MEMOIRES DELA S. M. F.

MOGENS FLENSTED-JENSEN

KIYOSATO OKAMOTO

An explicit construction of the K-finite vectors in the discrete
series for an isotropic semisimple symmetric space

Mémoires de la S. M. F. 2¢ série, tome 15 (1984), p. 157-199
<http://www.numdam.org/item?id=MSMF_1984 2 _15__ 157_0>

© Mémoires de la S. M. F., 1984, tous droits réservés.

L’acces aux archives de la revue « Mémoires de la S. M. F. » (http:/smf.
emath.fr/Publications/Memoires/Presentation.html) implique 1’accord avec les
conditions générales d’utilisation (http:/www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSMF_1984_2_15__157_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Société Mathématique de France
2e série, Mémoire n® 15, 1984, p. 157-199

AN EXPLICIT CONSTRUCTION OF THE K - FINITE VECTORS IN THE
DISCRETE SERIES FOR AN ISOTROPIC SEMISIMPLE SYMMETRIC SPACE.

BY

MOGENS FLENSTED - JENSEN* AND KIYOSATO OxAMOTO*

* Both authors partially supported by the
Danish Natural Science Research Council.

157



M. FLENSTED-JENSEN andK. OKAMOTO

§ 1. Introduction.

In [18] strichartz stated an explicit formula describing all O(n)xO(N) - finite
functions in any 0O(n,N) - invariant, closed and irreducible subspace of
Lz(o(n,N)/O(n,N-l)) . From a grouptheoretical point of view the formula is not so
transparent since its formulation uses an explicit realization of 0(n,N)/O(n,N-1)

as a hyperbolic space in :R‘"N .

In this paper we suggest a formula, which may do the same for the general semisimp-
le symmetric space G/H , i.e. describe the K-finite functions in the irreducible
representations of G in LZ(G/H) . The socalled discrete series for G/H . For
the general case we can only state a few necessary and a few sufficient conditions
for our formula to give a K-finite function in a discrete series for G/H . How-
ever for the isotropic spaces G/H the formula suffices to describe all the

K-types of all the discrete series for G/H .

By the classification, cf. Wolf [22] and Berger [1]. The pseudoRiemannian, nonRie-
mannian isotropic spaces are all symmetric. Up to coverings they are the classical

real-, complex- and quarternionic projective hyperbolic spaces.

SOe(p,q+l)/S(0(p,q)¥O(1))
Su(p,q+l)/S(U(p,q)xU(1))
Sp(p,q+l)/sp(p.q)*xSp(1)

for p2>1 and q > 1 , and one exceptional case

F4(_20)/Sp1n(1,8) .
This last space may in some sense be thought of as the projective hyperbolic space
over the Cayley numbers with p =q = 1 . We are not interested in the Riemannian

isotropic spaces, since they have no discrete series.

Our formula, when explicitly computed for a real hyperbolic space, gives a formula
very similar to Strichartz', but not completely identical to it. This difference be-
tween the two formulas may contain some nontrivial relations between formulas for

special functions.

Our interest in the problem came from a discussion of the paper Flensted-Jensen [3].

In that paper it is shown that if rank G/H = rank K/KNH then discrete series do
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Discrete series

exist. The existence is shown by construction of K-finite elements in the corre-
sponding subspaces of LZ(G/H) . In Section 8 of [loc. cit.] it was shown by loo-
king at the nonRiemannian isotropic spaces that the construction did not exhaust the
discrete series for these spaces, at least for q large compared to p . It is our
hope that the present study of these exceptional discrete series for the isotropic
spaces may give some hints of how to solve the general problem of construction of

all discrete series for G/H .

A recent preprint of Oshima-Matsuki [14] contains very much information on "where
to expect"” these exceptionel discrete series in general. However the general pro-
blem of actual construction of K-finite elements in each representation space

seems still open.

We get two offspins of our result: In Section 3 we find a new proof of the minima-
lity of the K-types used in [3] to construct the discrete series for G/H . This
proof is simpler than the proof by Schlichtkrull [16] and is also valid for the
universal covering space G~/H , which was not covered by [16], because of the use
of results from Vogan-Speh [21]. In Eksample 4.8 the computations show that

there are examples where a minimal K-type of a discrete series for G/H does
not have a KNH-fixed vector. In contrast to what for a long time was the belief of

the first auther, cf. [4]. Also non-uniqueness of minimal K-types occurs.

The content of the present paper is as follows: In Section 2 we introduce the neces-
sary notation and prerequisits. In Section 3 we introduce and discuss our proposed

integral formula. In Section 4 we turn to the case of rank one and in particular to
the isotropic spaces; For these our formula gives the complete answer. In Section 5

we compute explicitly the formulas optained in Section 4.

We want to thank Plesner Jakobsen and Schlichtkrull for many fruitfull discussions

concerning the content of the present paper.
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§ 2. Notation and preliminaries.

Let G be a connected, linear semisimple Lie group contained as a real form in a

complex, simply connected Lie Group G¢ . Let T be an involution of G and let
T

H =G, be the identity component of the fixpoints for T . Let X = dw/ﬂ be
the universal covering space of X = G/H 1). Every connected, simply connected se-

misimple symmetric space is of the form X = G~7H . For more detailes see Berger
[1], Loos [12] or Flensted-Jensen [4].

1f X is irreducible, then X 1is one of the following three types

(1) The compact type if G is compact.
(II) The noncompact type if H is compact and G is noncompact.
(I11) The nonRiemannian type if H in noncompact.

The Killing form induces an invariant metric on X and on X . In case (I) and

(II) the metric is Riemannian. In case (III) it is pseudoRiemanninan.

Up to H-conjugacy there is a unique maximal compact subgroup K of G , such that
7(K) = K . Let 0 be the Cartan involution related to K . Then o1 = 10 . No-
tice that for X irreducible the three types can be characterized by: (I) G = K,,
(II) H=K and (III) G 4# K and H 4 K .

Examples. (a). A connected semisimple Lie group G may be considered as a symme-

tric space.let d(Gl) be the diagonal subgroup inl Gllcl , then Glel/d(Gl) is

a symmetric space, which as a manifold is isomorphic to Gl . It is of type (I) if
G1 is compact. Otherwise it is of type (III).

(b). The hyperbolic spaces mentioned in Section 1 is of type (I) if p =0 , type

(11) if p>1 andq =0 and type (III) if p > 1 and gq>1 . o

The Riemannian symmetric spaces are well studied, cf. f.ex. Helgason [6], [8] and
{9]). Our main concern in this paper is the nonRiemannian spaces. However as descri-
bed below we shall make extensive use of a Riemannian symmetric space GO/HO "dual"”

to the nonRiemannian space G/H .

1) G is chosen such that the covering map of G onto G is an isomorphism be-

tween the analytic subgrowps corresponding to h , the Lie algebra of H
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Discrete series

Definitions. (i) A discrete series representation n for X = G/H is (the unitary

equivalence class of) the representation of G on an invariant, irreducible subspa-
ce V#$0 of Lz(x) .

(ii) VK is the subset of V consisting of the K-finite vectors in V . Then

v < L2ooncex) .
(iidi) Vmin is the union of the isotypic components of the minimal K-types in

v (in the sense of Vogan [20]). any WGVHin ¥4 0 is called a minimal spheri-

K ’
cal function D for w .

(iv) For X = G /H a discrete series (or more precisely a relative discrete seri-

es) is defined as under (i), but modulo a unitary action of the center of d~ .

(The modifications needed in this connection are rather obvious. We shall not in
the following be completely consistent in always pointing out the necessary reformu-
lations in order to incorporate G~7H into the treatment.) o

Let 9¢ be the complex Lie algebra of G, . Let g,h and k be the real subal-

¢
gebras corresponding to G,H and K . We denote again by T and o© the diffe-

rentials of 1 and o and their holomorphic extensions to . Since 1

%
and ¢ commute we may decompose g according to +1 and -1 eigenspaces for
T and o in the following way:
g=h+q="Fk+p=n~hnk + hNp + qhk + qnp .
. . (] (-} o
Inside gt we now define the real subalgebras g , h- and k "dual” to
g h and k by

g® = hnk + i(hNp + qnk) + qNp ,
o o o _ o
h™ = h¢ng and k = kcﬂg '

where i = V-T

Let G° , Ho and Ko be the corresponding analytic subgroups of G¢ . Notice that

8° is maximal compact in Go , whereas Ko is (in general) noncompact.

o
Definition. We shall call the Riemannian symmetric space G°/n with the associated

symmetric subgroup K® for the dual to G/H .

