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§ I. Introduction.

In [18] Strichartz stated an explicit formula describing all 0 ( n ) x Q ( N ) - finite
functions in any 0 ( n , N ) - invariant, closed and irreducible subspace of
L ( 0 ( n , N ) / 0 ( n , N - l ) ) . From a grouptheoretical point of view the formula is not so
transparent since its formulation uses an explicit realization of 0( n , N ) / 0 ( n , N - l )
as a hyperbolic space in R

In this paper we suggest a formula, which may do the same for the general semisimp-
le symmetric space G/H , i . e . describe the K-finite functions in the irreducible
representations of G in L (G/H) . The socalled discrete series for G/H . For
the general case we can only state a few necessary and a few sufficient conditions
for our formula to give a K-finite function in a discrete series for G/H . How-
ever for the isotropic spaces G/H the formula suffices to describe all the
K-types of all the discrete series for G/H .

By the classification, cf. Wolf [22] and Berger [ l ] . The pseudoRiemannian, nonRie-
mannian isotropic spaces are all symmetric. Up to coverings they are the classical
real-, complex- and quarternionic projective hyperbolic spaces.

S O ^ ( p , q + l ) / S ( 0 ( p , q ) x o ( l ) )
S U ( p , q + l ) / S ( U ( p , q ) x u ( l ) )
Sp(p,q+l)/Sp(p,q)xSp(l)

for p ̂  1 and q > 1 , and one exceptional case

^(^O/^11111^ •

This last space may in some sense be thought of as the projective hyperbolic space
over the Cayley numbers with p « q « 1 . W e are not interested in the Riemannian
isotropic spaces, since they have no discrete series.

Our formula, when explicitly computed for a real hyperbolic space, gives a formula
very similar to Strichartz1 ,but not completely identical to it. This difference be-
tween the two formulas may contain some nontrivial relations between formulas for
special functions.

Our interest in the problem came from a discussion of the paper Flensted-Jensen [ 3 ] .
In that paper it is shown that if rank G/H « rank K/KOH then discrete series do
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Discrete series

exist. The existence is shown by construction of K-finite elements in the corre-
sponding subspaces of L (G/H) . In Section 8 of [loc. cit.) it was shown by loo-
king at the nonRiemannian isotropic spaces that the construction did not exhaust the
discrete series for these spaces, at least for q large compared to p . It is our
hope that the present study of these exceptional discrete series for the isotropic
spaces may give some hints of how to solve the general problem of construction of
all discrete series for G/H .

A recent preprint of Oshima-Matsuki [ 1 4 ] contains very much information on "where
to expect" these exceptionel discrete series in general. However the general pro-
blem of actual construction of K-finite elements in each representation space
seems still open.

We get two off spins of our result: In Section 3 we find a new proof of the minima-
lity of the K-types used in [ 3 ] to construct the discrete series for G/H . This
proof is simpler than the proof by Schlichtkrull [ 1 6 ] and is also valid for the
universal covering space G /H , which was not covered by [ l 6 ] , because of the use
of results from Vogan-Speh [ 2 1 ] . In Eksaaple 4.8 the computations show that
there are examples where a minimal K-type of a discrete series for G/H does
not have a KflH-fixed vector. In contrast to what for a long time was the belief of
the first auther, cf. [ 4 ] . Also non-uniqueness of minimal K-types occurs.

The content of the present paper is as follows: In Section 2 we introduce the neces-
sary notation and prerequisits. In Section 3 we introduce and discuss our proposed
integral formula. In Section 4 we turn to the case of rank one and in particular to
the isotropic spaces. For these our formula gives the complete answer. In Section 5
we compute explicitly the formulas optained in Section 4.

We want to thank Plesner Jakobsen and Schiichtkrull for many fruitfull discussions
concerning the content of the present paper.
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§ 2. Notation and preliminaries.

Let G be a connected, linear semisimple Lie group contained as a real form in a
complex, simply connected Lie Group G^ • Let T be an involution of G and let
H s GJ be the identity component of the fixpoints for T . Let X~ = G~/H be
the universal covering space of X = G/H . Every connected, simply connected se-
misimple symmetric space is of the form X s G~/H . For more detailes see Berger
[ l ] , Loos [ 1 2 ] or Fiensted-Jensen [ 4 ] .

If X̂  is irreducible, then X is one of the following three types

( I ) The compact type if G is compact.
(II) The noncompact type if H is compact and G is noncompact.
(Ill) The nonRiemannian type if H in noncompact.

The Killing form induces an invariant metric on X and on X . I n case ( I ) and
(II) the metric is Riemannian. In case (III) it is pseudoRiemanninan.

Up to H-conjugacy there is a unique maximal compact subgroup K of G , such that
T ( K ) " K . Let o be the Cartan involution related to K . Then OT s TO . No-
tice that for X̂  irreducible the three types can be characterized by: ( I ) G = K , .
( I I ) H « K and (III) G ̂  K and H + K .

Examples, ( a ) . A connected semisimple Lie group G may be considered as a symme-
tric space.Let d(G ) be the diagonal subgroup in G « G . , then G xG /d(G ) is
a symmetric space, which as a manifold is isomorphic to G. . It is of type ( I ) if
G is compact. Otherwise it is of type ( I I I ) .
( b ) . The hyperbolic spaces mentioned in Section 1 is of type ( I ) if p s 0 , type
( I I ) if p > 1 and q « 0 and type (III) if p ̂  1 and q ̂  1 . o

The Rieroannian symmetric spaces are well studied, cf. f . e x . Helgason [ 6 ] , [ 8 ] and
( 9 ] . Our main concern in this paper is the nonRiemannian spaces. However as descri-
bed below we shall make extensive use of a Rieroannian symmetric space G /H "dual"
to the nonRiemannian space G/H .

1 ) G is chosen such that the covering map of G onto G is an isomorphism be-
tween the analytic subgroi-ps corresponding to h. , the Lie algebra of H .
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Discrete series
Definitions, ( i ) A discrete series representation TT for X = G/H is (the unitary
equivalence class of) the representation of G on an invariant, irreducible subspa-
ce V 4 0 of L^X) .
( i i ) V is the subset of V consisting of the K-finite vectors in V . Then

7^ cov c L (x)nc ( x ) .
(iii) V is the union of the isotypic components of the minimal K-types inmin
V , (in the sense of Vogan [ 2 0 ] ) . Any €̂v̂ ^ , ^ 4 0 is called a minimal spheri-
K 1 )cat function for TT .
( i v ) For X~ = G~/H a discrete series (or more precisely a relative discrete seri-
es) is defined as under ( i ) , but modulo a unitary action of the center of G .
(The modifications needed in this connection are rather obvious. We shall not in
the following be completely consistent in always pointing out the necessary reformu-
lations in order to incorporate G~/H into the treatment.) °

Let ^ be the complex Lie algebra of Ĝ  . Let g , h and fe be the real subal-
gebras corresponding to G,H and K . We denote again by T and o the diffe-
rentials of T and o and their holomorphic extensions to Q^ . Since T
and o commute we may decompose g according to +1 and -1 eigenspaces for
T and o in the following way:

g ^ h + q ' f e + p ^ hnk + ̂ P + ̂ nfe + ̂ P •

Inside g . we now define the real subalgebras Q , h and fe "dual" to
g , k and fe by

g° = înfe + i(k(\p + <?nfe) + QOp ,

k° » k^\Q0 and fe° = fê Og0 .

where i s V/̂ T

Let G° , H° and K° be the corresponding analytic subgroups of G^ . Notice that
H° is maximal compact in G° , whereas K° is (in general) noncompact.

Definition. We shall call the Riemannian symmetric space G°/H° with the associated
symmetric subgroup K° for the dual to G/H .

