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SET-THEORETIC GENERATION OF IDEALS

N. MOHAN KUMAR

(Dedicated to Professor P. Samuel)

SUMMARY

We study the problem of whether a given surface in affine space is a set-theoretic complete
intersection. We show, in particular, that surfaces which are birational to a product of curves are
set—theoretic complete intersections.

RESUME

On etudie Ie probleme de savoir si une surface donnee dans un espace affine est une
intersection complete ensembliste. On demontre en particulier qu'une surface birationellement
equivalente a un produit de courbes est une telle intersection.
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§0. Introduction.

In this paper, we study set—theoretic generators of ideals in affine algebras. We will be
working over an algebraically closed field k . We will prove a sufficient condition for a smooth
surface X to be a set—theoretic complete intersection in K n> 5). This condition is trivially
satisfied by a birationally ruled surface. We will show that this condition is satisfied by surfaces
birational to product of curves. Spencer Bloch has recently shown to me that this condition is
also satisfied by surfaces birational to abelian surfaces.

Another problem we attempt in this article is whether a codimension one subvariety of a
smooth affine variety X of dimension n is set—theoretically defined by n— 1 equations. The
main interest in this problem, at least for the author, is that if this were not so, then one can
find stably trivial non-trivial bundles of rank n-1 on such varieties. To see why this case is
interesting, the reader may see [3]. Of course, the problem is easy when n=-1 or 2 . The real
difficulty is from n=3. We will show that when n> 3 , a subvariety as above is
set-theoretically the zeroes of a section of a stably free, rank n-1 module. For a precise
statement, see Theorem 2.

I thank Professors M. Raynaud and L. Szpiro for including me in the Samuel Colloquium. I
thank Professor M.P. Murthy for many discussions on the subject matter of this article and
Professor Spencer Bloch for showing me how my results apply to the case of surfaces birational
to abelian surfaces as well.

§1. Surfaces.

Let Xc ff\ be a smooth affine surface. Let A denote the coordinate ring of X. Let
P = the conormal module of X in /S .

THEOREM (Boratynski [1]) Xc A is a set-theoretic complete intersection if and only if the ideal
S+(P) = positively graded elements in R = 5(P), the symmetric algebra of P over A, is a

set-theoretic complete intersection in R .

We say that A satisfies (-*•) if for any ze. Ao(A) = zero—cycles modulo rational

equivalence, there exists Lp...,L^ 6 Pic A such that z = S^ (L^.L^ where (L.L) denotes the

intersection product in the Chow—ring.
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THEOREM 1. Let A be the co-ordinate ring of a smooth surface. Let P be any A-projective
module with rang P> 3 . Let R = S(P) = symmetric algebra of P over A and 1= .S+(P), the

ideal of positively graded elements. If A satisfies (*), then I is a set-theoretic complete
intersection in R.

To prove this theorem, we introduce the notion of modifications. Let the notation be as in
the theorem. A projective module Q over A is said to be a modification of P , written <3[P],
if

i) rank Q = rank P ,
ii) there exists an A—algebra homomorphism f: S(Q)—^ S(P) ^ such that

rad(/(^Q)) = ^(P).

REMARKS:
i) If Wil and %[%] then %[%].

ii) If P« Q® L where Le Pic A then (Q® ^[P] for any m> 1 .

The first remark is obvious and the second remark follows, once we use the natural map
5(^)^5(2.) for any m> 1 .

PROOF OF THE THEOREM : We need only to show that P can be modified to a free module. Let
L = del P . Since dim A = 2 and rank P> 3 , by Serre's theorem [9], there exists a projective
module Q such that P% Q® L-1 . Then det Q= J?2. By remark ii), Q® L~^2 is a
modification of P. Also det(($© L ) = A . Thus we may assume that det P= A . Let
c^(P) e Ao(A) be the second chern class of P. A()(A) is divisible [see e.g. [6], Lemma 2.3]. So

we may write c^(P) = 3^. Since A satisfies (•*•), we may write z = E^(^.Z^) with

L^ e Pic A . Now, the proof is by induction on n. If n = 0 , then z = 0 and by [5], P is free.

We will show that P can be modified to a projective module P ' with det P' = A and
^(P) = 3^, where z ' = £^(L,.2^). This will complete the proof.