Notice that (G/K ,H) is dual to G /k° .

1) This definition is slightly more general than the one used in [4].
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Exaggles. (a). Let Gl be a connected, semisimple Lie group (with finite center)

and Kl a maximal compact subgroup. Let Gl¢ and K1¢ be the corresponding com-

plex groups and let U1 be a compact real form of G1¢ . The dual of g
of clxcl/d(cl) is then (Glt/ul’ K1¢) .

(b) . The dual of a hyperbolic space is obtained by exchanging the index pair

1,i.e.

(p,q)
with (p+q,0) , and the corresponding subgroup Ko is in the respective cases gi-

ven by SO(p)xSO.(q,1) , S(U(p)xU(q,1)), Sp(p)xSp(q,1) and Spin(8,1) o

@ ~

Let é:(G/H) , CK~(G /H) and C:B(GO/HO) denote respectively the K- , K - and
k°- finite functions in CT(G/H) , C(G™/H) and ¢®(c%/8°) . Let U(gc) denote
the universal enveloping algebra of g¢ and let U(gt)h and U(gt) deno-
te the centralizer of respectively hc and k¢ . Then U(EC) is naturally iden-
tified with the algebra of right invariant differential operators on G, G  or

c° , and thus also defines differential operators on G/H , G/H or GO/Ho . Clear-
ly g(gc) leaves d:/G/H) B d;~(d~/ﬂ) and CKo(GO/Ho) invariant. Similarly
U(gt) is, modulo a certain kernel, naturally identified with the algebra of in-

variant differential operators on G/H , G /H or Go/®° .

Duality Theorem. ([3]). There is a unique isomorphism n: f + £° between the
oo oo o ,.0
U(gc)xU(9¢) - modules c~(6 /H) and colG /B") such that

£(xH) = £°(x8)

for each x in the identity component 1) G° of GnGo .

pefinition. A Cartan subspace a for G/H is a maximal Abelian subspace of ¢q ,

consisting of semisimple elements. Every Cartan subspace is H-conjugate to a
o-invariant one. A o-invariant Cartan subspace is called fundamental, respectively
compact, if aNk is maximal Abelian in qnk, respectively if a c qhk .

The rank of G/H is the dimension of any Cartan subspace for G/H .

1) Here is a slight abuse of notation. It is used that the covering map of G~ onto

o
G is an isomorphism between the analytic subgroups corresponding to g° = ghg .
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Discrete series

Theorem 2.1. There exist discrete series for G/H  if and only if G/H has a com-
pact Cartan subspaces or equivalently if and only if

(2.1) rank(G/H) = rank(K/KNH).

The sufficiency of (2.1) is proved in [3] by a simple construction of elements in
é:(G/H)nLZ(G/H) generating irreducible subspaces of LZ(G/H) . We shall return to
this below. The necessity of (2.1) is one of the results in Oshima-Matsuki [14].

From now on we assume the rank condition (2.1) to be satisfied. Fix a compact Cartan

1)

+
subspace a = it and a positive system Ac of restricted roots for

A =4a(°,%) . Let A= A(go,t) and let Wc and W denote the respective Weyl-
c

groups.

*
Let A€t Dbe such that
(2.2) <A,a> > 0 for each aeAz and

(2.3) <A,a> # 0 for each a€A .

2
we can then choose ) a positive system A‘ = A; such that
(2.4) <A,a> > 0 for each aEA+ .

Let p = Py respectively pc , be half the sum counted with multiplicity of the

+ +
roots in A4 and Ac .

1) Henceforth we shall leave out the word "restricted" .

2) The number of such choices as ) varies is the same as the number of cosets in

wc\w .

163



M. FLENSTED-JENSENand K. OKAMOTO
The choice of &% defines compatible Iwasawa decompositions:
g°=h°+2+n° and £° = (hNk) + 2 + n
where n_ = n°nk® , and

6° = B°m® ana x° - (KNH)TN _ .

o . X
For x€G we write correspondingly

x = k(x)a(x)n(x) .
Define also the Iwasawa projection H: G?-wt by H(x) = log(a{x)) or
x€a°exp(it(x))N° ’ x€G° .
We use this to define
o <-2=p,H(x 1k)> o
(2.5) oo = J <A a, x€c® .

KNH

The function w:

94. Let Xy denote the corresponding eigenvalue homomorphism.

is an eigenfunction of each u€U(g¢)h , cf. Helgason [6] page

Choos a maximal Abelian subspace b in pNq and define the following centrali-

zers:

1 1 b

o o
M = (H) , Mt_ = (KNH) and Hb = (KNH)

Furthermore define A; = —A; , 8 = -A‘ . n° = t(no) ,nc = T(nc) and

nn = rm°np°) , and notice that nn is not necessarily a subalgebra.

Let mo , mt and mb be the Lie algebras of respectively M° ’ Mt and nb .
Extend ¢ to.a Cartan subalgebra £ of k® such that £ = 1(1 +1 ,

where iztl cm . Let A: = A(hc,f‘;) and s = A(gt,/t;) and choose compatible
systems A: and AM compatible with A; and 2" . Let A; be the corre-

~ B - ~

sponding positive roots for ‘tl in (mt)c .Let as usual Ac = -AC , 8 =<
- 3 -

and 4 = -A; . We embed £ into (/t;') in the canonical way, i.e. such

that <£',t1> =0 .
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Discrete series
The irreducible finite dimensional representations of k¢ , and thus of the univer-
sal covering groups of K~ or k° , are parametrized by the dominant weights. We
shall always when nothing else is mentioned mean dominant w.r.t. A:- . So in par-
ticular the representation E_u with dominant weight -4 is the contragredient

representation E"

to the representation Eu of A:+ - dominant weight u .
~ %
Notice, cf. Helgason [ 6],that if uE(tc) then -y is a dominant weight for a

*
representation having a nontrivial KNH-fixed vector if and only if uEt‘t and

<u,a> + +
a0 €z for each GGAC .
~ — 1) ; ~+
Let n and n be the sum of the rootspaces in g¢ for respectively A
and A . Then we have n~ng° =n° and similarly for n . Let n: and r_l:
~+ ~ -
be the sum of the rootspaces in k¢ for respectively Ac and Ac . Again we
have nNk® = n_ and similarly for n_ .
c c c
~ ~ 1) . . + ~+
Let op, e and o be half the sum of the roots respectively in A, Ac

and A counted with multiplicity.

Let Ec; B E)‘ and E’; denote the eigenspaces of U(gt)h respectively in
Cm(GO/HO) B Cm(G/H) and CQ(G"/H) corresponding to X, - By the Duality Theorem

the K°-finite elements in Ec; is identified with the K -finite elements in
E’; . Let Lilc/ﬂ) denote the intersection of E’; with the relevant Lz-space.

( ct. the definition of relative discrete series).

Theorem 2.2. Let the notation be as above and let uy, = MD-ZDC . The function
. : o . .
w‘; is Ko-finn_e and generates an irreducible representation of K with domi-

nant weight “uy if

<y, .a

\Z.6, v

>
€z"* for each a€n' .
> c
-1 2
Furthermore, assuming (2.6), the dual function wx = n (wi’) belongs to LX(G/H).
It is the (up to scalars) unique KNH-fixed minimal spherical function for a discre-
te series representation T for G~/H . (T is a discrete series for G/H if

A A
“uy is a dominant weight for K and not only for K~.)

1) Notice that &~ is not necessarily a rootsystem in the usual sense, but only

the set of non-zero restrictions to £ of a rootsystem for a Cartan subalgebra

in g, .
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The xo-finiteness and the fact that for sufficiently large Ars wx ‘generates a
discrete series for G~yﬂ was proved in [3]. That this holds for each 1 satisfy-
ing (2.2), (2.3) and (2.6) is a result of Oshima's, see Oshima-Matsuki [14] and
Schlichtkrull [17]. That the representation of X generated by wx is the unique
minimal Kﬁltype was first proved by Schlichtkrull [16] for the linear case, i.e.
provided “Hy is a dominant weight for K and not only for K . In Corollary

3.6 we give another proof which holds in general.

