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WEIGHTED ORBITAL INTEGRALS ON SU2.R)

Rebecca A. Herb

Weighted orbital integrals appear in the adelic version of the Selberg trace formula.
They give tempered, but non-invariant, distributions on the local groups. In this paper the
general notion of Fourier transform for a non-invariant distribution is discussed. In the case
when the local group is SU2.R) the full Fourier transform of the weighted orbital integral is
given. The formula is then interpreted in terms of known properties of weighted orbital
integrals.

f \
Les integrales orbitales a poids figurent dans la formula des traces de Selberg au ens

/ f
global. Us donnent des distributions temperees, mais non invariantes. des groupes locals.
L'objet du ce travail est de donner des formules explicites pour la transformee de Fourier des
integrales orbitales a poids lorsque Ie groupe local est SU2.1R) . II taut d'abord preciser la

f ^
notion de transformee de Fourier d'une distribution non invariante. Enfin on demontre que la

» f f ^
formule verifie les propietes connues des integrales orbitales a poids.
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R.A. HERB

U Introduction.

The adelic version of the Selberg trace formula for rank one groups involves a variety

of terms which yield interesting tempered distributions on the various local groups, in

particular, on real reductive Lie croups. The calculation of the Fourier transforms of these

distributions is an important aspect of the use of the trace formula in the theory of

automorphic forms.

There are two main types of distributions which must be studied. The Fourier

transforms of the first type. ordinary orbital integrals, were calculated for semisimple Lie

groups of real rank one by Sally and Warner C6 ] , and for groups of arbitrary rank by the

author [5b]. The second, and less understood, type of distributions are the so-called

weighted orbital integrals. For real groups. Arthur computed the Fourier transforms of these

weighted orbital integrals restricted to the space of cusp forms [lb.c3. His methods can be

generalized to include a larger class of functions in the case that the weighting is not as

severe as possible C5a] . Finally, in the real rank one case. Warner has computed the Fourier

transform on K-biinvariant functions for a certain limit of weighted orbital integrals [7].

The results presented in this paper give the complete Fourier transform of the weighted

orbital integral and its associated singular counterpart for the case of SL(2,IR) and represent

joint work with J. Arthur and P. Sally. In ^2 notation and background information are given

and the Fourier inversion formula is stated for regular elements. A sketch of the proof is

given, but details will appear elsewhere. In ^3 the inversion formula is interpreted in terms of

the general properties of weighted orbital integrals proved by Arthur. Also. the Fourier

transform of the associated singular distribution is given.
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WEIGHTED ORBITAL INTEGRALS

f2. The Fourier Inversion Formula.

Let G = SL(2,IR), the group of two-by-two matrice« with real entries and determinant

one. We will need to consider the following subgroups of G :

, cos ^ s in 6 i
K = € t. = f | : 0 < C ^ 2n :} ;l -sin 9 cos 6 J

f et ° 1
A = € ^ = ( 0 ,-t ] : t € R ^ ;

- . 1 0 , . .. -I 0 ^

^ ^oiH o - J 3 1

N = ^ "y = ( ̂  ] : y £ ll ^ ;

r l ° -i
N = ^ ̂  s ( , J : y e R 3

If x € G is decomposed according to the Iwasawa decomposition as x = kna where

k £ K. n € N. and a € A. define v(x) = v(n) = 5 logd-^y2) if n = Uy as above. Then

v is left K and right A-invariant and is the weighting function used to define the weighted

orbital integral which occurs in the Selberg trace formula for SU2.1R). Thus for

f £ C^G) , the weighted orbital integral of f is the function on the Cartan subgroup

H = AjA defined by

(2.1) T^h^) = (e1 - e^l f ftx^x^h^dx, ^ € Ap t - 0 .

Here dx is a suitably normalized G-invariant measure on the quotient space G/A. It will be

useful also to consider the (unweighted) orbital integral or "invariant integral"

(2.2) P^h^» = (c1 - e-1! J nx^h^x-^x. f E C;(G). -x £ A, t N 0

The invariant integral was studied by Harish-Chandra and shown to have the following

properties [ 4a,b.c ].
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R.A. HERB

(I-l» For fixed h € H' = ^h^ : t € A(. t - 0 3, the distribution

P(h»: f —» <F(h).f> s F^<h), f € C^G». is tempered. That is. it extends continuously to the

Schwartz space C(G).

