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ON THE SIMILARITY BETWEEN THE IWASAWA

PROJECTION AND THE DIAGONAL PART

by

J . J . Duistermaat

1 . Statement of the result.
Let G be a real connected semis imple Lie group with finite center and G " KAN

its Ivasava decomposition. Via the adjoint representation, and with respect to a
suitable basis in fl, K, resp. A, resp. N are the set of matrices in G which are
orthogonal, resp. diagonal with positive entries, resp. upper triangular.

The Iwasawa projection H from G onto the Lie algebra a of A is defined by

( 1 . 1 ) x € K.exp H ( x ) . N . x € G.

Obviously H factorizes through the projection from G onto the (non-compact
Riemannian) symmetric space K\G. If • (called ̂  by everybody else) denotes the
orthogonal complement of It in 6 with respect to the killing form, then the Cartan
decomposition G m K.exp • yields that

( 1 . 2 ) • eaq) G -<- K\G

is a diffeomorphism from • onto K\G. So the Iwasawa projection can be studied by
looking at the mapping

( 1 . 3 ) Y - H o exp : • -»• a.

On the other hand we have the orthogonal projection
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( 1 . 4 ) TT : • ^ a

with respect to the Killing form. In the above matrix terminology, • is the
space of symmetric matrices in % and TT is the operation of taking the diagonal
part of the symmetric matrix. So this projection has a very simple minded
interpretation, whereas the Ivasawa projection is a rather more mysterious object.

Theorem 1 . 1 . There is a real analytic map V : • -»- K such that

i) $ : k -»- k.V(Ad k'^X)) is a diffeomorphism from K onto K, for each X € ».

ii) y(Ad W^^X)) - TT(X) for all X € • •

That is, we can turn the Ivasawa projection into the orthogonal projection by
an action of Ad K, the element of K depending analytically on X € ».

It also follows from the theorem that the images of an Ad K-orbit in • under
Y and IT are the same. This was obtained before by Kostant [ 4 ] who showed
separately that both images are equal to the convex hull of the intersection of
the Ad K-orbit in • with a. Since this intersection is equal to a Weyl group
orbit in a. which is finite, this image is a convex polytope. Very remarkable
because an Ad K-orbit is such a roundish object;

Later Heckman [ 3 ] reduced the convexity theorem for the Iwasawa projection to
the convexity theorem for the diagonal part, for which the proof is much simpler.
using a homotopy argument. This homotopy argument actually is one of the
elements in the proof of Theorem 1 . 1 .

For me the major motivation for wanting the theorem was the study in I 2 ] .
together with Kolk and Varadarajan, of the asymptotic behaviour of integrals of
the form

( 1 . 5 ) I^(X.O . ̂  e1̂ ^ ̂^^.aCX.^dk

as II Gil -*• " . ^ € a - The matrix coefficients of the principal series
representations of G are given by such integrals, the simplest case being the
elementary spherical functions where

( 1 . 6 ) .(X.lO.e-^111'^"^.

The idea in ( 2 ] was to consider ( 1 . 5 ) as an oscillatory integral, for which the
asymptotics is concentrated at the stationary points of the "phase
function".

( 1 . 7 ) F., „ : k ̂  <Y(Ad k'^X)).^" » s
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on K. We then observed that F_ ,. had exactly the same critical points and critical
"»-»

values as its "infinitesimal counterpart"

(1.8) f — - lim^F... . : k-»• Tr(Ad k'^X)).^.
- t-^0 ^•^

These critical points in turn had such a special, rigid structure that the

asymptotics of (1 .5 ) could be obtained by a repeated application of the method of

stationary phase.