Notice that (G/K , H ) is dual to G°/K° .
1 ) This definition is slightly more general than the one used in ( 4 ] .
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Examples. ( a ) . Let G^ be a connected, semisimple Lie group (with finite center)
and K^ a maximal compact subgroup. Let G^ and K , be the corresponding com-
plex groups and let U be a compact real form of G .. . The dual of G i e
of G «G^/d(G^) is then ( G ^ . / U ^ , K ^ . ) .
( b ) . The dual of a hyperbolic space is obtained by exchanging the index pair ( p , q )
with (p-K^.O) , and the corresponding subgroup K° is in the respective cases gi-
ven by SO(p ) x S O g ( q , l ) , S ( U ( p ) x u ( q , l ) ) , S p ( p ) x s p ( q . l ) and Spin(8,l) . o

Let C^G/H) , C "(G~/H) and C^otG^H0) denote respectively the K- , K~- and

K°- finite functions in C^tG/H) , C^tG^/H) and C'̂ G^H0) . Let U(g.) denote
h k.

the universal enveloping algebra of g and let ^^9^ and ^^9^ deno-

te the centralizer of respectively h^, and fe. . Then U(9*) is naturally iden-

tified with the algebra of right invariant differential operators on G, G^ or

G , and thus also defines differential operators on G/H , G~/H or G /H . Clear-

ly U(g^.) leaves C^/G/H) , C^tG^/H) and C o(G°/H°) invariant. Similarly

U(g ) is, modulo a certain kernel, naturally identified with the algebra of in-

variant differential operators on G/H , G~/H or G / H

Duality Theorem. ( [3 ] ) . There is a unique isomorphism r\: f -*• f° between the

U(g )xU(g )^ - modules C"~(G /H) and C^o(G°/H°) such that

f(xH) = f°(xH°)

for each x in the identity component / G of GHG° .

Definition. A Cartan subspace a for G/H is a maximal Abelian subspace of q ,
consisting of semisimple elements. Every Cartan subspace is H-conjugate to a
o-invariant one. A o-invariant Cartan subspace is called fundamental, respectively
compact, if oHfe is maximal Abelian in q(\b., respectively if a c: qOk .
The rank of G/H is the dimension of any Cartan subspace for G/H .

1 ) Here is a slight abuse of notation. It is used that the covering map of G ontooG is an isomorphism between the analytic subgroups corresponding to g = gHg
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Discrete series

Theorem 2.1. 'There exist discrete series for G/H it and only if G/H has a com-
pact Cartan subspaces or equivalently if and only if

(2.1) rank(G/H) = ranklK/Kfte).

The sufficiency of ( 2 . 1 ) is proved in [ 3 ] by a simple construction of elements in
C'tG/HlOL^G/H) generating irreducible subspaces of L (G/H) . We shall return to
this below. The necessity of ( 2 . 1 ) is one of the results in Oshima-Matsuki ( 1 4 ] .

From now on we assume the rank condition ( 2 . 1 ) to be satisfied. Fix a compact C.rtan
subspace a = i-t and a positive system ̂  of restricted roots for
& . A(fe°,-t) -Let A = A ( g ° , t ) and let W^ and W denote the respective Meyl-
cgroups.

Let XC-t* be such that

( 2 . 2 ) <X,a> > 0 for each a€A^ and

( 2 . 3 ) <X,a> 4 0 for each a€A .

We can then choose 2) a positive system A = ̂  such that

( 2 . 4 ) <X,a> > 0 for each a€A" .

Let p » P , respectively P^ , be half the sum counted with multiplicity of the
x* +roots in A and A^ .

1 ) Henceforth we shall leave out the word ••restricted- .

2) The number of such choices as X varies is the same as the number of cosets in
W^W .
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The choice of A defines compatible Iwasawa decompositions:

9° « h° + t ^ n° and fe° = (hf\k) + ^ + n

where n. s n°nfe° , andc

G° » H°TN° and K° « (KnH)TN .

For x€G we write correspondingly

x = k(x)a(x)n(x) .

Define also the Iwasawa projection H: G0-*^ by H(x) = log(a(x)) or

xCB°exp(tt(x))N° , x€G° .

We use this to define

(2.5) ^°(x) . [ e^-0'1101"11^ x€G° .
A JicnH

The function ^ is an eigenfunction of each \i€U(g^) , cf. Helgason (6] page

94. Let x denote the corresponding eigenvalue homomorphism.

Choose a maximal Abelian subspace 6 in pHq and define the following centrali-

zers:

M° » (H°)^ , M « (KnH)^ and K « (KUH)6 .

Furthermore define A « -A , A « -A , n « T(n ) ,n = T (n ) and
c c c c

M * T(n Op ) , and notice that n is not necessarily a subalgebra.

Let m° , m and in be the Lie algebras of respectively M , M and M .

Extend t to.a Cartan subalgebra 1s of fe such that t " i-t -^^ ,

where U c m . Let A~ « A(fe...,-t^) and A~ = A(g.,-0 and choose compatible
I t c ( t < t - ^ . ^ ^ ^ +

systems A*^ and A compatible with A and A . Let A be the corre-

sponding positive roots for t in (w ), .Let as usual A » -A , A • -A

and A « -A . W e embed t into (-("") in the canonical way, i.e. suchm ^ m <T
that <t ,t > » 0 .
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Discrete series
The irreducible finite dimensional representations of fe. , and thus of the univer-^ C
sal covering groups of K~ or K , are parametrized by the dominant weights. We
shall always when nothing else is mentioned mean dominant w . r . t . A^" . So in par-
ticular the representation E with dominant weight -u is the contragredient

w '^+representation E to the representation E of A^ - dominant weight p .
fw *Notice, cf. Helgason [ 6],that if \t€.(t^,} then -u is a dominant weight for a
^ *representation having a nontrivial KOH-fixed vector if and only if Û -t̂  and

< U , a > - _ + - . . - . +-——— € 22 for each a€A<a,a> c
-̂  _^< 1 ) '-'+•Let n and n be the sum of the rootspaces in Q. for respectively A

and A . Then we have vC'^90 = W° and similarly for ?T' . Let n and n
be the sum of the rootspaces in fe.. for respectively A and A . Again we
have n̂ nfe = H and similarly for nc c c

^ ^ ^ \ + r̂ +-Let pa, p and p be half the sum of the roots respectively in A^ , A^
and A counted with multiplicity.

L
Let E° , E and €" denote the eigenspaces of ^(Q^) respectively in
C^G0/!!0) , C^tG/H) and C^KT/H) corresponding to x^ • BY the Duality Theorem
the K°-finite elements in E° is identified with the K~-finite elements in

')
€^ . Let L (G/H) denote the intersection of €^ with the relevant L -space,
A A A

( cf. the definition of relative discrete series).

Theorem 2 . 2 . Let the notation be as above and let u , = A+p-2p . The function
^° is K°-finite and generates an irreducible representation of K with domi-
nant weight -u, if

, 2 . 6 , <4^>€5Z+ for each a€A" .^ A , A ? C

Furthermore, assuming ( 2 . 6 ) , the dual function 4>. = n (4^) belongs to L ^ ( G / H ) .
It is the (up to scalars) unique KflH-fixed minimal spherical function for a discre-
te series representation T, for Ĝ /H . (T is a discrete series for G/H ifA A
-u is a dominant weight for K and not only for K . )

1 ) Notice that A is not necessarily a rootsystem in the usual sense, but only
the set of non-zero restrictions to t^ of a rootsystem for a Cartan subalgebra
in 9<t •
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The K -finiteness and the fact that for sufficiently large A ' ® ^ generates a^̂  A
discrete series for G /H was proved in [ 3 ] . That this holds for each A satisfy-
ing ( 2 . 2 ) , ( 2 . 3 ) and ( 2 . 6 ) is a result of Oshima's, see Oshima-Matsuki [ 1 4 ] and
Schlichtkrull [ 1 7 ] . That the representation of K^ generated by ^. is the unique
minimal K~-type was first proved by Schlichtkrull [ 1 6 ] for the linear case, i . e .
provided -u is a dominant weight for K and not only for K~ . In Corollary
3 . 6 we give another proof which holds in general.

* 11Let now A'6t . Oshima and Matsuki show in [ 1 4 ] , that if A ' is "sufficiently
regular", then L , (G/H) is the direct sum of the discrete series T, , where \A A
runs through the set of all W-translates of A ' , which satisfies ( 2 . 2 ) , ( 2 . 3 ) and
( 2 . 6 ) l ) . Conversely they show that if L2 (G/H) + { 0 } then at least one W-trans-
late \ of A ' satisfies ( 2 . 2 ) , ( 2 . 3 ) and the following two conditions weaker than
( 2 . 6 ) :

( 2 . 7 ) .̂A-̂  €2 for each a€A'1'<a ,a> c

( 2 . 8 ) <A-p,B> > 0 for each simple BEA^ satisfying g° c fe° .~ P

In many cases the results of Oshima and Matsuki leads to the conclusion, that the
T constructed in Theorem 2.2 exhaust the discrete series for G/H . However in
general there are two questions left open:

1 ° . Construct for each A satisfying ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 7 ) and ( 2 . 8 ) but not
( 2 . 6 ) a discrete series representation T for G~/H .