*
Let now M'€L . Oshima and Matsuki show in [14]1), that if \* is "sufficiently

regular", then Li (G/H) is the direct sum of the discrete series TA , where )\

runs through the set of all W-translates of A' , which satisfies (2.2), (2.3) and
(2.6)1). Conversely they show that if Li
late A of A' satisfies (2.2), (2.3) and the following two conditions weaker than

(2.6):

(G/H) % {0} then at least one W-trans-

2.7 U292 €% for each a€A’
<a ,a> c
(2.8) <\-p,B> > O for each simple BGA* satisfying g: c k° .

In many cases the results of Oshima and Matsuki leads to the conclusion, that the

Tx s constructed in Theorem 2.2 exhaust the discrete series for G/H . However in

general there are two questions left open:

1. Construct for each A satisfying (2.2), (2.3), (2.7) and (2.8) but not
(2.6) a discrete series representation TA for G~/H .
2°. Does the T s corresponding to all A s satisfying (2.2), (2.3), (2.7) and

A
(2.8) exhaust the discrete series for G /H .

o . . o o .
The main problem in 1~ is that the function ¢ is not K ~finite. The main problem

A
in 2° besides the extension of the results in [14] to the nonlinear case 1s, when

A* is not "sufficiently regular", whether Li (G/H) could contain other irreducible

invariant subspaces than those coming from the sz , with A€wWe)'

1) Only the linear case is treated in [14]. Probably the results are true also for

G /H .
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Our primary concern in this paper is Question lo. We should like to solve it by a
simple formula similar to (2.5) giving a minimal spherical function for the unknown
TA . In Section 3 we shall discuss a formula similar to (2.5), which may give the
answer to 1°. However we can only prove rather little in general. Therefore we turn
in Section 4 to the case of rank(G/H) = 1 . In which case we can solve question 1°
completely. Actually for the isotropic spaces the solution of question 2° also fol-
lows and furthermore every Kf;type of every discrete series for dy/ﬂ is construc-
ted.

The results from Oshima-Matsuki [14] are mentioned here mostly to describe the mo-

tivation for our study, and to place our results in proper perspective. In fact the
only places where our results are based on [14] are in the statements that the

K -finite functions we construct in E; are actually in Li(G/H). This result from
[14] does not depend on the linearity of G . The use we make of [14] is parallelle
to what is mentioned above regarding the proof of Theorem 2.2. In the applications

in Section 4 to the rank one case we can instead of [14] use the explicit computa-

tions in Section 5 to prove that the functions are square integrable.

§ 3. Integral formulas and dominant weight vectors for the K-types.

Let the notation be as in Section 2. When )\ satisfies the conditions of Theorem
2.2 then vy is the KNH-fixed vector in the Kﬁltype with dominant weight “Hy

of Tx . The following formula is giving to us the corresponding dominant weight

vector

-1-
J- AP HIX Tn)> = , x€c® .

(3.1) £:(x) =

c

Definition. We shall often use the following short, convenient notation: Let
£6CT(G), x,y€G and u€U(g¢) then we write

(3.2) fixuy) = (ueh) (),

where u is used as a left-invariant differential operator on G and £ is de-

fined by fy(g) = f(qgy)
For example if X€Eg we get
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f(xxy) = g£ £ (xexp (tX)y)
t=0,

or if u + u¥

is the canonical antiautomorphism of U(gt) , then u as a right-
invariant operator applied to f i given by uf(x) = £(ux) . As a last example let

s€¢ then f(x(su)y) = sf(xuy) .

Proposition 3.1. (i) The integral (3.1) converges absolutely, uniformly over com-

pact subsets of
* o +
((x,x)€£¢ xG | Re<i+p=p ,a> > 0 for each XEAC)

(ii) Furthermore any u€U(g¢) can be applied to Eo by applying it to the in-

A
tegrand before the integration. Using the above definition this can be written

-1
£ avx) = J_ e<TATR HIX UM e .

Ne

(iii) Whenever well defined using (i) we have D

o .
gx(eﬂ) = c(—x(x+p-pc)) ’

where c(°) is Harish-Chandras c-function corresponding to the Riemannian symme-

tric space Ko/KnH .
25295: For EEEC we write, cf. Section 2,
(3.3) n = k(n)exp(H(n))n(n)€(KNH)TN_
and find for u€U(g¢)

dn =

-1 -

-~ > -
[- |e<~A=0 H(x  un)>
NC

dn .

N

<-2=p,H(x 'uk(n))> Re<-A-p,H(R)>
I le le
c

1) The measure on N is normalized by
c

J_ <26 B> o

R !
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-1
<=A-p, uk)> | .
Now (A,x,k) - e PoH(x ) is a continuous function on z'xG°1KnH . Harish-

¢
Chandras c-function for K°C/KNH is given by, see [5],

S(-10p-p_)) = I- <™ (A*p=p ) =p ,H(n)> =

N
c

’

with absolute and uniform convergence for ) satisfying
Re<x+p-pc,a> > 0 for each A€A:

From this the proposition follows easily.

*
Theorem 3.2. Let AEL satisfy (2.2), (2.3) and (2.6), then

(i) Ei is well defined, nonzero and K°-finite of irreducible Ko-type My -

(ii) EA =n (Ei) is the minimal spherical function for Tl corresponding to

the dominant weight vector.

(iii) J £, (kx)Ak = c(-i(A+p=p )V, (x), x€G .
KNH

Proof: Let ) satisfy the conditions in Proposition 3.1 (i).

Using the notation from the proof of that proposition we find

_ dkdn
N

-1 -
e(—x-o,ﬂ(x kn)>

KNH

c

_1 - - -
<‘X‘D,H(x kk(n)exp(H(n»n(n))>dkda

JRET I TEIE e<-x-o,u(x'1k)>

dk

] "
\.__., —_— —
Z
Q
—

e

(o]

c(—x(k*o-oc))wA(x) ' x€G

This proves (iii) whenever Ci 1s K°-f1nice, and also that Li +0 .
In order to ensure using Proposition 3.1 (i), the convergénce in (3.1) for ) satis-

fying (2.2),(2.3) and (2.6) we need to know that
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+
<p-oc,n> > 0 for each uGAc .

To prove this notice that the restriction of p-p: to 1 equals p-oc , and
that 2(p-pc) is a dominant weight of a finite dimensional subrepresentation of

1 ~

k i A , wi = di n .

¢ in p¢ with 1 du&(n pt) Therefore we have
<phlp:,B> > 0 for each BE&:+ .

+ 0
Let now a€Ac , then a is the restriction to £ of an element B = a+a GA: ,

Al ~t
where <a , = 0 . Since -8' = =-BoT = a-a' EAC we . have
<p-pc,a> = <p - pc,a>
~ ~ T
=4k -0 ,B8-8>20,
which is what we need. Thus E: is well defined and non-zero.

To prove that E‘; is Ko-finite, we fix any x from Go and look at the function

o
on K

-1
y - e<-A-o.H(x y)> .

It belongs to the space C. = C (K°/M TN ) ,where X, = A+p-p , given by
)\1 )‘1 t ¢ 1 c

<=A-p,H(a)>

@(yman) = e @(y)
® o o
CA = e (K ) for each y€K ,mEMt,AE'r
1
and n€N .
c

The integration over Nc is an intertwining operator taking C)‘l into

T.'A = tx(Ko/MtTﬁc) , which is defined like Ck but with the condition
1 1 1

<-A-o*20c,H(a) >w

w(yma;x) = e (y)

Since b= (A+p=20¢) satisfies (2.6) the image of this intertwining operator is
an irreducible finite dimensional representation of Ko with dominant weight -4y
This finishes the proof of (i) and (iii). It follows now that E.)‘ is well defined,
that it is the dominant weight vector of the representation of Ko generated by

WA . Therefore (ii) is a consequence of Theorem 2.2. o
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Remark. Assume A as in Theorem 3.2. Then we know that TX is irreducible, and

it follows that any K -finite vector for TX is of the form “EA , for same

u€U(g¢) . By proposition 3.1 (ii) we have

-1 -
(u&k)o(x) . I-e<—l-p,ﬂ(x uR> e -

N
c

In particular if u commutes with Ad(ﬁc) then

-1-
e<-x-p,ﬂ(x nu))da

(uéx)o(x) = j_ , x€c° . o
N

This is the type of integral we want to study. So whenever there is absolute conver-
gence, uniformly over a compact neighbourhood of A and over any compact subset of

G° we define

-1~
- -
(3.4) £ 0 = J_ <A I TR GT e .
! N
C

Since go = ®+m°+2+n® anda 7° = ﬁc*ﬁn we may actually assume that u€l(n and

o

)
- -0 ¢
that u is non-zero modulo (n) U(n¢) . In other words we can express u using

¢

c
only elements from a basis of ﬁn .