It had already been observed in ( 2 ] that the equality of critical points and

critical values of Fy ,. and f.. .. leads to the existence of a diffeomorphism

^ : ̂ ^^^^X.^X^"^-

However, the diffeomorphism is not unique and at that time I could not find ̂  ^

depending smoothly on X and ^. Already continuous dependence on ^ would imply,

replacing ^ by t^. dividing by t, and letting t ^ 0, that F^^O^Q " ^.S'

That is, one could find a diffeomorphism $„ not depending on ^. Then, using the

substitution of variables

(1.9) k - <^(1), 1 € E K ,

the integral (1 .5 ) can be rewritten as (X € », ^ € a*)

(1.10) I^(X.O • ^ e^^ k ^^(X.^kn.ldet ̂  (k) |dk.

In this way the study of the asymptotic behaviour would be reduced to doing

stationary phase with the simpler f^ p as the phase function, rather than F .̂

(Such asymptotics has been done before by Clerc and Barlet [ l] .)

It is one of the applications of Theorem 1 . 1 , that the integral re-

presentation ( 1 . 1 0 ) actually holds with a <^(k) which depends analytically on X

and k simultaneously. For instance, for the elementary spherical functions this

leads to an integral formula of the form

( 1 . 1 1 ) ^(exp X) - { e^^ ^^-^(Ad k-^XUdk.

for some analytic function b : • - R. As an application of the analyticity of b.

one can note that replacing S. resp. X by î . resp. iX. one obtains the

elementary spherical functions for the compact symmetric space which is dual to

K\G. (In this case ^ has to be taken in a weight lattice.) So also for these

functions an integral formula like ( 1 . 1 0 ) holds, at least for small 1 1 x 1 1 . I owe
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this observation to Richard van den Dries (T.H. Delft), who is using this integral
formula in his characterization of invariant pseudo-differential operators on
compact symmetric spaces in terms of their eigenvalues.

2. SL(2,R).
For G - SL(2,R) , dim K » dim a (- 1 ) , so the substitution of variables is

unique up to a flip. In order to determine it explicitly, write the elements of K

as

<2 - ' ) k-^ '^l^^^2^
and the elements of a as

(2.2) X - (^ °^), t €».

Then Y « Ad k~ (X) » k~ Xk is the general element of «, and \W is the element

of K with the coordinate \i given implicitly by

o -n ^2t^2 -2t • 2 2t c08 26(2.3} e cos p + e sin U • e

From this one can determine y(Y) • k .$-(k). It is not entirely trivial to verify

that this defines a real analytic mapping ¥ : • -»• al

The Jacobian of $„ is equal to

(^ 2|tsin2e|.e t c t>82e ,

^/cosh(2t) - cosh(2tcos 29)*

leading to the following formula for the elementary spherical function:

(2.5) <Mexp X) - - ; e1" cos 2e l^11128! d6.
" B/2TTZ ^/cosh(2t) - cosh(2t cos 29)V ^

Here we have written <X,^> - IT. This can also be written as

(2.6) 4> (exp X) - ^ J^ cos Ts. ds .
19 " u /j(cosh(2t)- cosh(2s)}

A smilar formula for all rank one symmetric spaces can be found in Koornwinder

[8], formula (2.16) and (2.18).

I prefer (2.5) over (2.6), because there are no boundary points nor

singularities for the integrand as in (2.6). To see the analyticity of the

integrand in (2.5) we write
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2 OB (W211"2 n-l 2k
(2.7) cosh(2t) - cos(2t cos 26) - (2t sin 26)' j^ (2ni) k?0 (cos 2e) »

from which

(2.8) ^ X) - „ ̂  e———— ̂  ̂  2-^^-^ cos 2e)2kr^.

In turn this allows us to write

(2.9) ^(exp X) - ̂  c,(t2) . ({ y ^ ̂  ̂  - ̂ e,

where the c, are suitable power series in t with some positive radius of con-

vergence. So the elementary spherical function, which is a hypergeometric function,

can be obtained from the Bessel function

(2.10) A_(exp X) - - -/L, e"^08 ^de,••°) ^expx)-^ ̂  e————2^.

which is the elementary spherical function for the Car tan motion group, by
applying an infinite order differential operator with respect to the eigenvalue
(» character) parameter T , with coefficients which are Ad K-invariant functions on
• • This is the strategy in Stanton and Tomas ( 7 ] . That such a description is
possible for all real rank one spaces can be derived from the previously mentioned
explicit formulae of Koornwinder [ 8 ] , but can also be read of from ( 1 . 1 1 ) .

