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ON SOME SERIES OF REPRESENTATIONS RELATED TO SYMMETRIC SPACES.

by

H . Schlichtkrull

In this paper, the series of representations constructed by
M. Flensted-Jensen in [ 3 ] and [ 4 ] are considered. The main results of
[ 8 ] , on lowest K-types and Langlands parameters of the representa-
tions of [ 3 ] in the equal rank case, are generalized to the other
series as well. The representations are identified with subquotients
of parabolically induced representations. The parabolic subgroup we
use, P = MAN, is cuspidal, and moreover, the symmetric space
M/MnH satisfies the equal rank condition. The inducing representa-
tion T ® \; ® 1 of MAN is given by a Flensted-Jensen representa-
tion TT of M , and thus the determination of Langlands parameters
is reduced to Flensted-Jensen representations of M . Further, these
results imply unitarity of the representations under certain condi-
tions (see Theorem 4 ) .

Since the proofs of some of our results are rather straight-
forward generalizations of those of [ 8 ] , we do not give all the de-
tails in these cases, but refer to [ 8 ] in stead.

Our results generalize some results of G . Olafsson [ 5 ] , [ 6 ] (in
fact. Theorem 1 and 3 below were obtained before we received [ 5 ] and
[ 6 ] ) .

The author expresses his gratitude to the organizers of the
conference for the invitation to participate.
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1 . Notation. Let G/H be a semisimple symmetric space with G and
H connected and linear. Let T be the corresponding involution, and
let 6 be a commuting Cartan involution. Denote by 9 = h. ® q and
g = k ® p the corresponding decompositions of the Lie algebra g ,
and let K be the maximal compact subgroup of G with Lie algebra
fe . Let G. denote the analytic subgroup of G with Lie algebra

3 - - f e n ^ + p n q .
Choose a 9-invariant maximal abelian subspace A of q , and

put t = A° n fe . Let A c a * be the set of roots of a. in g^ ,
and choose a positive system A which is 9-compatible, i.e.
a € A'*' and a | . ^ 0 implies 9a € ^ . Put p = p ( A ) =

\ I .(dim ^)a € ̂  .

Let t = 9^ be the centralizer of ^ in g , and let ^
denote the orthocomplement of t in i (w.r.t. the Killing form
of g } . Choose t^ maximal abelian in i C\ k n q , then t = t + t^

is maximal abelian in k H q . Let A^ = A(?^k^), A^ =
{a € A^ I a |^ ^ 0} and A^^ = (a € A^ I a |^ = 0). Put ^-i^
( a € A | 3 e € A ' ( ' : e i . . = a [ ^ } and choose a positive system A^ ̂

for the root system A^ ^ , then A^ = A^^ U A^ is a positive
system for A^ . Define p^ = P(A^) = ^ I ..(dim fe^) a € i<* and
p = p(A'*" - ) similarly. Notice that a c
c f i c» i

p - I .. does not vanish in general, but at least we have:c f i \-^

Lemma 1 . <p ^ , a > = 0 (o/i aZZ a € A^ .

proof; Let a € A ^ , and denote by s^ reflection in a . Then

s (A"*' , ) = A* , and hence the lemma. °a c i \ c i i

For each \ € a°* we define u^ € ?^ by the following

equations:

( 1 ) (u^2p^) |^ = ( ^P) | ^ and (u^2p^ ^ ^ ) | ̂  = 0 .

2. Flensted-Jensen's representations. Let c ^ 0 be the smallest

possible constant such that [ 4 ] Theorem 1 holds, and define
Aca°* to be the set of those \ C a^* satisfying the following

conditions (2 ) and ( 3 ) :
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SERIES OF REPRESENTATIONS

( 2 ) R e < X , a > > c for all a € A* with a | . = 0

r <}l\fa> + +[ ̂ 7a- € 2Z for an a € ̂
( 3 ) -}

^ U , ( X ) € % for X € t , exp 27riX = e .

For each X € A Flensted-Jensen 14 ) defines a function
4̂  € C (G/H) by an integral formula (for the dual function on the
dual symmetric space G /H ) , and the following properties hold for
these functions:

a) The representation of K generated by 4̂  is finite
dimensional and irreducible. Denoting by 6 , the contragredient of
this representation of K , 6 , is spherical for K/K OH and has
highest weight u , .

