Alexander Prestel

Model theory of fields : an application to positive semidefinite polynomials

Mémoires de la S. M. F. 2^{e} série, tome 16 (1984), p. 53-65
http://www.numdam.org/item?id=MSMF_1984_2_16__53_0
© Mémoires de la S. M. F., 1984, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F.» (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MODEL THEORY OF FIELDS:

AN APPLICATION TO POSITIVE SEMIDEFINITE POLYNOMIALS

Alexander Prestel

Abstract: Using some model theoretic arguments, we will settle the following problem raised by E. Becker: Which polynomials $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ can be written as a finite sum of $2 m$-th powers of rational functions in x_{1}, \ldots, x_{n} over \mathbb{R} ?

INTRODUCTION

From Artin's solution of Hilbert's 17-th Problem, it is clear that polynomials $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ which can be written as a sum of squares of rational functions in $\bar{X}=\left(X_{1}, \ldots, X_{n}\right)$ over \mathbb{R} are exactly the positive semidefinite ones, i.e. those satisfying $f(\bar{a}) \geq 0$ for all $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. In view of this result, the question naturally arises under what conditions such an f can be even written as a sum of $2 m-t h$ powers of rational functions in \bar{X} over \mathbb{R}.

Denoting for a ring R, by ΣR^{s} the set of finite sums of s-th powers of elements from R, the question then is: When does $f \in \Sigma \mathbb{R}(\bar{X})^{2 m}$ hold? For odd exponents the answer is trivial, since $\mathbb{R}(\bar{X})=\Sigma \mathbb{R}(\bar{X})^{2 m+1}$ by a result of Joly (see [J], Théorème (2.8)). 0037-9484/84 0353 13/\$ 3.30/ © Gauthier-Villars

A. PRESTEL

We will give the following answer for homogeneous ${ }^{*}$) polynomials f : THEOREM 1 Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be homogeneous and positive semidefinite. Then $f \in \Sigma \mathbb{R}(\bar{X})^{2 m}$ if and only if $2 m / d e g f$ and $2 m$ lord $f\left(p_{1}, \ldots, p_{n}\right)$ for all polynomials $p_{1}, \ldots, p_{n} \in \mathbb{R}[t]$ with at least one p_{i} having a non-vanishing absolute term.

Here ord $h(t)$ is the order of $h(t)$ at the place $t=0$, i.e. the maximal r such that t^{r} divides $h(t)$. The proof of this theorem ultimately makes use of the Ax-Kochen-Ershov Theorem on the model completeness of certain classes of henselian fields.

Clearly, one is tempted to ask the corresponding question for polynomials $f \in K_{o}\left[X_{1}, \ldots, X_{n}\right]$ where K_{o} is some other formally real field. The main theorem of this note refers to a fixed archimedean ordering on K_{o}. Thus, in particular, if R is some archimedean real closed field, we will have the same situation as in Theorem 1 . All attempts to generalize this result to non-archimedean real closed fields failed, and, as it finally turned out, must fail.

In case Theorem 1 would hold for all real closed fields R and for $n=2$, by the Compactness Theorem one could conclude that for each $d \in \mathbb{N}$, there were some formula $\varphi\left(a_{0}, \ldots, a_{d}\right)$, in the language of rings, such that for all real closed fields R we could get (after dehomogenizing)

$$
R \neq \varphi\left(a_{0}, \ldots, a_{d}\right) \text { iff } a_{0}+\ldots+a_{d} x^{d} \in \Sigma R(X)^{2 m}
$$

Equivalently, one could find bounds N and s, depending only on d and m such that, for $a l l a_{0}, \ldots, a_{d} \in R, f=a_{o}+\ldots+a_{d} X^{d} \in \Sigma R(X)^{2 m}$

[^0]
MODEL THEORY OF FIELDS

implies

$$
f=\sum_{i=1}^{N} \frac{g_{i}(X)^{2 m}}{h_{i}(X)^{2 m}} \text { and deg } g_{i}, \operatorname{deg} h_{i} \leq s
$$

This, however, turns out to be wrong in general. Using a simple non-standard argument (i.e. an application of the Compactness Theorem), we will prove

THEOREM 2 For all $m \geq 2$ and all $n \geq 0$,
$x^{2 m}+n x^{2}+1=h^{(n)}(x)^{-2 m} \sum_{i=1}^{N(n)} g_{i}^{(n)}(x)^{2 m}$. Moreover, if n tends to infinity, so does $N(n)$ or $\operatorname{deg} h^{(n)}$.

