38) Ef[H1,Xo,]](u-v+uo,|)EGf[H|,Xo']](u—v_,,uo,‘).

modulo the same error as in (d.37), in any subdomain of D(r') whose closure is
compact and disjoint from FI(IH]O'XO,I])' where the last set by definition is

the union of WF([Hy,X¢,1]) and the largest bicharacteristic segment of Hy with
both end points in WF([H1,XO’|]). Here the last set is defined by:



PARAMETRIX FOR SECTION 4 113

WF'(IHy, X, 1) ={(x,x): xeWF(IH{,Xq,1D}. Now modulo the same type of
errors, the right hand side of (d.38) is,
(ilHy, Xo,1l(u=vLug lug ug 1=(u-vug 11fo, 1)=0, so in any compact set
disjoint from T'y([Hy,Xo,1D), we get,
(d.39)  Xg,1(u-vug, P=ED¥g |P*v.
Similarly,
(d.39")  Xo,a(u-v4ug,P=EDXq 4P,*v,
in the same set. Since E,(‘),Eb(‘) (when suitably realized) have norms, O(1/h),
we get after combining (d.39),(d.39’) with simple elliptic estimates outside
the characteristics of Hy, that
(d.40) Tu=v ug 1Ipcrty\p(ritys(C/MUPullp )+e"/Chl|u||D( N
for all soluhons of (d.35), if r'"’<r''<r'<r and r'" is sufficiently large. Since
Tug,1 =0~ 2), we conclude that,
(d.41) ullpgrn oy =Ch ™ IPull ppy+h ™ 2l 1+~ 1/Chilulip ).
Controling u in the annulus, we can apply a cut off operator X with support in
D(r'"), equal to I near the closure of D(r''’):
(d.42)  IH,XlullprysChillullperrynoery+e " Chitullipeey,
and if we write,

HyXu=XHqu+[Hy, X]u,
we deduce after applying EI or Ep:

I Xullp¢rrry=<Ch~ 'llPu||D(,— y+h= 2l 1+e 1/Chulp ),
for all solutions of (d.35), when r' is large enough and o<ri'<r! <r<Tr/2'é‘,
D(r)=D{(Tr/2,1/2),r).

We next write down an easy estimate near the branching point, which
follows from the fact that Hy and hence P has a left parametrix of norm
©(h~3/2) whose WF' can be obtained from the WF' of the parametrix of Po-pM'
above, by applying the canonical transformation of U;. (Here the estimate on
the norm follows from (4.25).) We now let D(r)=D((0,1r),r), 0<r¢< 2%11. Ifr'is
slightly smaller than r, we let P denote a realization, H(D(r) — H(D(r")). Let W
be the intersection of D(r)\D(r') and a small neughborhood of
s(0,1)Us((0,1),3). Then if r''<r', we easily get,

(d.44)  lullp(rysCh™ 3/2||F>u||D(r y+h~ anunw+e-VCh||uuD( s
for all ue H(D(r)).

We next move to Int(s(0,2)), so we now put D(r)=D((-m/2,1/2),r),
with 0<r< /2, and r sufficiently large so that WF(fo,|) is contained in D(r). If
r' is slightly smaller than r, we consider the problem,

(d.45) Pu+u~fp p=vin D(r'), ueH(D(r)), u"ecC.

Let X be a cut off operator with support in D(r’’) and equal to I near D(r'"'),
where r'''<r''<r'<r and r'"! is only slightly smaller tnan r. From (d.45) we get,
(d.46) (PulXug,2)+u™(fg,21Xug,2)=(vIXug 2),
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where (fo, 21 Xuo, 2)=1+0(e~1/Ch) and
(PulXug,2)=(ullP*,Xlup, 2)+0(e” 17Ch) ullp(py. Hence,

[(PulXup, 2)|<C(ha||uI|D(rH)\D(,.lu)+e ‘/ChIIuIID( y).
Usmg also that, I(vl)(uo 2)I=Ch~ :I:IIVIID(,_I), we get from (d.46),
(d.47) lu™I=<C(h™ aIIleD(,- )+héIluIlD(,-")\D(rm)+e Chull y-
Using this estimate and the fact that lifg >l —(9(hr1:), we can return to
(d.45), truncate and apply E, P* or EyP*, which gives,
(d.48)  Nullpry+h~Zlu"Is

