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THE ROLE OF RUDIMENTARY RELATIONS IN COMPLEXITY THEORY

Volger , Hugo

Resume:

On etudie dans cet article les classes R et XR des relations rudimentaires et
faiblement rudumentaires qui se reposent sur la relation de la concatenation bomee .
On obtient RUD et XRUD , les classes correspondantes des langages , ocnire I1 union d'une
hierarchic lineaire resp. polynomiale . Ces hierarchies utilisent des quanteurs alter-
nants aux longueurs bomesou egalement des machines altemantes de Turing avec alter-
nanoe oonstante . Nous allons introduire une autre description utilisant des quanteurs
altemants pour des oracles . En plus on obtiendra une chalne nouvelle des hierarchies
pour tous les niveaux exponentiels , dont 1'union sera ERUD , 1'analogue exponentiel
de la classe RUD . Et on va montrer que ERUD est la classe E^ des langages elemen-
taires .
Abstract:

We shall study the classes R resp. XR of rudimentary resp. extended rudimen-
tary relations which are based on the relation of bounded concatenation . The associ-
ated classes RUD resp. XRUD of languages are the union of a linear - resp. polynom-
ial time hierarchy . It can be described either by means of alternating length bounded
quantifiers or by means of Turing machines with constant alternation . We shall intro-
duce another description based on alternating quantifiers for oracle sets . Extending
these results we obtain a chain of hierarchies for the iterated exponential time
levels , whose union is the class ERUD , the exponential analogue of RUD . Moreover , it
will be shcwi that ERUD coincides with the class of elementary recursive languages .
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1.Introduction:

This paper is a survey on the classes R , XR , ER of rudimentary resp. extended
rudimentary resp. esponential rudimentary relations and the corresponding classes
RUD , XRUD , ERUD of languages . R and XR were introduced by Smullyan in 1961 resp.
Bennett in 1962 (cf. [ 1 9 ] , [ 1 ] ) , whereas ER is a new class . As we shall see later , a
relation is rudimentary if it is definable from the concatenation relation by means
of a first order formula where all quantifiers have linear length bounds . XR resp.
ER will be the polyncmially resp. exponentially bounded analogue of R .

The associated classes RUD , XRUD , ERUD may be obtained as the union of pertain
hierarchies . In her thesis in 1975 Wrathall [27] has shown that there are length
bounded quantification hierarchies which yield m=RUD resp. PH=XRUD and have as
first step NLTIME resp. NPTIME . As length bounded quantification is closely related
to time bounded alternation , these hierarchies can also be described as constant
alternation hierarchies for m and PH (cf.Chandra.Stockmsyer [4],Kozen [ 1 0 ] ) .

Recently Orponen [ 1 6 ] has introduced a class EH as the union of an exponential
time hierarchy involving oracle set quantification and having NEXPTIME as a first
step . Extending his approach we are able to describe the hierarchies for m and PH
as oracle set quantification hierarchies . Moreover , we shall introduce classes EH^
as the union of an analogous hierarchy involving the i-th iterate e. of the exponen-
tial function , and we shall show that each of the three descriptions may be used .
As a consequence we obtain that ERUD is the union of the classes EH ) and coincides
with the class of elementary recursive languages . In addition , the alternating log-
space hierarchy of Chandra,Kozen and Stodkmeyer [ 5 ] may be viewed as step -1 of this
chain of hierarchies .

The class EH 1 which consists of languages requiring a constant number of
alternations is contained in the class LA. the corresponding class with a linear
amount of alternation . Recently we have shown that the decision problem of the theory
e.-bounded concatenation is complete in the class LA. w.r.t. polynomial time reduc-
— ( • } }lions for i^1 . In a certain sense these results for EH ' and LA. measure the power
of ê -bounded concatenation ( cf.also Wilkie [ 2 4 , 2 5 , 2 6 ] ) . However , the question- /j\whether the inclusion EH' cLA. is proper for some ±>_0 remains open . A positive
answer would imply that the inclusions PHcAPTIME and UicALTIME are proper , thus
solving important open problems in complexity theory .