2 ° . Does the T s corresponding to all A s satisfying ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 7 ) and
( 2 . 8 ) exhaust the discrete series for Ĝ /H .

The main problem in 1 is that the function ^. is not K -finite. The main problem
in 2 besides the extension of the results in [ 1 4 ] to the nonlinear case is, when
A * is not "sufficiently regular", whether L. , (G/H) could contain other irreducible
invariant subspaces than those coming from the T , with X € w - > ' .

1 ) Only the linear case is treated in [ 1 4 ] . Probably the results are true also for
G~/H .
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Our primary concern in this paper is Question 1°. We should like to solve it by a
simple formula similar to ( 2 . 5 ) giving a minimal spherical function for the unknown
T. . In Section 3 we shall discuss a formula similar to ( 2 . 5 ) , which may give the
answer to 1 . However we can only prove rather little in general. Therefore we turn
in Section 4 to the case of rank(G/H) « 1 . In which case we can solve question 1
completely. Actually for the isotropic spaces the solution of question 2 also fol-
lows and furthermore every K -type of every discrete series for G /H is construc-
ted.

The results from Oshima-Matsuki [ l 4 ] are mentioned here mostly to describe the mo-
tivation for our study, and to place our results in proper perspective. In fact the
only places where our results are based on [1 4 ] are in the statements that the
K^-finite functions we construct in Ê  are actually in L (G/H). This result fromA A
[14] does not depend on the linearity of G . The use we make of [ 1 4 ] is parallelle
to what is mentioned above regarding the proof of Theorem 2 . 2 . In the applications
in Section 4 to the rank one case we can instead of [ 1 4 ] use the explicit computa-
tions in Section 5 to prove that the functions are square integrable.

§ 3. Integral formulas and dominant weight vectors for the K-types.
Let the notation be as in Section 2. When X satisfies the conditions of Theorem
2.2 then 4». is the KflH-fixed vector in the K^-type with dominant weight -uA A
of T. . The following formula is giving to us the corresponding dominant weight
vector

( 3 . 1 ) e°(x) - e^^ "^dn , x€G°
A •'N

Definition. We shall often use the following short, convenient notation: Let

f€C'°(G) . x,y€G and u€U(q.) then we write

(3.2) f(xuy) « (uf7)(x) ,

y

where u is used as a left-invariant differential operator on G and f is de-

fined by f^g) » f(gy) .

For example if X€g we get
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f(xXy) » ̂  f(xexp(tX)y) ,
|t s 0 ,

or if u -»• v^ is the canonical antiautomorphism of ^(9^) i then u as a right-

invariant operator applied to f i given by uf(x) = fd^x) . As a last example let

s€^ then f(x(su)y) = sf(xuy) .

Proposition 3 .1 . (i) The integral (3 .1 ) converges absolutely, uniformly over com-

pact subsets of

«A,x)€^ xG°| Re<A+p-p^a> > 0 for each ACA^} .

(ii) Furthermore any u€U(g^.) can be applied to ^ by applying it to the in-

tegrand before the integration. Using the above definition this can be written

S^x) = | e^'1^'1"1"^ . x€G° .

^c

(iii) Whenever well defined using (i) we have 1 )

^°(eH) « c(-i(A+p-p ) ) ,

where c ( * ) is Harish-Chandras c-function corresponding to the Riemannian symme-

tric space K°/KnH .

Proof: For n€K we write, cf. Section 2,

(3.3) n = k(n)exp(H(n))n(n)€(KnH)TN

and find for u€U(g.)

| (e^'^'^ldn.

Nc -1 -

I , <-^-p,H(x uk(n) )> , Re<-A-p ,H(n)>-|e Ie dn .

"c

1 ) The measure on N is normalized byc

[ <-2c . H ( n ) > ,J ̂  e c dn = 1 .
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Now ( X , x , k ) -̂  g<-A-P.H(x uk)> ̂  a continuous function on ^xG°xKnH . Harish-
Chandras c-function for K°/KnH is given by, see [ 5 ] ,

f <-(A+p-p )-p , H ( n ) > -c(-i(A+p-p ) ) = e ' "c " c ' dn ,
^N

with absolute and uniform convergence for A satisfying

Re<A+p-p ,a> > 0 for each A€A^ .

From this the proposition follows easily.

Theorem 3 . 2 . Let X€-t* satisfy ( 2 . 2 ) , ( 2 . 3 ) and ( 2 . 6 ) . then

( i ) ^° is well defined, nonzero and K°-finite of irreducible K°-type -v^ .

(ii) C = n"^^0) is the minimal spherical function for T^ corresponding toA A
the dominant weight vector.

(iii) [ ^ (kx)dk = c ( - i ( A + p - p ^ ) ) ^ ( x ) . x€G .
-1 KHH

proof. Let > satisfy the conditions in Proposition 3 .1 (i).

Using the notation from the proof of that proposition we find

" o r r ^A-p.Htx^kn^ -f £;°(kx)dk = [ e " dkdn
JKHH JN^ JKHH

f f < -A-p ,H(x~ l kk(n )exp (H(n ) )n (n ) )>^^
= JNJ KHH6

f ^<-^-P»H(n)>^ f ^-X-p.mx'1^^

JN e JKOH
c

= c(- i (A-»-p-p n4/ , (x) , x€G° .
c "

This proves (iii) whenever ^ is K°-finite, and also that ^ ^ 0 .

in order to ensure using Proposition 3 . 1 (i), the convergence in ( 3 . 1 ) for \ satis-

fying ( 2 . 2 ) , ( 2 . 3 ) and (2.6) we need to know that
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<p-p ,a> ^ 0 for each a€A

To prove this notice that the restriction of p^-p^ to t equals p-p , and

that 2 (p -p ) is a dominant weight of a finite dimensional subrepresentation of
1 c '—

fe. in A PA » with 1 = dim.(w Up.) . Therefore we have

<p<s'-p~,0> > 0 for each 0€A

+ ' —^»-
Let now aCA . then a is the restriction to t of an element B = oi+a €A ,

c T ^ c

where <a ,t> = 0 . Since -6 = -BOT = a-a' €A we have

<p-p ,a> = <p - p ,a>

= ^p^-p"^ - ^> > 0 ,

which is what we need. Thus ^, is well defined and non-zero.

To prove that ^° is K°-finite, we fix any x from G° and look at the function

^ ^-X-p^x^y^ .

It belongs to the space C = C (K°/M TN ) »where A = X+p-p , given by
A. A« t C * C

f 4>(yman) . e^-^"^ ' <P(y)

C, = ^ tP&^tK0) for each y€K°,m€M ,a€T
^1 1 t

and n€N

The integration over N is an intertwining operator taking C into

T, « r, (K°/M TN ) , which is defined like C but with the condition
A» A < t C A.

<-A-p+2p,,,H(a) > , ,4>(yman) » e - "c' 4>(y) .

Since u, « (A^p-2pc) satisfies (2.6) the image of this intertwining operator is

an irreducible finite dimensional representation of K with dominant weight -u^

This finishes the proof of (i) and (iii). It follows now that ^ is well defined,

that it is the dominant weight vector of the representation of K generated by

^ . Therefore (ii) is a consequence of Theorem 2.2. o
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Remark. Assume X as in Theorem 3.2. Then we know that T^ is irreducible, and

it follows that any iT-finite vector for T^ is of the form u^ , for same

u6U(5 ) . By proposition 3.1 (ii) we have

o f <-\-(),H(x'lw)> _ CQO .(u^,) (x) = e dn , xfc^
A JN

In particular if u commutes with Ad(?^) then

f <-X-p,H(x~ nu)> - pr0 °(u^)°(x) = e - dn. x€G .
A •'N

This is the type of integral we want to study. So whenever there is absolute conver-

gence, uniformly over a compact neighbourhood of A and over any compact subset of

G° we define

f <-X-p,H(x)~ nu)> - pr°
(3.4) ^° (x) = e dn , xCG .