(We have not included Condition ( 9 ) of [ 4 ] , since it is redundant
by Lemma 1 ) .

K ODb) 4̂  is a joint eigenfunction for U ( q ) acting on C (G/H)A
from the left. The eigenvalues are determined as follows: There is a

K 0 Kunique homomorphism y : U ( g ) -» U ( a ) such that for u € U ( g ) :

( 4 ) u - y ( u ) € (Znfe)^ U ( 9 ) + U ( f l ) (^ + n ° )

where n = I . 5° . Then u4/, = y ( u ) ( - X - p ) 4 ; . .
C A ' <»• n- Aa6A

Remark. In the sequel we use only properties a) and b) of the func-
tions ^ . If 4̂  can be defined ( e . g . by analytic continuation
in X ) , such that a) and b) still hold for some \ which does
not satisfy ( 2 ) , then our results can be extended to these parameters
as well.

From a) and b) it follows by [ 2 ] Proposition 9 . 1 . 1 0 ( i i i ) that
the K-type u , has multiplicity one in the ^-module generated by

\4^, . Consequently, this module has a unique irreducible quotient T
which contains u^ .

If t is maximal abelian in fe n q , then 4 ; , is the same as
the function defined in [ 3 ] . In this case c = 0 , but ( 2 ) is not
necessary for defining 4/< . In fact ( 2 ) is not serious since one
can prove that then ^ , = 4̂  for all elements s from the Weyl
group of the root system { o € A I o ! . . = 0 ) . The series of ( 9 » K ) -
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modules T is in this case called the fundamental series for the

symmetric space G/H .
If we can choose a. such that t = a , we say that G/H

satisfies the equal rank condition. If furthermore <\,a> > 0 for
all a € A+ , then 4/, is square integrable with respect to invari-
ant measure on G/H , and hence ^ generates a unitary irreducible

G Arepresentation •n of G , whose Harish-Chandra module is T .
This was proved under stronger assumptions on X in [3 ] , and sub-
sequently proved in general by T . Oshima (unpublished, cf.

however [ 1 0 ] and [ 1 3 ] ) .

3. Lowest K-types. Let L = G , then L is connected and has Lie
algebra i . Put n - £ 9°! and n - I g°

' a€A\a|^0 (r 2 a€A ,a|-t=0 (r

and observe that t^ + n is a 9-stable parabolic subalgebra of
g^ . Choose an Iwasawa decomposition ^ = £ n f e ® a ® n « such that

a. n p c A and n~ c Up . Notice that a is T-stable, and
a. n q = a. n p by maximality of a in q so that a = a n p + a n h .
Define pp € a* by pp = ^ Tr ad , then it follows easily that•c <. Ho o* T *
P o l r» = Pi n • Define for each X € a.^ an element v, € a^ byZ' t tn^ >^0^ (r \ 0:

(5 ) ^SanQ = "\o^ and ^lanh = ^'an^ •

Theorem 1 . Assume A € A and

(6 ) < ( ^ P ) ! . , a | . >_ 0 for all a € ^ .

r^zen u^ ie o lowest K-type o/ T , and T /ias no other lowest

K-ti/pcs.

Proof: Let V, denote the spherical representation of L (the
———— A L *
analytic subgroup with Lie algebra i} with parameter \^ € a^ ,

and denote by V\ the representation of L which extends V, with
u. -2p(n.np) ^

the character e on exp it (then V^ is well de-
fined, cf. [ 8 ] Lemma 5.5 and the succeeding remark).

Let \(i^^n., V , , uj be the (g,K)-module induced from V,
(L. I A A A

in the sense of [ 1 1 ] , then one can conclude by comparing actions of
U(g) on u^ that the module T v, contragradient to T , is equiv-

\alent to X(^-«'n., V , , u ^ ) , (c f . [ 8 ] Lemma 5.6 where T has been
interchanged with T v).
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SERIES OF REPRESENTATIONS

When t = a. Theorem 1 is exactly [ 8 ] Theorem 5 . 4 , and the
general case follows in the same way as there, the only complication
being the analogue of [ 8 ] ( 5 . 1 0 ) , but at that point one can apply
Lemma 1 above, a

4. Definition. The symmetric space G/H is said to satisfy—————————— ^ ^ ————&
Condition D , if the subgroup L = G is compact or, equivalently,
if
( 7 ) rank G/H = rank G/G = rank K/K n H .

