Mémoires de la S. M. F.

ALEXANDER PRESTEL

Model theory of fields : an application to positive semidefinite polynomials

Mémoires de la S. M. F. 2^{*e*} *série*, tome 16 (1984), p. 53-65 http://www.numdam.org/item?id=MSMF_1984_2_16_53_0

© Mémoires de la S. M. F., 1984, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France 2° série, mémoire n° 16, 1984, p.53-65

MODEL THEORY OF FIELDS:

AN APPLICATION TO POSITIVE SEMIDEFINITE POLYNOMIALS

Alexander Prestel

<u>Abstract</u>: Using some model theoretic arguments, we will settle the following problem raised by E. Becker: Which polynomials $f \in \mathbb{R}[X_1, \ldots, X_n]$ can be written as a finite sum of 2m-th powers of rational functions in X_1, \ldots, X_n over \mathbb{R} ?

INTRODUCTION

From Artin's solution of Hilbert's 17-th Problem, it is clear that polynomials $f \in \mathbb{R}[X_1, \ldots, X_n]$ which can be written as a sum of squares of rational functions in $\overline{X} = (X_1, \ldots, X_n)$ over \mathbb{R} are exactly the positive semidefinite ones, i.e. those satisfying $f(\overline{a}) \ge 0$ for all $\overline{a} = (a_1, \ldots, a_n) \in \mathbb{R}^n$. In view of this result, the question naturally arises under what conditions such an f can be even written as a sum of 2m-th powers of rational functions in \overline{X} over \mathbb{R} .

Denoting for a ring R , by ΣR^{S} the set of finite sums of s-th powers of elements from R , the question then is: When does f $\in \Sigma \mathbb{R} (\bar{X})^{2m}$ hold? For odd exponents the answer is trivial, since $\mathbb{R} (\bar{X}) = \Sigma \mathbb{R} (\bar{X})^{2m+1}$ by a result of Joly (see [J], Théorème (2.8)). 0037-9484/84 03 53 13/\$ 3.30/ © Gauthier-Villars

We will give the following answer for homogeneous^{*)} polynomials f: THEOREM 1 Let $f \in \mathbb{R}[X_1, \ldots, X_n]$ be homogeneous and positive semidefinite. Then $f \in \Sigma \mathbb{R}(\overline{X})^{2m}$ if and only if $2m | \deg f$ and $2m | \operatorname{ord} f(p_1, \ldots, p_n)$ for all polynomials $p_1, \ldots, p_n \in \mathbb{R}[t]$ with at least one p_1 having a non-vanishing absolute term.

Here ord h(t) is the order of h(t) at the place t = 0, i.e. the maximal r such that t^{r} divides h(t). The proof of this theorem ultimately makes use of the Ax-Kochen - Ershov Theorem on the model completeness of certain classes of henselian fields.

Clearly, one is tempted to ask the corresponding question for polynomials $f \in K_0[X_1, \ldots, X_n]$ where K_0 is some other formally real field. The main theorem of this note refers to a fixed archimedean ordering on K_0 . Thus, in particular, if R is some <u>archi-</u> <u>medean</u> real closed field, we will have the same situation as in Theorem 1 . All attempts to generalize this result to non-archimedean real closed fields failed, and, as it finally turned out, must fail.

In case Theorem 1 would hold for all real closed fields R and for n = 2, by the Compactness Theorem one could conclude that for each $d \in \mathbb{N}$, there were some formula $\varphi(a_0, \ldots, a_d)$, in the language of rings, such that for all real closed fields R we could get (after dehomogenizing)

 $\mathsf{R} \models \varphi(\mathsf{a}_{o}, \dots, \mathsf{a}_{d}) \quad \text{iff} \quad \mathsf{a}_{o} + \dots + \left. \mathsf{a}_{d} \mathsf{X}^{d} \in \left. \Sigma \, \mathsf{R} \left(\mathsf{X} \right)^{2m} \right.$