Let S(ﬁnc) be the complex symmetric algebra over ﬁn . Let Y : S(;ln

) -
¢
U(nz) c U(gt) be the symmetrization map. Then Yy is an Ad(MtTNc)' equivariant
bijection between S(ﬁn¢) and its image Dn , which is a cross section for U(ﬁ
- -0
n ) Umn
modulo ( c)¢ ( ¢)

o
¢)

Proposition 3.3. Let uEUn and u % 0 .
*
(i) There is a constant C > 0 such that 5: o is defined provided A€t¢

satisfies

Re<),a> > C for each OEA;

o o
(ii) Whenever well defined by (i) we have that £A u #+ 0 , that (x uEE‘; and that
. B
;o is N _-invariant.
A.u c

(1ii) If u is Ad(ﬁc)-invarxant, then we can take C = 0 .

Proof: (i). Let V be the finite dimensional, unipotent representation of NC

generated by u in Un using Ad(ﬁc) .
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Choose a basis Uje eeepug for V , then

s
Ad(n)u = I @;(n)u, , n €N,

c
where $; ,1i=1,...,5 are polynomial functions on ﬁc .

<=A-p,H(x 'y)>

Notice that the function y + e for each fixed x€G° belongs to

C)‘ = C)‘(GO/MOTNO) , where

e<-X-D,H(a)>

Y (yman) = o) ,

for each y€G°, m€M°, a€T and nen® | .

(3.5) ¢, = wec(6°%)

We now try to define a linear functional 'ru on C)‘ by

(3.6) <T@ = ]_ ©;nu)dn ,wECX .
N
C

We have using (3.3)

J_ I9(nu) lan <
N
c

s -
I T |‘Dl(;\)ll’(u1k(5)l eRe<-X-o 'H(n)>d;l .

N i=1
[o]

The proof of convergence of the integral defining the c-function, cf. the proof of
- [

Proposition 3.1, shows that the factor eRe( A-¢ ,H(n)> will dominate the ‘Di s ’

when ) satisfies the condition Re<),a> > C for each u€A: for a suitably lar-

ge C . This proves in particular that (i) holds.

By restricting functions in CA to H° we get a bijection ¢ - ¢ between Cx
and CQ(HO/MO) . The converse mapping is given by
=)A= >
Ox) = @ (k(x))e<TAPHX> g0

From this and the estimates above it is clear, when the condition in (i) is satis-
0,0 __0O

o
fied, that Tu defines a distribution TA o o0 wo/m° = /Mo by

(3.7) <Tk,u 0> = <Tu . o
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is contained in the K°-orbit 0 = 0 D n

Notice that the support of T
A, A

c°/M°1N° , where

(3.8) 0 = X° P/ o xo/HtTNc o KW/M_ .

The )-Poisson transform, PA » of a distribution T on HO/M° is defined by

' (o]

(3.9) P, (T) (x) = <T,fx'x> ' x€G
.
where fA x is the restriction to Ho/Mo of the function fA x (3 CA given by
’ .
<-A=p,H(x ly)> o
£, L) = e ’ Y vee® .

It is now clear from (3.4), (3.6), (3.7) and (3.9) that gi is equal to pA(TA u).

Thus E; belongs to Ej . Since by our assumptions
Re<A,a> > 0 for each uEA* ,

it follows from Helgason [7], page 198, that P is injective. In order to finish

A
the proof of (ii) we just have to show that Tx u # 0 . But this follows eacily
- 4 -
from (3.6), (3.7) and the facts that N = Nc exp(nn) and that the map

- - = (<] - . X . Cis
n - nMoT'N° of No into G /MOTN° is injective. This proves (ii). Property (iii)

follows directly from Proposition 3.1. o

We now turn to the question of K°-finiteness of Ei u " From the remark before
’ -0, N
Proposition 3.3 it follows that if Ei is K°-finite and u € U(n") ¢ then
o
EAIU ° °
I1f either EX is not K -finite (for example if (2.6) is not satisfied) or if u

= “Ei , and 5: is thus K°-finite.

- o ) .

is not 'Nc-invariant, then we don't know whether or not £A u is Ko-fxnxte. How-
.

ever we can derive some necessary conditionson A and u . We retain the notation

from the proof of Proposition 3.3, and recall the definition (3.8) of 0\ and that

E: u is the Poisson transform of the distribution Tx u which is supported on Ox.
' '

————— + +
1) Recall that the Iwasawa decomposition depends on the choice of 4 = AReA

which again depends on )\ . There are as many different orbits OA‘ as there are
cosets in w;\y . These orbits are compact and minimal as k%-orbits, cf. Matsuki

(13).
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*
Theorem 3.4. Let AEL satisfy (2.2) and (2.3). Let Eio denote the set of K°-
finite functions in E‘; , which are Poisson transforms of distributions on G°/M°'1'N°
with support contained in 0)‘ . Then the following hold: (i) If Ec;o #{0} then

<NA:°> .
Py €z for each ueAc

where u)‘ =~A+o-2pc -

(i) If -y is the dominant weight of a K -type occurringin E£°° , then

A

v=y - is a linear combination of noncompact roots, i.e. roots from A(Vln,i)

A
with nonnegative, integral coefficients.

Before we go tothe proof, we establish the following lemma.

Lemma 3.5. Let G be a semisimple Lie group with Iwasawa decomposition G = KAN.
Let M be the centralizer of A in K. Let V be a finite dimensional represen-
tationof G . Let g and @ ©be the Lie algebras of G and A. Let VEV , v¥0
satisfy the following, where v€a'

exp(H) °v = e<V’B>v for each HEA

mevVvV=vV for each mEM ,
then

<v,a>

25,65 €z for each a€A(g,a)

Proof: Let a€A(g,a) . We can construct a subgroup G° locally i.cmorphic to
SL(2,R) related to a such that % = kK%a%° , where * = xnc® B a® = ancg®

and N® = NﬂG° , and such that M® = MNG® is the centralizer of A% in k% '
cf. Helgason [6]page 75.

a

Let V  be the finite dimensional representation of c* generated by v . c®

being isomorphic to SL(2,R) , it follows that M is equal to the center of G° .

a
since v is M’-fixed, it follows that M® acts trivially on v® . Let g and

a.° be the Lie algebras of Gu and A° , and let < , >c| denote the killing form
on ga . A simple computation with SL(2,R) shows that, if U and a denote re-

striction to a° , then

4,84 cz

<u,u>u

but ([loc.cit.]page 75 (5))
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e | B¢,
<a,a> <F,5Dq ° o

Proof of Theorem 3.4: We start by proving (ii). So let E_u~ be a I(o-irreducible

subspaée of E(;o corresponding to the given l(o-type. Let V_u~ be the set of
distributions supported on 0)‘ such that E-u~ = PA (V_u"') . Let furthermore
f = PA (T) be a dominant weight vector for B_u~ . We are going to study T in

some details:

T is a linear functional on CG(GO/HO'INO) , which is, cf. (3.4), identified with
C)‘ = C)‘(GO/HOTNO) . As a linear functional on C)‘ T satisfies:

(i) T is ﬁc-invgriam:, i.e. <'r,w"> = <T,9> for any wECA and any

REN_, where @"(+) = @(n.) .

(ii) T has zt-weight - , di.e.
<'1‘,(pH> = <=y LT, 0> for any QJEC)‘ and any HEL  , where
o) = o .