A,U J^

Since g° = n0^0^0 and n° = n^ we may actually assume that u€U(^) and

that u is non-zero modulo (n^U(^) . In other words we can express u using

only elements from a basis of n^ .

Let S(n ,J be the complex symmetric algebra over ^ . Let ^ : S(n^) -

U(?[°) c C(g,) be the symmetrization map. Then Y is an Ad(M^)- equivariant^

bijection between S(^) and its image ^ . which is a cross section for U(^)

modulo ^^^{YO^ '

Proposition 3.3. Let u€D^ and u ^ 0 .
(i) There xs a constant C ^ O such that ,̂ is defined provided €^

satisfies

Re<X.a> > C for each a€A^ .

(ii) Whenever well defined by (i) we have that ^ . 0 , that ^^ and that

r° is N -invariant.
'X,u c

(lii) It u is Ad(N^)-invariant, then we can take C = 0 .

p^of, (i). Let V be the finite dimensional, unipotent representation of ^

generated by u in D^ using Ad(N^) .
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Qioose a basis u , ... ,u for V , then

s
Ad(n)u = .£ (p^(n)u. , n € N ,

where <p^ , i = 1,...,s are polynomial functions on N .

Notice that the function y -»• e^ -P'H(X ^)> for each fixed x€G° belongs to

C = C (G^M0™0) , where

(3.5) C, J^c^C0)!^-""^'0'"""^ . 1
1 ' for each yGG0, m€M°, a€T and n€N° J.

We now try to define a linear functional T on C by

(3.6) <T ,4» s U);nu)dn /^^ .

c

We have using (3.3)

l4)(nu) |dn <
^N

J_ I l<P.(n)<P(u.k(nM e^-^^^^dn .
^ i«l i i

The proof of convergence of the integral defining the c-f unction, cf. the proof of

Proposition 3 .1 , shows that the factor e^^ •(:'H(n)> ^j^ dominate the 4). t s ,

when \ satisfies the condition Re<A,a> > C for each a€A for a suitably lar-

ge C . This proves in particular that (i) holds.

By restricting functions in C to H° we get a bisection ip -- iff between C

and C (H /M ) . The converse mapping is given by

y>(x> -WtkfxDe^-0 '"""^ x€G° .

From this and the estimates above it is clear, when the condition in (i) is satis-

fied, that T defines a distribution T on H°/M° » G0/^0™0 by

(3 .7) <T^ ^ , 4>'> = <T^ , U>> .
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Notice that the support of T is contained in the K°-orbit 0 = 0 inA ,U A
G0/̂ 0™0 , where

( 3 . 8 ) 0 s Î rfŴ M0™0 & K°/M TN » KOH/M .

The x-Poisson transform, P , of a distribution T on H°/M° is defined by

( 3 . 9 ) P , ( T ) ( x ) = <T,f, > , x€G fA A , X

where f' is the restriction to H°/M° of the function f, C C given byA , x A ,X A

f ( y ) , ^-P-Htx-'y^ ^ ŷ o _
A , X

It is now clear from ( 3 . 4 ) , ( 3 . 6 ) . ( 3 . 7 ) and ( 3 . 9 ) that ^° is equal to P,, (T ) .A A A , U

Thus ^° belongs to E° . Since by our assumptionsA A

Re<A,a> > 0 for each a€A ,

it follows from Helgason [ 7 ] , page 198, that P. is injective. In order to finish
the proof of (ii) we just have to show that T ^ 0 . But this follows easily
from ( 3 . 6 ) , ( 3 . 7 ) and the facts that N° = N exp(^) and that the map
n -» nM°TN° of N° into G°/M°TvP is injective. This proves ( i i ) . Property (i i i )
follows directly from Proposition 3 . 1 . °

We now turn to the question of K°-finiteness of ^° . From the remark beforeA , U ^— »j
Proposition 3.3 it follows that if ̂  is K°-finite and u € U ( n ) c then
^° = u^° , and ^° is thus K°-finite.
If'either S° is not K°-finite (for example if ( 2 . 6 ) is not satisfied) or if u
is not N -invariant, then we don't know whether or not ̂  ̂ is K -finite. How-
ever we can derive some necessary conditions on A and u . We retain the notation
from the proof of Proposition 3 . 3 , and recall the definition ( 3 . 8 ) of 0^ and that
^° is the Poisson transform of the distribution T ^ which is supported on 0 ^ .

1 ) Recall that the Iwasawa decomposition depends on the choice of A = A^
which again depends on A . There are as many different orbits 0^ as there are
cosets in W\W . These orbits are compact and minimal as K -orbits, cf. Matsuki
( 1 3 ] .
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Theorem 3 . 4 . Let \€t* satisfy ( 2 . 2 ) and ( 2 . 3 ) . Let E00 denote the set of in-
finite functions in E. , which are Poisson transforms of distributions on G°/vPTvP
with support contained in 0 . Then the following hold: ( i ) If E°°^{0} thenA A

^Y^ ,
<a ,a> € z for each ĉ

where p. s Up-2p
(ii) If -i/̂  is the dominant weight of a K̂ -type occurringin E00 , then
v = U ~ U , is a linear combination of noncompact roots, i . e . roots from A ( n ,-( )
with nonnegative, integral coefficients.

Before we go to the proof, we establish the following lemma.

Lemma 3 . 5 . Let G be a semisimple Lie group with Iwasawa decomposition G » KAN.
Let M be the centralizer of A in K. Let V be a finite dimensional represen-
tation of G . Let Q and tt be the Lie algebras of G and A. Let v€V , v^O*
satisfy the following, where vC^ :

e x p ( H ) " v = e ' v for each HC^
m • v s v for each m€M ,

then

<v,a>
^a o^ €22 for each a€A(g,a) .

Proof: Let a€A(g,a) . We can construct a subgroup G0 locally î morphic to

SL(2,]R) related to a such that G01 « K^N" , where K01 » KOG01 , A01 = Pf^^

and N01 « NOG" , and such that M01 « MHG" is the centralizer of A01 in K° ,

cf. Helgason [6]page 75.

OL Q QLet V be the finite dimensional representation of G generated by v . G

being isomorphic to SL(2,]R) , it follows that M is equal to the center of G

Since v is M^fixed, it follows that M" acts trivially on V" . Let g^ and

fl01 be the Lie algebras of G0' and A01 , and let < , > denote the killing forma
on Q . A simple computation with SL(2,B ) shows that, if \^ and a denote re

striction to a , then

€2
<a,a>.,

but ([loc.cit.]page 75 ( 5 ) )
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<^,a> , <^a>ng ̂
<a,a> <S,5>a

Proof of Theorem 3.4: We start by proving (ii). So let E^~ be a K°-irreducible

subspace of E°° corresponding to the given K°-type. Let V^ be the set of

distributions supported on 0^ such that E^~ » P^ (V^~) . Let furthennore

f « P (T) be a dominant weight vector for E_ ~ . We are going to study T in

some details:

T is a linear functional on C'0(GO/MOTNO) , which is, cf. (3.4), identified with

C = C (G0/^!0™0) . As a linear functional on C^ T satisfies:

(i) T is N -invariant, i.e. ^^ = <T/P> for any <p€C^ and any

nCN , where ^"l') as <P(n.) .

(ii) T has -t̂ -weight »\T , i.e.
<T^> = <-u~,H><T,<P> for any <p€C, and any H€-t , where

^"M = <p(H«) .

We now look at the restriction of T to the open dense N°-orbit 0^ of N in

G°/M°TN . We parametrize 0 by N° via the bijective mapping

n -»• nM°TN° .

Notice that N parametrizes the open orbit (̂  of N^ in 0^ . or in other

words (̂  = °^°), '
We now consider the distribution T^ on N° defined in the following way: Let

^"(G'WTN0) and supple q . Define ^€C^(N°) by

^(n) .^(une^-0-"^ .

then let <T ,(p > » <T,<p> . By the assumptions on T we have that T^ is N^-in-

variant and that supp(T^) c N^ . But then T^ must have the following form

<T ,4) > «| _ (P^(nu)dn . lp^CC^(N°)

c
where u€U(n°) and u can be expressed as a (noncommutative) polynomial in a ba-

sis for n ^recall that n° « n^) . Notice that if <P€q and supp((P) c 0^ .

then <T,<p> » <T ,4> > where <P^ is the restriction of 4> to N°. We conclude

that
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(3.10) <T,(p> « 4)(nu)dn = <Tu,4>> ,

^c

for each 4€C^ with supp(4>)<= 0 . Notice that T is an extension of the distri-

bution T defined by the integral formula (3.10) on (? . Also T can at most

have one K -finite extension with support contained in (), , since the difference

between two extensions is again K -finite and has support contained in ^^^ i

but since the support must be a union of K -orbits it is empty by the minimality

of (̂  .