Equivalently, one could find bounds N and s, depending only on d and m such that, for all $a_0, \ldots, a_d \in R$, $f = a_0 + \ldots + a_d x^d \in \Sigma R(x)^{2m}$

^{*)} This is no restriction of the generality.

implies

$$f = \sum_{i=1}^{N} \frac{g_i(x)^{2m}}{h_i(x)^{2m}} \text{ and } \deg g_i, \deg h_i \leq s$$

This, however, turns out to be wrong in general. Using a simple non-standard argument (i.e. an application of the Compactness Theorem), we will prove

THEOREM 2 For all
$$m \ge 2$$
 and all $n \ge 0$,
 $x^{2m} + nx^{2} + 1 = h^{(n)}(x)^{-2m} \sum_{i=1}^{N(n)} g_{i}^{(n)}(x)^{2m}$. Moreover, if n
tends to infinity, so does $N(n)$ or deg $h^{(n)}$.

By this theorem and the remarks above, Theorem 1 cannot hold for arbitrary real closed fields R. In fact, Theorem 2 shows that, for $m \ge 2$, the property $f \in \Sigma R(\bar{X})^{2m}$ is not elementary in the coefficients of f. This should be seen in contrast to the case m = 1. In this case, $f \in \Sigma R(\bar{X})^2$ can be expressed by the formula

$$\forall a_1, ..., a_n \exists b f(a_1, ..., a_n) = b^2$$
,

saying that f is positive semidefinite.

1. On Theorem 1

In [1] Becker developed a general theory of sums of 2m-th powers in formally real fields. From this theory ([1],Satz 2.14) one obtains the following characterization: Let K be formally real. Then for any $a \in K$:

 $a \in \Sigma K^{2m} \text{ iff } \begin{cases} a \in \Sigma K^2 \text{ and } 2m | v(a) \text{ for all} \\ \text{valuations } v \text{ of } K \text{ with formally} \\ \text{real residue field } \overline{K}_{u} \text{ .} \end{cases}$

A valuation here and in what follows may have an arbitrary ordered abelian group Γ as group of values. By 2m|v(a) we then mean that there is some $b \in K$ satisfying $2m v(b) = v(b^{2m}) = v(a)$. Concerning the theory of valuations we refer the reader to [3] and [4].

The first lemma will be a slight generalization of the above equivalence. For its proof we need some notations and results from [1].

A subset S of K is called a <u>preordering</u> of level 2m if (i) $S + S \subset S$, $S \cdot S \subset S$, $K^{2m} \subset S$, $-1 \notin S$.

In case m = 1, we obtain the usual notion of preordering (cf. [7]). A preordering S of level 2m is called <u>complete</u> if

(ii)
$$a^2 \in S$$
 implies $a \in S \cup -S$.

In what follows, complete preorderings will always be denoted by P. If m = 1, completeness of P just means $P \cup -P = K$. Thus in this case, P is an ordering in the usual sense. In general,

defines a partial ordering on K , which for level 2 is linear. By [1], Section 1, for any preordering S of level 2m we have

(iii)
$$S = \bigcap_{S \subset P} P$$

where P ranges over complete preorderings of level 2m. From [1], Section 2, we further obtain that for every complete preordering P of level 2m,

(iv) $A_p = \{x \in K \mid -n \leq_p x \leq_p n \text{ for some } n \in \mathbb{N}\}$ defines a valuation ring on K such that $(1 + M_p \subset P)$ and $\overline{P \cap A_p}$ is an ordering (of level 2) of the residue field $\overline{K_p}$.

Here M_p denotes the maximal ideal of A_p and \bar{a} the residue of a, i.e. $\bar{a} = a + M_p$.

LEMMA 1 Let P_0 be an archimedean ordering of the subfield K_0 of K. Then a $\in K$ belongs to $\Sigma P_0 \cdot K^{2m}$ if and only if a $\in \Sigma P_0 \cdot K^2$ and 2m | v(a) for every valuation v, real over P_0 .