2. Concatenation as a base of conputability theory:
In 1946 Quine [ 1 7 ] suggested to use the concatenation relation rather than

addition and multiplication as a base of oomputability theory . Thus in 1961 Smullyan
[ 1 9 ] introduced the class R resp. Rg of rudimentary resp. strictly rudimentary rela-
tions on { 1 , 2 } * . They consist of those relations which are definable from the con-
catenation relation by a first order formula where all quantifiers have a linear
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Rudimentary Relations
bound resp. are subword quantifiers . Smullyan has shown that R is all we need to
describe computations . Each language L c { l , 2 } * which is recursively enumerable i.e.
accepted by some Turing machine M can be obtained from a relation Q in R as follows:s
x€ L iff 3y: (x,y) C Q , where (x,y) € Q expresses the fact that y is an accepting com-
putation sequence with input x . This shows that R is large enough to enable us tos
describe Turing machine computations by means of words consisting of sequences of
configuration words . On the other hand Rg is quite small since the associated class
RUD of languages is contained in LOGSPACE and does not contain {l^^nEN} (cf.
Nepomjascii [15],Msloul [ 1 1 ] ) . In addition, the NPTmE-complete problem SAT(x) is
of the form 3y: | y | < |xl A Q(x,y) with Q in R as Msloul [ 1 1 ] has shown . This may ex-s
plain why the class R and the related classes R and XR play an important role in
complexity theory .

3. The rudimentary relations:
The class R resp. R of rudimentary resp. strictly rudimentary relations on

{ 1 , 2 } * , introduced by Smullyan [ 1 9 ] , is defined as the least class of relations which
contains the concatenation relation Con and which is closed under the boolean opera-
tions , explicit transformations and 3̂ inearty_bounded resp. sufĉ rd quantification .
The class R^ of positive rudimentary relations on { 1 , 2 } * , introduced by Bennett [ 1 ] ,
is defined as the least class of relations which contains the relation Con and which
is closed under finite unions and intersections , explicit transformations , subword
quantification and linearly .bounded existential quantification .

3y: y c x A ... , Vy: y c x -»... subword quantification
3y: lyl j^klxl A ... , Vy: | y | ̂ klxl ->. . . linearly bounded quantification
Using the k-adic encoding words over { 1 , . . . , k } may be identified with natural

numbers . Bennett [ 1 ] has shown that modulo the dyadic encoding R coincides with the
class CA of constructive arithmetic relations on N , which is the analogue of R on N
using + and x rather than Con . In addition , CA coincides with the class of bounded
arithmetic relations of Harrow [ 6 ] . Moreover , the analogues of R resp. R resp. R

+on { 1 , . . . , k } * coincide with R resp. R resp. R on { 1 , 2 } * modulo the k-adic encoding
and the dyadic decoding . Using the sequential encoding 6 <Q) of a relation Q one ob-
tains the corresponding classes of languages on { 1 , 2 , § } : RUD , RUD , RUD . It can be
shown that these classes may be identified with the unary relations in R , R , R .

Replacing linearly bounded quantification by golynomially _bounded quantification
(i.e. 3y: lyl ̂  IX^A ... and . yy: lyl 5 Ixl^ . . . ) one obtains the classes of extended
rudimentary resp. extended positive rudimentary relations , which were introduced by
Bennett [ 1 ] .

Going a step further we introduce the classes ER resp. ER of exponential rudi-
mentary resp. exponential positive rudimentary relations . They are obtained from
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R resp. R by replacing linearly bounded quantification by ê cnenUall̂  bounded

quantification (i.e. 3y: lyl ̂  ( 1 x 1 ^ A ... and vy: |y| _<e. (Ix^)-»... with e. (n) = 2" ).
Clearly , iterated exponential functions can be used as length bounds as well. - The
corresponding classes of languages are denoted by XRUD , XRUD"1' resp. ERUD , ERUD^ .
These classes are related as follows : RUD c RUD4'c: RUD , XRUD4'c XRUD , ERUD4'c ERUD and
RUD4'c XRUD4'c ERUD4", RUDcXRUDcERUD .

It should be mentioned that Jones [8] has introduced sublinear analogues of the
class R resp. RUD . In particular , he considered a subclass RUD, of LOGSPACE . It is
not clear how this class fits into the above set up .