Ch™ M Ivipgry+ Bullpgrnynpery+e ™ /P Tullpgry).
for the solution (u,u™) of the problem (d.45).
Let Q be the open square with corners at (-mr/2t(mw+8),m/2+(w+8)),

where §>0 is so large that WF(fy )CR, when
(«,j)=(0,1),(0,3),((0,1),1),((0,1),3), but so small that WF(fy ;)N Q= &, for

all other values of (o,j) with j odd, and so that (0,1) and (-1,0) are the only
branching points in Q. Combining the three a priori estimates
(d.43),(d.44),(d.48) with simpler estimates in the elliptic region, we see
that if Q"'CCQ’'ccQ are slightly smaller squares, and if P is realized as an
operator H(Q2) — H(Q'), then if ueH(Q) and v*(0,1), v*(0,3), v*((0,1),1),
v+((0,1),3)e €, u=(0,2)eC, and

(d.49) Pu+u=(0,2)g,2=v in @', (ulfy =v*(a,j) for (e, )=

(0,1),(0,3),((0,1),1),((0,1),3),
then we have the a priori estimaie,

(d.50)  lullgr+h~Zlu=(0,2)I =

Ch=3/2 vl qr+h 1S lvF (o, D1+ 0™ /CN ull ).
If we now consider the full Grushin problem,
(d.S1)Pu+R_u~"=v, R u=v,,

and make an FBI-transform and restrict to Q’, we have to take into account
two facts:

1° The full Weyl quantization of P can be realized first by taking A<I>o as an

integration contour, then using the fact that the symbol of P is holomorphic in
a neighborhood of A':I’o , we see that if PQl,Q is the realization used in

(d.49), then we get,
(d.52)  IPgr qlujg)-PullgrsCe™"/Chilullg . gist(.,0)/c
where in general, lIuI!r(when f is a function) will denote the LZ-norm over c,

with respect to the measure e ~2//NL(dx). (It will be clear from the context
whether the subscript ... in l.II _ denotes a domain or a function.

2°  The terms U'(d.j)fo(,j with j even (o, j) #(0,2) will have some
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exponentially small influence in Q'.
We then get,

(d.S3) Po! u+u™(0,2)fg 2 =v+w in Q',
(uIfo(,j)=v+(o<,j)+w+(o(,j). (a,j)=(0,1),(0,3),((0,1),1),((0,1),3),

where,

Iwllgr=Ce™Ch(Null g 4 qist(.,@)/c+ 112, o] /C)s

Iw+IsCe"/ChIIullq>0+dist(”m/c.
Here we write, (lu™ll12 )2=2y je~2//N Ju~(«,j)|2. Applying (d.50) with
(v,v*) replaced by (v+w,v¥t +wt) gives,
(d.54) lullgr+h~2lu™(0,2)I=
C(h"%llvllgzwh"zIv+(o(.j)l+e"/Ch(||ullq>0+dist(_'ﬂ)+IIu'I|]2'|d|/c))
Now write, 2=2(0,2) and similarly for ', '. Let m(«,j) denote the middle
point of s(a,j). For j even we put, Q(o,j)= Q(0,2)+{m(«,j)-m(0,2)}, and
similarly for Q', Q''. The estimate (d.54) remains valid, if we replace Q, ',
Q' by 2(8,k), 2'(8,k), R"(B,k), and thake the norm, |l | lo-gl/scofu” to
the right. Squaring all these inequalities and summing with respect to (8,k),
we get, (since the Q''(8,k) will cover C,)
(d.55) ful2+h=Mu~112<

Ch=3Ivi2Z+h=2 v+ |24~ V/Ch(ul 24 u™ 112),

where the norms are now the standard L2 and 12-norms over R and 22

respectively. When h>0 is sufficiently small, we can absorb the last two
terms to the right, and get,

(d.56)  lul2+h~Hu~12=ch™3MvIZ+h=2v+]2).