Let v have valuation ring A and residue field \overline{K} . We call v <u>real over</u> P_0 , if $\overline{P_0 \cap A}$ is an ordering of $\overline{K_0}$ which extends to some ordering of \overline{K} . Since P_0 is archimedean, it follows that v must be trivial on K_0 , i.e. $v(K_0) = \{0\}$ or, equivalently, $K_0 \subset A$. Moreover, it follows that the set $\Sigma P_0 \cdot K^{2m}$ of sums of 2m-th powers with coefficients from P_0 , actually is a preordering of level 2m on K.

<u>Proof</u>: First assume that $a \in \Sigma P_{O} \cdot K^{2m}$. Then clearly $a \in \Sigma P_{O} \cdot K^{2}$. But also 2m | v(a) is easily seen for valuations v, real over P_{O} . Indeed, for such a valuation we have

(v)
$$v(\sum_{i} p_{i}x_{i}^{2}) = \min\{v(p_{i}x_{i}^{2})\}$$

In fact, if $v(p_1x_1^2)$ is of minimal value, then $\sum_i (p_1x_1^2)^{-1}(p_ix_i^2)$ belongs to A_v and yields a non-vanishing residue class in \overline{K}_v by the assumption on v. Thus its value is 0. This proves (v). Now (v) and $a = \sum p_i a_i^{2m}$ clearly imply 2m |v(a).

Next assume the conditions on the RHS of the lemma. If a $\notin \Sigma P_{O} \cdot K^{2m}$, then by (iii) there is a complete preordering P such that a $\notin P$. By (iv), P defines the valuation ring A_{p} . Let v_{p} denote a valuation corresponding to A_{p} . Note that $K_{O} \subset A_{p}$ since P_{O} is archimedean. Thus v_{p} is trivial on K_{O} . Moreover, $\overline{P \cap A_{p}}$ is an ordering of the residue field which clearly extends $\overline{P_{O} \cap A_{p}}$.

Hence we know that $2m|v_p(a)$. Let $b \in K$ be such that $v(ab^{-2m}) = 0$. Then ab^{-2m} is a unit. Since $ab^{-2m} \in \Sigma P_0 \cdot K^2$, the residue class ab^{-2m} belongs to the ordering $\overline{P \cap A_p}$ of \overline{K} . Therefore we can find $p \in P$ such that

$$ab^{-2m} p^{-1} \in 1 + M_p$$

Since $1 + M_p \subset P$, this implies $a \in P$, a contradiction. g.e.d.

We will now apply Lemma 1 to the situation where P_o is an archimedean ordering of K_o and $K = K_o(X_1, \ldots, X_n)$, the field of rational functions in $\overline{X} = (X_1, \ldots, X_n)$ over K_o . By R_o we denote the real (algebraic) closure of K_o with respect to P_o . Moreover, $R_o((t))$ denotes the field of formal Laurent series

$$\rho = \sum_{i=r}^{\infty} a_i t^i \quad \text{with } a_i \in R_0, r \in \mathbb{Z} .$$

The canonical valuation on $R_{o}((t))$ is denoted by ord. We have

$$\operatorname{ord}(\sum_{i=r}^{\infty} a_i t^i) = r \quad \text{if} \quad a_r \neq 0.$$

If almost all coefficients $a_{\underline{i}}$ vanish, ρ is called a \underline{finite} Laurent series.

MAIN THEOREM With the above notations, the following are equivalent for all $f \in K_0[\overline{X}]$:

- (1) $f \in \Sigma P \cdot K_O(\bar{X})^{2m}$,
- (2) f is positive semidefinite over R_0 and $2m | ord f(\rho_1, \dots, \rho_n)$ for all $\rho_1, \dots, \rho_n \in R_0((t))$,
- (3) the same as in (2) except that ρ_1, \dots, ρ_n are finite Laurent series.

