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MODEL THEORY OF FIELDS:

AN APPLICATION TO POSITIVE SEMIDEFINITE POLYNOMIALS

Alexander Prestel

Abstract: Using some model theoretic arguments, we will settle the
following problem raised by E. Becker: Which polynomials
f € 3 R [ X - , . . . , X ] can be written as a finite sum of 2m-th powers
of rational functions in X- , . . . , X over ]R ?

INTRODUCTION

From Artin's solution of Hilbert's 17-th Problem, it is clear

that polynomials f € 3 R [ X . . , . . . , X ] which can be written as a sum of

squares of rational functions in X = (X . , . . . ,X ) over ]R are exactly

the positive semidefinite ones, i.e. those satisfying f ( a ) > 0 for

all a = (a. , . . . ,a ) € 3R11 . In view of this result, the question1 n
naturally arises under what conditions such an f can be even written as

a sum of 2m-th powers of rational functions in X over 3R .

Denoting for a ring R , by Z Rs the set of finite sums of

s-th powers of elements from R , the question then is: When does

f € I ]R (X) hold? For odd exponents the answer is trivial, since

3R (X) = £ 3R (X)2 m + 1 by a result of Joly (see [J] , Theoreme ( 2 . 8 ) ) .
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A. PRESTEL

We will give the following answer for homogeneous polynomials f :

THEOREM 1 Let f € 3R [ X ^ , . . . , X ^ ] be homogeneous and positive semi-
definite. Then f € I -5R ( X ) 2m if and only if 2ml deg f and
2mlord f ( p . , . . . , p ) for all polynomials p . , . . . , p € ]R [ t] with
at least one p . having a non-vanishing absolute term.

Here ord h ( t ) is the order of h ( t ) at the place t = 0 , i . e .
the maximal r such that 1'^ divides h ( t ) . The proof of this
theorem ultimately makes use of the Ax-Kochen - Ershov Theorem on the
model completeness of certain classes of henselian fields.

Clearly, one is tempted to ask the corresponding question for
polynomials f € K [ X < . , . . . , X ] where K is some other formally
real field. The main theorem of this note refers to a fixed archi-
medean ordering on K . Thus, in particular, if R is some archi-
medean real closed field, we will have the same situation as in
Theorem 1 . All attempts to generalize this result to non-archimedean
real closed fields failed, and, as it finally turned out, must fail.

In case Theorem 1 would hold for all real closed fields R and
for n = 2 , by the Compactness Theorem one could conclude that for
each d € ]N , there were some formula 4) ( a , . . . , a , ) , in the language
of rings, such that for all real closed fields R we could get
(after dehomogenizing)

R t= 4)(a . . . . . a , ) iff a + . . . + â  e Z R ( X ) 2 m .

Equivalently, one could find bounds N and s , depending only on d
and m such that, for all a , . . . , a , € R , f = a + . . . + a^X6' € IRtX^

*) This is no restriction of the generality.
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MODEL THEORY OF FIELDS

implies

N _ ,^2mrr ( y \f = I ̂ i^ and deg g. , deg h. < s .
1=1 h^X)2111

This, however, turns out to be wrong in general. Using a simple

non-standard argument (i.e. an application of the Compactness

Theorem), we will prove

THEOREM 2 For all m > 2 and all n > 0 ,

X21^ nx2^ = h^xr^^g.^X)2111. Moreover, if n
i=1 1

tends to infinity, so does N ( n ) or_ deg h '7 .

By this theorem and the remarks above. Theorem 1 cannot hold

for arbitrary real closed fields R . In fact. Theorem 2 shows that,

for m > 2 , the property 'f € Z R t X ) 2 1 1 1 is not elementary in the

coefficients of f . This should be seen in contrast to the case

m = 1 .In this case, f € £ R ( X ) can be expressed by the formula

V a ^ , . . . , a ^ 3 b f (a^ , . . . ,a^ ) = b ,

saying that f is positive semidefinite.

1 . On Theorem 1

In [ 1 ] Becker developed a general theory of sums of 2m-th
powers in formally real fields. From this theory ( [ 1 ],Satz 2 . 1 4 )
one obtains the following characterization: Let K be formally real.
Then for any a € K :

a € £K2 and 2 m | v ( a ) for all
a e IK2111 iff { valuations v of K with formally

real residue field K .
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A. PRESTEL

A valuation here and in what follows may have an arbitrary ordered
abelian group r as group of values. By 2 m | v ( a ) we then mean
that there is some b € K satisfying 2m v ( b ) = v^2111) = v ( a ) .
Concerning the theory of valuations we refer the reader to [ 3 ] and [ 4 ] .