This shows that ® is injective: L2x12 — L2x12 with closed range. Since all
our estimates work equally well for ®* which has the same structure, and
since Ker®*=(Im®)- ={0}, we conclude that ® is bijective with bounded

inverse,
& = <E Et >v
E- E_
satisfying,
(d.57) IENI=0(h=3/2), IE, I=0(h="), IE_I=0(h="), IE_, | =0(h~2).
Before Proposition 4.1, we constructed an approximate solution of

Pu+R_u~ =0, R+u=80'], satisfying these equations with exponentially small
errors. In view of (d.57), the approximate solution differs from the exact one
with exponentially small errors, in particular the computation of E_ ,(«,j;0,1)
for («,j)=(0,2),((0,1),4) is correct up to an exponentially small error.

It remains to establish the exponential decrease estimates for
E(ot,j; 8,k) in Proposition 4.1, when s(o,j)Nns(B,k)=2. Let (u,u”) be a
solution of,
(d.58) Pu+R_u™=0, R u=8g .
If Q(B,k) does not contain m(0,1), we get from (d.54):



116 B. HELFFER, J. SJOSTRAND

(d.59)  Nul2greg, ky+h~'u™(8,k)12=

Ce™ 1 /CN(IulZg 4 gist(., (g, k)/c+ U™ 1212 | - g1 /0)s
so after increasing C, we get,
(d.60)  lulliZgu(g, ky+h~Hu™(8,k)I2=

Ce=1/Chyy je~ 1B K= (U DI/Ch(ful2gu(y jy+ Tu™(et,12).
write, &=(at,)), B=(8,k), (D)= lull2gr(g)+lu~ ()12, g(a)=1(), if
(0,1)€Q(&) and =0 otherwise. Then (d.60) gives,
(d.61) 1(B)=g(B)+KH(B),
where ¥ is the positivity preserving linear operator,
(d.62)  Ku(B)=Ce~1/Chg e 18- l/Chy(q).
since 1% g(1y1y=<Cie~1/Ch, we get for h>0 sufficiently smali,

(d.63) f<g+Xg+%X2g+...,
and in particular,

(d.64) H(f-g)4 Ij1=Coe~/Chygll1. 1f ¥(J) is a function such that
[y()-y(B)I=<la-B1/2C, then we also get,
(d.65) 1(1-9)4 I,y <Cze~/Chiglyt g

Recalling that E_+(§;0,l)=u'(§), we get the required exponential decrease
estimates from (d.64),(d.65). This completes the proof of Proposition 4.1.



e. Application to the magnetic Schrddinger operator,

The main results of this article apply to h—Weyl quantizations of
symbols, P(x,€) which are 21 -periodic in x and in £, close to cos(£)+cos(x)
(in the sense of strong type 1 operators) and which satisfy the following
invariance properties,

(e.1) P is real valued (so that the corresponding operator, P is self
adjoint).

(e.2) P(x,£)=P(€,-x) (so that the operator P commutes with the
Fourier transform, ).

(e.3) P(x,-€)=P(x,£) (so that the operator P commutes with T,

where Tu(x)=u(x)).

In [HS1],89.4 we saw that the study of the spectrum of the Schrédinger
operator with periodic electric potential, V and periodic magnetic field, B
could be reduced to the study of an operator P satisfying (e.1) and (e.2) under
the following assumptions,

(e.4) (0) V(x+ajej)=V(x), B(x+ajej)=B(x), e1=(1,0), e2=(0,1), ajelR.
() axv=V,
(b) o B=B,
where a(x1,%2)=(x2,-x;) and oxu=usa~!. A more intrinsic formulation of
(e.4.b) is:
(e.4.b)’ AxOg=0Rg,
where og is the 2-form, B(x{,x2)dx|Adx2, and d,=(a*)~!, where * denotes
the standard pull-back operation. If f is a function such that o(,Wp-wWp =df,
where Wp=A(dx|+A>dxp, then we saw in [HS1], that the magnetic
Schrédinger operator PA(h)=Zj=|,z(thj—Aj)2+V(x) commutes with the
operetor,
(e.S) F=ell/hg,
We also saw that P, commutes with the two "'translation operators'’, Ty and
T2, given by,

(e.6) Tj=ei‘pj(")/h'cj*, i=1,2,

where,

(e.?7) 'tj*g(x)=g(x-ajej). Tj(x)=x+ajej
(e.8) dP;=(T)xWp-Wp,

and we also had,

(e.9) T To=ei®/hT, 7).