<u>Proof</u>: (1) \Rightarrow (2): Clearly, f is positive semidefinite over R_o . Next observe that the substitutions $x_i \rightarrow \rho_i$ define a homomorphism from $K_o[\bar{X}]$ to $R_o((t))$ which can be easily extended to some place from $K_o(\bar{X})$ to $R_o((t))$. Lifting the valuation ord from $R_o((t))$ through this place, we obtain a valuation v on $K = K_o(\bar{X})$ with residue field contained in R_o . Thus v is real over P_o . By Lemma 1 we therefore have 2m|v(f). From the construction of v , this implies $2m|ord f(\rho_1, \dots, \rho_n)$.

Since $(2) \Rightarrow (3)$ is trivial, it remains to prove $(3) \Rightarrow (1)$, which is the main point of this theorem. From the positive semidefiniteness of f over R_0 it follows by well-known arguments that $f \in \Sigma P_0 \cdot K_0(\bar{X})^2$. Thus in view of Lemma 1, it remains to prove 2m|v(f) for every valuation v of K, real over P_0 . As explained after Lemma 1, v is trivial on K_0 . Thus v is a place of the function field K/K_0 in the usual sense. (We may consider K_0 as a subfield of \bar{K}_v .) Let us assume $2m \neq v(f)$.

By the result of [6] we know that we may replace the valuation v by some other valuation v', trivial on K_o , still satisfying $2m \nmid v'(f)$, but having additional properties^{*)} like

- (a) value group of v' is \mathbb{Z} ,
- (b) residue field of v' is a subfield of $\bar{K}_{_{\rm V}}$ finitely generated over $K_{_{\rm O}}$.

Since v is real over P_0 , the residue field \bar{K}_v admits an ordering extending that of K_0 . Hence the well-known theory of function fields

59

^{*)} The proof of this 'density' theorem for places on function fields makes essential use of the Ax-Kochen - Ershov Theorem mentioned in the introduction.

over real closed fields yields a place from the residue field \bar{K}_v , of v' to the real closure R_o of K_o with respect to P_o ; i.e. a valuation \bar{w} of $\bar{K}_{_{\mathbf{V}}}$, , trivial on $K_{_{\mathbf{O}}}$, with residue field contained in R . The valuation \bar{w} of \bar{K}_{v} , can be lifted through v' to some refinement w of v'. Then, the value group $\overline{w}(\overline{K}_{r,r})$ is an isolated subgroup of the value group w(K), the quotient being isomorphic to v'(K). Thus w is a valuation of K , trivial on K , with residue field contained in R and still satisfying $2m \nmid w(f)$. Applying once more the above mentioned result of [6], we finally obtain a valuation w', trivial on K_{o} , such that $2m \nmid w'(f)$ and

- (a) value group of w' is Z ,
- (b) residue field of w' is a subfield of $\ {\rm \vec{k}}_{\rm w}$,finitely generated over к.

Thus, in particular \bar{K}_{u} , is contained in R₀.

We now pass from K to the completion $\hat{K}_{u'}$ of K with respect to the valuation w'. From the above properties of w' we conclude that $\hat{K}_{i,i}$, and hence also K may be identified with some subfield of $R_{o}((t))$ such that ord induces w' on K. Hence X_{1}, \ldots, X_{n} are identified with some Laurent series $\rho_1, \ldots, \rho_n \in R_o((t))$ and thus $2m \leq ord f(\rho_1, \ldots, \rho_n).$

Finally, we observe that in the topology induced by the valuation ord on $R_{o}((t))$,

•

$$\sum_{i=r}^{\infty} a_i t^i = \lim_{s \to \infty} \sum_{i=r}^{s} a_i t^i$$

By the continuity of f and the fact that the set { $\rho \in R_{\rho}((t))$ | $2m \mid ord \rho \mid$ is open, we may assume that ρ_1, \ldots, ρ_n are finite Laurent series satisfying $2m \nmid f(\rho_1, \dots, \rho_n)$. This contradiction to the assumptions of (3) proves (1).

q.e.d.