The first lemma will be a slight generalization of the above
equivalence. For its proof we need some notations and results f r o m [ 1 ] .

A subset S of K is called a preordering of level 2m if

( i ) S + Scs , S-S<=S , K^CS , -1 $ S .

In case m = 1 , we obtain the usual notion of preordering ( c f . [ 7 ] ) .
A preordering S of level 2m is called complete if

(ii) a2 6 S implies a € S U -S .

In what follows, complete preorderings will always be denoted by P .
If m = 1 , completeness of P just means P U -P = K . Thus in this
case, P is an ordering in the usual sense. In general,

a ^ b iff b - a 6 P

defines a partial ordering on K , which for level 2 is linear.
By [ 1 ] , Section 1 , for any preordering S of level 2m we have

(iii) S = f } P
S <=p

where P ranges over complete preorderings of level 2m .
From [ 1 ] , Section 2, we further obtain that for every complete
preordering P of level 2m ,

( iv) A = {x € K I -n <- x ̂  n for some n € 3N} defines a
valuation ring on K such that '1 +M- c: P and P H A

is an ordering (of level 2) of the residue field K .
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MODEL THEORY OF FIELDS
Here M- denotes the maximal ideal of A- and a the residue of a,

i.e. a = a + M- .

LEMMA 1 Let P be an archimedean ordering of the subfield K of—— o —————————————————————-————————————— o —
K . Then a € K belongs to IP •K2111 if and only if a € I P^-K2

and 2mlv(a) for every valuation v , real over P

Let v have valuation ring A and residue field K . We call

v real over P / i f P n A is an ordering of K which extends

to some ordering of K . Since P is archimedean, it follows that

v must be trivial on K , i.e. v(K ) = {0} or, equivalently,

K <= A . Moreover, it follows that the set I P «K m of sums of

2m-th powers with coefficients from P , actually is a preordering

of level 2m on K .

Proof: First assume that a € I P -K21" . Then clearly a € I P *K 2 .———— o o
But also 2m|v(a) is easily seen for valuations v , real over P^ .

Indeed, for such a valuation we have

2 2(v) v ( Z p .x . ) = m i n { v ( p x ) } .
i 1 1 i 1 1

In fact, if v ( p . x 2 ) is of minimal value, then Z ( p ^ x ^ ) (Pj^i )

belongs to A and yields a non-vanishing residue class in K by

the assumption on v .Thus its value is 0 . This proves ( v ) . Now

(v) and a = Z p. a2111 clearly imply 2 m l v ( a ) .

Next assume the conditions on the RHS of the lemma. If

a € IP •K2111, then by (iii) there is a complete preordering P such

that a € P . By ( iv ) , P defines the valuation ring Ap . Let Vp

denote a valuation corresponding to A . Note that K c: Ap since

P is archimedean. Thus v is trivial on K . Moreover, P n A

is an ordering of the residue field which clearly extends P n A .
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Hence we know that 2m|v ( a ) . Let b € K be such that v(ab''2m) = 0.

Then ab~ m is a unit. Since ab"2111 € I P .K2 , the residue class
-2m _____ -

ab belongs to the ordering P D A of K . Therefore we can find

p £ P such that

ab"2111 p~1 6 1 + Mp .

Since 1 +M c p , this implies a € P , a contradiction.

q.e.d.

We will now apply Lemma 1 to the situation where P is an

archimedean ordering of K^ and K = K (X. , . . . ,X ) , the field of

rational functions in X = (X. ,. . . ,X ) over K . By R we1 n o o
denote the real (algebraic) closure of K with respect to P

Moreover, R ( ( t ) ) denotes the field of formal Laurent series

00

p = I a.t1 with a. € R , r € 7L .
i=r 1 1 0

The canonical valuation on R ( ( t ) ) is denoted by ord. We have

iord( I a.t ) = r if a + 0 .
i=r 1 r

If almost all coefficients a. vanish, p is called a finite

Laurent series.