<I-2) The distributions P(h), h € H'. are invariant. That is. for any f € C<G» and

y € G. define fy E C<G) by f^x) = f(y x y'1). x € G. Then <P(h).f> = <F(h).fy>.

(1-3) For fixed f € C(G). -» € Ap consider the function on R\C03 defined by

t •—» F^(<:t) = F^(<h^). It is an even function and tends to zero as ( f l — «.

Although initially defined only for t N 0 . it extends to a smooth function on all of IR.

(1-4) There is a left and right invariant differential operator z on G so that

^7 PW = Prf̂ h,).

Arthur has established the following properties of the weighted orbital integral which arc

similar to those of the invariant integral [la.b.c.d].

(W-l) For fixed h € H'. the distribution T(h): f —» <T(h».f> = Tr(h» is tempered.

(W-2) The distributions T(h). h E H'. are not invariant. However, they are K-central. That

is. for k € K. <T(h).f> = ̂ (h)̂  for all f € C(G). Further, there is a specific

non-invariant distribution T^h). defined in terms of its Fourier transform, such that

T(h) - Tnj(h) is invariant.

(W-3) For fixed f € C(G). •» € Ap t ^ T^<x:t) = T^^h^l is an even function, tending

to zero at infinity. Although smooth for t ^ 0. it is badly behaved at t = 0. To describe

more exactly its behavior at zero. define S^T(:t» = Tr<Tr:t» •»• logd-c'^P^tl Then

Sr(V:t) is continuous at t = 0 and its first derivative has well-defined one-sided limits at

zero satisfying li" -rr S^v:t) - Hi -rv S^<ir:t) = cftiO where c is a constant. The
t t0 dt I c»0 dt •

singular weighted orbital integral associated to T^tvhJ is defined by
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WEIGHTED ORBITAL INTEGRALS

(2.3) TrW s li« S :̂U.1 t^O r

d2 y(W-4) —y T^:t) s T^<:t) ^ (sinh tF F :̂t) where z it the differential operator on

G appearing in {1-4}.

For f € C"(G), there are two possible definitions of the Fourier transform of f.
^

namely the operator" valued and scalar-valued Fourier transforms. Let G denote the set of

equivalence classes of irreducible unitary representations of G. (We will make no distinction
^ •between an equivalence class and a representation of that class.) For n € G, f € C^(G),

define TT(f) = J f(x)n<x) dx. Then ntf) is a trace class operator on K«. the Hilbert
- G

space of the representation TT. The operator-valued Fourier transform of f is the

operator-valued function on G defined by yf(n) = n<f). The scalar-valued Fourier transform

is the complex-valued function on G given by f(n) = tr n<f».

Now if A is an invariant distribution on G. by the Fourier transform A of A

we mean a "distribution" on G satisfying X(f) = A(f), f E C"(G). A formula describing the

Fourier transform A is a Fourier inversion formula for A(f) . that is an expansion of A(f)

in terms of the distributional characters f —* tr n(f). It typically would have the form

A(f) = [^ tr nif) djn) where d^ is some measure on G. If A is a tempered

distribution, then dj, should be supported on the tempered spectrum of G.

For example, consider the tempered invariant distribution given by the invariant integral

P<h). h € H'. Then the Fourier transform of P(h) is supported on the unitary principal

series of representations induced from the parabolic subgroup P = ArAN. For \ E Ar ,

\ € » . define TT^ = Ind̂  Ce^ei). Then

(2.4) Pf«h^ s S^ x«) f " tr T^'^f) cos Xt d\.
Y E A ^

(See [6] for details.)
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R.A. HERB

On the other hand, if A is a non-invariant distribution, it is no loncer possible to

expand A(f) in terms of the invariant distributions tr 7T(f). n € G. Thus we must work

with the operator-valued Fourier transform of f and look for a "distribution" on G so that

?A(?f) = A(fl. The Fourier inversion formula in this case would be expected to take the

form A(f) = f^ trfA^(n»7i<f)^d^<7T» where for each TT € G. A^(TT) is an operator on

H_. If A is invariant. AJn) would be scalar so that it pulls outside the trace. Of

course the operator Axtn) and the measure "A^ are not well-defined independently of

each other.

The Fourier transform of T(h). h € H*. is supported on both the unitary principal series

and on G.. the discrete series representations of G.

