
MÉMOIRES DE LA S. M. F.

PETER H. SCHMITT
Undecidable theories of valuated abelian groups
Mémoires de la S. M. F. 2e série, tome 16 (1984), p. 67-76
<http://www.numdam.org/item?id=MSMF_1984_2_16__67_0>

© Mémoires de la S. M. F., 1984, tous droits réservés.

L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf.
emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=MSMF_1984_2_16__67_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Societe Mathematique de France
2° serie, memoire n° 1 6 , 1984, p. 67-76

UNDEC1DABLE THEORIES OF VAL1JATED ABELIAN GROUPS

Peter H. Schmitt - Heidelberg

INTRODUCTIOK

Since their first appearence in [5 ] validated abelian groups have quickly developed

into a popular and promising area of research in abelian group theory. For infor-

mation on the goals and achievments of this theory we refer to the survey ar-

ticles [4] and [2 ] . All we need about valuated abelian groups for the purpose of

this paper will be explained in section 1 below.

We are interested in a model theoretic investigation of the class of valuated

abelian groups. Ideally we would wish to obtain a complete classif ication upto

elementary equivalence. Experience has shown that this problem can be attacked

with hope for success only if the theory under consideration is decidable. (It is

ofcourse possible to construct theories with a complete system of elementary in-

variants, where the question , which finite combinations of these are consistent

is undecidable; but this situation is unlikely to occur for the "natural" theories

arising from mathematical practise) Consequently the first step in the pursuit of

our ideal goal is to ask: Is the theory of valuated abelian groups decidable ?

we consider valuated abelian groups as two-sorted structures and restrict atten-

tion to abelian groups with a p-valuation for just one prime p. The main results

are:

Theorem: The theory of p-valuated abelian groups is hereditarity undeciddbte.

we will even show that the class of all p-valuated abelian groups, where the
Q

underlying group is a direct sum of copies of Z(p ) is hereditarily undecidable.

Theorem: The theory of p-valuated torsion free abelian groups is hereditarily un-

decidable.

It is possible to trace back the reasons for undecidability and arrive at classes

of valuated p-groups and valuated torsionfree groups respectively for which a re-

lative quantifier elimination procedure can be obtained (i.e. quantifiers over
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group elements are eliminated in favor of quantifiers over the linearly ordered

set of values). These results together with the accompanying decidability results

will appear elsewhere.

We assume that the reader is familiar with the basic facts about undecidability,

abelian groups and ordinal arithmetic. All groups considered are assumed to be

abelian.

§1 P-VALUA7ED GROUPS

Let G be a group, p a prime.

Definition: A p-valuation on G is a mapping v from G onto a successor

ordinal a+1 satisfying the following axioms:

(VI) v(g-h) ^ min{v(g) . v (h ) }

(V2 ) v(pg) > v (g) if v(g) < a.

(V3) v (g ) = a iff g = 0

We will follow established notation and write °° for a . the greatest possible

value. Axiom (V3) is usually not counted among the axioms for a p-valuation. but

including it here gives stronger undecidability results.

A p-valuated group is a group G together with a p-valuation. A valuated group is

a group with a p-valutation for every prime p.

Lemma 1 . 1 : Every p-vatuated group (G^v) satisfies for ait g,h E G :

( i ) if v ( g ) < v(h) then v(g^h) = v ( g )

( i i ) if m € 1 is not divisible by p then v(mg) = v ( g ) .

Proof: Easy.

Defini tion: A p-filtration on G is a sequence GQ , 3^a of subgroups of G

such that: (FO) G^ = G

( F l ) G. "=>G for & < y ^ a

(F2) PGpC,G^

(F3) G^ = {0}

There is a one-one correspondence between p-filtrations and p-valuations on G.
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Lemma 1.2:

( i ) If v:G —> a+J is a p-vatuation then G^ = {gEG : v(g)^ } de-

fines a p-filtration on G.

(ii) If G , &^a is a p-filtration then

, the smallest 3<a with g ^ G , if there exists one
v ( g ) = ^ v> 1

1 °° otherwise

defines a p-vatuation .

Proof: Obvious.

Definition: The direct product (sum) of a family (G . . v . ) , iel of p-valuated

groups consists of the direct product TT(G- : i^I) ( resp. direct sum

E(G^. : iel) ) of the underlying groups with the valuation v given in both

cases by v(g) = min{ v^ . (g( i ) ) : i € I) .