Combining (3.10) with property (ii) of T above we get for supp(tp) c: 0 and

H€-T:

<-U ,H> <T^4>> = 4>(Hnu)dn

^c
- I (>p(n(adH) (u) )+<2p ,HXP(nu)-HP(nUH) )dn

•'N

- ^(adHXu)'4'^2^-^'1^'^

or in other words

<T, ., ,, . ,<P> s <u,-u'w,H><T ,4)> .(adH)(u) \ f u

If we assume u€U , which we may, we conclude thatn

ad(H)u « <-v,H>u ,

where v « \i - u.. This proves (ii).

To prove (i) first notice that E. being nontrivial must contain a K -type with

a KOH-fixed vector. (This follows since n (E?°) is a U(9.A.)-subinodule of E^ ,

and as such it must contain a function, which is non-zero at the point eH). Retur-
o

ning again to the proof of (ii) we may assume that E_ ^- is such a K -type. But

then u^ I . y. " 0 , such that u~€ t , also
"1

(3.11) <^^0^ ^Z" tor each a€A^ .

Furthermore the dominant weight vector T , and thus T , is M -invariant .From

this we conclude,cf. (3 .10 ) , that u is Ad (M)-invariant. Using Lemma 3.5 for
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K° = KflHTN we conclude that also

(3.12) ±^01^ ea for each aCA^ .< a,a> c

combining ( 3 . 1 1 ) and (3 .12 ) with v = p -v , we have proved (i).

Corollary 3.6. Let A€t* satisfy (2 .2) , (2.3) and (2.6). Then T^ , the discrete

series for G~/H generated by ^ or by E,. , has a unique minimal K -type with

A dominant weight -u, .
C A

Proof: The proof is exactly as in Schlichtkrull [l6], page 1 4 1 , except that we can

refer to our Theorem 3.4 instead of the reference to Vogan-Speh [2l]. In short:

Let -u^ be a dominant weight of a K^-type in T , then

II u^+2p^ll 2 = II p^+2p^|l 2

= II u,+2p~ll ̂  II vll 2+2Re<A•^p.\>.^>+
A C \^-

+ 2Re<2p ,\>^ > > II U^2p~ II ,m 1-t. -- A C

and equality only holds for v = 0 . °

From the proof of Theorem 3.4 we get the following

Corollary 3.7. Let A€-(* and u€U and assume that

( 3 . 1 3 ) ^, (x) - f e^-^^^dn , x€G° ,

}\
o o

converges absolutely uniformly as in Proposition 3.3 (i). If ^^ is K -finite

giving rize to an irreducible representation of K of dominant weight -u , then

(i) and (ii) of Theorem 3.4 are satisfied and u satisfies

(i) Ad(a)u = e^A"^ '"^^u , for each a€T

(ii) (Ad(m)u | m€M ) generates an irreducible representation 6^ of M

in 0 of A -dominant weight -u s -u . y. .n m " m I -^
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Remarks. (a). The problem of the converse or Corollary 3.7 is the following: Assu-
me that u€U generates an irreducible representation E in 0 under Ad(M T)
of weight -v . Let v, s v... and p = v.. such that u is of ^-weight -v.1 1-t m j-c 1
and generates an irreducible representation 6 of M with A -dominant weight* t m
-p . Assume furthermore that X€-t satisfies (2.2) and (2.3) and thatm
-y^ = -(p +v) is a dominant weight for fe .

The first question is whether ^° is at all defined, cf. ( 3 . 1 3 ) and Proposition
A ,U

3.3? If so then notice that

(3 .14 ) ^:y- { „ e^- '̂̂ Odn

for each x€G as a function on K may be considered as belonging to the space
of functions

(pec^d^.E^)

<p(yman) = fi^m-Se^ -H(a)> 4>(y)
for each y€K°,m€M ,
a€T and n€N

This space, defining a non-unitary principal series for K , contains an irreducible
finite dimensional subrepresentation with dominant weight -u . The second question
is, whether 4> belongs to this finite dimensional subspace for each x€G ?

( b ) . Assume that X€-t* satisfies ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 7 ) and ( 2 . 8 ) but not ( 2 . 6 ) . One
might think that a minimal K°-type in E°° could be constructed in the following
way: choose v as under ( a ) in such a way that II u +v+2p II is minimal. Then
prove that ^° is defined and K°-finite.

( c ) . Theorem 3.4 is, at least for the linear case, contained in Theorem 3 of Oshima-
Matsuki [ 1 4 ] , and our proof is much in the same spirit as the proof in [ 1 4 ] .

( d ) . Corollary 3.7 clearly gives an upper bound on the multiplicity of any K -ty-
pe -u^ in any discrete series representations for G /H contained in
n-^).

( e ) . Let £000 denote the set of K°-finite functions in E° , which are PoissonX "
transforms of hyperfunctions supported on 0 . It follows from [ 1 4 ] that

n {t\ ) c n t t^ ) c L^ -^E00) cn•• l(EOOO) CL^G/H) .
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i cAs stated in [ 1 4 ] the square integrability holds for those \ for which the func-

tions are K-finite and not just K -finite. But the asymptotic estimates needed
does not seem to depend on the linearity of G at all.

( f ) . From Oshima-Sekiguchi [ 1 5 ] and Oshima-Matsuki[l4] it may very well follow,
'*" r^"**that for any K -finite and square integrabei function f in c, , the asymptotic
0 0 0 0behaviour of f « n ( f ) on G /H is such, that f is the Poisson transform of

a distribution. If this is the case then E°° = E000 •

( g ) . It is also proved in [ 1 4 ] that for any X€-t , we have

L2 (G/H^ = 9 n'^E000) ,X w A

where w runs over the elements in W , such that w*X satisfies ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 8 )
and a condition stronger than ( 2 . 7 ) which ensures that the occuring K -finite func-
tions are actually K-finite.
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§ 4. The nonRiemannian isotropic spaces.

In this section we turn to the semisimple symmetric spaces of rank one. The Rieman-
nian cases, i . e . the spaces of compact type ( I ) or the spaces of noncompact type
( I I ) , are from our point of view completely solved even for general rank. By this
we mean that for case ( I ) L (G/H) has a puriy discrete spectrum, which is expli-
citly known. (See [ 4 ] Example 2.7 for an interpretation of this case in our frame-
work) . For case (I I ) Harish-Chandras spherical Plancherei formula shows that there
are no discrete series. This also follows from Theorem 2 . 1 , since K = H ̂  G in
this case and thus rank (G/H) > ranktK/KUH) = 0.

In Table 1 we give a list of the nonRiemannian semisimple symmetric spaces of rank
one. We have also included some more information about these spaces. It follows in
particular that Question 1 of Section 2 is relevant only for some of the isotropic
spaces. For this reason we now turn to the isotropic spaces.

The isotropic spaces are well studied, see for example Strichartz [ 1 8 ] for the
R-hyperbolic spaces, Faraut [ 2 ] for the B-, ( and B- hyperbolic spaces and
Kosters [ l l ] for the exceptional case. The only cases wich are not covered by these
references are the simply connected covering spaces Ĝ /H for the »-hyperbolic
spaces with q = 1 .