Notice that if G/H satisfies Condition D, then rank G =
rank K , so that the discrete series of G is nonempty. In fact,

r^by [ 8 ] Theorem 6 . 1 , TT belongs in this case to the discrete seriesA ^of G whenever < \ , a > > k for all a € A , where k is a certain
nonnegative constant explicitly determined. However, for "smaller**
\ it happens that TT no longer belongs to the discrete series of
G ( c f . [ 8 ] Example 7 . 5 ) , and we do not know in general the Langlands/•»parameter \) of TT in this case.

Examples. 1 GxG/d(G) satisfies Condition D if and only if
rank G = rank K .

2° From the list of [ 1 ] exactly the following spaces with G
classical satisfy Condition D:

S U ( 2 r , q ) / S U ( r , k ) + S U ( r , q - k ) - T , S U ( p , q ) / S 0 ( p , q ) ,
S U ( 2 r , 2 s ) / S p ( r , s ) , SU ( n , n ) / S L ( n , < t ) + 3 R , SO* ( 2 n ) / S 0 ( n , ( £ ) ,
S0*(4n)/SU*(2n)+3R , S O ( 2 r , q ) / S 0 ( r , k ) ^ S O ( r . q - k ) ,
S 0 ( 2 r , 2 s ) / U ( r , s ) ( r and s not both o d d ) , S p ( n , 3 R ) /SL(n, 3R) --3R ,
S p ( 2 r , q ) / S p ( r , k ) ^ S p ( r . q - k ) , S p ( p , q ) / U ( p , q ) .

5 . T as induced representation. Let a. be as defined in Section
3 , let A = exp a. and let P = MAN be a cuspidal parabolic subgroup
of G with A as its split component.

Observe that M is invariant under T , and that t is a
maximal abelian subspace of m n q where m denotes the Lie alge-
bra of M . Moreover, M / ( M H H ) (where subscript e means "identity
component") satisfies Condition D (which is generalized to non-
connected reductive groups in the obvious fashion).
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Let A c i<t* (resp. A c i^*) consist of the roots of t
m mC ^ ^

in m... (resp. in m^ n fe.,) y let A = A n { a l . l a € A ) and^ U ; ^ 4 . 4 , m m -c
A s A n A , and put p^ = i £ ^ (dimm^)a and p^ =
i I . (dim m" fe.)a . "^m

a€A_ c "
* m * mFor A € -t.,, M. € t^ is defined by p, = v ^ p - 2p . By the
4: A 4; O* HI

following lemma we get for \ € a that u ^ j s p ^ j ^ .

Lemma 2 > ^^-^c^ = ^-^mc •

Proof: Suppose & is a weight of It •»• a. in 9... , and assume

& | € ( a . I a € A ' * ' } . The claim is that if & ! ^ * ° then ^\ f
contributes nothing to (p -2p - ) | y . This follows from the fact thatc •<• .
then e& is also a weight and & | ^ € { a | ^ l a € A ^ ) . n

Let A € A . Since the highest weight u^ of ? has multipli-

city one in ^\ f it follows from Lemma 1 that the multiplicity of

the weight ^\\f of t in ^ is also one. Therefore, 6^ contains
a unique irreducible subrepresentation 6, of M n K of highest

weight ^\\f • Assuming

(8) <x\fl a> > ° for a11 a € ^m

it follows from the last paragraph of Section 2 above that A I
M

determines a Flensted-Jensen representation T T ^ of M in the
discrete series of M/(MnH) (here one should also take into account
the possibility that M is not semisimple or not connected. In the
latter case ^M is determined by 6, rather than by \\^ . See

[ 6 ] Section 4 . 8 ) .

L *Theorem 2. Let A € A and assume ( 8 ) . Define v^ € d^ by ( 5 ) .

(i) u^ is a lowest K-type of Ind0^ « v, » 1 ) vhere it occurs

with multiplicity one.

