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SOME RESULTS ABOUT EXPONENTIAL FIELDS (SURVEY)
by Helmut Wolter in Berlin ( G . D . R . )

Summary
In the present paper, a survey about some results from the theory
of exponential fields is given. The investigations are motivated
by Tarski's decidability problem of the field of real numbers with
an additional exponential function. For solving Tarski's problem
it seems to be useful to have more information about special expo-
nential fields and classes of such structures. So different
axiomatic classes of exponential fields and their theories are
investigated. Especially, the solution of the "dominance problem"
and the "problem of the last root^ for exponential terms are given
here.

§ 1 Introduction

In the present paper, a survey about some results from the theory
of exponential fields is given. The investigations of this theory
are motivated by A. Tarski^ decidability problem of the fjeld of
real numbers with an additional exponential function. In recent
years several people have been concerned with exponential fields
and rings and obtained interesting results (see e.g. [Dr] ,[HR],[M],
[R],[Wi] ,[DW1] , [DW2] , [Da] ,[Wo] ), but Tarski's problem is still
open and a solution is not in sight for the time being. However
independent of the mentioned problem, the class of exponential
fields is a very interesting subject of investigation. Only the
interplay of analytical and algebraic means yields fundamental
results, where the algebraic methods have often to be developed
first.
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In the papers [DW1],[DW2] , [ p a ] , [ w o ] B.I. Dahn and I investigated
different classes of exponential fields with the intention to get
more information on such structures and classes and their theories
in order to give perhaps a contribution to the solution of Tarski's
decidability problem. The most important results from our papers
are presented here in a survey and without proofs.

Definition. If P is a field and E a unary function from P
into P, then ( F , E ) is said to be an exponential field if
for all x , y 6 F it holds that E(x+y) a E ( x ) E ( y ) and E ( o ) « 1 ,
E ( 1 ) ^ 1 . In this case E is said to be an exponential
function on P.

In the following let L be a language for exponential fields,
i.e. L contains the usual symbols + » - > • » " " and an additional
unary function symbol E for an exponential function. Further,
let En- be the set of axioms E(x+y) a E ( x ) E ( y ) , E ( o ) a 1 ,axE ( 1 ) i 1 and let EP be an Y-axiom system for fields of
characteristic o augmented by E . Then EP determines the
theory of exponential fields. The most important models of EP
are ( R , e ) and ( C , e ) , where R and C are the fields of real
and complex numbers, respectively, and e is the usual exponential
function in these fields.
We could also regard exponential fields of characteristic p , p a
1 = E ( o ) =» E(px) = E(x) p and finally we get E ( x ) = 1 for
all x.
in the set of the p-th roots of 1 .
In the following Q denotes the field of rational numbers, Z the
set of integers, p an arbitrary field of characteristic o and
unless stated otherwise m , n , k , l , i , j denote natural numbers.
i can also be 7-1 , the actual meaning of i will be clear from
the context. If P is an ordered field and a , b 6 p , then ( a | is the
absolute value of a and a~b means that |a-b| is smaller
than all positive rational numbers. Notions and denotations not
specially explained in this paper are used as usual,
Our aim is now to give a contribution to finding a recursive and
complete axiom system of Th ( R , e ) if such a system exists. So we
try to approximate this theory by appropriate and natural axioms.

86



Some results about exponential fields (survey)

§ 2 Unordered exponential fields

First of all we want to provide some easy, well-known facts.
Fact 1 » In (P,E) E is not uniquely determined by P and EP.
Indeed, if f is an additive function from F into P and
E ( f ( 1 ) ) ^ 1 , then E^Cx) a E(f(x)) is an exponential function on
P, too*
Pact 2. (C,e) is strongly undecidable.
The field of rationals is definable in (C,e) by the formula
Y(x) := 3y3z (E(y ) =E(z) •: 1 A z ^ o A x = y/z). In fact,

(C,e) h e^ = 1 iff y = 2qTi, where q^Z and i = iT^T .
Since Q is strongly undecidable (see e.g. [sh]), we have the
claim and, moreover, we obtain
Fact 3» EP is undecidable.

The next lemma shows that the range of the exponential function
in every EP-existentially complete model is the whole field,
excepting o.

Lemma 4* [DWi]
Let P = (P,E).
(i). If a € P and a / o, then there is an extension

p^ = (F*,E*) of P such that P^^EF and
V* ^ 3x(E*(x) = a).

(ii). If p is EP-existentially complete, then
P ^ 3x(E(x) = a) for all a € P, a ^ o.

Similar as for (C,e), there exists a formula ^f(x) which defines
the field of rationale in all EP-existentially complete models.

Theorem 5« [DWi]
Let P = (F,E) be EP-existentially complete. Then, for all
a € P , a ^ Q iff P (s 3x(E(x) = 1 A E(ax) = 2) := -^(a).

Since Y'(x) does not define Q in (C,e), we get

Corollary 6. [DWi]
(C,e) is not existentially complete.'