By this theorem and the remarks above, Theorem 1 cannot hold for arbitrary real closed fields R. In fact, Theorem 2 shows that, for $m \geq 2$, the property ' $f \in \Sigma R(\bar{X})^{2 m}$ ' is not elementary in the coefficients of f. This should be seen in contrast to the case $m=1$. In this case, $f \in \Sigma R(\bar{X})^{2}$ can be expressed by the formula

$$
\forall a_{1}, \ldots, a_{n} \exists b \quad f\left(a_{1}, \ldots, a_{n}\right)=b^{2},
$$

saying that f is positive semidefinite.

1. On Theorem 1

In [1] Becker developed a general theory of sums of $2 m-t h$ powers in formally real fields. From this theory ([1],Satz 2.14) one obtains the following characterization: Let K be formally real. Then for any a $\in K$:

$$
a \in \Sigma K^{2 m} \text { iff }\left\{\begin{array}{l}
a \in \Sigma K^{2} \text { and } 2 m \mid v(a) \text { for all } \\
\text { valuations } v \text { of } K \text { with formally } \\
\text { real residue field } \bar{K}_{v}
\end{array}\right.
$$

A. PRESTEL

A valuation here and in what follows may have an arbitrary ordered abelian group Γ as group of values. By $2 \mathrm{mlv}(\mathrm{a})$ we then mean that there is some $b \in K$ satisfying $2 m v(b)=v\left(b^{2 m}\right)=v(a)$. Concerning the theory of valuations we refer the reader to [3] and [4].

The first lemma will be a slight generalization of the above equivalence. For its proof we need some notations and results from [1].

```
    A subset S of K is called a preordering of level 2m if
(i) S + S\subsetS,S\cdotS\subsetS, K
In case m=1 , we obtain the usual notion of preordering (cf. [7]).
A preordering S of level 2m is called complete if
\[
\begin{equation*}
a^{2} \in S \text { implies } a \in S U-S \text {. } \tag{ii}
\end{equation*}
\]
```

In what follows, complete preorderings will always be denoted by P. If $m=1$, completeness of P just means $P U-P=K$. Thus in this case, P is an ordering in the usual sense. In general,

$$
a s_{p} b \text { iff } b-a \in P
$$

defines a partial ordering on K, which for level 2 is linear. By [1], Section 1, for any preordering S of level 2 m we have

$$
\begin{equation*}
S=\bigcap_{S \subset P} P \tag{iii}
\end{equation*}
$$

where P ranges over complete preorderings of level 2 m . From [1], Section 2, we further obtain that for every complete preordering P of level $2 m$,

```
(iv) }\mp@subsup{A}{p}{}={x\inK|-n \mp@subsup{s}{p}{}x\mp@subsup{\leq}{p}{n}\mathrm{ for some n G NN } defines a
    valuation ring on K such that '1+M
    is an ordering (of level 2) of the residue field }\mp@subsup{\overline{K}}{\textrm{p}}{}\mathrm{ .
```


MODEL THEORY OF FIELDS

Here M_{P} denotes the maximal ideal of A_{P} and \bar{a} the residue of a, i.e. $\overline{\mathrm{a}}=\mathrm{a}+\mathrm{M}_{\mathrm{p}}$.

LEMMA 1 Let P_{0} be an archimedean ordering of the subfield K_{o} of K. Then $a \in K$ belongs to $\Sigma P_{0} \cdot K^{2 m}$ if and only if $a \in \Sigma P_{0} \cdot K^{2}$ and $2 \mathrm{~m} / \mathrm{v}(\mathrm{a})$ for every valuation v , real over P_{o}.

Let v have valuation ring A and residue field \bar{K}. We call v real over P_{0}, if $\overline{P_{O} \cap A}$ is an ordering of $\overline{K_{O}}$ which extends to some ordering of \bar{K}. Since P_{o} is archimedean, it follows that v must be trivial on K_{o}, i.e. $v\left(K_{0}\right)=\{0\}$ or, equivalently, $K_{o} \subset A$. Moreover, it follows that the set $\Sigma P_{o} \cdot K^{2 m}$ of sums of $2 m$-th powers with coefficients from P_{o}, actually is a preordering of level 2 m on K .