(ii) T is equivalent to the irreducible subquotient of
Indp(7T ® v ^ ® 1 ) containing u^ .

We prove (i) in the next section and (ii) in Section 7.

6. Langlands parameters. For > € A let P0 = M,A^N^ and
p^ s lAA^ be cuspidal parabolic subgroups of G and M,
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SERIES OF REPRESENTATIONS

respectively, associated to the K-type 5 , , respectively the
M n K-type 6^ by [12].Proposition 5 . 3 . 3 , and let o^ and o^ be
the associated discrete series representations of M^ and M^ ,
( c f . [ 1 2 ] Lemma 6 . 6 . 1 2 ) . Notice that only the associate classes of
C' MP, and P, are uniquely determined.

/'•• M /"' MLemma 3. We can choose P.* and P-> such that P-), c p and P^ =
—^———— M G M GP, n M. Then M^ = M^ and moreover o" = o^ .

The proof is similar to the proof of [ 8 ] Lemma 6 . 5 , and we omit
it.

f MIn particular a^ = a^ ® a.
Assume ( 8 ) and let v° € (a 0)^ and ̂  € (a^)* be the Lang-

lands parameters of T and ̂  , respectively.

proof of Theorem 2 ( i ) : Since by definition ^M is a subquotient
of Ind^M (o^ 0 ^ 0 1 ) , the composition factors of Ind0̂  0 ̂L ® 1 )

\ A A P M M Tare also composition factors of IndpG (o^ e ( v ^ + v ^ ) ® 1 ) using
induction by stages. Theorem 2 ( i ) then follows from Lemma 3 . o

Though Theorem 2 ( i i ) is still to be proved, we observe the
following corollary to this and the preceding proof of Theorem 2 ( i ) :

C' M TCorollary: \̂  = \̂  + \̂  .

Thus the determination of Langlands parameters of Flensted-
Jensen's representations is reduced to the case of symmetric spaces
satisfying Condition D.

For "large" values of A , ^M is itself in the discrete series
M Mof M ( c f . Section 4 ) , so o. = TT^ and thus Theorem 2 ( i i ) implies;

Theorem 3. There is a constant c- ^ 0 such that if A C A and

(9) < A l y , a ly-> > c- for alt a € A uith a |^ » 0

then P , ^M, ^ and U-» constitute a set of Langtands parameters
\ \ M Ifor T ( i . e . T " J., ( P , ^ , ^ , u ^ ) in the notation of [ 8 ] Section

3) .
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Since we need Theorem 3 in our proof of Theorem 2 (ii), we
indicate how to prove the former without reference to the latter.

Proof: The proof follows that of [8] Lemma 6.7 with only minor
modifications (see also [ 1 1 ] , proof of Proposition 4 . 1 3 ) . In short,
since T^ ^ X(^ + n^ , V,, p^) , (cf . the proof of Theorem 1 ) , the
a-parameters of T and V, in the Langlands classification
coincide when y, is sufficiently "large", which is ensured by ( 9 ) .
V, however, has the same a-parameter as V, , and since V, is

spherical this is -v. . °

Remark. In particular. Theorems 1 and 3 generalize the results of
[8 ] to the fundamental series for G/H. For these representations,
the results have been obtained independently by G. Olafsson [ 6 ] ,
where they are also generalized to arbitrary real reductive linear
groups (in the sense of [ 1 2 ] p. 1 ) .

7. Proof of Theorem 2 (ii). From Theorem 3 the statement of Theorem
2 (ii) immediately follows for sufficiently large values of X . We
will now prove Theorem 2 (ii) in general by explicit construction of

r* M T
a C^-vector for the induced representation Indp(T^ 6 \^ ® 1 ) ,
generating a subrepresentation which contains T as a quotient.