We now look at the restriction of T to the open dense ﬁo—orbit 0l of ﬁo in
GO/MOTN . We parametrize 01 by ﬁo via the bijective mapping

n -+ nMom®
Notice that ﬁc parametrizes the open orbit 00 of l_lc in 0)‘ , or in other

words 0 = 0.N0. .
() 17 -0
We now consider the distribution T on N defined in the following way: Let

1
e (6°/°™°)  ana supp(@)c( . Define wlec’:(ﬁ°) by

, (R) = ©(k(R))e<TATe B>

then let <'!‘l ,wl> = <T,9> . By the assumptions on T we have that 'l‘1 is ﬁc-in-

variant and that supp('rl) [ ﬁc . But then T  must have the following form

1

- - ® -0
<T, ,0.> =| _ @ (nu)dan , ¢ .EC (N)
1'71 1 177¢
N
c
where u€U(;1°) and u can be expressed as a (noncommutative) polynomial in a ba-
sis for ;ln , (recall that n° = ;'c*;‘n) . Notice that if tDGC)‘ and supp(P) 0, s
then <T,p> = <T1,wl> where ¢ is the restriction of ¢ to ﬁo. We conclude

1
that
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(3.10)  <T,9> = J_ ®(nu)dn = <Ty,P> ,

Ne
for each w€CA with supp(Y)c 01 . Notice that T is an extension of the distri-
bution 'ru defined by the integral formula (3.10) on 01 . Also Tu can at most
have one l(o-finite extension with support contained in 0)‘ » since the difference
between two extensions is again l(o-finite and has support contained in ON)O B
but since the support must be a union of l(o-oxbir.s it is empty by the minimality
of 0)\ .

Combining (3.10) with property (ii) of T above we get for supp(Y) < 01 and
Het :

<-u" B> <T 0> = J_ @ (HDu) dn
N
c
= J_ (@(n (adH) (u))+<2p _, B> (nu) #9(nUH) ) dn
N
c

= <T(adﬂ) () ,w>+<zoc—x-o ,H><'ru,w>

or in other words

T (agn) (u) ' = WM ST O

If we assume u€an , which we may, we conclude that
ad(H)u = <-v,H>u ,

where v = u- ux. This proves (ii).

To prove (i) first notice that E‘;o being nontrivial must cofxt.un a Ko—t‘,ype with
a KNH-fixed vector. (This follows since n_l(E‘;o) is a U(gt)-submodule of Ex ,
and as such it must contain a function, which is non-zero at the point eH). Retur-

ning again to the proof of (ii) we may assume that E_u~ is such a Ko-type. But

~ ~ *
then y | it - 0 , such that u € & , also
1
(u~,a> + +
(3.11) <oa €z for each a€Ac

Furthermore the dominant weight vector T , and thus 'I‘u , is Mt‘xnvan.ant .From

this we conclude,cf. (3.10), that u is M(Mt)-invuianr_. Using Lemma 3.5 for

176



Discrete series

Ko = KnHTNc we conclude that also

<=V,a> +
(3.12) <a.as €z for each ueAc .
combining (3.11) and (3.12) with My = W-v , we have proved (i). o

*
Corollary 3.6. Let €L satisfy (2.2), (2.3) and (2.6). Then T, . the discrete
series for GNVH generated by wA or by EA , has a unique minimal Kﬁltype with
AC dominant weight “Hy -
Proof: The proof is exactly as in Schlichtkrull [16], page 141, except that we can

refer to our Theorem 3.4 instead of the reference to Vogan-Speh [21]. In short:

Let -y~ be a dominant weight of a K"Ltype in TA , then
~ ~ 2 ~ 2
I u +20 e = llux+20c+vH
= 2070 26 1 vl 2e2Rechap, v o+
A e ! |I>
+ 2Re<2p ,v >> Hu,+20 |l2
m’ Itl - A c ‘

and equality only holds for v = 0 . o

From the proof of Theorem 3.4 we get the following

Corollary 3.7. Let Aet' and ueﬂn and assume that

-1-
e(-A-o,H(x nu)> -

(3.13) 5‘; NEIE J' dn , x€6° ,
’ N
C

converges absolutely uniformly as in Proposition 3.3 (i). If £i u is x°-finite

) ) . o . . ~
giving rize to an irreducible representation of K of dominant weight -up , then

(i) and (ii) of Theorem 3.4 are satisfied and u satisfies

<u. -y H(a)>
u,-u ,H(a) u,

(i) Ad(a)u = e ") for each a€T
(ii) {Ad(m)u | mEMt) generates an irreducible representation G-u of Mt
- . ) ~ m
in Un of Am-domxnant weight “up = e ‘ﬁ .
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Remarks. (a). The problem of the converse or Corollary 3.7 is the following: Assu-
me that ueun generates an irreducible representation !-:_v in Un under Ad(MtT)
of weight =-v . = i -wei -
eig v Let vl = Vlt and Mo vlil such that u is of g-weight vl
and generates an irreducible representation & of Mt with A;-dominant weight
*
Mg - Assume furthermore that A€t satisfies (2.2) and (2.3) and that

- = -(u,+v) is a dominant weight for R° .

The first question is whether Ei u is at all defined, cf. (3.13) and Proposition

3.3? If so then notice that

-1 -
(3.14) 6 :y + [ e<mA-P HIX ynu)> =
x J N
c
for each x€Go as a function on K° may be considered as belonging to the space
of functions
©(yman) = 6v(m-l)e<-u ,H(a)>
® o o
WEC (K ’E-v) for each y€K ,m€Mt ,
a€T and E€ﬁc

oy) ,

. L . R . o : : )
This space, defining a non-unitary principal series for K , contains an irreducible
finite dimensional subrepresentation with dominant weight —u~ . The second question

is, whether Ox belongs to this finite dimensional subspace for each x€c° 2

*
(b). Assume that M€t satisfies (2.2), (2.3), (2.7) and (2.8) but not (2.6). One
might think that a minimal Ko-type in Eio could be constructed in the following
way: choose Vv as under (a) in such a way that I|ux*v#2pc~ll is minimal. Then

prove that Ei u is defined and Ko-finite.

(c). Theorem 3.4 is, at least for the linear case, contained in Theorem 3 of Oshima-

Matsuki [14], and our proof is much in the same spirit as the proof in [14].

(d). Corollary 3.7 clearly gives an upper bound on the multiplicity of any K-ty—

~ ~
pe -u in any discrete series representations for G /H contained in

n‘l(E‘:°).

(e). Let EA denote the set of K®-finite functions in Ei , which are Poisson
transforms of hyperfunctions supported on 0 It follows from [14] that

-
nHED) € nTHEY) e iorm
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",
As stated in [14] the square integrability holds for those A % for which the func-
tions are K-finite and not just K -finite. But the asymptotic estimates needed

does not seem to depend on the linearity of G at all.

(f). From Oshima-Sekiguchi [15] and Oshima-Matsuki[14] it may very well follow,
that for any Kh;finite and square integrabel function f in 5; , the asymptotic
behaviour of £ = n(f) on GO/Ho is such, that £° is the Poisson transform of

a distribution. If this is the case then Eio = EA .

*
(g). It is also proved in [14] that for any A€l , we have

2 em® =0 nlE)
w

where w runs over the elements in W , such that w-) satisfies (2.2),(2.3),(2.8)
and a condition stronger than (2.7) which ensures that the occuring K -finite func-

tions are actually K-finite.
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§ 4. The nonRiemannian isotropic spaces.

In this section we turn to the semisimple symmetric spaces of rank one. The Rieman-
nian cases, i.e. the spaces of compact type (I) or the spaces of noncompact type
(I1), are from our point of view completely solved even for general rank. By this
we mean that for case (I) LZ(G/H) has a purly discrete spectrum, which is expli-
citly known. (See [4] Example 2.7 for an interpretation of this case in our frame-
work) . For case (II) Harish-Chandras spherical Plancherel formula shows that there
are no discrete series. This also follows from Theorem 2.1, since K = H # G in

this case and thus rank (G/H) > rank(K/KNH) = O.