Proof: First assume that $a \in \Sigma P_{0} \cdot K^{2 m}$. Then clearly a $\in \Sigma P_{0} \cdot K^{2}$. But also $2 \mathrm{~m} / \mathrm{v}(\mathrm{a})$ is easily seen for valuations v , real over P_{o}. Indeed, for such a valuation we have

$$
\begin{equation*}
v\left(\sum_{i} p_{i} x_{i}^{2}\right)=\min _{i}\left\{v\left(p_{i} x_{i}^{2}\right)\right\} \tag{v}
\end{equation*}
$$

In fact, if $v\left(p_{1} x_{1}{ }^{2}\right)$ is of minimal value, then $\sum_{i}\left(p_{1} x_{1}{ }^{2}\right)^{-1}\left(p_{i} x_{i}{ }^{2}\right)$ belongs to A_{v} and yields a non-vanishing residue class in \bar{K}_{V} by the assumption on v.Thus its value is O. This proves (v). Now (v) and $a=\Sigma p_{i} a_{i}^{2 m}$ clearly imply $2 m / v(a)$.

Next assume the conditions on the RHS of the lemma. If a $\in \Sigma P_{o} \cdot K^{2 m}$, then by (iii) there is a complete preordering P such that $a \notin P$. By (iv), P defines the valuation ring A_{P}. Let V_{P} denote a valuation corresponding to A_{P}. Note that $K_{o} \subset A_{P}$ since P_{O} is archimedean. Thus V_{P} is trivial on K_{o}. Moreover, $\overline{\mathrm{P} \cap \mathrm{A}_{\mathrm{P}}}$ is an ordering of the residue field which clearly extends $\overline{P_{o} \cap A_{P}}$.

A. PRESTEL

Hence we know that $2 m / v_{P}(a)$. Let $b \in K$ be such that $v\left(a b^{-2 m}\right)=0$. Then $a b^{-2 m}$ is a unit. Since $a b^{-2 m} \in \Sigma P_{0} \cdot K^{2}$, the residue class $\overline{a b^{-2 m}}$ belongs to the ordering $\overline{P \cap A_{p}}$ of \bar{K}. Therefore we can find $p \in P$ such that

$$
a b^{-2 m} p^{-1} \in 1+M_{p}
$$

Since $1+M_{P} \subset P$, this implies $a \in P$, a contradiction.
q.e.d.

We will now apply Lemma 1 to the situation where P_{o} is an archimedean ordering of K_{o} and $K=K_{o}\left(X_{1}, \ldots, X_{n}\right)$, the field of rational functions in $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ over K_{o}. By R_{o} we denote the real (algebraic) closure of K_{o} with respect to P_{o}. Moreover, $R_{o}((t))$ denotes the field of formal Laurent series

$$
\rho=\sum_{i=r}^{\infty} a_{i} t^{i} \quad \text { with } \quad a_{i} \in R_{o}, r \in \mathbb{Z} \text {. }
$$

The canonical valuation on $R_{o}((t))$ is denoted by ord. We have

$$
\operatorname{ord}\left(\sum_{i=r}^{\infty} a_{i} t^{i}\right)=r \quad \text { if } \quad a_{r} \neq 0
$$

If almost all coefficients a_{i} vanish, ρ is called a finite Laurent series.

MAIN THEOREM With the above notations, the following are equivalent
for all $f \in K_{o}[\bar{x}]$:
(1) $f \in \Sigma P_{o} \cdot K_{o}(\bar{X})^{2 m}$,
(2) f is positive semidefinite over R_{o} and $2 m$ lord $f\left(\rho_{1}, \ldots, \rho_{n}\right)$ for all $\rho_{1}, \ldots, \rho_{n} \in R_{o}((t))$,
(3) the same as in (2) except that $\rho_{1}, \ldots, \rho_{n}$ are finite Laurent series.

MODEL THEORY OF FIELDS

Proof: $(1) \Rightarrow(2): C l e a r l y, f$ is positive semidefinite over R_{o}. Next observe that the substitutions $x_{i} \rightarrow \rho_{i}$ define a homomorphism from $K_{o}[\bar{X}]$ to $R_{o}((t))$ which can be easily extended to some place from $K_{o}(\bar{X})$ to $R_{O}((t))$. Lifting the valuation ord from $R_{o}((t))$ through this place, we obtain a valuation v on $K=K_{o}(\bar{X})$ with residue field contained in R_{o}. Thus v is real over P_{o}. By Lemma 1 we therefore have $2 \mathrm{mlv}(\mathrm{f})$. From the construction of v , this implies $2 m$ lord $f\left(\rho_{1}, \ldots, \rho_{n}\right)$.