By compactness arguments and the strong undecidability of Q we
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finally obtain from the above theorem:

Corollary 1. [DWi]
(i). EP is not companionable (and hence EP has no model

completion).
(ii). Every existentially complete exponential field ie

strongly undecidable.

Theorem 8. [DWi]
(R»e) has no existential closure, i.e. there is no
EP-existentially complete extension of (R,e) that is
embeddable in every existenti&lly complete extension of (R,e).

Our results show that the theory of EF is rather complicated and
since EF has models with quite different properties, EP is not
a good approximation of Th(R,e). Therefore, in the following, we
confine ourselves to more special classes of such fields, namely
to ordered exponential fields.

§ 3 Ordered exponential fields

Now we are going to study some parts of the universal theory of
the ordered field of real numbers with exponentiation.
Let OP be an V-axiom system for ordered fields and
T = OP ^E^ ^ {(1 + 1/n)11 < E (1 ) ^ (1 + 1/n)114 '1: n > o} .
Since the statement V x > o V y ( E ( y ) = 1 + 1/x —» E(xy) < E ( 1 ) )
is true in (R»e) but not in some non-archimedean T-models, the
V-theory of T is weaker than Th (R,e).

Hence we regard the better approximation
OEP = OP u E^ (j ^E(x) ^ 1 + x } .
The following theorem, which can be proved by standard arguments,
shows that the theory of ordered exponential fields OEP is
sufficiently strong to characterize the exponential function
uniquely in the standard model (R,e).

Theorem 9. [DWi]
In OEP the following formulas can be proved.
(i). E(o) s 1 , E(x) ^ o.
(ii). x i o —>• E(x) > 1 + x, and hence E is strictly

monotonously increasing.
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(iii). x>o A E(y) = 1 + 1/x —> E(xy) ^ E (1 ) -c E((x+1)y).
(iv). E is continuous.
(v). E is differentiable and E'(x) = E(x).

Here, the derivation is defined by means of the 8 - ̂ -technique.
For proving the next results some special algebraic tools were
necessary, especially we need so-called partial exponential fields.
These are fields with a partial exponential function. Suitable
extensions of the fields and the corresponding exponential
functions finally yield

Theorem 1o. [DWi]
(i). OEF-existentially complete models are real closed fields.
(ii). In every OEP-existentially complete model the statement

V x > o 3 y ( E ( y ) a x) is true, i.e. in such models E
has the intermediate value property.

OEF is not sufficiently strong to prove the V-theory of (R,e).

Theroem 11. [DWi]
OEF^- V x > o ( E ( x ) > 1 + x + x2^).

On the other hand, OEF h Vx >1/n(E(x) > 1 + x + x2 /2) for all
n > o. Now we regard a stronger axiom system OFF*.
For this let E^(x) = ^ x1/!! and
OEF' = OEF <^{E(x) >E^(x): k odd} .
Similar as above, OEF'-existentially complete models are real
closed fields. Furthermore, in such models the intermediate
value property is true for all terms without iterated exponential
function. It is an open question whether this property is true
for all terms and it is also open whether OEF' proves
Th^(R,e).

Remark. One can prove that Th(OEP') sa
Th(OEF U ^Vx ( [ x | < 1/n —•> E(x) ^ E^(x)i for arbitrary

fixed n > o and all odd k ^ 3 } •

§ 4 A method for constructing new exponential functions

Now we want to investigate how well OEFf describes the
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exponential function in exponential fields. First we are going to
show that in archimedean ordered OEP*-models the exponential
function is uniquely determined. For this purpose let Lp be
the language I augmented by a symbol E^ for a second
exponential function and OEFp » OEF'CE) ^ OEF*(E*) be the
union of the theories OEF* formulated with E and E*, respec-
tively.

Theorem 12. [DW2]
Let (P,E,E*) be a model of OEPp .
(i). For all a 6 P , if |a| is bounded by some natural

number, then E(a), E^(a) are bounded and E(a)^E*(a) .
(ii). If p is archimedean, then E* = E.

Now we regard an arbitrary model (P,E,E*) of OEPp and
investigate the connections between E and E*. Theorem 9
implies that E, E* are continuous, strictly monotonously
increasing (hence injective), and that E, E* take only positive
but arbitrarily small and large values. Moreover, let E take
all positive values in p. Then, for every a € P there is
exactly one b € F such that E*(a) = E(b).
Defining h(a) = b-a we obtain a function h from P into P
such that E*(a) » E(a + h(a)) .

Lemma 1 3 * (partially contained in [DW2] )
h is additive and different tab Ie (hence continuous) and the
derivation h1 is o everywhere.

Of course, if F is non-archimedean, then h has not to be
constant. Now let h be an arbitrary additive map from P into
P and E an exponential function on P.
If E*(x) = E(x + h(x)) and E*(x) >. \W 'tor all x e P and
all k odd, then E* is an exponential function on P in the
sense of OEP* too.