In Table 1 we give a list of the nonRiemannian semisimple symmetric spaces of rank

one. We have also included some more information about these spaces. It follows in
. . [} .

particular that Question 1  of Section 2 is relevant only for some of the isotropic

spaces. For this reason we now turn to the isotropic spaces.

The isotropic spaces are well studied, see for example Strichartz [18] for the

R -hyperbolic spaces, Faraut [2] for the R-, ¢ and H- hyperbolic spaces and
Kosters [11] for the exceptional case. The only cases wich are not covered by these
references are the simply connected covering spaces G~/H for the R -hyperbolic

spaces with q = 1.

In Table 2 we describe for the isotropic spaces G/H the values of M€L* for
which our discussion in Section 3 allow for the possibilityof having a discrete
series for G/H. These parametervalues are easily related to the parametrization
of the discrete series in the above references by comparring eigenvalues of the
Casimir operator. This is also contained in Table 2. It follows in particular that
there exists exactly one discrete series representation for each possible value of
A . Looking more carefully at [18] , [2] and [11] one can also sort out all the

K-types occurring in each T, . This means that as soon as we have answered Question

A
1° of Section 2, we have also answered Question 2°. Strictly speaking this is only
true when we consider the spaces G/H . For the R -hyperbolic spaces with q = 1
we see no serious difficulties in generalizing either Strichartz methods or Faraut's
methods to give also the discrete series for d~/H . But since we have not done
this in any detail, we cannot claim to have answered Question 2° for these simply

connected covering spaces.
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We now turn to our discussion in Section 3. Elaborating on the results from Section
3 we want to answer Question 1° of Section 2, and at the same time we want to con-
struct all K-types of the representations Tx , where A may be arbitrary sub-
ject to conditions (2.2), (2.3) and (2.7), cf. Table 2. In order to make our con-
struction as simple and direct as possible, we want to do this without relying on
the very explicit computations in [18],[2] and [11] or on the very deep results in
Oshima-Matsuki [14].

Before coming to our main theorem we need some remarks and some lemmaes. Recall
that Mt and Mb are the centralizers respectively of £ in KWH and of b in
KNH , where b is maximal Abelian in pnG . 1f B = expl(b) then we have, cf.
[3], that

~

(4.1) G=KBH, G =XBH and G° = K°BH .

~ d ~
Lemma 4.1. Every K -type occurring in CK~(G .'B) has a nontrivial Hb-fixed vec-

tor.

Proof: Let f € CD(G~/H) and let x€G  be such that f(x) # O. According to

(4.1) write x = kbh , let Xf (g) = f£(kg) and define £, €CT(C/m) by

k
fi(g) = «[Mb f (mg)dm .

~ o0 ~
Then fl is Hb—inva.riant and belongs to the K -invariant subspace of C (G /H)

generated by f . f1 is nonzero since

£, = ]Hbf(kmb)dm = £(kb) * 0 .

~ o0 ~
This proves that any nontrivial K -invariant subspace of C (G /H) contains a non-

zero nb-invariant function, and the lemma follows. o
Lemma 4.2. Let G/H be nonRiemannian and isotropic, then

KNH = MM,
bt

i.e,every K € KNH can be written k = mlm2 ., where M1€Mb and m2€Mt .
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Proof: For the R- , ¢- and H -hyperbolic spaces this lemma follows easily from

Table 3. For the exceptional space F /Spin(1,8) one can for example use the

4(-20)

description of F in Takahashi [19] and with a few computations see that

4(-20)
Hb and Mt are both isomorphic to Spin(7) , but with two different embeddings. It
follows then from Lemma 1, page 534 of [19], that M = Spin(7) acts transitively

on ldm/Mt o Spin(8)/Spin(7) = S7 - This is the same as saying that MM = KNH . o

Lemma 4.3. Let G/H be nonRiemannian and isotropic, then r-lc and ;ln commute
with each other. In particular every element u from Un is Ad(l-ic)-invaziant,

and Ci u is well defined for all A such that <A,a> > 0 .
’

Proof. The possible roots in A’ are @ and 2o . Therefore [i°,n°] c gfza , but

from Table ! it follows that QSZG c k° | From this we conclude that
tn_.n ) < kol £°,p°)  k°p° = {0} .

The rest of the lemma now follows from Proposition 3.3. o

Lemma 4.4. Let G/H be nonRiemannian and isotropic. Every Ad(Mt)-invariant non-

trivial subspace of Un contains a nonzero Ad(Mthb)-fixed element.

*
Proof: Let €L be an arbitrary element satisfying <\,a> > O for each a€A‘
Let u€nn , u$ 0 . We want to prove that the subspace generated by u contains
a nonzero MtnM.b-fixed element. Without loss of generality we may assume that u

\-\&H(a)>u

*
is homogeneous under T , i.e. Ad(a)u = e for each a€T and some vEL

It follows from Lemma 4.3 and Proposition 3.3 that

-1
© (% =J S-A-pH(x fiu)> - ., x€c®
)\,u P-J

c

is well defined and nonzero. Choose x€G° such that C‘i u(x) 4+ 0 . Using (4.1) we
can write x = y-xbh, where y€)(° . Furthermore using Lemma 4.2 write y = mlmzaﬁ,
where mlenb R m.‘,EMt , a€T and nENc . It is then easily seen that we have for
every mGth{b

04€ (x) = eThOTICTY B )

where u = Ad(mm,)u . Now
m 2
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Ul = Jutnubumdm

is Mtan-invariant, nonzero and contained in the subspace of Un generated under

Ad(Ht) by u . o

Recall that a pair (M,L) , where M is a locally compact group and L a compact
subgroup, is called a Gelfand pair if the convolution algebra of continuous
L-bi-invariant functions is commutative, or equivalently if every irreducible, uni-

tary representation of M has at most a one dimensional subspace consisting of

L-fixed vectors.

Lemma 4.5. Let G/H be nonRiemannian and isotropic. The pair (Mt’ thnb) is a
Gelfand pair.

Proof: From Table 3 it follows, when disregarding some trivial factors, that

(Mt’Mtan) for the R-, ¢~ and M -hyperbolic spaces are respectively

* *
(so(p), SO(p-1)), (S(U(p) x U(1)), S(U(p-1) x U(1) x U(1) ))
* -
and (sp(p) * Sp(l), Sp(p-1) x Sp(1) =x Sp(1) ) .

These pairs are all known to be Gelfand pairs, since they occur as "K/M" for the

following rank one Riemannian symmetric space:

Soe(p,l)/so(p), SU(p,1)/S(U(p)xV(1))
and Sp(p,1)/sSp(p)xsp(l)

-
For the exceptional case we look at (Spin(7), Gz) . As used before prn(?)/qus .

But SU(4) is contained irn Spin(7) in such a way that already SU(4) acts tran-

sitively on 57 with stabalizer SU(3) . Therefore considering the 67-bi—invarxan—
te continuous functions on Spin(7) as 62-1nvariant7functions on S, these
form a subset of the SU(3)-invariant functions on S . Since (SU(4), SU(3)) 1s
known to be a Gelfand pair it follows that so is (spin(7), Gz) . o]
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(z/0sx(¢) ds (s'vrurds/ (P74
(1+u)n z<u (a'1)ds x (W ‘u)ds/ (W ‘1+u)ds
(€ (1+u)0S z<u | ccanto x (v tors/catewas
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(6)utds w1 = b =4d, 8;,5%\8-;@ w2110q13dAYy-@.
(1+b)ds x (d)ds 1 < bd (1)ds x (b‘d)ds/ (1+b’d)ds o710q1adAy- H
(1+b)n x (d)n)s 1 < b'd ((1)n x (b‘d)n)s/ (1+b’d)ns oy10q13dAy-p
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t
Definition. Let )€t satisfy <i,a> > O for each a€A’ . Define V

. Y to be the

set of weights v€(t¢) which are A;-dominant, and for which

(i) -v 1is a weight for t; in Un .

(ii) -J~= —(ux¢v) is a dominant weight for a finite dimensional representation
of Ko having a nontrivial Mb—fixed vector. o

Remark.(a). If A satisfies (2.2), (2.3) and (2.7), then V is nontrivial. To

A
see this let -v be the weight of any Mt—invariant element in Un . Then by
Lemma 3.5 we have that also u~ = Myt satisfies (2.7). Now taking v sufficient-

ly large we can obtain that u~ satisfies (2.6), which implies that V€V, .