THEOREM. Let f be a K-finite function in C <G). -» € Aj. t ^ 0. Then

T^h^) = - (e1 - e"1! S^ e^-irh^tr 7T(f)
TT€^

^ S X(-»» f " 0jt» tr n^f) d\
^ J -«

X € A ^

- i S X<-»» f to e^^trn^UX^M^xr^'^fn d\
xe;, J-0

^ TT tr TT^^f).

The first term in the formula is the discrete series contribution computed by Arthur in

E lbe ] For n € 6.1. ^ denotes the character of TT as a function on the regular
u TT

set of G. This term is invariant since it involves only tr n(f).

The remaining three terms correspond to principal series representations The first and

last of these are also invariant. The (scalar-valued) function ^^t} ls tne solution of an

inhomogeneous second order differential equation comin? from (W-4). It is yiven by the

integral formulas
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WEIGHTED ORBITAL INTEGRALS

1 r M 9
^(t) s T sin \(u - jtp cos \u (sinh uP- du. t ^ 0, X ^ 0

A A J |t (
(2.5)

0o(t) s li» ^.(t) s f " (u - |t|Hsinh uF2 du. t N 0.v \-»o A * j t |

The last term is a point mass at the principal series representation corresponding to the trivial

character of Aj and X = 0. Note that the "TT" preceding the trace is the number n w

3.14.

The remaining term is the only non-invariant part of the formula. The induced

representations n^"1 are viewed in the compact realization as acting on a fixed Hilbert

space H^ for all A E ». Then M^A) denotes the operator on H^ which

intertwines n^ with the equivalent representation n^ = IndJiX 9 e^ 9 1»

where P = ArAN. (The normalization of M^(\) will be specified later.) M^(\) denotes

the derivative with respect to \ of this family of operators.

Although the Fourier transforms of orbital integrals can be computed directly for

arbitrary f € C"(G) by using character formulas on G and abelian harmonic analysis, the

non-invahance of the weighted orbital integrals requires a different approach. The Schwartz

function f is specialized to a matrix coefficient of a discrete series representation or a wave

packet corresponding to matrix coefficients of principal series representations. For such an f.

the differential equation and boundary conditions can be used to find an expression for Tr(h).

which is then interpreted in terms of representations.

For example, suppose f is a matrix coefficient of a discrete series representation n.

Then f is an eigenfunction of the differential operator z and Pr = 0 so that the

.2 ^
differential equation (W-4» satisfied by T^ becomes ^—^T^:t) = n~T^-»:t». Here n is

an integer corresponding to the Harrh-Chandra parameter for the discrete series representation

n. Since Tr(x:t» is smooth for t ^ 0. even. and decaying at infinity, there is a constant

cK.f) so that T^f'.t) = c^^e'1^1. Finally S^:t» = T^:t» since F^ = 0 and we

use the formula for the jump of the derivative at 1 = 0 of S^-»:t» given in (W-3) to

conclude that - 2|nlc«:f) = 2fW = 2X^)f<e». Here Xy,W is the character of A^

which takes the value (-I)"4*'1 on the non-trivial element of A^. But by the Plancherel

formula. f(e> = (n(trn<f». Thus r(X:f) s- X^Wtr n(f). But

C^^h^ s fe1 - e^r^^e'11111 so that we have
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T^h^ = - |c1 - e'1| e^<^» tr 7T<n.

This is the formula proved by Arthur. It agrees with the theorem in this situation since.

because of orthogonality, all other terms are zero.

The matrix coefficients of discrete series representations span the space of cusp forms

of G. It remains to check the theorem* for functions in the subspace of the Schwartz space

orthogonal to the cusp forms. This is the space spanned by wave packets corresponding to

principal series representations.

For X € Ay. X € R. n^ = Ind^(X 8 e151 9 1» can be realized on the Hilbert

space H^ = C» € L^Kl : g(k-tf) s X(-tf)g(k) for all ^ E Ay. k € 10. For n € Z.

let co^ be the character of K given by "n^C1 = eine* ^ € K Let z! =

Cn € Z : (d^TO = X(i0 for all < € Ap. For X the trivial character of Ap Z,- is

the set of even integers. For X non-trivial. Z« is the set of odd integers. Then H^

has as basis ^u : n € Z^. We wish to consider matrix coefficients of n^ with

respect to this basis of K^. Because the distribution is K-central. only the diagonal entries

are needed. Thus for n € Z,.. we define E(n:X:x) = <7TX*x<x^<^.<l^>.