For notational simplicity let M = L^ . As before we may write P = P^ © M. Let c

denote the total chern class. Then we have
a) c(p) = c(Pi).(l+c^).

By Remark ii), P^© M is a modification of P. Again we may write

PI® M02 = Pa® M-®1 . Then we have
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b) c(Pi).(l+2q(M)) = c(P2).(l-q(^)).

Again by Remark ii), Pg® M is a modification of P^ M and hence by Remark i),

a modification of P. Using a) and b) we may compute c(P^ © M ) and then we will get

c(P29 M^2) = Wz-Z{M.M).

Thus P ' = P^® M has all the properties we wanted to achieve. This finishes the proof of

the theorem.

COROLLARY 1. (Murthy) If Xc ^?, X a smooth surface which is birationally ruled, then X is a
set-theoretic complete intersection.

PROOF : For n< 4 . see [4].

PROPOSITION. If A is birational to a product of curves then A satisfies (•*•).

PROOF : Let A be birational to C^ x C^ where (7, are smooth projective curves. We may also

assume that C^'s have positive genus ; if not A is birationally ruled and so A satisfies (^)

trivially. Let Y be a smooth projective completion of X = Spec A . Then we have a birational
morphism TT : Y—>• C^ x Cg , by uniqueness of minimal models. Let Z denote the union of

exceptional curves of Y. Then Z is the union of rational curves. So the natural map
AQ(X) —+ AQ^X—Z) is an isomorphism. Also Pic X —» Pic (X-Z) is a surjection. Thus we need

only prove (•*•) for X an affme open subset of C^ x C^ .

Now, since AQ(X) is divisible, we may write any zero cycle z = 2t. Also, since X is

affine, we may write t as a sum of points of X. So it suffices to prove that for any point
p ^ X , 2p==(L.L) in AQ^X) where LePicX. Write p = (^2) 6 °\x ^2 • Then

M^ == ^ x ^2 and M^ = (^ x ^ are divisors on C^ x C^ . (M^.M^) = ^ and (M,.Af,) = 0 for

2=1,2 in AQ^C^ cy. Then (M^® Ma.Mi® M^) = 2p in Ao(Cix Cg). Restricting- M^ M^

to ^, we get the desired result.

COROLLARY 2. // X c S , is a smooth surface birational to a product of curves then X is a
set-theoretic complete intersection.
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PROOF : When n< 4 , this was proved by M.P. Murthy [4].

REMARK. Spencer Bloch has shown me that if X is a smooth affine surface birational to an
abelian surface, then it satisfies (*). So our theorem applies and it is also a set-theoretic
complete intersection.

§2. Divisors.

This section grew out of an attempt to decide whether stably trivial modules over a 3-fold
are trivial or not. Unfortunately, the following theorem that I prove is inconclusive.

For a module M , p,{M) will denote the minimum number of generators of M.

THEOREM 2. Let Yc X = Spec A be a divisor on a smooth variety X of dimension n over an
algebraically closed field. Assume n > 3 . Let I be the defining ideal of Y in X . Then there
exists an ideal P e l such that

i) rad P = rad I ;
ii) ^PiP^in-l,
iii) if n = 3 , there exists a stably trivial module of rank 2 mapping onto P ;
iv) if all stably trivial (rank 2) modules on all affine 3-folds over an algebraically closed

field are trivial then we have an P satisfying!) above with ^.(P} = n—1, for any n> 3 .

PROOF : We will first prove the theorem in the crucial case of n = 3 . The proof is a judicious
application of Ferrand construction [7].

To avoid confusion, let L denote the element in Pic A corresponding to the divisor Y .
That is, L is a module isomorphic to /. Choose a general homomorphism / : L —+ A so that,
P = f(L)-{-I is a local complete intersection ideal of height 2. Thus, we have the following
Koszul resolution for J ' :

M O--^2-^®/-^--^

[U1 denotes L®...® L, n times].
Since J ' is a local complete intersection ideal of height 2, J ^ J ^ is a prpjective module

of rank 2 over the one-dimensional ring A / J ' . So by Serre's theorem [9], we can'find a
surjective homomorphism, J ' / J ' 2 —*• L~6® A / J ' . Thus we have an exact sequence,

(a) 0 -»> KIP2 -4 PI?2 -. L-6® Al? -^ 0
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where J^c Kc J^ K an ideal of A . It is easy to check that K is also a local complete
intersection ideal of height 2 . So by the above reasoning, we can get another exact sequence

(b) 0 -^ J/J<2 -^ K / K 2 -. A/K-^ 0 .