4. Turing machines with constant resp. linear alternation:
Chandra and Stockmeyer [4] and Kozen [10] have extended the concept of nondeter-

ministic Turing machines (MM's) to alternating Turing machines (AIM'S) . There is a
close connection between alternation and quantification . In particular , hierarchies
defined by bounded quantification are closely related to hierarchies defined by
constant alternation using the same time bound .

An ATM M is a NTM which has 2 disjoint sets of states , the existential and uni-
versal states , and a distinguished accepting resp. rejecting state . Configurations
and their successor relation are defined as for NTM's . An input w is accepted by M
(i.e. w€L(M)) , if there exists a finite accepting subtree B of the computation tree
of M for w . B is accepting , if (1 ) the root of B is labeled with the input configu-
ration for w, (2) all leaves of B are labeled with accepting configurations , (3) if
a node b of B is labeled with an existential (resp. universal) configuration C then
at least one (resp. all) successor configurations C' of C must appear as labels of
successors b* of b (cf. Berman [2]) .

A language L belongs to the alternation class STA(s,t,a) , if L is accepted by
an ATM M such that each w in L posesses an accepting subtree B of depth <_ t (n) and
alternation depth ^a(n) and each configuration in B uses space <s(n) , where n=lwl.
We shall use the notation STA-(s,t,a) resp. STA,,(s,t,a) to indicate that the input
configuration is required to be existential resp. universal . As special cases we
obtain the alternating time class ATIME(t) =STA(-,t,-) and the alternating space
class ASPACE(s) =STA(s,-,-) . The time class with constant alternation CATIME(t) is
defined as U<STA-(-,t,k) :k€N> . Similarly the time class with linear alternation
LATIME(t) is defined as STA^(-,t,id) .

Alternating time bridges the gap between nondetenninistic time and deterministic
space as Chandra,Kozen and Stockmeyer [5] have shown :

( * ) NTIME(t) cCATIME(t) cLATIME(t) cATIME(t) cDSPACE(t) for t^id

(**) ALOGSPACE=PnME , APTIME = PSPACE , APSPACE = EXPTIME
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5. The linear - and polynomial time hierarchies:

Wrathall [27] has shown that the class XRUD is the union of the polynomial time
hierarchy of Meyer and Stockmeyer [12 ] , and that the class RUD is the union of a
linear tine analogue of this hierarchy . There are several descriptions of these two

hierarchies as we shall see below .
Constant Alternation:
APH = U<AP,:k € N> ,AP,=U<STAg(-,0(nl),k):i€N> for k^1 ,AP^=PTIME ,
Am=U<AI^:k€N>,AL^=STAg(-,0(n),k) f or k ̂  1 , AL^ = LTIME .
Hence we have APH= U<CATIME(0(n1)) :i€ N> , ALH = CATIME (0 (n))

Length Bounded Quantification:
PH=U<PZ,:k€N> , PI -PTIME ,
L€ PI, iff there exists L' € PI and m^, — ,m^ such that:

x € L iff ^y^:ly-^l5lxlm1...Q^y^:ly^l^lxlInk:(x,y^...,y^) €L' .

m = U<LI,:k C N> , LÎ  = LTIME ,
L€ LI, iff there exist L' € LÎ  and m^,... ,m^ such that:

x € L iff 3y^:ly^l^m^lxl^.Q^y^:ly^l5n^lxl:(x,y^...,y^) €L' .

Oracle Set Quantification:
OPH=U<OP,:k€N> ,OP =U<STAg(log(nl),-,k):i,k€N>,
L€OP iff there exists a constant alternation oracle TM M with k oracles working in

ispace log(n ) for some i such that:
x€ L iff 3A. •••Q]A.- M accepts x with the oracles A^,... ,A^ .

Iterated Nondeterministic Oracles:
NP^=U<NP^:k€N>,NP^= PTIME , NP^̂  =NP(NP^) ,

NL^=U<NL.:k6N> , NL -LTIME , NL̂ ^ =NL(NL^) ,
where NP(A) resp. I^(A) is the class of languages accepted by a nondetenninistic
oracle TM with a polynomial resp. linear time bound and an oracle for a member of A .

The following 2 propositions show that the union of these hierarchies is XRUD

resp. RUD and that all descriptions yield the same hierarchies .