Unfortunately. E(n:\» € C{G\. Tn order to get an analogue of a matrix coefficient which

can be plugged into the distribution Tin), it is necessary to form wave packets. Thus for

a E C (IR). the Schwartz space on ft. n € Zy. we define

(2.6) f<x) = f<a:n:x» = f " a<\)E(n:X:x»u^<\»dX.

Here u^(X)d>, is the Plancherel measure corresponding to the representation n^V

Then f € C<G) and has the following properties [4c3.

(P-l) For all k^.k^ € K. x £ G. f(k^ x kg) = u^(k^»f(x».

In particular f(-»x» = XWtlx) for all t € A(. x € G.

(P-2) The matrix of n îf) . with respect to the basis C" : n € Z,.^. has only

one non-zero entry. For n E Z,..
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WEIGHTED ORBITAL INTEGRALS

r 0 if • / n ;
Tt ' (fl0» = Am L (a(X) - a(-X))<^ it n • ••

(P-3) For X' € Xp X' ^ X. n^f) 2 0.

(P-4» Combining (P-2» and (P-3» above.

tr n^'^f)
0 X ' / X ;

a (X ) * a ( - X ) . x ' " X •

(P-5) Since E(n:\» is an eigenf unction of the differential operator z with eigenvalue

p(\) = - \2 . f satisfies <zf)(a:n) = f(pa:n».

For f = f(a:n» we will evaluate T^h). h € H'. As a result of <P-1). since Ay is

central in G. it is clear that T^h^) s XWT^» for ^ E A(. t N 0. Thus it is

enough to study T(t:a:n» = T^). t « 0. Further, because T is an even function of t. it

suffices to compute T<t:a:n». t > 0. The first step is to obtain an asymptotic formula for

T(t:a:n) as t —» -*••.

Writing G/A as KN. using the invariance of f under K implied by (P-1L and a

standard change of variables for N. we write

T<t-a-n» = (e1 - e^l f f- fOinh.ir̂ Mn) dn dk
•'K "N

= je1 - e^l f " fdTyh^y1) 5 logO + y2) dy

= et J " f(nyht) 5 loyn " n ' e'21)"^2) dy

= f " f " a(\»u (X^E^nrX-.nyh^^ogd^l-e-^rV^Xdy.

To evaluate this expression as t — ^ <o we will use Harish-Chandra's asymptotic

formula for the Eisenstein integral [4a1 and the following observations.
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<A-1) As t —» * «. 5 logd -• (1 - e'^^y2) —» 5 logd * y2).

Write H(y) s 5 logd •»• y2) and let h(y) denote the element of A with diagonal

entries (1 <• y2)^2 and I/O + y2)172. Then Hy\ = k(y)h(y>h^h; 1 n(y»h^ where k<y» € R

and n(y) £ N. Note that h^n^y)^ —> 1 as t —»•*•-.

(A-2» As t -» +<o. E<n:X:n\} —» E(n:\:k(y)h<y)h^ = ^<k(y))E<n:X:h(y)h^).

(A-3) As t -» •*••.

,(t^H(y))E<^^^y^^ _ c^}^^ ^ ̂ \^[^H{y}}.

Here c <X) is the c-f unction which is the meromorphic continuation to the real axis of the

analytic function defined for u € C with Im y < 0 by

(2.7) c^n) = J/ ^(My))^-1-1^^ dy.

Combining the above observations, we find that as t —» •*'<o.

T<t:a:n) —» R(t:a:n» =

{ " J " a^ (^c^^We^^^ H(y» dX dy

^ J " J " a(X»^^Xk-ixtc^-\^<k(y))e<-l-ix)H(y) H(y» d\ dy

L

In order to simplify the expression for R(t:a:n» we change the order of integration und note

that f " (*) (k(y))e("'l'tixm<y) H<y) dy = ic^(tX). Of course the integral is not convergent

for real X. so that we must shift the X-integration into the appropriate half-plane in each

term to get convergence of the integral in y. and then shift back In doing this we pick up a

residue at X=0. We also use the fact that for any n € Z^. ^{>) =

c (X)'^ <-xr1 to obtain the formulan n
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WEIGHTED ORBITAL INTEGRALS

(2.8) R(t:a:n) = i f <> (KXK^c^-Xk J-XF1
v -•»

•*• e'^c^X^tXr1:} dX

•»• Zn^OWes^^c^Xtc^xr1).

r - 1 n even
The residue is computed to be ^ (See details in §3.)