This description would generalize to arbitrary synmetric spaces if the
amplitude b(Ad k'^X)) in ( 1 . 1 1 ) could be written as

( 2 . 1 1 ) b(Ad k'^X)) • 2 c (X).Tr(Ad k'^X))"m m
(m « (m, , . . . , m , . ) a multi-index), where the c are Ad k-invariant functions on1 dim d m
«. This however is one of the open questions which I have on this subject.

3. Proof of the theorem.
We begin by recalling some facts about the functions F , f ,. from [ 2]

—» s •»» s

Lemma 3 . 1 . (( 2 ] . Lemma 5.9). For x € G, write

( 3 . 1 ) x € x(x).AN. K(x) € K.

41
Then, for every X € », ^ € a :

(3.2) dFy .(I) • dfy ( l ) o L , where
A,(, A»S A
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(3.3) X - Ad <(exp X)'1 (X)

and Ly is the linear isomorphism: k -»• fc given by

(3.4) . sinh ad X ^ Ad^xpX)-1 .
x ad X

Lemma 3.2. ([ 2 ] , Lemma 1 . 1 ) . Let X € • and let ^ € a* correspond to

H « H.. € a via the Killing form. Then

(3.5) df.. . ( I ) • 0 « » [ X , H ] - 0.
^tS

If [X,H] « 0 then exp X € G° a connected reductive subgroup with an

Iwasawa decomposition, the components of which are contained in K, resp. A,

resp. N. So <(exp X) 6 G^ and [ X.H] • 0 if X is as in (3.3). Using Lemma 3 . 1 we

conclude that dF -0) • 0 ̂  df -(I) • 0. Using that
X,^ A,^

(3.6) -^ F.. -(k.exp t Y ) . • dF (1) (Y). k € K. Y € &.
dt x^ t u Ad k X.^

and the same formula with F replaced by f. it follows that F^ and f^ have

the same set of critical points.

Lemma 3.3. ([ 2 ] . Cor. 5.2). If X € ». ^ € a*, then

< 3 - 7 ^ ^W0'^^^-

Now we look at the 1-parameter family of functions

o-8) ^-T^r^-^^-^r
We see that the set of critical points of F^ is equal to the set of critical

points of if ., . « t,, . so to the set of critical points of f^. for all t € R.
t tX y c, —'• s

Moreover

(3.9) F^O) • { (/t ^(<(exp sx))dst

If dF^O) - 0 then <(exp sX) is a critical point for f^ for all s € (O.t l . so

f -(/(exp sX)) • fy .(I), that is
X,c, A»s

< 3 - 1 0 ) FS ( l )• fx.^ l ) ̂ S0^0'
Using that F^(k) - F^\-i^(l). we get that F^ and f^^ have^he same

values at the'critical points.Now we try to find a diffeomorphism ̂ ^ : K -^ K

depending smoothly on t, such that $^ - identity and
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(3.11) F^^^Ck)) - f» .00 for all t € ( O . H .
A»S A«S ^tS

Differentiating ( 3 . 1 1 ) with respect to t gives

^(t)

<3.^) ^ W^ - <l<^ 0 -¥ <10 - °- vhich

in fact is equivalent to ( 3 . 1 1 ) in view of the initial condition 4^ • identity.

The idea is now to find a vector field v^ on K depending analytically on t. X.