Prop.1: (1) NP^=PI^ for k in N ; NP^=PH
(2) PH=XRUD;NP.=NPTIME=XRUD+

(3) NL.=LI, f o r k i n N ;NL^=IH
(4) LH=RUD; NL. =NLTIMEcRUD

The proofs of ( 1 ) - (4) except NL^cRUD"^ can be found in Wrathall [28,29] . An appli-
cation of a result of Book and Greibach [3] to the inclusion CFLcRUD^ in Yu [30]

yields the desired inclusion (cf.Meloul [ 1 1 ] ) .

The proof of the next proposition will be given in sons detail since the result

will be generalized later on.
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Prop. 2: ( 1 ) AP, = P5̂  for k in N ; APH = PH
(2) AL^ = LẐ  for k in N ; Am = m
(3) OP]^=AP]^ for k̂ 1 in N ; OP c^AP ;OPH=APH .

The result in ( 1 ) was mentioned in Chandra , Kozen and Stockmeyer [ 5 ] and the
analogous result in (2) can be found in Volger [23] . ( 3 ) is a new result which con-
stitutes an analogue of a result of Qrponen [ 1 6 ] for EH , the union of an exponential
time hierarchy .

( 1 ) and (2) can be proved by the same method . Given the syntactic description
of L which uses at most k alternations of length bounded quantifiers , it is easy to
construct an ATM accepting L with the corresponding time bound and at most k alter-
nations . This proves PẐ cAP̂  resp. LẐ cAL̂  . - Conversely , given an ATM accepting
L with at most k alternations , one constructs a deterministic TM accepting a lan-
guage L' and having k additional tapes with the following property . Simulating the
i-th alternation phase the machine controls the choice of noves to be simulated by
reading the i-th tape as long as necessary going from left to right. Hence L can be
obtained from L' by an appropriate length bounded quantification with at nost k al-
ternations , as desired . This should be oorpared with the incremental stack automata
in Yu [30] . This proves AP,cPz, resp. AL,cLZ_ .

To prove ( 3 ) we adapt Orponen's proof in [ 1 6 ] . The oracle free part of the con-
stant alternation oracle TM M.for L can be simulated by a DIM M' working in poly-
nomial time because of STA^(log(n1) , - , k ) cASPACE(log(n1)) cDTIME(0(n3)) for soms j .
This inclusion can be found in Chandra , Kozen and Stockmeyer [ 5 ] . The k quantifiers
concerning the oracle sets A , . . . ,A^ will be replaced by k alternations of an ATM M"
extending M' , where each branch in the j-th alternation phase corresponds to an ora-
cle set A. =A_ A {1,2}-^ og(n ) . Because of the space bound of M it suffices to con-
sider A. instead of A. . lYbreover , each set A', can be specified in n1 steps . Thus M"
works in polynomial time . This shows OP,cAP, ^

Conversely , let L be accepted by a constant alternation TM M working in poly-
nomial time . The idea is to code a computation sequence a of configurations of M by
an oracle set C(a) which is coded characterwise . A sequence a of d==n configura-
tions of length n is a word of length <d . It can be coded as follows : C ( a ) =
{ ( i , j , a . . ) : i , j < d } , where a. . i s the j-th character in the i-th configuration of^-/D ~ ^D ia . The indices i , j are short because of lil , I j l ̂ 21og(n ) . Given ( i , j ) a . . can be
recovered from C(a) by at most a fixed number of queries . Since the successor rela-
tion is local , it is possible to construct a constant alternation oracle TM M' work-
ing on space log(n1) for some i such that (u,v) is accepted by M' with oracle C iff
C codes a computation sequence of M starting with u and ending with v and having no
alternation except at the last step . Similarly , the input configurations and the
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accepting configurations can be handled by appropriate machines . In order to express

acceptance by the given AIM M note that each alternation phase i gives rise to a

quantification over an oracle C. corresponding to it. By this method one obtains a

constant alternation oracle TM ft working on space log(n1) , which does the required

job . It should be noted that A can be chosen to be universal . This shows AP^cOP^ .

The inclusion OP = U<STA l̂og(n1) ,-,k) :i,k€N>cAP^=PTIME follows from PTIME=

ALOGSPACE which was proven in Chandra , Kozen and Stockmeyer [5] .