Here & is the magnetic flux through a base cell. After a modification of \,Dj and

f by adding suitable constants, we obtained the following properties,
(e.10) (@) [T},Ppl=0,

(b) []FpPA]=oy
(c) (Pp)*=Pp (expressing the self-adjointness of Pp),
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(@ TyTo=e'T,T,, h'=&/h mod(212),
(e) F4=1,
(1 T, 'F=FT,, TyF=FT>.
As in [HS1], we concentrate on a suitable interval containing an isolated piece
of the spectrum of Pp, and we let TT denote the corresponding spectral
projection. We then constructed an orthonormal basis in F=TT(L2) of the form
{TT(y )}, where ¥ is a suitable (approximate eigen-) function satisfying
(e.1) FYo=wvyy, with lwl=1,
and,
(e.12) Ya=T%Yo, where TX=T,T X2,
The matrix of Pp restricted to F is then of the form,
Mo, 8= PAY Bl V) =18, g+ W, g- The analysis for this has already been
treated in [HSI], and we shall here mainly discuss the additional symmetries
that will permit us to obtain (e.3). It follows from (e.10)~-(e.12), that My, 8
and WO‘:B satisfy,
(e.13)(@) my B‘mB « (by (e.10.c),
() wy, g=ell BB wy o g+ (¢f (4.26),(4.27) in [HS1)).
(@ wg,g= =eih’(ctjat2- BuBz)w,((d) x(g8)» Where x(o)= (a2, - y)
(consequence of (e.10,b,1)).
We conclude that, ,
=eih'B2(at1= B -
(e.14) Wo,p=e Balo1=Big(x- ),
with,
(e.15) (@) f(-j,-k)=1{(j,k)elikh’,
() floy=eh' oz gix(c)). »
Iterating (b) we get f(-a)=f(c) and consequently, f(c)=fla)ein €12, Finally,
we saw that the operator TIPAT is isospectral to P, the h'-Weyl quantization
of the symbol P(x,£) defined by,
(e.16) P(x,£)=E51(j,k)e ~1kh'/2g=i(kx+j€)
In addition to the 21 -periodicity of P(x,£), we get from (e.15), that P
satisfies (e.1),(e.2). The purpose of this appendix is to add a natural
symmetry assumption on B_and V_which will imply that P_satisfies (e.3). The
natural idea is to find a suitable antilinear quantization of the map,
(e.17) ¥: (X],Xz)—’(X],-Xz).
e=Id, o, ¥ generate a finite subgroup, G of O2(R) (the orthogonal
2x2-matrices) of 8 elements: «K¥!, 0<k<3, 0=<1<1. In addition to (e.4) we
shall now assume,
(e.18) () ¥xV=V, (b) ¥xB=B.
The intrinsic formulation of (b) is,
(e.18) (b") ¥ xOg=-0R-
The assumptions on o, ¥ in (e.4),(e.18) can be reformulated, by using the
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following two representations of G in 02(R),

(e.19) g— Mo(@)=g, g— M;(@=(-NK(DM(g),

where k(g) is defined modulo 22 by g=a'%wK(9), The reformulation is then
that,

(e.20) Mo(@)xV=V, Mi(g)xog=0p, for all geG.

The aim is then to find a representation, 1(g) of G on LZ(]RZ), which is
'"pseudo linear'’ in the sense that 1y(g) is linear when k(g) is even and
antilinear when k(g) is odd, and such that all the (g) commute with Pp and
satisfy suitable commutation relations with Ty and T,. After a gauge

transform we can assume from now on that:
(e.21) M@ xWpA=WA .

We put my(e)=F, m(¥)=T", where,

(e.22) Fu(xy,x2)=u(-x2,%{),

(e.23) Tu(xq,%2)=u(xy, =X2).

Also define Tj by (e.6),(e.7), where \pj is the unique solution of (e.8) with
(e.24)  yj0)=0.

This is a natural normalization in view of the fact that O is a fixed point for
11(G). Essentially as in [HS1],(9.4.24), we verify that,

(e.25) Y2=%xP1 V1=~ T1x%xP2y ExP 1=V P2=T2x¥ = VP2,

and this with (e.20) shows that we have (e.10) and,

(e.25) (@) [I',Ppl=0, (b)) ITy=TI', I'T,=T,7II", (¢) TF=F~IT.