Definition : For given p-valuation v on G and integer s ^ 1 we denote by

v the function given by :P>s
v ^ (g) = min{ (3 : there is no h e G such that vfg+p^)^ & }

To make this definition work also for g e p^ we add a new element 00+ on top

of ~. We thus have by definition for all g € G: g e p^ iff v (g) = °°4' .

Let L be the two-sorted first-order language with one sort of variables de-

noted by x,y,z,.. , the group variables, and the other sort of variables denoted

by a,&,Y,.. . , the value variables; furthermore L contains a symbol for the

group operations +,- , a constant symbol 0 , a symbol for the order relation ^

between values, a constant symbol °° and a symbol v for the valuation.

It is straightforward how p-valuated groups are regarded as'L-structures.

Let TV(p) denote the L-theory of the class of a 1 1 p-valuated groups. There will

certainly be models (M,v) of TV(p) where the ordered set Im(v) of values,

while still a model of the theory of well-orderings is not a well-ordered set.

These generalised p-valuated groups as we might call them will play no particular

role in the following.
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§2 THE UNDECIDABILITY RESLLTS

Theorem 2 . 1 : TV(p) is hereditarity undecidabte.

This theorem is an obvious corollary to the following result:
g

Theorem 2.2: The L-theory T(p ) of the class of p-vatuated groups (G^v) with:
g

( i ) G is a direct sum of copies of l(p )

( i i ) card(Im(v)) ^ 28

is hereditarity undeoidabte,

In the proof of theorem 2.2 . we will use the following lemma :

Lemma 2 .3: The class of all groups G with tu)o distinguished subgroups C^C

such that :

( 1 ) C^ <- C^ c G
g

( 2 ) G is a direct sum of copies of 1(p )

is hereditarity undecidabte.

This lemma is obtained in turn from the following:
p

Lemma 2.4; The class of all groups G satisfying p G = {0} with one distingui-

shed subgroup C is hereditarity undecidabte.
Q

To derive lemma 2.3. from lemma 2.4. we note that any pair (G.C) with p G ={0}

can be interpreted as (G/C.,C,/;C?) using a triple (G ,C^ ,C^ ) subject to the

conditions of lemma 2.3. Lemma 2.4. itself was proved in [6] with 12 in place

of 9 . This latter improvement is due to W.Baur , [ 1 ] .

It seems to be an open question wether 9 is the best possible exponent in

lemma 2.4.

Proof of Theorem 2.2.

Let L* be obtained from L by adding two constant symbols T i * Y ? tor values

and let T* = T(p9) + -Y?^ ^ .Because of T* - (p(^ .^) iff

T ^ Va,(3(a ^ (3 —> (p(a.(3)) it suffices to show that T* is hereditarily un-

decidable. To achieve this we have to construct for every given triple (G.C, ,C?)

subject to the conditions of lemma 2.3. a p-valuation v on G such that
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Cj = {g e G : v (g ) ^ - Y . } for j=1.2.

Consider the following sequence H of subgroups of G :

H = p"G + C, for 0 ^ n < 9

"9+n = ^1 + c? tor 0 ^ n < 9

"IS+n = P^Z tor 0 ^ n < 9

We get a p- filtration H^ from H^ by dropping repetitions. Finally -Yi,Yo are

chosen such that H" = HQ and H' = H,o ."Yi y "Yp lo

The undecidability theorem 2.2. did not use the full strenth of the language L;

quantifiers over values were not used. This will change when we now consider the

tors ion free case.

Theorem 2.5: The theory T „ of p-vatuated torsion free groups is hereditaritytj
undeoidabte.

we will prove the following stronger result:

of all p-vatuated torsion free

groups (G,v) satisfying: ( i ) and ( i i ) is hereditarity undecidabte .

( i ) G is divisible by any prime q , q^p .

( i i ) for all g 6 G , g^ 0 : v(pg) = v(g)+ 1.

Theorem 2.6: The L-theory T'„ of the class of alt p-vatuated torsion freet!

Proof: we will interpret in T , the theory of two equivalence relations which

by [3 , p . 2 9 5 J is hereditarily undecidable (even finitely inseperable).

we first list the formulas needed in this interpretation. Let s s 2 be an

integer; fixed for the remainder of this proof.