Theorem 14. [DW2J
Let (F .E) hOEF* u [ V x > o 3 y ( E ( y ) = x)}.
Then E*(x) = E(x + h (x) ) is an exponential function on P
in the sense of OEP' if h is an additive map from P into
F and h has the following properties:
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(i). If x ^ o , then |h(x)( < (xl11 for all n.
(ii). If x is finite,then h(x) ̂  o.
(iii). If x is infinite and x > o , then h(x) ^ o

arbitrary.

Corollary 1 5 »
(i). If OEP1 has a prime model (in the sense of

A» Robinson), then e6 is trancendental where e6

is E(E(1 ) ) in the standard model.
(ii). There is a model (F,E) of OEF' such that R&F and

E(a) is transcendental for each a^FnR with a i o.

If we regard the additive group of a non-archimedean exponential
field (F ,E) as a Q-vector space with a base B , then we can
define, by means of Theorem 14» at least card(F) different
functions h; B —> B with the desired properties. Hence, these
functions h yield card(F) different exponential functions on
the same field F.
By some suitable variations of a given exponential function (in
the sense of Theorem 14) one can prove

Theorem 16. [DW2]
In every OEFp-existentially complete model the rationale
are definable by the formuly
f(x) ;« Vy(E(y) = E*(y) —^E(xy) = E*(xy)).

Corollary 17. [DW2]
(i). OEP? is not companionable.
(ii). Every OEPp-existentially complete model is strongly

undecidable.
(iii). The theory of all OEF?-existentially complete models

is undecidable.
(iv). OEFg is undecidable.

arty i9^9^r
Now we do not regard V-axiom systems', because we need stronger
axioms if we want td|investigate more interesting analytical
properties of exponential fields.
Let OEF^ = OEF u [Intermediate value property for terms with
one variable} u^Rolle's Theorem for terms with one variable].
By OEF* the inequalities E(x) ^ E^C^ can be proved if k is
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odd and k > 3.
By means of Wilkie^ and Richardson^ results, B.I. Dahn was able
to solve the following dominance problem for terms,

Theorem 18. [Da]
Let P (= OEP, P S V* IP OEP111 and let t (x) , f (x) be
terms with parameters from P. Then
P*t3 3 y V x ( x ^.y —^t (x ) ^ t * ( x ) ) iff
Diagram(P) U OEP* h 3y Vx(x ^ y -— t(x) ^ t ' ( x ) ) .

This theorem finally implies

Theorem 19. [Da]
If P, P* h OEP*, P ^ P^ and ^f(x) is a quantifier-free
formula with one variable and parameters from P , then
P ^ 3x f(x) iff P^ h 3x Y(X).

This result is a little hint that OEP* could be model complete.

Theorem 2o. [Da]
Let P t* OEP*, a 6 P and let t(x) be a term with one
variable and parameters from P,
If P ^ lim t (x) a a , then there is a constant term t*»<-»»•
(with the same parameters and the same number of iteration
steps of E as t) such that P l» t* = a.

The latter theorem implies that the limit of a term t belongs
already to the exponential field generated by the parameters
from t •
We now want to investigate the "Problem of the last root" for
exponential terms, which is induced by the following question
of A. Macintyre (see [Dr]).
Let p(x) be a non-zero exponential polynomial over R.
Is there an intelligible function which depends only on the real
parameters of p(x) and which bounds the absolute values of the
real roots of p(x)?
The next theorems answer this question positively not only for
exponential polynomials in the standard model but also for all
non-zero exponential terms with one variable in all OEP*-models.
Let P t® OEP* and let T be the theory OEP^ augmented by the
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diagram of P.

Theorem 21 . [wo]
If t(x) is a non-zero term with one variable and with para-
meters from P, then there exists a c in P such that;
(i). If P t = 3 y V x > y ( t ( x ) > o ) . then T t- Vx(x > c —^ t(x) > o).
(ii). If P |^3yVx>y( t ( x )<o ) , then T I- Vx(x >c —^ t(x)< o).
(iii). T l-Vx(t(x) » o —^ lx|^c).

Now we want to sharpen this result in some sense.

Theorem 22. [Wo]
If t (x) is a non-zero term with one variable and with
parameters from P, then one can compute a constant term t^
(depending only on the parameters of t (x ) ) such that
P h V x ( t ( x ) =» o —^ Ix l^ l^ ) .

Finally I want to present some problems that have arisen in
discussions with B.I. Dahn and which are still open in my opinion.
1 . Is Th^OEP') » Thy(R,e) ?
2. Is the intermediate value property for terms with one variable

true in all OEP^-existent!ally complete models ?
3. Is E(E(1) ) s E^E^O)) if (P,E), (PiE*) are models of

OEF* ?
4. Is there a prime model (in the sense of A. Robinson) for one

of the regarded theories ?
5» Is one of the theories model complete ?
6. Is OEP1 U (intermediate value property for terms with one

variable} complete (analogous to the theory of ordered
fields) ?
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