In Table 2 we describe for the isotropic spaces G/H the values of XCt* for
which our discussion in Section 3 allow for the possibilityof having a discrete
series for G/H. These parametervalues are easily related to the pararoetrization
of the discrete series in the above references by comparring eigenvalues of the
Casimir operator. This is also contained in Table 2. It follows in particular that
there exists exactly one discrete series representation for each possible value of
\ . Looking more carefully at [ l 8 ] , [ 2 ] and [ l l ] one can also sort out all the
K-types occurring in each T. . This means that as soon as we have answered Question
1° of Section 2 , we have also answered Question 2° . Strictly speaking this is only
true when we consider the spaces G/H . For the R -hyperbolic spaces with q = 1
we see no serious difficulties in generalizing either Strichartz methods or Faraut's
methods to give also the discrete series for G /H . But since we have not done
this in any detail, we cannot claim to have answered Question 2 for these simply
connected covering spaces.
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We now turn to our discussion in Section 3. Elaborating on the results from Section
3 we want to answer Question 1° of Section 2, and at the same time we want to con-
struct all K~-types of the representations T, , where \ may be arbitrary sub-
ject to conditions ( 2 . 2 ) , ( 2 . 3 ) and ( 2 . 7 ) , cf. Table 2. In order to make our con-
struction as simple and direct as possible, we want to do this without relying on
the very explicit computations in [ l 8 ] , [ 2 ] and [ill or on the very deep results in
Oshima-Matsuki [ 1 4 ] .

Before coming to our main theorem we need some remarks and some lemmaes. Recall
that M and M. are the centralizers respectively of -t in KflH and of b in
KHH , where b is maximal Abelian in pHQ . If B » exp(b) then we have, cf.
[ 3 ] , that

( 4 . 1 ) G = KBH , G~ = K~BH and G° = K°BH .

Lemma 4 .1 . Every K^-type occurring in C^~(G .'H) has a nontrivial M^-fixed vec-

tor.

proof: Let f € ("(G^/H) and let xOG" be such that f (x) • 0. According to

(4 .1 ) write x » kbh , let ^ (g) » f(kg) and define f^ € C^G^/H) by

f,(g) = L ^ (mg)dm .
1 }\

Then f is K-invariant and belongs to the K~-invariant subspace of C (G /H)

generated by f . f. is nonzero since

f,(1 3) = L f(l"nb)d" c ^^ • ° •1 }\

This proves that any nontrivial K^-invariant subspace of C (G /H) contains a non-

zero K-invariant function, and the lenana follows, o

Lemma 4.2. Let G/H be nonRiemannian and isotropic, then

KUH » M M ,b t

i.e. every K € KPH can be written k « m m , where M^CM^ and m^^ '
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proof: For the ?-,(;- and B-hyperbolic spaces this lemma follows easily from

Table 3. For the exceptional space F. ,«Q./Spin (1,8) one can for example use the

description of F.. >,.. in Takahashi [l9] and with a few computations see that

M. and M are both isomorphic to Spin (7) , but with two different embeddings. It

follows then from Lemma 1 , page 534 of [l9], that K a< Spin(7) acts transitively

on KflH/M ex Spin (8)/Spin (7) » S . This is the same as saying that M^M^ « KTIH . D

Lemma 4.3. Let G/H be nonRiemannian and isotropic, then n and n commute

with each other. In particular every element u from D^ is Ad(N^)-invariant,

and E ° is well defined for all X such that <X,a> > 0 .

Proof. The possible roots in A'1' are a and 2a . Therefore [n ,n ] c. g^ , but

from Table 1 it follows that 5° <= ^° . From this we conclude that

[n^] c fe°n[ fe°,p°] c fe°np° « {0} .

The rest of the lemma now follows from Proposition 3.3. o

Lemma 4.4. Let G/H be nonRiemannian and isotropic. Every Ad (M)-invariant non-

trivial subspace of D contains a nonzero Ad (M flK) -fixed element.

* •«•
Proof: Let A€-t be an arbitrary element satisfying <X,a> > 0 for each a€A .

Let uCD , u 4 0 . We want to prove that the subspace generated by u contains

a nonzero M flK-fixed element. Without loss of generality we may assume that u

is homogeneous under T , i.e. Ad(a)u = e^"^ a u for each a€T and some \>€-t .

It follows from Lemma 4.3 and Proposition 3.3 that

(° (x) . [ e^-^'1""'^ , x€G° .
'u •'Nc

is well defined and nonzero. Choose x€G° such that C° (x) 4 0 . Using ( 4 . 1 ) we

can write x » y~ bh, where y€K° . Furthermore using Lemma 4.2 write y = ro m^an,

where m CM. , m-€M , a€T and n€N . It is then easily seen that we have for1 b 2 t c
every m€M UK

0 4 ^ ^(x ) . e^-^c-^ H(a)>^ (b) ,
' m

where u « Ad(mm^)u . Now

182



Discrete series

u! s Ĵ OM̂

is M fM-invariant, nonzero and contained in the subspace of D̂  generated under
t D oAd(M^) by u .

Recall that a pair ( M , L ) , where M is a locally compact group and L a compact
subgroup, is called a Gelfand pair if the convolution algebra of continuous
L-bi-invariant functions is commutative, or equivalently if every irreducible, uni-
tary representation of M has at most a one dimensional subspace consisting of
L-fixed vectors.

Lemma 4 . 5 . Let G/H be nonRiemannian and isotropic. The pair (M^, M^) is a
Gelfand pair.

proof: From Table 3 it follows, when disregarding some trivial factors, that
(M ,M^) for the K-, (- and » -hyperbolic spaces are respectively

( S 0 ( p ) , S O ( p - D ) , ( S ( U ( P ) » U ( D ) . S(U(P-1) x U(D* x U ( l ) * ) )

and (sp ( p ) x S p ( l ) , Sp(p-l) x Sp(D* x S p ( l ) * ) .

These pairs are all known to be Gelfand pairs, since they occur as -K/M- for the
following rank one Riemannian symmetric space:

SO ( p , l ) / S O ( p ) , S U ( p , l ) / S ( U ( p ) x U ( D )

and S p ( p , l ) / S p ( p ) x S p ( l )

For the exceptional case we look at (Spin(7) , G,» . As used before Spxn(7)/G^7 .
But SU(4) is conta.ned in Spin(7) in such a way that already SU(4, acts tran-
sitively on S7 with stabalxzer S U ( 3 ) . Therefore considerxng the G^bi-invarxan-
te continuous functions on Spin(7) as G.-invariant functions on S . these
for» a subset of the SU(3)-invariant functions on S7 . Since ( S U ( 4 ) , SU(3» ̂
known to be a Gelfand pair it follows that so is ( S p i n ( 7 ) , G ; ) .
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ĉ:
0
4J

'oc
8
(A^

4J

?
0
0

0)
£.
4J

c
0).c
4J

Li
0
4Jua>>
•D
0)x

4-1
1
z

186



Discrete series

i-0
c

E"

^

Jj

z

x
\
u

«

•d <-4

^ &
^ (A
3 x
x *-»

« -4

= &
D x
x -~

1 ff CMcr — u— » ' - ' a— D in
1 x xcr — ->
0 I IM Qi a

5 »
-^ •» x

^ s ?
0 — A
U) Ul CO

«

*"" A— in
— x

I ^
'?• —
"' Q<3 in

cr ^ ^ ^

in a & -^

5 § a<
<-̂  « x

1 j *E
S '-' ain en

«
« »-
^ a— in
3 x
X «

« -»•

^ a -»
-^ 3 M r^

T ^ ^ Co" -^ <- -^w 1 1 &0 tr ^1 in
3 &K x in
^— X

^ a ^
a 3 a

0 -' 0-co in in

B <, ili e

«
u
x

«
0
x

«
0

0̂
44

>.
r-(
M
<0
^-t
•H
6
-^
(Q

'3
w
x

's?
X'

«

u
K

«

0

•o
0)m
3
0)
•̂ (

g
4->
<0
4J

§
0»c
•̂s
—4

0
U-4

«

g

187



M. FLENSTED-JENSENandK. OKAMOTO

Definition. Let X€-t satisfy < A , O > > 0 for each a€A . Define V. to be the
* +set of weights \>€(-t^) which are A -dominant, and for which

( i ) -v is a weight for €" in D .< n

(ii) -iT** - ( p , + v ) is a dominant weight for a finite dimensional representation
of K having a nontrivial M-fixed vector, o

Remark.(a). If \ satisfies ( 2 . 2 ) , ( 2 . 3 ) and ( 2 . 7 ) , then V is nontrivial. To
see this let -v be the weight of any M -invariant element in D . Then by
Lemma 3.5 we have that also \T' = u,-»-v satisfies ( 2 . 7 ) . Now taking v sufficient-
ly large we can obtain that u^ satisfies ( 2 . 6 ) , which implies that v€V. .
( b ) . For -i/" to be of K̂ -type contained in E°° it follows from Theorem 3.4
and Lemma 4.1 that it is necessary that u^-p.€V. . °

We are now ready to state the main theorem of this section. We state it in a rather

general formulation in order to indicate what kind of more general results one

might hope for. In Section 5 we shall do some more explicit computations of the

functions involved.