(P (a) = 3x(v (x)=a) & "a=G) n for some n ,0 < n<o "

'^(a,T) = ^(a) & " -f> Q)2^" & 3x(v (x)=a & v (px)=y ) &

& Vx(v , ( x ) = a - V (px) ^ -f)p»-> p»->

(p^(a,&) = ^(a) & ^((3) &L3y(^(a,y) & - / ^ ( ( 3 , y ) ) N/ a=P ].

^(a.y) = ^(a) & "G)^ T < G)2^" & 3x(Vp^(px)=a & V (p2x)=-r ) &

& Vx(Vp^(px )=a -> V (p^)^ y )
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•f^a,(3) = (p^(a) & (^((3) & [3y(^(a.y) &^(3 ,y) ) v a = (3 ]

By definition of ^. there can be for every a at most one y with^.(a,y) .

Thus we see that forevery model (G,v) of T.-: (p. defines an equivalence
p

relation on (p for i=l,2.

Now let V be a countable set and Ei»^ equivalence relations on V. We shall

construct a p-valuated torsionfree group (G,v) satisfying conditions (i),(ii)

such that (^ ,<-f^-ti) ^ (V,E^).

For this purpose let f:V --> o-{0} be an injection and {C . : 1 ^ m < k . }m 1 1 i
enumerations of all E.-equivalence classes , i = 1,2 ; k.^ G) .

0

As a preparation we introduce groups (G ,v ) for all a , 0 ^ a ^ o -3 by

G ^ I = the subgroup of the rationals consisting of all fractions ZQ/ZI

with z, prime to p .

and r °o= G) •3 if z = 0
a 'a+ k i f z = P^Q/ZI wi th (p . z^ ) = 1 .

Let (G*,v*) = TT(G^.v^) and (G°.v0) = s(G^v^)
a a

We observe the following easy facts:

(o) for g £ G*, g^O : v*(pg) = vfg) + 1

( 1 ) for g € G° v° , ( g ) is never a limitp»s
(2) if for g £ G* v*(g)^ a and a is a limit, then for all y<a g(y)=0.

(3) if for g G G v (g) ^ a and a is a limit ordinal , then for a 1 1

-Y < a g(y) € p^ .

Fix x C V .

Let C . be the E.-equivalence class of x. We define elements a ,,b .m.» i i x,i x,i
of G* as follows:

p G ) - ( f ( x ) - l ) ^ y < o ) - f ( x )
a. l^) = ^ 2^ = /

X > 1 x" ' 0 otherwise
s 1 2 2p ~ G) »2 + o)(m,- l ) ^ y < y «2 + COTII,,, / \ _ 1 i

b^ i^) - '.
' < 0 otherwise
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c ? 0 0

p if o + G)(m«-l) ^ -Y < G) + o«m^
b, ̂ ) —— • 2 2

' • 0 otherwise

Let G/ ... be the Z -submodule of G* generated by G° u { a ,, b ,} and
y X »1 ; p X » i X, 1

v ^ ' 1 ^ the restriction of v* to G, ^.

The following properties of these groups are easily verified:

(4) If for g e G, , N v^ '^ tg) is a limit ordinal, then it is equal to
0

G)«f(x) or G) «2 + G)«m,

(5) ^s^'^.l^.l^0-^

^s^^x.l^^.l^^s^^x.l^02-2^-!

(6) If for g (EpG/ ^ v^^(g) is a limit , then v^ l )(g)= o2^ +o-m.^

(7) If for g e G/ ^ v ' ^^g ) is a "limit ordinal then it is equal to
0

Q"f (x ) or G) + G)«m^ .

(8) v^V'a . + pb ) = o.f(x)
P t o /^ » -̂ ^ » L-

^^x.2 + P2 ̂  = ̂ V^ = 0 2 + " • m 2 <

Finally we set : (G.v) = ® ^ K^x.l)1^^1^ a ^(x.Z)'^^2^3

By definition we have :

(9) v, ,(g) = min{ v^*1 ^(x.i)) : x e V . i=l,2 }P»s p»s
From this :

(10) (P^ = {co- f (x ) : x e V }

We claim for all x€ V :

( 1 1 ) If for g e G v g (g) = o - f (x ) and Vp^(P9) is a limit < °° .then

v (pg) ^ G)2-? + u-m, where C , is the E.-equivalence class of x.p,s i m ^ » i i

Let g = E E g(y.i) with g(y.i) e G/ . ^ . By (10) v (g) = o)- f (x)
yGV i=l,2 vy ' ' • '

implies v^'1 ^ (g (x . i ) ) = G)«f(x) for i=l or i=2 . Now the claim follows fromp,s
(7) and (4) .