L 0 n odd•

The above asymptotic arguments are clearly heuristic only. More precisely what we

actually prove is that

(2.9) T(t:a:n) - R(t:a:n) = 2 f <0 a(X»0(t:X:n» dX

where ^(X:n» is a function of t satisfying li» ^(t:\:n» = 0 uniformly on compacta
to"*--

of X.

By (W-4). T satisfies the differential equation

^—3. T(t:a:n) = T<t:pa:n» •»• (sinh tr^d^n)
dt

= T(t:pa:n» •»• 2(sinh tF2 f o<Xkos Xt dX.
w -•»

Also. R clearly satisfies the differential equation -̂3- R(t:a:n) = R(t:pa:n». Thus 0<X:n»
d t

must satisfy the equation

.2 , ?
(2 1Q» ^y 0(t:\:n) = - \-^(t:X:n) •»• cos \t (sinh tF-.

dt-

But ^.(t» as defined in (2.5» is the unique solution of this equation satisfying

li» 0<(t) = 0. Thus for t > 0.
t-»-f« A

T(t:a:n) = R(t:a:n) + 2 J atX)^(t) dX.
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To interpret this as a Fourier transform of Tf(h^) we note first that ^(t) is an

even function of \ so that

2 J <B a(X)0^(t)dX = J " Ca<X^a(-X)3^(t)dX = f <t tr TT^O^UdX.

Also using a change of variables, we get

A « ,\* • 1 r -2na<0) n even
R<t:a:n) = i f Ca(X^a<-X)] e -At cJ^ctXr'dX - ^

^-» n n L 0 n odd.

The c-functions ^^} QTe tne eigenvalues of the intertwining operators M (X). In fact.

M <X»cj^ = c^(Xko^ for n € Z . But combining this with (P-2) we see that

c^Xk^xr^C^X) -»• a(-X)3 = trCM^lXtM^tXr1^'^)^.

Finally, in the case that n is even, 2a(0) = tr r^ (fl. This gives all the non-zero terms in

the theorem for t > 0.
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OlrervatioM

Recall the list (W-l) - (W-4» of general properties of weighted orbital integrals. While

some were used to derive the formula for T^h^l, f a wave packet, several of these

properties are independent of the proof. It is interesting to check that the formula obtained

does satisfy these conditions. In the course of doing this we will also derive a formula for the

Fourier transform of the singular distribution defined by (2.3). In particular, we will look at:

(1) the genuinely non-invariant part of the distribution:

(2) the behavior of T^h^) as lt| —» - ;

(3) the behavior of T^<h^ as t ̂  0.

As in ^2. let f = f(a:n) be a wave packet corresponding to n E Zy and a €

C<1R». Then the Fourier inversion formula can be written for t ^ 0 as

(3.1) T^h^) = 2X«» f <0 a(X^(t) dX

•»• ixW f a[\\ cos Xt £c^(X»c^<xr1 •»• c^-Xk^-XF^dX

-f Xlir) f a(X» sin X l t l [cJX»c^(Xr1 - c^-Xk^-XF13dX

{ 2yTX( '< )a (0 ) n even
^

0 n odd.

. In order to understand the properties of the Fourier transform, it is necessary to study

the c-functions. Using formulas of Cohn C 2 ]

. namlAli)
(3.2) c ( X » = - ———-————-—————— .

n r•/^X•»•l•* tn>-.. iX^l-n.

Write dp(X) s c^(X)c^xr1. Then differentiating, we find that d^(X) = 5 [^(y^ •

^1^11) . ̂ l̂ lUl) - ^iX^l-n^ ^^ ^ ^ r'(z»r(z)'1. The properties of ^>
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can be found in [3]. Like the gamma function, it has simple poles at z = 0.-1.-2,.... It

also satisfies identities

(^-1) ^z+1) s ^<z) * ^,

(^•2) ^5 •»• z) - ^(5 - z> = TT tan<TTZ».

(^•3) ^(z) - <X-z» = - n cot(TO) - ^.

Thus if n is even. the term ^T—^ contributes a simple pole at X = 0 with

residue -1. The other terms are holomorphic for all X € (R. If n is odd. we find using

(4/-1) that all poles at X = 0 cancel.

In any case, the even combination d <X) •*• ^"^ w1^ ^e ^^-^h^^ tor all X E

(R. Using the identities <^-2) and (^-3) we find that

CdJX) - d , < - X » ] s

|(-n cot«t^) - 1^ ^ TT tan<^» - r, tan^^^") - TT tan(l22L l̂H) 1 .