A
(b). For —u~ to be of Kﬁltype contained in E?O it follows from Theorem 3.4
and Lemma 4.1 that it is necessary that uN-uAEVX . o

We are now ready to state the main theorem of this section. We state it in a rather
general formulation in order to indicate what kind of more general results one
might hope for. In Section 5 we shall do some more explicit computations of the

functions involved.

Theorem 4.6. Let G/H be a nonRiemannian, isotropic semisimple symmetric space.

Let AEI. satisfy the conditions (2.2), (2.3) and (2.7). Let b, = A+p-20. -

(1) 1f <ux,a> > 0 for each X€A: then
<=2-p,H(x 'R)> - o
£2(x) = J ey an , x€c° ,
A -
N
c

is well defined, K°-£1n1Ce and the dual function EX is the dominant
weight vector of weight “Hy of the unique minimal Khltype of the discrete

series representation Tl generated by EX.

(i1) 1f <uy.,a> < 0O for some a€A: , then choose v€VX such that

A
W +ve207 Il = Min {1y, +vev207 111 viEV,} .
Let uEUn be a A;—dominant weight vector corresponding to the weight

-v , then
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e<-x-p,a(x'1£u)> -

(4.2) gi'u(x) = In an , x€c° ,

c
is well defined, ¥°-finite and the dual function EA u is the dominant
’ ~
weight vector of weight -u = —(uA+v) of a minimal K -type of the discre-

te series TX generated by EA'u .

(iii) The K“Ltype decomposition of Tx is as follows: -M  occurs in Tx if

and only if uNLuXGVA .

(iv) If ~u~ occurs in Tx , then the dominant weight vectors for this KﬁLtype
is given by EX u ! where u is any A;-dominant weight vector for MtT
’

i of i e
in un weight HyH

Proof: Part (i) is just a special case of Theorem 3.2 and Corollary 3.6.
For Part (ii) it follows from Lemma 4.3 that Ei u is well defined. Taking into
*
o
account Theorem 3.4 and its proof the two things left to prove are that (a) EA u
’

is K°-finite and that (b) & u belongs to L2(G/H) .
'

Proof of (a): Let E be a Hilbert space for an irreducible finite dimensional re-
presentation 1 of k° with dominant weight -u~ . Chosen such that m is unita-
ry when holomorphically extended to K . E contains a unique subspace F on

which MtT acts as an irreducible representation § of A;—dominant weight -

F is isomorphic as a MtT-module to the subspace of Dn generated by u and
therefore by Lemma 4.4 there is a nonzero Mtan~fxxed vector f°€F , unique up to

scalars. By assumption, cf. definition of Vx , E has a nontrivial Mb-fixed vec~

. i = n c nEN
tor e, - Now let Y€K Dbe written vy mlmzan , where m1€Mb ’mz‘Mt ,a€T and nGNC.
We have

(eo,W(y)fo) = (eo’"(m1m2°n)fo)

<y H(a)> <-u L H(a)>
= eV HEAY (o nmpE ) = e CRLILNE R

2 2

where e; is the orthogonal projection of e, onto F . The matrix coefficient

y - (eo,n(y)fo) is nontrivial, so we conclude that e;

is nontrivial. Clearly
e; is Mtan-invariant. So by the uniqueness of fo we have that e; is a scalar
multiple of fo . Without loss of generality we can assume that e; = fo and that
(eo,fo) = Ilfoll2 = 1, or in other words we have

<-u~,H(y)>

(4.3) (eo,ﬂ(y)fo) = e (fo,é(mz)fo) B
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° -
for each y€K , where y = m,m, exp(H(y))n as above. (Notice that (4.3) shows
that e° is uniquely determined, such that for E the Mb—fixed vector is unique

up to a scalar).

Let u, be the element in un corresponding to fo . From Lemma 4.4 and its proof

it follows that it is enough to show that E: u is K°-finite. It also follows
that "o
(4.4) I Ad(mmz)uodm = (f°,6(m2)fo)u° .

Mtan
Let now y€K° and bEB then we have (using same argument as in the proof of
Lemma 4.4) that
(y‘lb) = <7V /B(Y)D

u
‘"o

o o
(4.5) 3¢ (fo,G(mz)fo)Ek’uo(b) ’

where as before y = mym, exp(B(y))E . Combining (4.5) and (4.3) we get

o -1 o

(4.6) Ex,u (y b) = (eo,ﬂ(y)fo)ix'u (b) ,
[] o

for every y€K° and b€B . This finishes the proof of (ii) Part (a) since by (4.1)

every xEGo/H° can be written x = y-le° , with y€K° and DbEB .

Proof of (b): This follows from Oshima-Matsuki [14], cf. Remark (e) at the end of

our Section 3. Another and more direct proof of Part (b) is oktained by simple

inspection of the asymptotic behaviour of b -+ £2 u (b) from our explicit formulas

’

in section 5. This finishes the proof of Part (ii).

For the proof of Part (iii) and (iv) notice that our proof of (ii) did not use the
minimality of v in the proof of the Ko-finiteness of E: u This means that

3¢ .
A,u

T contains all the functions ¢§
A A,u

this is equivalente to saying that

1s k°-finite if and only if uhluA€VA . So what is left to prove is that
constructed in this way. Using Theorem 3.4

is an irreducible U(g¢)-module.

As noted before every U(g¢)—submodule of C:O(GO/HO) contains Ko-lypes with a
nontrivial KXNH-fixed vector. From the next Lemma 4.7 it follows that any U(QQ)_
submodule of E?o contains every KNH-fixed vector of every Ko—type occurring.

Therefore ETO is irreducible. o
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Lemma 4.7. Let G/H be nonRiemannian and isotropic. Let ﬁn be equipped with an

Ht-invuiant inner product and let xl,...xs be an orthonormal basis of n_ .
n

' in T
Define w, in h by

w =X

o 1:i.fs:l

Then wy is Mt-invariant, and every Mt—invariant element in Un is a polynomial

in w_ .
[}
Furthermore let for r€z+ u = (mo)r . Then the set of KNH-fixed vectors in the
different l(o-types in E‘;o is up to scalars given by
o +
(4.7) (E)‘ | r€z and 1, +cra> 0},
,ur A -

where c=1 if s=1 and c=2 if s> 1 . For any r€Z we have

o o
wog)\,u - E)\,u .
r r+l1

+
(a is the shortest root in 4 ).

Proof: Since b is one dimensional we can assume that b = ’“1'”"1” . From this

we easily conclude that the stabjilizer of x1 in Mt is Mchb . From Table 3,

cf. also the proof of Lemma 4.5, it follows that Mc/th% is a sphere.

Now a checking of dimensions shows that M(Mt) (Xl) must be the connected com-
ponent of the unit sphere in n, - From this follows that every Mt—invariant ele-
ment in "n is a polynomial in wo -
Notice that the weight of wy is =-ca , where ¢ =1 if s =1 and c = 2 if
s > 1 . From the proof of Theorem 3.4 (i) it follows, cf. (3.11) and (3.12), that
the K-type with weight -u~--(u)‘+v) has a KNH-fixed vector if and only if the
u corresponding to Vv is Mt-invarunt and

w,a>

<a,,0.>

€z for each o €A .
1 1 ¢
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Now this condition with v = ca is always satisfied. (If c = 1 , then we are in

the case of the R -hyperbolic space with p = 1 , and a, = 2a is not a root. In

all other cases ¢ = 2 , and the condition is satisfied even with a, = 2a) . This

o g°°

proves that the K -types with a KNH-fixed vector occuring in N are given by
. o .

the functions EA a ! for which ux*crn > 0 . The last statement in the Lemma

follows from Proposition 3.1 (ii) and the fact that Wy is Ad(ﬁc)-invaxiant, cf.

Lemma 4.3. o

Remark. (a). We have already mentioned that Table 2 shows that it can be concluded
.
s

by

of Theorem 4.6 exhaust the discrete series for G/H . It follows from Table 1 that

from the work of Strichartz [18], Faraut [2] and Kosters [11]), that the T

d~/H = G/H for all cases except for the R -hyperbolic spaces with q = 1 . The
same conclusion for G/H can be drawn from Oshima-Matsuki [14), cf. Remarks (e),
(f) and (g) at the end of Section 3, provided one can show that Eioo = Eio . But
this last fact should be particularly easy to show in these cases, where

dim(b) = 1 .