Since (2) $\Rightarrow(3)$ is trivial, it remains to prove (3) $\Rightarrow(1)$, which is the main point of this theorem. From the positive semidefiniteness of f over R_{o} it follows by well-known arguments that $f \in \Sigma P_{o} \cdot K_{o}(\bar{X}){ }^{2}$. Thus in view of Lemma 1 , it remains to prove $2 \mathrm{mlv}(\mathrm{f})$ for every valuation v of K, real over P_{o}. As explained after Lemma 1 , v is trivial on K_{o}. Thus v is a place of the function field K / K_{o} in the usual sense. (We may consider K_{o} as a subfield of \bar{K}_{V}.) Let us assume $2 \mathrm{~m} \nmid \mathrm{v}(\mathrm{f})$.

By the result of [6] we know that we may replace the valuation v by some other valuation v^{\prime}, trivial on K_{o}, still satisfying $2 \mathrm{~m} \nmid \mathrm{v}^{\prime}(\mathrm{f})$, but having additional properties*) like
(a) value group of v^{\prime} is \mathbb{Z},
(b) residue field of v^{\prime} is a subfield of \bar{K}_{v} finitely generated over K_{0}.

Since v is real over P_{o}, the residue field \bar{K}_{v} admits an ordering extending that of K_{o}. Hence the well-known theory of function fields

[^1]
A. PRESTEL

over real closed fields yields a place from the residue field \bar{K}_{v} ' of v^{\prime} to the real closure R_{o} of K_{o} with respect to P_{o}; i.e. a valuation \bar{w} of \bar{K}_{v}, trivial on K_{o}, with residue field contained in R_{o}. The valuation \bar{w} of \bar{K}_{v}, can be lifted through v^{\prime} to some refinement w of v^{\prime}. Then, the value group $\bar{w}\left(\bar{K}_{v}\right.$, $)$ is an isolated subgroup of the value group $w(K)$, the quotient being isomorphic to $v^{\prime}(K)$. Thus w is a valuation of K, trivial on K_{o}, with residue field contained in R_{o} and still satisfying $2 m \nmid w(f)$. Applying once more the above mentioned result of [6], we finally obtain a valuation w^{\prime}, trivial on K_{o}, such that $2 m \not{ }^{\prime} w^{\prime}(f)$ and
(a) value group of w^{\prime} is \mathbb{Z},
(b) residue field of w^{\prime} is a subfield of \bar{K}_{w}, finitely generated over K_{o}.

Thus, in particular \bar{K}_{w}, is contained in R_{o}.
We now pass from K to the completion $\hat{K}_{W^{\prime}}$ of K with respect to the valuation w^{\prime}. From the above properties of w^{\prime} we conclude that \hat{K}_{w}, and hence also K may be identified with some subfield of $R_{0}((t))$ such that ord induces w^{\prime} on K. Hence X_{1}, \ldots, X_{n} are identified with some Laurent series $\rho_{1}, \ldots, \rho_{n} \in R_{o}((t))$ and thus $2 m$ ord $f\left(\rho_{1}, \ldots, \rho_{n}\right)$.

Finally, we observe that in the topology induced by the valuation ord on $R_{o}((t))$,

$$
\sum_{i=r}^{\infty} a_{i} t^{i}=\lim _{s \rightarrow \infty} \sum_{i=r}^{s} a_{i} t^{i}
$$

By the continuity of f and the fact that the set $\left\{\rho \in R_{0}((t))\right.$ | 2 m 久ord $\rho\}$ is open, we may assume that $\rho_{1}, \ldots, \rho_{n}$ are finite Laurent series satisfying $2 m \nmid f\left(\rho_{1}, \ldots, \rho_{n}\right)$. This contradiction to the assumptions of (3) proves (1).
q.e.d.

MODEL THEORY OF FIELDS

Proof of Theorem 1: Assume first $f \in \Sigma \mathbb{R}(\bar{X}){ }^{2 m}$. We may assume that f actually is a polynomial in X_{1}. Applying now condition (3) of the Main Theorem to $\rho_{1}=a t$ and $\rho_{n}=t, \ldots, \rho_{n}=t$ and choosing $a \in \mathbb{R}$, such that $f(a t, t, \ldots, t) \neq 0$, we conclude that $2 \mathrm{mldeg} f$. Since every polynomial in t in particular is a finite Laurent series, (3) yields the necessity of the condition in Theorem 1.