Consider the K-type 6^ of highest weight u^. Let U^ be a
representation space for (̂  , and assume that 6,^ is unitary on

U . Let u/s and u, in U, be a K n H-fixed vector and a vector
1 0 A A

of weight u^ respectively, normalized to (u^.u^) = 1 .
Define Cp € a* by Cp = ^ Tr ad^ . Guided by [ 3 ] Eq. ( 3 . 1 8 )

we attempt a definition of a function 4)^ on G for X € A :

< \ " H^1 !^ <-v-L-Cp,loga>
(10) ^(kxhan)= J (^ (kl)u, ,u )€'"""Hlx ^ c L L e

A (MflKflH)
for k C K, x € (MnGp)^ , h € (MFtH)^ , a € A and n € N.
The term Htx" 1 ! ) appearing in ( 1 0 ) is defined using the Iwasawa
projection corresponding to A* of the dual group G - see [ 3 ] or

[ 4 ] .

Proposition 1 . EC . ( 1 0 ) dcf-^r-^e a nonzero C^-fun.-'ticn 4)^ en G
uhzch is Y.-fin'ite cf the : rrcj^r*:'; .' e t y p t - . . Vhcn ( 8 ) h c l a p :^
function m - » ip, (gm) en M ^:cn3S tc L^M^MflH) ) fcr cacn

Mg € G, and zs in the re? re sent a-:-ion Bpaa cf ^.
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Proof: For connected semisimple M it follows from [9] Example 3.5
that the formula

<-X-p ,H(x'''l)>
( 1 1 ) ^(kxh) = ;^^^(kl)u,e dl

for k € M n K, x € (MUG^) and h € (MHH) , gives a well defined
IL -valued C°°-function on M satisfying 4', (km) = 6 ^ ( k ) 4 , ( m ) for
k € M n K, m € M . Moreover, when (8) holds the function
m - » (^ (m) ,UQ) is in L^M/tMnH)^) and generates ^M .

The preceding remarks are easily generalized to the general
nonconnected reductive M.

From ( 1 1 ) we have that ( 1 0 ) is equivalent to*
<-\^-o , log a>

( 1 2 ) 4>^(kman) = ( 6^(k) ̂  (m) , UQ) e '

for k € K, m € M, a € A and n € N. From this Proposition 1
follows.

Q

From Proposition 1 we see that we may regard (p, as a C -vector
for Ind^TT^ (0 \^ ® 1 ) . Since <p^ is K-finite of type \i\ which
has multiplicity one, 4^ is a joint eigenvector for \ J ( g )

v
Proposition 2. The eigenvalues for \ J { g ) of (p^ and ^ - . are
equat.

v
Proof; Let u € 0(5) . We will first prove the existence of an
element u- € U(a ) such that w. = u - ( ^ ) u ) ^ for all X € A .

By symmetrization we identify the symmetric algebra S( fe -» -m) with
a subspace of U(g ) . Since g = n 9 a. 9 (m- t - fe) we can determine
elements v. ,. . . ,v in U(a) and w. , . . . ,w in S(k - * -m) such that
u - 1^. v . w . € nU(g) (cf. [ 2 ] 2 . 4 . 1 4 ) , and since a and m n fe
commute we may assume that w, is centralized by m n k. ( i = 1 , . . . , p ) .

Put 4^f(g) = 4), (yg) for y,g € G, then since u € U (g ) we
vhave that (u^) <Y9) = (u^p-) (g) for y € K. Using the decomposition

G s KM AN we may take g = man, m € M , a € A , n € N . Since
<p, is invariant under N and homogeneous under A from the right
we get

285'



H E N R I K S C H L I C H T K R U L L

p T w <-v,-p ,loga>
( 1 3 ) (mp^Hyman) = 1^ v^(-\^-pp) (w^pj[) (m) e A •

To prove our claim that uy>, = u, (X)<p, for some u- € U(a°) it is
f\u

then clearly enough to prove that for each w € S(m+fe) there
exists WQ € \3U) such that

( 1 4 ) (wp^) (m) = W Q ( X |^)4^(m)

for all A € A and m € M , y € K .

Let w € S^+fe)^ and write w = £? a. 0 b. where
a_ € S(mnp) and b_ € S ( f e ) , according to the identification
S(m+fe) as S(mnp) e S ( f e ) . Denote by v -* v' the principal

antiautomorphism of U ( ^ ) . From ( 1 2 ) we then get for m € M that:

(wp^) (m) =^,i ( < S ^ ( y ) < 5 ^ ( b j ) (a^^) (m) , u^) .