Again J is a local complete intersection ideal of height 2 with I^c Jc K . So
rad J = rad K = rad J ' D /.

Claim : Ext^(./,L-4) ^ A/J.

Since J is a local complete intersection ideal of height 2, by local checking, one can see
that Ext^(J,L"4) is a projective module of rank one over A / J . So to prove the claim it suffices

to prove that Ext^(J,L-4)® A/J7 ^ A/^ since rad J= rad J\ One has

Ext^L-4) sf ^(Hom^/.^A/.T)) ® L-4 .

[See e.g. [10]]. Since one has a natural filtration

0 -^ I ^ I K J - ^ J / K J - ^ J / I < 2 -. 0 ,

a,nd 7/</J< is a projective module of rank 2 over A / K , we see that,

^(J/J2)® A/7^ J / K 2 ® I ^ I K J .

But

^/^J^ K/J® K / J w A/K<s A / K w A/K

from(b). Thus

l ( J / J 2 ) ® A / K » J/I<2® A / K ^ l(K/I<2)

from (b). A similar computation done with (a) will yield,

1{K/I<2)^ A|Jf ^ A(^/J2)® L-6 .

Putting these together, one will get
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Ext^L-4) ® A/.P ^ 1{K/I<2) ® L-4® A/P
^(.P/.P2)*®^6®^-4

^(.P/.P2)*®^2

^ExtV^2)-

But (*) implies Ext^L2) ^ A/.P, proving the claim. Thus, by Serre's construction [8] we get
an exact sequence,

0-^L^-^P-^J-^O

where P is an A-projective module of rank 2. Computing the chern classes, one has

q(P) = L-4 and ^(P) = [A/J] = 4[A/P] = 4(q(L).q(L)).

Thus c(P) = c(L"2® L-2). By [2], this implies that P is stably isomorphic to L"2® L"2 .
Tensoring the above exact sequence by L2 and noting that L ^ I , we get an exact sequence

O-^L-2--^?® L^A/^O.

If we take P = 72./, then rad 7' = rad 7, since rad J c I . Thus we have part iii) of the
theorem, as well as part i) for n == 3 . By [5], P® L2® A/P is free and thus we havee ii) for
n = 3 . iv) is now obvious for n = 3 .

Now, to do the general case, let dim A = n > 3 . Chosse a sufficiently general map,

y,: V L-2 -^ A ,
i

L as before, so that B = A/Im y? is a smooth 3-dimensional affine ring and 1^ = image of I in

B is a locally principal ideal of B . From the earlier part, we can find an ideal J^ of B such

that there exists an exact sequence of B-modules

(c) 0-^L-4® B-^Q->J^O

with J a local complete intersection ideal of B containing 1^ up to radical and ' Q a

B-projective module of rank 2, stably isomorphic to (2/"2® L"2) ® B . Let J = inverse image of
./i in A and let P = Aj. We will show that P has all the properties asserted in the
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theorem. Since rad ^ D 1^ , it is clear that rad // = rad /. By [5],

Q® B/J^(L-2® 2/-2)® B//i.

So we may find an element /e A , /= 1 (mod 7) such that

(?® B^(L-2® L-2)® Bf.

Notice that by our choice of /,

p / i - ^ i f / n 2 .
The map from Q® Bf -*• J^ can be lifted to a map (L-2® L-2)® Af -^ Jf . Also

im y?c Jf and im y?® Af + im ^ = Jf . So we get a surjective map, ®^1 L^2 —^ ̂  ; thus a

surjective map

(d) n®1 Af -^ Tj.Jf = 7f .

So ^ ( P / F 2 ) = fi(If/If2) < n-1. This proves ii).

If the hypothesis in iv) were satisfied then we could have chosen / = 1 . Then (d) implies
If = // is Ti-1 generated. This completes the proof of the theorem.
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