Using elementary trigonometric identities we find that

(3.3) X[d^(X) - d^<-X)3 = -1 + (-l)""^1 TT? -̂

Note that this shows that dJX) - d(-X) depends only on whether n is even or odd.n n
This means that for X E Ap M^(X»M^(Xr1 - M^(-X»M^(-xr1 is a scalar matrix. Thus

the only genuinely non-invariant part of the distribtuion TrKh^l is the term

T^h^) = i Z xW f t> ^os \t t^{:M'(X)M(X^l^y•x(f)^ dX
X ^ T

This is exactly the distribution defined by Arthur in [Id] and referrftd to in (W-2).
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We now check that ir T(t:a:n» s 0. It it easy to verify using the integral
)t|-»-

formula (2.5) for ^<t» that there is a constant c such that for all t N 0. |^t)(

t 9

^ —— uniformly in X. Thus it is clear that for all a € CW. J a(X^t) dX

—» 0 as |t | —* •.

Since a(\)[d (X) •»• d (-X»3 € L1^), the second term in (3.1) also tends to zero as l t |n n
_» CB. The same holds for the third term if n is odd. However, for n even the pole of

d (\» at \ = 0 causes

lim f " a(X) sin \ |t I 1<UX) - <^(-\)3 dX = -2no<0).
j t j-w »-•

This cancels the fourth term so that in any case If T^-irh^) = 0.

Finally, we look at the behavior of T^\} as t —» 0. As in (W-3) we define

S(t:a:n» = TU:a:n) ^ loga-e^SPd-.a:̂ . We wish to show that S is continuous at t = 0

and that its first derivative has jump 2f(e) at t = 0.

The second and fourth terms in (3.1» are smooth at t s 0. The third is continuous, but

because of the sin \ \ 1 1 term has a jump in its first derivative equal to

2 J " a(X» \ [d^\)-d^.-\»3dX = -2 J^ a(X»d\ •. (-ll^^n J^ .^^^ dX

using (3.3).

To study the first term we combine it with the logn-e'^Ptt:®^ =

2 lotd-e-21) f " o(X» cos \t dX term to obtain 2 J t> o(\) h^(t) d\ where h^(t) =

^.(t» ^ lo»(^-e•2t» cos Xt. Using the differential equation and boundary behavior at infinity

of ^(t». we find that ^7 h^U = - ^h^t» - ̂ ^^ ^ and ^^ h^t) = 0.

Thu.wecanwrite.for t > 0. h^t) = - 4 J; llIL̂ _——lIL̂ L du.

215



R.A. HERB

It is now easy to check that li- h^t) = -4 f 'i" xu du is a convergent
t*0 A Jo e2"- I

, , ... . , . d i ,.» . f" •in X u * . nX c o B h T t X -
integral. and that ̂  ̂ h^(t) = \ J^ ^———du s •inh rr\ - 1 -

Although 0\(t) is even. h^<t) is not because of the logd - e~ ) term. However.

h.<-t) = h^(t) ^ 4t cos Xt. Thus lim h^<t) = li« h^(t) so that h^(t) is continuous
t»0 t A O

at t = 0. Also.

^ h^(-t) = - ̂  hX (u " 4 cos xt ">' 4xt sin >lt to that

li. ̂  h^t) - llm ̂  h^t) = 2 lin. ̂  h^t) * 4 = ̂ ^^^X^ * 2.
t *0 t tO t A O

Combining this with the jump from the third term we find that

ll« ̂  S<t:a:n) - lii" ^F S(t:a:n) = 27T J " \a(X) cogh ̂ ^ ^l)n* d\
t A O t t O ~"

2TT f " \a(X> tanh ̂  d\ n even

2n f <> X a ( X ) coth $̂  d\ n odd.
» -•

This is exactly the Fourier transform of f(e) yiven by the Plancherel theorem.

Finally, the singular weighted orbital integral studied by Arthur in Clb3 is T^-»»

If Sr("»hJ. -» E At. Using the above formulas we can write, for f € C(G».
t-»0

(3.4) T^) = - S Xy,«) tr n<f) - £^ Xl^) J " tr r^^tf) h{\) dX
ne£. X£^T '"d ^'-"1

* £ X < ^ ) f <B tr{:M'(X) M (XF1 ^'^f^ dX ^ n tr n^f)
^ J-. X XXEA

where h<X» = 2 f ll̂  du

^0 1 -e - "
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