Conversely, let $2 m \mid d e g f=d$ and $2 m / o r d\left(p_{1}, \ldots, p_{n}\right)$ for all $p_{i} \in \mathbb{R}[t]$ such that ord $p_{i}=0$ for at least one p_{i}. Let $\rho_{1} \ldots . \rho_{n}$ be finite Laurent series in $t . I f \quad r=\min _{i}\left\{\begin{array}{l}\text { ord } \\ \rho_{i}\end{array}\right\}$, clearly all $p_{i}=\rho_{i} t^{-r}$ are polynomials, one having ord $=0$. Thus it follows from the condition in Theorem 1 that $2 m / o r d f\left(p_{1} \ldots, p_{n}\right)$. From

$$
f\left(p_{1}, \ldots, p_{n}\right)=f\left(\rho_{1} t^{-r}, \ldots, \rho_{n} t^{-r}\right)=t^{-d r_{f}\left(\rho_{1}, \ldots, \rho_{n}\right)}
$$

and 2 mld we therefore conclude $2 \mathrm{mlord} f\left(\rho_{1}, \ldots, \rho_{n}\right)$ as asserted in (3) of the Main Theorem. Now the equivalence of (3) and (1) yields the result $f \in \Sigma \mathbb{R}(\bar{X})^{2 m}$.
q.e.d.

It should be observed that there is no restriction in considering homogeneous polynomials only. One easily checks the following

Remark: Let $f\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial of degree d over a formally real field K_{o}. Then $f \in \Sigma K_{o}\left(X_{1}, \ldots, x_{n}\right)^{2 m}$ if and only if

$$
x_{0}^{d} \cdot f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in \quad \Sigma \quad K_{0}\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{2 m}
$$

The following corollary is an immediate consequence of the equivalence of the Main Theorem, observing that a polynomial $f \in \mathbb{Q}[\bar{X}]$ is positive semidefinite over \mathbb{R} if it is so over 0 . With a little

```
    A. PRESTEL
more effort, this corollary can already be deduced from Lemma 1 .
COROLLARY Let }f\in\mathbb{Q}[\mp@subsup{x}{1}{},\ldots,\mp@subsup{X}{n}{\prime}]\mathrm{ . Then }f\in\Sigma\mathbb{R}(\overline{X}\mp@subsup{)}{}{2m}\mathrm{ if and only
if f}\in\SigmaQ(\overline{X}\mp@subsup{)}{}{2m}\mathrm{ .
```


2. On Theorem 2

Let us now consider the case $n=1$, i.e. $K=K_{o}(X)$. As before we assume that P_{o} is an archimedean ordering of K_{o}. The valuations v of K, real over P_{o}, are trivial on K_{o}. The totality of these valuations is well-known. Such a valuation is either the 'degree'valuation of $K_{o}(X)$ or corresponds one-to-one to a pair consisting of an irreducible polynomial $p \in K_{0}[X]$ and a zero of p in R_{o}, the real (algebraic) closure of K_{o} with respect to P_{o}. Thus the following lemma is already a consequence of Lemma 1 .

LEMMA 2 With the notations from above, a polynomial $f \in K_{o}[X]$ belongs to $\Sigma P_{0} K_{o}(X)^{2 m}$ if and only if f is positive semidefinite over $R_{o}, 2 m \mid d e g f$ and, in the factorization of $f, 2 m$ divides the exponent of every prime polynomial p having a zero in R_{o}.

Specializing K_{o} to \mathbb{R} and P_{o} to the unique ordering of \mathbb{R}, we proceed to the

Proof of Theorem 2: Note first of all that the polynomial $x^{2 m}+n x^{2}+1$ is positive definite, has no real zero and its degree is divisible by 2 m . Hence by Lemma 2 we can find a natural number $N(n)$ and polynomials $g_{i}^{(n)}, h^{(n)} \in \mathbb{R}[x] \quad(1 \leq i \leq \mathbb{N}(n)) \quad$ such that

$$
x^{2 m}+n x^{2}+1=\sum_{i=1}^{N(n)} \cdot \frac{g_{i}^{(n)}(x)^{2 m}}{h^{(n)}(x)^{2 m}}
$$