<u>Proof of Theorem 1</u>: Assume first $f \in \Sigma \mathbb{R}(\overline{X})^{2m}$. We may assume that f actually is a polynomial in X_1 . Applying now condition (3) of the Main Theorem to $\rho_1 = at$ and $\rho_n = t, \dots, \rho_n = t$ and choosing $a \in \mathbb{R}$, such that $f(at, t, \dots, t) \neq 0$, we conclude that $2m | \deg f$. Since every polynomial in t in particular is a finite Laurent series, (3) yields the necessity of the condition in Theorem 1.

Conversely, let $2m | \deg f = d$ and $2m | \operatorname{ord}(p_1, \ldots, p_n)$ for all $p_i \in \mathbb{R}[t]$ such that ord $p_i = 0$ for at least one p_i . Let ρ_1, \ldots, ρ_n be finite Laurent series in t. If $r = \min\{\operatorname{ord} \rho_i\}$, clearly all $p_i = \rho_i t^{-r}$ are polynomials, one having $\operatorname{ord} = 0$. Thus it follows from the condition in Theorem 1 that $2m | \operatorname{ordf}(p_1, \ldots, p_n)$. From

$$f(p_1,\ldots,p_n) = f(\rho_1t^{-r},\ldots,\rho_nt^{-r}) = t^{-dr}f(\rho_1,\ldots,\rho_n)$$

and $2m \mid d$ we therefore conclude $2m \mid \text{ord } f(\rho_1, \dots, \rho_n)$ as asserted in (3) of the Main Theorem. Now the equivalence of (3) and (1) yields the result $f \in \Sigma \mathbb{R}(\overline{x})^{2m}$.

q.e.d.

It should be observed that there is no restriction in considering homogeneous polynomials only. One easily checks the following

<u>Remark</u>: Let $f(X_1, ..., X_n)$ be a polynomial of degree d over a formally real field K_0 . Then $f \in \Sigma K_0(X_1, ..., X_n)^{2m}$ if and only if

$$x_{o}^{d} \cdot f(\frac{x_{1}}{x_{o}}, \dots, \frac{x_{n}}{x_{o}}) \in \Sigma \quad \kappa_{o}(x_{o}, x_{1}, \dots, x_{n})^{2m}$$

The following corollary is an immediate consequence of the equivalence of the Main Theorem, observing that a polynomial $f \in \mathbb{Q}[\overline{X}]$ is positive semidefinite over \mathbb{R} if it is so over \mathbb{Q} . With a little

more effort, this corollary can already be deduced from Lemma 1. COROLLARY Let $f \in \mathfrak{Q}[X_1, \ldots, X_n]$. Then $f \in \Sigma \mathbb{R}(\overline{X})^{2m}$ if and only if $f \in \Sigma \mathfrak{Q}(\overline{X})^{2m}$.

2. On Theorem 2

Let us now consider the case n = 1, i.e. $K = K_O(X)$. As before we assume that P_O is an archimedean ordering of K_O . The valuations v of K, real over P_O , are trivial on K_O . The totality of these valuations is well-known. Such a valuation is either the 'degree'valuation of $K_O(X)$ or corresponds one-to-one to a pair consisting of an irreducible polynomial $p \in K_O[X]$ and a zero of p in R_O , the real (algebraic) closure of K_O with respect to P_O . Thus the following lemma is already a consequence of Lemma 1.

LEMMA 2 With the notations from above, a polynomial $f \in K_0[X]$ belongs to $\Sigma P_0K_0(X)^{2m}$ if and only if f is positive semidefinite over R_0 , 2m|deg f and, in the factorization of f, 2m divides the exponent of every prime polynomial p having a zero in R_0 .