Theorem 4.6. Let G/H be a nonRiemannian, isotropic semisimple symmetric space.

Let \€t* satisfy the conditions (2 .2) , (2.3) and (2 .7 ) . Let u^ = X+p-2p^ .

(i) If <u.,a> >. 0 for each X6A then
A "" C

^°(x) « I e^-^^^dn , x€G° ,
A •'N

is well defined, K°-finite and the dual function ^ is the dominant

weight vector of weight -u^ of the unique minimal K^-type of the discrete

series representation T, generated by ^ .
A A

(ii) If <u »ci> < 0 for some a€A . then choose v€V such that
A C A

|| u^^2p^ ||« Min {II u^v'-^p^ II I v€V } .
A C A C A

Let u€0 be a A'-dominant weight vector corresponding to the weight
n m

-v , then
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( 4 . 2 ) ^0 ( x ) » ( e^'^^dn , x€G° ,A , U J^
c

is well defined, K -finite and the dual function ^ is the dominant
weight vector of weight -p~ = - ( u , + v ) of a minimal K^-type of the discre-
te series T. generated by ^.

(iii) The K -type decomposition of T, is as follows: -U~ occurs in T^ if
and only if p^-v.€V, .

( i v ) If -p occurs in T, , then the dominant weight vectors for this K -type
is given by ^, , where u is any A -dominant weight vector for M TA , u m t
in 0 of weight p.-u~ .n A

Proof: Part (i) is just a special case of Theorem 3.2 and Corollary 3.6.

For Part (ii) it follows from Lemma 4.3 that E° is well defined. Taking into
A ,U

account Theorem 3.4 and its proof the two things left to prove are that (a) S,
A ,U

is K°-finite and that (b)^ ^ belongs to L (G/H) .

Proof of (a): Let E be a Hilbert space for an irreducible finite dimensional re-

presentation TT of K with dominant weight -u . Chosen such that IT is unita-

ry when holomorphically extended to K . E contains a unique subspace F on

which M T acts as an irreducible representation 6 of A -dominant weight -u

F is isomorphic as a M T-module to the subspace of D generated by u and

therefore by Lemma 4.4 there is a nonzero M nw-fixed vector f €F , unique up to

scalars. By assumption, cf. definition of V , E has a nontrivial M-fixed vec-

tor e . Now let y€K be written y = m m an , where °.€K ,m £M ,a€T and n€N .

We have
(e , T r ( y ) f ) = (e ,Tr(m m an)f )o o o 1 2 o

^u^Hta^ , , ,- , <-u^.H(a)>, , , , - ,» e f (e ,TT(m ) f ) « e (e* ,TI (m ) f ) ,o 2 o o 2 o

where e* is the orthogonal projection of e onto F . The matrix coefficient

y -- (e ,"n(y)f ) is nontrivial, so we conclude that e* is nontrivial. Clearly

e* is M OM -invariant. So by the uniqueness of f we have that e* is a scalaro t b - - o o
multiple of f . Without loss of generality we can assume that e* s f and that

0 - 0 0
(e ,f ) « jl f 1 1 « 1 , or in other words we haveo o o

^w

( 4 .3 ) (e ,ir(y)f ) - e^1' '"^^(f .{(m,)f ) ,
o o o 2 o
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for each y€K , where y = m m^ e x p ( H ( y ) ) n as above. (Notice that ( 4 . 3 ) shows
that ê  is uniquely determined, such that for E the M, fixed vector is unique
up to a scalar).

Let u^ be the element in 0^ corresponding to f . From Lemma 4.4 and its proof

it follows that it is enough to show that ^° is K°-finite. It also follows
A ,U

that °

(4 .4) Ad(mm^)u^dm = (f^,5(m^)f^)u^ .
M HM^
t D

Let now y€K and b€B then we have (using same argument as in the proof of

Lemma 4.4) that

(4.5> ^^^<-^^>^.^^^ .
0 0

where as before y s m«m-> exp(H(y))n . Combining (4.5) and (4.3) we get

(AS6) ^u ^lb} s ^^o^u (b) '
0 0

for every y€K° and b€B . This finishes the proof of (ii) Part (a) since by ( 4 . 1 )

every x€G°/H° can be written x » y^bH0 , with y€K° and b€B .

Proof of (b): This follows from Oshima-Matsuki [l4], cf. Remark (e) at the end of

our Section 3. Another and more direct proof of Part (b) is obtained by simple

inspection of the asymptotic behaviour of b -»• ^. (b) from our explicit formulas

in Section 5. This finishes the proof of Part (ii).

For the proof of Part (iii) and (iv) notice that our proof of (ii) did not use the

minimality of v in the proof of the K -finiteness of €•» • This means that
A y U

^° is K°-finite if and only if u^-U^CV. . So what is left to prove is that

T contains all the functions S, constructed in this way. Using Theorem 3.4

this is equivalente to saying that E. is an irreducible li( g^,) -module.

As noted before every U(g.)-submodule of C^o^/H0) contains K°-t/pes with a

nontrivial KflH- fixed vector. From the next Lemma 4.7 it follows that any U(9 . )~

submodule of E. contains every KflH-fixed vector of every K -type occurring.

Therefore E. is irreducible, o
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Lemma 4 . 7 . Let G/H be nonRiemannian and isotropic. Let n be equipped with an
M -invariant inner product and let X , . . . X be an orthonormal basis of n .
Define u in D byo n

(A) » X, if s « 1o i

and

oj = X^+.-.+X 2 , if s>l .0 1 S

Then a) is M -invariant, and every M.-invariant element in D is a polynomialo t ^ n

Furthermore let for r€ZZ+ u = ((*) ^ . Then the set of KOH-fixed vectors in the

different K°-types in E°° is up to scalars given by

(4.7) U0 I rEZ'*' and u -»-cra> 0),
A , U A ~r

where c = 1 if s « 1 and c = 2 if s > 1 . For any r€2Z we have

r° r°
"0^ • ̂  •

(a is the shortest root in A ).

proof: Since b is one dimensional we can assume that b = » E X ^ - T ( X ^ ) ) . From this

we easily conclude that the stabilizer of X^ in M^ is M f̂lM^ . From Table 3,

cf. also the proof of Lemma 4.5, it follows that W^/^0^ is a sphere.

Now a checking of dimensions shows that Ad(M^) (X^ ) must be the connected com-

ponent of the unit sphere in n - From this follows that every M^-invariant ele-

ment in n is a polynomial in ^ .

Notice that the weight of <*̂  is -ca . where c s 1 if s » 1 and c « 2 if

s > 1 . From the proof of Theorem 3.4 (i) it follows, cf. ( 3 . 1 1 ) and ( 3 . 1 2 ) , that

the iT-type with weight -u^—tu^v) has a KflH-fixed vector if and only if the

u corresponding to v is M -invariant and

^ftt^ ^
———— €2 for each a €A .<c^,o^> 1 c
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Now this condition with v « ca is always satisfied. (If c = 1 , then we are in
the case of the »-hyperbolic space with p s 1 , and a s 2a is not a root. In
all other cases c s 2 , and the condition is satisfied even with a s 2a) . This
proves that the K°-types with a KflH-fixed vector occuring in E00 are given by
the functions E° , for which u.+cra > 0 . The last statement in the LemmaA , u A -
follows from Proposition 3 . 1 (ii) and the fact that u) is Ad(N )-invariant, cf.
Lemma 4 . 3 . °

Remark.(a). We have already mentioned that Table 2 shows that it can be concluded
from the work of Strichartz [ 1 8 ] , Faraut [ 2 ] and Kosters [llL that the T^
of Theorem 4 . 6 exhaust the discrete series for G/H . It follows from Table 1 that
G~/H = G/H for all cases except for the K-hyperbolic spaces with q = 1 . The
same conclusion for G/H can be drawn from Oshima-Matsuki [ l 4 ] , cf. Remarks ( e ) ,
( f ) and ( g ) at the end of Section 3 , provided one can show that E. = E . But
this last fact should be particularly easy to show in these cases, where
dim(b) = 1 .