MODEL THEORY OF FIELDS

Assume that there are bounds N and d, independent of n, such that for all n

$$
N(n) \leq N \quad \text { and } \quad \operatorname{deg} h^{(n)} \leq d .
$$

Then we also have

$$
\operatorname{deg} g_{i}^{(n)} \leq d+1 \quad \text { for all } i \leq N(n)
$$

By this assumption, it is possible to express the phrase

$$
(\forall n \in \mathbb{N})\left(\exists g_{1}, \ldots, g_{N}, h\right)\left(x^{2 m}+n x^{2}+1\right) h^{2 m}=\sum_{i=1}^{N} g_{i}^{2 m}
$$

by a formula φ in the first order language of fields, involving some unary predicate for \mathbb{N}. Thus

$$
(\mathbb{R}, \mathbb{N}) \vDash \varphi .
$$

Let $\left(\mathbb{R}^{*}, \mathbb{N}^{*}\right)$ be a proper elementary extension of (\mathbb{R}, \mathbb{N}). Then, as it is well-known \mathbb{N}^{*} contains elements which are bigger than every $n \in \mathbb{N}$. Let ω be such a non-standard natural number. Since φ also holds in $\left(\mathbb{R}^{*}, \mathbb{N}^{*}\right)$, we conclude that

$$
\begin{equation*}
x^{2 m}+\omega x^{2}+1 \in \Sigma \mathbb{R}^{*}(X)^{2 m} \tag{*}
\end{equation*}
$$

This will lead us to a contradiction.

Let v^{*} be a valuation on \mathbb{R}^{*} which corresponds to the valuation ring

$$
A=\left\{x \in \mathbb{R}^{*} \mid-n \leq x \leq n \quad \text { for some } n \in \mathbb{N}\right\}
$$

Note that v^{*} has a formally real residue field; in fact, $\overline{\mathbb{R}}_{\mathrm{V}}{ }^{*}=\mathbb{R}$. Moreover, $\mathrm{v}^{*}(\omega)<0$ if we write the valuation additively. Now by [3],Ch.VI,§10,Proposition 1, v^{*} can be extended to a valuation v of $\mathbb{R} *(X)$ by setting
A. PRESTEL

$$
v\left(a_{n} x^{n}+\ldots+a_{0}\right)=\min _{i}\left\{\left(v^{*}\left(a_{i}\right), i\right)\right\}
$$

where the value group is $\mathrm{v}^{*}(\mathbb{R} *) \times \mathbf{z}$, ordered lexicographically such that the first component dominates. This extension has the same residue field as v^{*}, hence is a valuation of $\mathbb{R}^{*}(\mathrm{X})$ to which the condition of Lemma 1 applies. From (*) we therefore conclude

$$
2 m \operatorname{lv}\left(X^{2 m}+\omega X^{2}+1\right)=\left(v^{*}(\omega), 2\right)
$$

This is a contradiction, since $2 m$ does not divide 2 , except for $m=1$.
q.e.d.

Using a result of Becker ([2], Theorem 2.9), we can find a bound N in Theorem 2 depending only on m . (In fact, if $m=2$, we may take $N=36$.) Then the assertion of Theorem 2 may be modified, saying that for this fixed N, deg $h^{(n)}$ tends to infinity, if n does.

REFERENCES

[1] BECKER, E.: Summen n-ter Potenzen in Körpern. J.reine angew. Math. 307/308 (1979), 8-30
[2] BECKER, E.: The real holomorphy ring and sums of $2 n-t h$ powers. Lecture Notes in Math. 959 (Springer, 1982), 139-181
[3] BOURBAKI, N.: Elements of mathematics, commutative algebra. Paris 1972
[4] ENDLER, O.: Valuation theory. Berlin-Heidelberg-New York 1972

MODEL THEORY OF FIELDS

```
[5] JOLY, R.J.: Sommes de puissance d-ièmes dans un anneau
        commutatif. Acta arithmetica 17 (1970), 37-114
[6] KUHLMANN, F.V. - PRESTEL, A.: On places of algebraic function
        fields. (To appear)
[7] PRESTEL, A.: Lectures on formally real fields. Monografías de
    matematica 22, IMPA, Rio de Janeiro 1975
```

```
Alexander Prestel
Fakultät für Mathematik
Universität, Postfach 5560
7750 Konstanz
West-Germany
```


[^0]: *) This is no restriction of the generality.

[^1]: *) The proof of this 'density' theorem for places on function fields makes essential use of the Ax-Kochen-Ershov Theorem mentioned in the introduction.