6.A chain of exponential time hierarchies:

As mentioned above , Orponen [16 ] introduced a class EH as the union of an ex-

ponential tine analogue of the hierarchy for APH = PH . More generally , we shall con-

.sider iterated exponential time analogues of the hierarchy for PH and obtain a chain

of class-es EH^ whose union is the class E of elementary recursive languages .

Let e. be the i-th iterate of the exponential function , i.e. e^(n) =n and

e.., (n) = exp(2,e. (n)) , where exp(2,m) = ̂ . As before there are several ways of des-
1 fi)cribing the hierarchies for EH' .

The constant alternation hierarchy AEH^ = U<AE^1) :k G N> is obtained from APH

by replacing everywhere 0(n1) by e. (0(n1)) . The length bounded quantification hier-
archy EH^ = LKEZ/̂  :k€N> is obtained from PH by replacing everywhere 0(n ) by

i fi) fi)
e. (0(n ) ) . The oracle set quantification hierarchy QEH' ' = UOE^ / :k€N> is obtained

from OPH by replacing everywhere the space bound log(n ) by the time bound e^ (0(n ))

and defining OE,^ =AE

Orponen [16 ] considered the hierarchies for AEH^ and OEH^ and proved AEH

^EH^ . The hierarchy for EH^ and all the other hierarchies for ±>_2 seem to be

new . In the case i = 0 we obtain the hierarchies for APH , PH and OPH discussed ear-

lier . The following proposition extends the results in proposition 2 .

Prop. 3: For i ̂  1 we have :

( 1 ) AE^i) =E^i) for k inN^-AEH^EH^

(2) OE^AE^ f o r k ^ l in N ; OE^ ^AE^ ; OEH^ ^AEH^ .

This can be proved by the same method which was used to prove (1) and (3) in

proposition 2 . To prove OE^ =AEH(1~1) E^o^ we use ^^^^i-t(o(n )) rk) E

ASPACE(e._. (0(n1)) c DTIME(e. (0(n1'))) proved in [5] . M&reover , an oracle set of

words of length e._. (0(n1)) can be specified in e^(0(n1')) steps , whereas the code

of a computation sequence of e. (0(n1)) configurations of length e^(0(n ) ) uses words

of length j ^e . . (0(n11)) . This shows that ( 1 ) and (2) can be proved as before .

The next proposition shows that E , the class of elementary recursive languages ,

coincides with ERUD and that the classes EH form a new hierarchy for E ^
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We shall use the following abbreviations : IA. =U<LATIME(e. (0(n1))) :1€N> and AS. =
U<ASPACE(e. (0(n1))) :1€ N> .

Prop. 4: (1) AEH^cLA.cAS.cAE^^cAEH^'0 f o r i i n N
— — m - ^-"m1" 0 ~(2) U^AE'--7 : i € N> = U<AEHv / :i € N> = U<IA. :i € N> = U<AS. :i € N> = E

(i) 1 1

(3) For each L6AEET / there exists L' €m and 1 in N such that x C L iff
^y:lyl5e^(0(n l)):(x,y) €L'

(4) E=ERUD=ERUD"1"
(5) AEH^AEH^ /.AE^AE^ lilies AEH^W^ .

The inclusions needed for (1) can again be found in [5] . (2) is a consequence
of (1) because of the well known fact E= U<AE :i€N> . To prove the representation
result in (3) which represents elements of EH^ with the help of elements of LH we
shew (cf.Wrathall [27] in the case i=0) :
(*) For each L€ STA^(-,e^(0(n1)) ,k) there exists L' € STA^(-,0(n) ,k) such that:

x € L iff 3y:|y|^e. ( Ix l 1 ) A (x,y) € L ' .
L' = { ( x , y ) : | y | ^ e ^ ( | x l ) A X € L } or {xc^xCLA Ixc"1! =e. ( I x l 1 ) } will do the job.