By ( 1 1 ) and (5) we get for x,y £ V :
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( 1 2 ) If xE^y then (G.V)^ ^ (Q- f (x ) , co- f (y ) )

Furthermore we claim for all x e V :
^

(13 ) If for g e G v (pg) = o)« f (x) and v (P 9) is a limit < <» ,thenP»s p,s
v .(pg) ^ G) + co*m^ where C 9 is the E^-equi valence class of x.

P ) S L. ITIrt » C L.

To see this let g again be given in the form L L g(y,i) . By (10) and
yev i=1.2

(6) we must have v^'^gtx.?)) = o - f (x ) which yields the desired result by (12 )
P»5

By (13 ) and (8) we get for all x.y€ V :

(14) If xE^y then (G,v)(= (p^( o - f (x ) , o)-f(y))

The reverse implications of ( 1 2 ) and (14) follow simply from the fact that
„ 2 2
^-( ^• f (x) ,y) (resp. ^( G)«f(x) ,y) ) implies y = G) •2 + o'm- (y =o + o-m?)

Complementary to theorem 2.6. we have the following undecidability result:

Theorem 2.7. The L-theory T . _ p of the class of alt p-val-uated torsionfree

groups (G, v ) satisfying :

( i ) for att s ^ 1 and all g £ G v ( g ) zs not a limit number

(ii) for att g G G,g^0 v(pg) = v ( g ) + 1 .

is hereditarity tindecidabte.

The proof of Theorem 2.7. follows along the very same lines as that of the pre-

vious theorem. So we will only give a sketch.

Fix a prime number q, q/p and an integer s ^ 2. Again we will interpret the
0

theory of two equivalence relations in T,. , this time using v rather than

v .Since v (g) can never by a successor ordinal ^ °° , we have to con-

sider higher powers of ". We use the following formulas :
0

(P (a) = 3x(v (x)=a) & "a = o «n for some n , 0 < n < G) "

^(a.y) = ^(a) & " y > G)3^" & 3x( v^(x)=a & v^(qx)=y ) &

& V x ( . v g (x )=a - v ^ (qx ) ^ y))

^(a.y) = cp^(a) & " o3 < y < o3^ " & 9x(v^(qx)=a & Vq^(q2x)= y) &

& Vx(v (qx)=a - v (q2x)^ y ))

(p,,^ arise from (p . ^i» ^o as in the proof of theorem 2.6.
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Given two equivalence relations E i»Eo on a countable set V we construct a
P P P

p-valuated torsionfree group satisfying (i),(ii) such that (cpo»<Pi*(po ) ^

(V,E, ,E?) . For a. 0 ^ a < G) •3 we define p-valuated groups (G ,v ) by :

G ^ 2 for a l l aa

r °° = G) • 3 If Z = 0
v ( z ) =
a ( a+k if z = p z ^ with (p .z^ ) = 1 .

(G ,v*) , (G ,v ) denote the direct product » direct sum of the family (G ,v )

0 ^ a < G) -3 .We observe :

(1 ) Let g G G* , g E q^* , a= min{ -y: g(y) e qsZ} and & the smallest

limit ordinal > a, then v* (g) = 6 .

Fix x £ V and let m-.m,, be defined as in the proof of theorem 2.6. . We define

elements a . ,b . of G by :
r q if (^(^x)-!) ^ Y < ^• f tx)

\ l^ = \ 2^ = ^X > 1 x >- ' 0 otherwi'se

. q5' if G) -2 + G) (m,-l) ^ y < o •2 + G) •m,
b,^) - z z

' 0 otherwise

q5"2 i f o3 + (^(m.-l) ^ y < Q)3 + G)2^.
^ Z^ = /* ^ 0 otherwise

From this data we obtain (G/ - ^ v ^ ' 1 ^ ) and (G.v) as before. The verification
^ x » • /o p r* r*

that x -» G) • f ( x ) is an isomorphism from (V,E, ,E?) onto ((p *(P^,(P^) now

parallels the corresponding argument in the proof of theorem 2.6.
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