We recall how ¥ was constructed in [HS1]. With a suitable function

Yo=Y (0,0) associated to a potential well, Uy we put ug=TP (and by the
choice of Y, that we do not recall here, we know that ug is very close to Yq
and of exponential decrease outside Ug). Putting ud=T°‘uo, where
TX=T,%1T,%2 we then obtained {¥ ) as the orthonormalization of the basis
{ugy) in the image of T. We then had ¥ o =T%y . Now we may assume that
FYo=wPg, Wyl =t, since P, commutes with I and since we may choose
the reference operator (in [HS1]) with only the well Uy, having the same
property. As in [HS1] we then have T'yo=w; V¥ and in view of the
antilinearity of I' we may assume that,

(e.26) F'Yo=vYo0,

without destroying the properties (e.11), (e.12). Using (e.25,b), we get,
(e.27) TY «=Y(x)-

Now observe that for u=Zz,Y¥ ,€Im(TT), we have,

PA_r'u= p mB,gfz_b'(d)‘y:B' TPAU= EMg oZg Yy (B)=
ZmX(B).K(d)ZX(d)‘yB' and from this and (e.25,a) we deduce,

(e.28) My (), ¥ (8)=Mex, B+
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Putting $=0 and combining with (e.14), we get,

(e.29) f=fo%,

This is exactly the condition that implies (e.3) in view of (e.16). We have then
proved,

Proposition e.1. Under the assumptions (e.4),(e.18), (as well as the other
technical assumptions of Theorem 9.4.1 in [HS1],) the study of the spectrum
of Pp in a suitable interval containing the ground level of the modified 1-well

operator can be reduced by an affine transformation to the study of the
spectrum of a strong type 1 self adjoint h'-pseudodifferential operator, P with
€(P)— 0, whenh—0.

This means that the results of the present paper are applicable, and if
h>0 is sufficiently small, then the spectrum of P, near the ground level is a
Cantor set of Lebesgue measure 0. For the sake of completeness, we
formulate this as a theorem,
Theorem e.2. Let V, Ay, A,€C®(RZ;R) satisfy:

(H.1) V(x+ae)=V(x), V(=x2,%1)=V(x1,%2), V(Xy, =x2)=V(x,X2)
where a>0 is fixed and ey, e, is the canonical basis in 1R2,

(H.2) The same relations for B=3y Ay -0y, Ay.

(H.3) V has only one minimum mod(aZ2), namely 0, and this minimum

is non—degenerate.
Without loss of generality, we may assume that V(0)=0.
(H.4) Let dy be the Agmon distance associated to Vdx2. Then the

points a in a22\ {0}, which are closest to 0 with respect to this
distance, are precisely the ones with |«|=loj |+ |z ] =1.

Moreover, between O and each such point, there is only one
minimal geodesic ¥ =% ,Which is non-degenerate, and near this

geodesic, V and B are analytic.
Let @ denote the flux of the 2-form o'g through the cell [O,a]z, and let

PtA(h)=(th‘-tA])2+(hDXz—tA2)2+V with the magnetic field tB. Let A{(h) be
the first eigenvalue of the harmonic oscillator (approximating Py at 0),
(hDy, =t <A'1(0),%>)2+(hDy, =t <A2(0),%>)2+ F<V"(0)x, x> .

If £0>0 is sufficiently small, and |tI=<€q,lhl<hg (with hg>0
sufficiently small), then the the spectrum of Pya(h) in the interval
(E; 1E-X(h)] =h3/2/¢4) can after an affine transformation be identified with

the spectrum of a strong type 1 self adjoint h'-pseudodifferential operator, P,
with h'=-t®/h mod(212). In particular, the results of this work apply, so if
h’/21 is irrational and has an expansion as in (0.3),(0.4), with C¢>0
sufficiently large, then the piece of the spectrum under consideration is a
Cantor set of Lebesgue measure O.

Remark e,3, The study of symmetries in a closely related setting appears in
the work of Wilkinson [W2-4].



N
1 h/21 Figure : Zoom of the spectrum in the middle

= ;:\._ 52 .\T/
v A S é} L \\’h‘i\
b, T A
/ R

Spectrum near h=0 . For each h with
h/2n e Q (h/2n=p/q ; q<90 , h/2n
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