ERUD is contained in E since E contains Con and has the necessary closure pro-
perties . To prove the converse note that ERUD as well as E are closed under length
bounded quantification where any e. is used as a length bound . Then the inclusion
^cERUD follows by an application of (3) because of IHcLSPACEcE. This proves ERUD=
E . To prove the equality ERUD"''=E it suffices to show DTIME(e. (0(n1))) cERUD"^ be-
cause of U<AE ( l ^ : i eN>=E=ERUD. However , for each L in DTIME(e. (0(n1))) there exists
L' in LOGSPACE such that: x € L iff 3y:|y|^e. (0(n1)) A (x,y) € L ' . (x,y)€ L' states
that y is an accepting computation sequence with input x . This proves (4) . (5) fol-
lows from (1) and the well known fact AE^ ^KE(:L+^}.

It should be mentioned that the representation result in (3) can be used to
lift equalities between complexity classes at the linear time level to higher levels,
e.g. m=LSPACE implies EH^ =U<DSPACE(e. (0(n1))) :1€N> .

7.Two logspace hierarchies:

In [5] Chandra , Kozen and Stockmeyer considered indexing ATM's , a variant of the
ATM's which permits the use of sublinear time bounds . An indexing ATM has an index
tape whose content may be interpreted as position of the input which can be accessed.
Let e . (n) be log(n) . The two logspace hierarchies defined below might both be con-
sidered as step -1 of the chain of hierarchies discussed earlier . The first hier-
archy was introduced in [5] .

SEH^^ =U<aE (~1 ) :k€N> , SE^ = LOGSPACE , TS^"^ = U<ST^(log(n1) ,-,k) :i €N>

AEH^"1^ =U<AE^^:keN> , AE^"1^ =LOCTIME , AE^~1^ = U<STA^(-,log(n1) ,k) :i € N>
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We obtain another description of these logspaoe hierarchies if we replace in
the definition of PH the bounds 0(n1) by log(n1) and PTIME by LOGSPACE resp. LOCTIME.
This yields the hierarchies BÎ "1 ^ = U-̂ S "̂1 ^ :k 6 N> and EH ̂  = U<E£^1 ^ :k e N> .

The following proposition shows that ^S(~^) is contained in the class RUD=m
whereas AEET ) contains the class RUEL of Jones [8] :

Prop.5: (1 ) RUDg c LOGSPACE c SEEL̂  c RUD4' , SEH^ c RUD

(2) SE^ = ES "̂'0 for k in N , SEH^^ = m^

(3) RUD-cAEH^ c LOGSPACE

(4) AE^ = E^-^ for k in N , AEH^ = EH^

(1) was proved in Volger [23] . (3) follows since AEH has the closure pro-
perties of R U D , . (2) and (4) can be proved as ( 1 ) resp. (2) in proposition 2 .

8. The theories of bounded concatenation:

The question whether linear alternation J-s more powerful than constant alterna-
tion , i.e. whether the inclusions CATIME (e.) ̂  LATIME (e.) and EH^cLA. are proper ,
remains open . The classes LA. = USTA ( ,e. (0(n )) ,n) :le N> are closely related to
the theories of bounded concatenation . They were introduced by A.R.Meyer in 1975 (cf.
[22]) as a uniform method for proving lower bounds for the oonplexity of first order
theories .

The t-bounded concatenation relation Con. for a given function t:N-»N is defined
as follows : (u,v,w,x) £Con iff UV=WA Iwl ̂ t(lxl) . BCT({1,2}|t) , the theory of t-
bounded concatenation , is the theory Th(({1,2}*,Con ,1,2)) . Viewed in this context
the equality AEH^ =EH(1) implies that each L in AEH^ is first order definable
in the structure ({1,2}*,Con ,1,2) . Recently , we have proved a completeness result
for the classes LA. which in sane sen® measures the power of bounded concatenation
(cf.[22]) .

Prop. 6: (1 ) for all L in EH there is a uniform polynomial time reduction to the
decision problem of BCT({1,2} Ie.) .
(2) For each L in LA. there is a polynomial time reduction to the decision problem

of BCT({1,2}le^) .
(3) The decision problem of BCT({1,2} Ie.) belongs to LA. .whenever i^1 . In the case

i=0 i.e. IA =ATIME(0(n)) the problem remains open.

9. Conclusion:

The results presented in this paper show that the bounded concatenation rela-
tion as well as the different classes of rudimentary languages which are based on it
play an important role in that part of complexity theory concerned with the classes
LOGSPACE , PTIME , NPTIME etc. . There is also a close connection with time classes
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with constant resp. linear alternation which should be studied in more detail.
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