Let M denote the group dual to M by Flensted-Jensen's duality.
<-A-p ,H(x)>

Put f ( x ) = e • for x € M , and write m = kxh where
k € ( M H K ) ^ , x € ( M n G Q ) g and h € (MnH) , then ( 1 1 ) gives that

^(m) = ^(MOKnH)^ ^(kDu.ftx^Ddl

and therefore it follows that

^j^^ = ^(MnKHH)^ ^^Du^AdtkD-^^fHx^Ddl

where [Ad(kl)~ a.], denotes Ad(kl)~ a. acting as a left invariant
differential operator on (^(M0) (cf. [9 ] Eq.'s (2 .3 ) and ( 4 . 6 ) ) .

Now we get

Z^1 6,(l^»(a^)(m)

= ^(MnKOH)^ ^X ( k l ) { r^1 ^(AdfkD-^^dAdlkD-^^fXx-hndl

- ^(MnKnH)^ ̂ ^^ ^(bj)u,(a^f)(x-1 l )}dl

since w = la. © b_ commutes with kl.
Using the decompositions

^ = T(m-nn°) 9 m^ e t^ e (m^nn0)
and

^ = ^,1 e ^^^ e ^ e T ( M c , 1 )
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where n . = I fe° , we can define a map n; S(m*fe)^ -» u(t)
cr ttCZ* c

uniquely by '

w-n(w) € (n^ ^+Infe^)S(m-»-fe) + S(w+fe) (m^np^m^nn^p^) .

Using Lemma 1 one can see that 6.(x)u, = 0 for X € n . +
Z n f e ^ . Since also X ̂ f = 0 for X € m^ + m^ n n° , it follows
then that

(wp^) (m) = n(w) (P^l^)^(m)

as claimed in ( 1 4 ) .

To finish the proof of Proposition 2 we prove that u - ( A ) =
O* vy(u) (-X-p) for all X € a-. . Since <p, generates the K-type u^

r' M T
in Indp(TT^ ® ^i ® 1 ) this follows immediately from Theorem 3 when
(9) holds. Since u- and y(u) are polynomials in X the assertion
holds for all X .

Theorem 2 (ii) follows immediately from Proposition 2.

Remark. It would be interesting if one could construct a G-horoomor-
phism from the space

<-v,-pp,log a>
{f € C (G) I f(gman) = f ( g )e *

Vm € (MTIH) , a € A, n € N , g € G)

to C^G/H) , taking 4), to 4^ . In the special case of o = 0,
4/, is the spherical function, P is a minimal parabolic and <?„ is
the function g -* e ' - , and thus the homomorphism searched
for is the Poisson transformation. In general the work of Oshima (cf .
[ 7 ] ) can probably be used to construct such a homomorphism.

8. Unitarity. Let X c A and consider the following condition on X

( 1 5 ) <^ '^ "l^ > ° for an a € ^ with a| Q = 0 .
a Op

Theorem 4 . Assume ( 1 5 ) , and moreover that X is purely imaginary
on a. n p. Then T is unitarizable.
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Proof: Choose a parabolic subgroup ? = MAN with Langlands decompo-
sition as indicated, such that HA = G0' np and P c P. Then 'a is
T-invariant, and 3 n Q = a O p since S centralizes a° and a°
is maximal in q. H is invariant under T and t is a maximal
abelian subspace of 'm n q, and thus M/(MnH) satisfies equal rank.
By ( 1 5 ) A * determines a representation TT" in the discrete series
of H/(HnH)^.

Observe that a = (an??) ® S. Put 7 = ^ n ?f, 7?n = Un n 7 and
?, = ^ Tr ad~ € (an??)*. It is then easily seen that
~ i % M M T
PP = PpLn^ • Therefore TT is a subquotient of Ind,~(7T,«\^| /,~®1)•C •C CUlm A i-HM A A a i lW
by Theorem 2, and using induction by stages and Theorem 2 once more
we get that T^ is a subquotient of Ind^Tî  6 v1',- « 1 ) .

F A » A 10

Now 'd = 2F n <i ® a Up and p« j~ , = 0, therefore ^L\~ is
purely imaginary by ( 5 ) , and the theorem follows. D

Remark. Theorem 4 was proved for the fundamental series for large
values of A by Olafsson ( [ 5 ] ) .
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