( b ) . The minimal K-types. If u , ^ 0 the minimal K"-type is -u^ . If u^< 0
and u is even say u s -2r , r€H , then by Lemma 4.7 we have that 0 = u -»-2raA A A

is a K-type of T . This means that the trivial K-type is contained in T .
Clearly the trivial K-type is minimal. So far all these minimal K -types have a
KflH-fixed vector. Now assume that u , = -2r+l<0 with r€H . This is only possible,
cf. Table 1 and 2 , if G/H is R-hyperbolic and if q ̂  p+4 . Now if also p > 1 ,
then Lemma 4.7 shows that the trivial K-type is not contained in T . The minimal
of the K-types having a KflH-fixed vector has weight -u = -1 = -(u^-»-2ra) . o

Example 4.8. Let G/H - SO (2,7)/SO^ (2 ,6 ) .Le t \ « ^Q , then u ^ - -a . Let

BCA"" be chosen such that B.^. « a and X -OT , (there are two possible choices|-<- — p n
of B ). It is easily seen that, with u « x.^ r\ • we have that u ls ^V^t'
fixed. Now -\T " -(u -»-v)« a-6 , which is the weight of the following one dimen-

sional representation ^•1 of K - S0(2) x so(7) , where ^ or - is chosen

according to the choice of 6 ,

(cos e -sin el

"1(sin e cos e)

Since M • SO ( 5 ) we have that ^•1 has a M.-fixed vector. Thus -n • 1 are
K-types of T . Finally a simple computation shows that
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II u^2p^ ll2 = 1 + 1 1 2pjl2 + ll2pjl2

and

|| V + 2p^l|2= II 2PJ12-- II 1 + 2pjl2 ,

where -v = -1 is the minimal among the K-types with a KOH-fixed vector. (We

have normalized such that a = 1 ) . From Table 1 we get that p^ = 5/2 and thus

|| \T + 2p~ ||2 = 26 + II 2pjl 2 <

< 36 + II 2pjl 2 = II u + 2p^ II 2 .

This means that Tr^l and TT~»I are two different minimal K-types , and neither

of them have a KflH- fixed vector. D

Remark, ( c ) . Continuing the Remark ( b ) above it is easy to generalize Eksample 4.8
to show that if v , is an odd negative integer and p > 1 , then no minimal K-ty-
pe of T has a KTIH- fixed vector. Furthermore if p » 2 then T^ has two diffe-
rent minimal K-types. °
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§ 5. Explicit formulas for the isotropic spaces.

The purpose of this section is to give an explicit evaluation of the integral (4.2)

defining ^° . We assume that u is MOM, invariant and belongs to an M T-ir-

reducible subspace of D with A'-dominant weight v€v. . This means that E°

is K°-finite of irreducible type -u~ * -(u,-*-v) . By the help of (4.6) , (4 .3) and

( 4 . 1 ) we have an explicit formula for ^° as soon as we know it on B . However
o 'uon B ^ agrees with ^ » cf. the Duality Theorem. Actually formula (4.6) is
A i U A f U

very convenient for the point of view of duality, since it shows that

( 5 . 1 ) ^u^b) = (e^(k)f^^(b)

for k€K" and b€B .

We shall not go into the explicit parametrization and description of the special
functions on the groups K~ and M , which are involved in evaluating
(e , 7 r ( k ) f ) .0 0

Let in the following 3F = 3R , ^ , 3H or q) respectively according to whether we
treat the 3R , -̂ or 3H -hyperbolic spaces or the exceptional space. Because of
the non-associativity of the Cayley numbers ^ , what we write in the following for
F = <p is not really correct. One should use the model for the exceptional space
used in Takahashi [ l 9 ] and Kosters [ l l ] . However the formulas obtained, at least
formula ( 5 . 7 ) , also hold for this case.

We take our group G , which is respectively SO ( p ^ q . l ) , S U ( p + q , l ) , S p ( p - » - q . l )
and ^(-20) ' to be an ^̂ ^̂  x (P^q^) matrix group over the field P . The
involution T is given by conjugation with the matrix

ri o ...o^
lo

p-K^l 1 0
lo... o-ij

and o is given by conjugation with the matrix

f^ °
'P'^1 ' \ 0 -I
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We shall need the following subgroups

1 , 0 0p+q-1
0 chs shs

0 shs chs

s€B

B :
\-

cht 0 sht

00 I•p+q-1

sht 0 cht

0 x

t€R

x€r1

N : n(x,y,z) = <
0 q-1 y y
-t -t ,-x -y I-Y -Y
x y y 1+y

, y€rq-l

2Clm(F)

where

Y s Y = ^(Ixl^lyl2^) .x »y»z

Notice that N is the subgroup obtained with x = 0 , and that exp(h ) is ob-

tained by taking y s z = 0 .

Let v » (0 , . . . ,0 ,1) € IF^^1 and let v, s (0,... , 0 , 1 , 1 ) € F13'*^1 . If we as
0 * :

in Section 4 identify t. with ^ in such a way that the shortest root a in

A is identified with 1 we get for any element gCG and any ^C-t^ that

^<-X-p,H(g)> , ̂ ^^-X-p ^

Let now g€G° be arbitrary .We write g" in the following form

(5 .2 ) g"1 - \ 7T
[ a b e d '

where a€r15 , b€^q' l, c,d€r and furthermore

l a l ^ l b j ^ l c ^ - l d l 2 « -1 .

We now take
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<1> = <t»(x,y,z,a,b,c,d) s ^Q^" "(x,y,z)v > ,

such that e^-^11^'1"^ . m-^ .

A straight forward computation shows that

4> « 2a.x + 2b.y + (d-»-c) + (d-c) ( Ix^+ ly l 2 ^)

A few tedious computations show that

^ = (d-c) ( j x+a ' l 2 + |y+b'|2 + Id-d"2 +

+ 2 Im(a'.x + b ' *y + I d-c I ~ dc) + 2z) .

where a' = (d-c) a and b* = (d-c) b , and therefore

(5.3) |<M2 » |d-c|2 [(|x^a'|2 + ly+b'l2 + |d-c|"2)2 + Iz ' l 2 ] ,

where

z = 2 (z + Im(a'*x •»• b* *y •»• Id-c I dc)) .

We now compute for fixed g€G° and xCr13

I0.g,x) . [ e<-^o•H<9' ln»"c•o-o>)>dn.

'^

As the measure on N we take dyd(2z) (which is normalized differently from dn

in Proposition 3 . 1 ) . Notice that dz' « d(2z) and that dy « d(y-*-b') . Let

u,2 » ( Ix-ca* I2 ^ |d-c|'2) ,uj > 0 .

We find

I(^.x) ^Id-cl-^'^ f |((.2. y 2 ) 2 . z2)^ (A*D)dzdy
' -fl-1 J
r* im(r)

v Id-cr^^u,^2^'^'"2*^1^1"1» (r ) )
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where

Y, = f , f (d+lyl2)2 * Izl2) -^^kzdy .
x Jr^1 J im(p)

(5.4) v /

=I(X,e,o) s consfc(-i(A+p-p^) .

The last equality follows from Proposition 3.1 (iii). From Table 1 we find that

(q+1) dim (3F ) -2 = 2p . Combining ail this we have
1R c

_ , , , i, , - ( A + p ) -2(A+p-p )I (A,g ,x ) = Y, Id-cl (jo c

(5 .5)

. ̂  Id-cl" (1.1(d-c)x.a|2)- ( A + p-pc )

Let now dE-D be expressed in terms of x as u s ^T^) » then we get

^(g) = c(-i(^p-p^)ld-cl^P(^).

(5.6)

•(l.Kd-Ox.al2)-^-^

I x = 0

Theorem 5 . 1 . Let G/H be a nonRiemannian, isotropic semisimple symmetric space.

Let X€^ satisfy Re<X,a» 0 , where a is the shortest root in A . Let

u€D be homogeneous of degre m , and let u expressed in the variables x be
n / ^ \

u = nT") • we have

(u,+m)
^° (b ) = c(- i(X+p-p ) ) (cosht)

A , U t C

.^..Kl^—————c,

Ix « (-sinht, 0,...,0) .

proof: This follows from formula (5.6) taking g = b , which means that

a « (-sht,0,...,0) , b » Of c = 0 and d = cht . °
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