(b) . The minimal K-types. If vy > 0 the minimal Kﬁltype is “Hy - If ux< 0
and uA is even say ux = -2r , r€EN , then by Lemma 4.7 we have that O = ux+2ru
is a K-type of TA . This means that the trivial K-type is contained in Tx .

Clearly the trivial K-type is minimal. So far all these minimal Khltypes have a

KNH-fixed vector. Now assume that by = -2r+1<0 with r€N . This is only possible,
cf. Table 1 and 2, if G/H is R-hyperbolic and if q > p+4 . Now if also p > 1,
then Lemma 4.7 shows that the trivial K-type is not contained in T, . The minimal

A
of the K-types having a KNH-fixed vector has weight =-u = -1 = -(ux+2rc) . o

Exampie 4.8. Let G/H = Soe(2,7)/SOe(2,6) . Let X = }a , then u, = -a . Let

BEA~ be chosen such that BIZ =a and X_ €ﬁn , (there are two possible choices

B
of B ). It is easily seen that, with u = X_den , we have that u' 1is Mbth-
fixed. Now -y = —(uxov)- a-8 , which is the weight of the following one dimen-
sional representation nlel of K = SO(2) x SO(7) , where + or - is chosen

according to the choice of B8 ,

. cos ®© -sin © sie
e = e- .

sin e cos e
. +
Since Mb = SO(5) we have that m-el has a Mb-fxxed vector. Thus n ® 1 are

K-types of 'x‘A . Finally a simple computation shows that
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~ _ o~ 2 2
W20 12 =1ell 20,1 + 11 20,1

and
w + 2o:llz= l|2om|12+ i+ 20C||2 .
where -p = -1 is the minimal among the K-types with a KlH-fixed vector. (We
have normalized such that a = 1). From Table 1 we get that P = 5/2 and thus
W™+ 26707 = 26 + 2o 12 <
<36+|I20mI|2=|Iu+20:|| 2

This means that n*ol and 7 @1 are two different minimal K-types , and neither

of them have a KNH-fixed vector. o

Remark. (c). Continuing the Remark (b) above it is easy to generalize Eksample 4.8

to show that if ¥y is an odd negative integer and p > 1 , then no minimal K-ty-
pe of TA has a KNH-fixed vector. Furthermore if p = 2 then TX has two diffe-
rent minimal K-types. o
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§ 5. Explicit formulas for the isotropic spaces.

The purpose of this section is to give an explicit evaluation of the integral (4.2)
defining E:,u . We assume that u is Mtan-invariant and belongs to an MtT-ir-
reducible subspace of Un with A;-dominant weight VGVA . This means that £§,u

is k°-finite of irreducible type -u_ = -(u +v) . By the help of (4.6), (4.3) and

(4.1) we have an explicit formula for § as soon as we know it on B . However

o

A,u

on B 5? u agrees with Ex u ! cf. the Duality Theorem. Actually formula (4.6) is
’ '

very convenient for the point of view of duality, since it shows that

-1 o
(5.1) EA,u(k b) = (eo'"(k)fo)gx,u(b)
for k€K  and bEB . .

We shall not go into the explicit parametrization and description of the special
functions on the groups K and Mt , which are involved in evaluating
(eo,ﬂ(k)fo) .

Let in the following F = R,¢, H or P respectively according to whether we
treat the R, ¢- or H-hyperbolic spaces or the exceptional space. Because of
the non-associativity of the Cayley numbers @ , what we write in the following for
F = @ is not really correct. One should use the model for the exceptional space
used in Takahashi [19] and Kosters [11]. However the formulas obtained, at least

formula (5.7), also hold for this case.

We take our group Go , which is respectively Soe(poq,l), SuU(p+q,!1) , Sp(p+q,1)
and Fd(-20) , to be an (p+q+l) x (p+g+l) matrix group over the field I . The

involution 1 is given by conjugation with the matrix

10...0
0
I . " : R
p+q, . 10
0... 0-1

and O is given by conjugation with the matrix
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We shall need the following subgroups

I 0 [}
p+q-1
T : 4 0 chs shs B sER
L ] shs chs
( cht 0 sht
B bt = 0 Ip*q-l 0 B tER
sht 0 cht
I 0 x x
p x€F P
I
o - 0 q-1 vy b4 q-1
N~ : n(x,y,z) = € , yEF
- -t
-x -y 1=y -y
-t -t z€Im(F )
x Yy Y 1+y

where

y = = 20x12+1y1%422)

Y
X,¥,2

Notice that ﬁc is the subgroup obtained with x = 0 , and that exp(;;n) is ob-
tained by taking y =2z =0 .

Let v_ = (0,...,0,1) € FP*! ana et v = (0,...,0,1,1) € FP*! | 1f ve as

*
in Section 4 identify t¢ with ¢ in such a way that the shortest root a in

»
A¢ is identified with 1 we get for any element g€G° and any X€t¢ that

e<-)\-‘;;,!-l(g)> A=p

1"
= lev .9 vl

Let now q€G° be arbitrary.We write g-1 in the following form

5.2 g leq W

abcad R
where a€l=‘p B berq-l, c,d€EF and furthermore
tai®eibi?eici®-1a1? = -1

We now take
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-1~
¢ = ¢(x,y,2,a,b,c,d) = w9 n(x,y,z)v1> B

<-A~p,H(g-lﬁ)> - -A=p

such that e 11 .

A straight forward computation shows that

¢ = 2a:x + 2bey + (d+c) + (d-c)(lxl2+lyl2+2z)

A few tedious computations show that

©
"

- ) -
(d-c)(lx+a'|2 + ly+b'|” + ld-cl 2 +

+ 2 Im(a'x + b'+y + |d—cl_zac) + 22).

where a' = (d-c) 'a and b' = (d-c) 'b , and therefore

2

5.3) 1012 = Ja-cl?[(1x+a"1% + 1y+B'12 + la-cl™%?

+ lz.‘zl ’
where
2 = 2(z + Im(a'*x + b'ey + la-c172%3c)) .

We now compute for fixed g€G° and x€FF

e<-A-o.H(g-1r-15(x,o,o))> -

I(A,g,x) = I_ dn .

N

c
As the measure on ﬁc we take dyd(2z) (which is normalized differently from
in Proposition 3.1). Notice that dz' = d(2z) and that dy = d(y*B') . Let

W om Uxea 12+ Ja-el™®) > 0.

We find

-0 2,2 2.-4 (h+p)
xu,g,x)-|a-c|"°’J quu2+ y HZ . 2 3l

F! mr)

dzdy

- YA‘d_cl-(ho)w(d(Mp)-b(qﬂ)dunR (F))

’
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wvhere

Y, = qu_l J (elyl®? + 1212) 100,y

(5.4) Im(F)

=I(A,e,0) = constec(-i (M-o-pa )

The last equality follows from Proposition 3.1 (iii). From Table 1 we find that

(g+1) dimm(F) -2 = 20c . Combining all this we have
IA,g,x) = Yxld—cl—(x+o) w2 A4 )
(5.5)

M - - - - -
v, la-cl A (141 @-2)xval 2y (A¥Poec)

Let now \£Dn be expressed in terms of x as u = P(&) , then we get

Ei'u(g) = C(-i(k+o-oc))Id-cl“lp(sg).
(5.6)

(141 @0 x+al?) " AHPPc)

| x =0
Theorem 5.1. Let G/H be a nonRiemannian, isotropic semisimple symmetric space.
Let Xet; satisfy Re<),a>> 0 , where a is the shortest root in A% . Let
u€un be homogeneous of degre m , and let u expressed in the variables x be

u = p(-a-z- . We have

° (1, +m)
Ex,u(bt) = c(-;(ho—oc)) (cosht) .
(5.7)
'P(S%)(ldxlz)-(ho-oc)
x = (-sinht, 0,...,0)

Proof: This follows from formula (5.6) taking g = bt , which means that
a = (-sht,0,...,0) , b=0, c=0 and 4 = cht . o
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