MAIN THEOREM With the above notations, the following are equivalent

for all f € K [ X ] :——'——— o

( 1 ) f £ IP^.K^X)2111 ,

(2) f is positive semidefinite over R and 2m lord f (p . , . . . ,p )

for all p^ , . . . , p ^ £ R ^ ( ( t ) ) ,

(3 ) the same as in ( 2 ) except that p . , . . . , p are finite Laurent

series.
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MODEL THEORY OF FIELDS
Proof: ( 1 ) = > ( 2 ) : Clearly, f is positive semidefinite over R
———————————————————————— Q

Next observe that the substitutions x . -> p . define a homomorphism
from K [ X ] to R ( ( t ) ) which can be easily extended to some place
from K^(X) to R ^ ( ( t ) ) . Lifting the valuation ord fromR^t)) through
this place, we obtain a valuation v on K = K ( X ) with residue
field contained in R . Thus v is real over P . By Lemma 1 we
therefore have 2 m i v ( f ) . From the construction of v , this implies
2m I ord f ( p . , . . . , p ) .

Since ( 2 ) = » - ( 3 ) is trivial, it remains to prove ( 3 ) = > ( 1 ) , which is
the main point of this theorem. From the positive semidefiniteness of
f over R it follows by well-known arguments that f € IP -K ( X ) .
Thus in view of Lemma 1 , it remains to prove 2 m l v ( f ) for every
valuation v of K , real over P . As explained after Lemma 1 , v
is trivial on K . Thus v is a place of the function field K/K
in the usual sense. (We may consider K as a subfield of K . )
Let us assume 2 m - | ' v ( f ) .

By the result of [ 6 ] we know that we may replace the valuation
v by some other valuation v ' , trivial on K , still satisfying

i *)2m - f v ' ( f ) , but having additional properties like

( a ) value group of v' is 7L ,

( b ) residue field of v' is a subfield of K finitely generated over

^ •
Since v is real over P , the residue field K admits an ordering
extending that of K . Hence the well-known theory of function fields

The proof of this 'density' theorem for places on function fields
makes essential use of the Ax-Kochen - Ershov Theorem mentioned in
the introduction.
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over real closed fields yields a place from the residue field Kv'
of v' to the real closure R of K with respect to P ; i . e .
a valuation w of K^,, , trivial on K , with residue field con-
tained in R^ . The valuation w of K^, can be lifted through v'
to some refinement w of v ' . Then, the value group w(K , ) is an
isolated subgroup of the value group w ( K ) , the quotient being iso-
morphic to v ' ( K ) . Thus w is a valuation of K , trivial on K ,
with residue field contained in R and still satisfying 2 m + w ( f ) .
Applying once more the above mentioned result of [ 6 ] , we finally
obtain a valuation w ' , trivial on K^, such that 2 m t w ' ( f ) and

( a ) value group of w' is 2 ,
( b ) residue field of w' is a subfield of K ,finitely generated over

^ •
Thus, in particular K^, is contained in R .

AWe now pass from K to the completion K , of K with respect to
the valuation w ' . From the above properties of w' we conclude that
K^, and hence also K may be identified with some subfield of
R ^ t d ) ) such that ord induces w' on K . Hence X. , . . . , X are iden-
tified with some Laurent series p . , . . . , p e R ( ( t ) ) and thus
2m •I. ord f ( p ^ . . . , p ^ ) .

Finally, we observe that in the topology induced by the valuation
ord on ^ ( ( t ) ) ,

oo i s iI a . t = lim I a . t
i=r s-»co i=r 1

By the continuity of f and the fact that the set ( p 6 R ( ( t ) ) |
2m iord p } is open, we may assume that p . , . . . , p are finite Laurent
series satisfying 2m + f ( p ^ , . . . , p ^ ) . This contradiction to the
assumptions of ( 3 ) proves ( 1 ) . q . e . d .
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Proof of Theorem 1 : Assume first f € £ 3R(X) m. We may assume that

f actually is a polynomial in X - . Applying now condition (3) of the

Main Theorem to p. = at and p = t,...,P = t and choosing

a € 3R , such that f(at.t,...,t) * 0 , we conclude that 2mldeg f .

Since every polynomial in t in particular is a finite Laurent

series, (3) yields the necessity of the condition in Theorem 1 .

Conversely, let 2mldeg f = d and 2mlord(p.,...,p ) for all

p. e 3R [ t] such that ord p. = 0 for at least-one p. . Let

p ..,...,p be finite Laurent series in t . If r = min{ ord p . } ,

clearly all p. = p.t"2" are polynomials,one having ord = 0 .

Thus it follows from the condition in Theorem 1 that 2m|ordf(p^,...,p^).