Specializing K_{O} to ${\rm I\!R}$ and ${\rm P}_{O}$ to the unique ordering of ${\rm I\!R}$, we proceed to the

<u>Proof of Theorem 2</u>: Note first of all that the polynomial $x^{2m} + nx^2 + 1$ is positive definite, has no real zero and its degree is divisible by 2m. Hence by Lemma 2 we can find a natural number N(n) and polynomials $g_{i}^{(n)}$, $h^{(n)} \in \mathbb{R}[X]$ $(1 \le i \le \mathbb{N}(n))$ such that

$$x^{2m} + nx^{2} + 1 = \sum_{i=1}^{N(n)} \frac{g_{i}^{(n)}(x)^{2m}}{h^{(n)}(x)^{2m}}$$

Assume that there are bounds N and d , independent of n , such that for all n

Then we also have

. .

$$\deg g_{i}^{(n)} \leq d + 1 \quad \text{for all } i \leq N(n) .$$

By this assumption, it is possible to express the phrase

$$(\forall n \in \mathbb{N}) (\exists g_1, \dots, g_N, h) (x^{2m} + nx^2 + 1) h^{2m} = \sum_{i=1}^{N} g_i^{2m}$$

by a formula φ in the first order language of fields, involving some unary predicate for \mathbb{N} . Thus

Let $(\mathbb{R}^*, \mathbb{N}^*)$ be a proper elementary extension of (\mathbb{R}, \mathbb{N}) . Then, as it is well-known \mathbb{N}^* contains elements which are bigger than every $n \in \mathbb{N}$. Let ω be such a non-standard natural number. Since φ also holds in $(\mathbb{R}^*, \mathbb{N}^*)$, we conclude that

(*)
$$x^{2m} + \omega x^2 + 1 \in \Sigma \mathbb{R}^{*}(x)^{2m}$$
.

This will lead us to a contradiction.

Let v^* be a valuation on \mathbb{R}^* which corresponds to the valuation ring

 $A = \{x \in \mathbb{R}^* \mid -n < x < n \text{ for some } n \in \mathbb{N} \}.$

Note that v* has a formally real residue field; in fact, $\overline{\mathbb{R}}_{v*}^{*} = \mathbb{R}$. Moreover, v*(ω) < 0 if we write the valuation additively. Now by [3],Ch.VI,§10,Proposition 1, v* can be extended to a valuation v of \mathbb{R} *(X) by setting

$$v(a_n x^n + ... + a_0) = \min\{(v^*(a_i), i)\}$$
,

where the value group is $v^*(\mathbb{R}^*) \times \mathbb{Z}$, ordered lexicographically such that the first component dominates. This extension has the same residue field as v^* , hence is a valuation of $\mathbb{R}^*(X)$ to which the condition of Lemma 1 applies. From (*) we therefore conclude

$$2m | v (x^{2m} + \omega x^{2} + 1) = (v^{*}(\omega), 2)$$
.

This is a contradiction, since 2m does not divide 2, except for m = 1.

q.e.d.

Using a result of Becker ([2], Theorem 2.9), we can find a bound N in Theorem 2 depending only on m. (In fact, if m = 2, we may take N = 36.) Then the assertion of Theorem 2 may be modified, saying that for this fixed N, deg h⁽ⁿ⁾ tends to infinity, if n does.

REFERENCES

- BECKER, E.: Summen n-ter Potenzen in Körpern. J.reine angew. Math. 307/308 (1979), 8-30
- [2] BECKER, E.: The real holomorphy ring and sums of 2n-th powers. Lecture Notes in Math. 959 (Springer, 1982), 139-181
- [3] BOURBAKI, N.: Elements of mathematics, commutative algebra. Paris 1972
- [4] ENDLER, O.: Valuation theory. Berlin-Heidelberg-New York 1972

64

- [5] JOLY, R.J.: Sommes de puissance d-ièmes dans un anneau commutatif. Acta arithmetica 17 (1970), 37-114
- [6] KUHLMANN, F.V. PRESTEL, A.: On places of algebraic function fields. (To appear)
- [7] PRESTEL, A.: Lectures on formally real fields. Monografías de matematica 22, IMPA, Rio de Janeiro 1975

Alexander Prestel Fakultät für Mathematik Universität, Postfach 5560 7750 Konstanz West-Germany