From

f(p^...,P^) = f(p.^t~r,...,p^t~r) = t'^ftp.,,...,p^)

and 2m Id we therefore conclude 2m Iord f (p..,..., p ) as asserted

in (3) of the Main Theorem. Now the equivalence of (3) and ( 1 ) yields

the result f € Z 3R (X)2111.
q.e.d.

It should be observed that there is no restriction in considering

homogeneous polynomials only. One easily checks the following

Remark: Let f (X^ , . . . ,X^ ) be a polynomial of degree d over a

formally real field K . Then f 6 £ K^(X^, . . . ,X^) 2m if and only if

^•^ '•••^) 6 z W^---^2111 •o o

The following corollary is an immediate consequence of the

equivalence of the Main Theorem, observing that a polynomial f € Q [X ]

is positive semidefinite over 3R if it is so over 0 . With a little
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more effort, this corollary can already be deduced from Lemma 1 .

COROLLARY Let f € ® [ X ^ , . . . , X ^ ] . Then f € £ ]R (X)2m if and only

if f € £ CdO2111.

2. On Theorem 2

Let us now consider the case n = 1 , i . e . K = K ( X ) , As before
we assume that P is an archimedean ordering of K . The valuations
v of K , real over P , are trivial on K . The totality of these
valuations is well-known. Such a valuation is either the 'degree'-
valuation of K ( X ) or corresponds one-to-one to a pair consisting of
an irreducible polynomial p 6 K [ X ] and a zero of p in R , the
real (algebraic) closure of K with respect to P . Thus the
following lemma is already a consequence of Lemma 1 .

LEMMA 2 With the notations from above, a polynomial f € K [ X ]
belongs to £ P -K ( X ) m if and only if f is positive semidefinite
over R , 2m|deg f and, in the factorization of f , 2m divides
the exponent of every prime polynomial p having a zero in R

Specializing K to 3R and P to the unique ordering of 3R ,

we proceed to the

Proof of Theorem 2: Note first of all that the polynomial X2"^ nX + 1

is positive definite, has no real zero and its degree is divisible

by 2m . Hence by Lemma 2 we can find a natural number N(n) and

polynomials g.^, h^ 6 3R [X] ( 1 < i < : N ( n ) ) such that

M {^\ rr (n) fV\ ̂ m

.,2m, _ 2 , , "<") 9J (x)
X + n X + 1 = £ —T—T———^—

i=1 ' h^X)2111
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Assume that there are bounds N and d , independent of n , such

that for all n

N ( n ) < N and deg h^ < d .

Then we also have

deg g?^ < d + 1 for all i < N(n) .

By this assumption, it is possible to express the phrase

N
( V n €]N ) ( 3g..,...,g,,,h) (X2111 + nX2 + 1 ) h2111 = Z g2111

' N i=1 1

by a formula 4) in the first order language of fields, involving

some unary predicate for 3N . Thus

(3R , 3N) |= 4) .

Let (3R*, 3N* ) be a proper elementary extension of (3R ,3N ) .

Then, as it is well-known 3N* contains elements which are bigger

than every n € 3N . Let <i) be such a non-standard natural number.

Since 4) also holds in (3R* , 3N *) , we conclude that

(*) X2111 + c jX2 + 1 € I 3R ^X)2111 .

This will lead us to a contradiction.

Let v* be a valuation on 3R* which corresponds to the

valuation ring

A = {x € 3R* j -n < x < n for some n € 3N } .

Note that v* has a formally real residue field; in fact, 5 .̂̂  = 3R

Moreover, v* (co) < 0 if we write the valuation additively. Now by -

[33,Ch.VI,§10,Proposition 1 , v* can be extended to a valuation v

of 3R* (X ) by setting

63



A, PRESTEL

v(a^xn+...+ a^) = minUv^a^) ,i) } ,

where the value group is v*(3R *) x a , ordered lexicographically

such that the first component dominates. This extension has the same

residue field as v*, hence is a valuation of 3 R * ( X ) to which the

condition of Lemma 1 applies. From (*) we therefore conclude

2mlv(X2 I n+(*)X2 + 1 ) = (v*((.)),2) .

This is a contradiction, since 2m does not divide 2 , except for

m == 1 .
q.e.d.

Using a result of Becker ( [ 2 ] , Theorem 2 . 9 ) , we can find a
bound N in Theorem 2 depending only on m . (In fact, if m = 2 ,
we may take N = 3 6 . ) Then the assertion of Theorem 2 may be modi-
fied, saying that for this fixed N , deg h^ tends to infinity,
if n does.
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