E, such that

< 3 - ' 3 ) Tt ̂  + ̂ w B ̂ w • °
and then obtain ̂ t) by solving the ordinary differential equation

X»^

<3.-^ ^ ̂ > - Wl^ ̂ w - k-

I learned this idea from Moser [ 6] and Mather [ 5] . but it might have a much older

history* 9 (t)
In any case, for (3.13) it is a necessary condition that -^ Fx.^(k) " ° if

dF^(k) - 0. but this follows from dF^(k) - 0 » df^(k) - 0. in which case

F^^k) • f» r(k). constant in t, as observed above. In Lemma 3 . 1 . 3.2 we have

seen that dF^hk) is proportional to (Ad k'^X),!^] by a linear isomorphism

depending analytically on t. X. H^. In view of these observations the existence

of v^ with the desired properties is ensured by the following
X»s

Lemna 3.4. Let ^ : ^a ^ 1R be analytic such that ^(X.H) - 0 whenever I X.H] •

« 0. Then there exists an analytic map \ : »xa -*• I such that

(3.15) 4/(X.H) • <lX,H}.x(X.H)> for all X, € •. H € a.

If ^ is linear in H for each X then X can be chosen not depending on H and if 4;

depends smoothly on additional parameters then ^ can be chosen to do the same.

Actually x '•s obtained by an explicit formula from 4;, from which these

properties can be read off. The construction is based on the observation that

in »xa the relation [ X.H] • 0 has a reasonably simple description. For X € • write

(3.16) X - XQ . 2 ^ X^. XQ € a. X^ € . 0 (fl^g^).
a€ A
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Then

(3.17) [X.H] - - Z ^ aOO.JX
a€A

where J is the linear isomorphism: • © a -^ f @« which sends Y - 9Y to Y + 6Y

(for Y € n). It follows that [X,H] • 0 if and only if for each a € A* either

X^ « 0 or a(H) - 0.

For I C A » write now

(3..8) H,(X) - ̂  . ̂  X,.

Then, based on Newton's binomial formula, we can write

(3.19) ip(X.H). S 2; (-l)1'11^!! ^ (X).H).
ICA" JCA^I z J

Observing that lp(X^,H) « 0 by assumption, we concentrate our attention on the

term

(3.20) iMX.H) • 2. (-D^^^^^X)^).
1 JCA^ I J

Every term in the right hand side is equal to zero if a(H) - 0 for all a € A'\I.

Let a,,...,a € A^I be a basis of 2 BL a. Write
' p aGA'Nl

(3.21) a. • {H € a; a^(H) « 0 for i <j). a^ • a,

and let IT. be a linear projection from a., to a.. Write

(3.22) TT. «• TT. o ... o if^ : a -»• a. ,

P
(3.23) ^(X.H) • .2, ^ ( X . T T _ ^ ( H ) ) - ^(X.TT^H)).

and finally

^(X,7T.^(H)) - ^(X.TTj(H))

. Z ^ ( - l ) I J I [4» (^T^UJ< x ) • 7 T j iW) - ^(^lUj^^j^^1

(3.24) JCAU

• ̂ ^^ ^ (-1)IJI(^^,(X).^^(H)) - ^^jUta^-Vl^

- <P(TT^j(X).^(H)) ^ ^(TTujjUIa.}^^^^-

The last expression between square brackets is equal to zero if X^ « 0 or a^(H) '

» 0. So this expression is of the form
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oij(H).<JX^ , x ^ , ( X , H ) >

for some analytic mapping \ . : »xa -*•& " f c ^ C a + f l ). Suaming all thei,j a. a, -a,
terms gives the desired mapping y, - ~

From \ we get an analytic vector field v' ) on K» depending analytically on
x»^

t, X, ^ satisfying (3.13). Now, observing that

(3.25) F^ , (k) • F^dk). k € K.Ad r^x).^ ^^
it follows that X, v t ' \ ^ satisfies (3.13) as well, here X : k -»• l.k denotes

left multiplication by 1. Because the equation (3.13) is linear in v, also

<3•26) ^l-i^^Kx),^1

will satisfy (3 .13) . This vectorfield has the additional symmetry

(3.27) v^ ., •\^
Ad k ' (X) ,^ k x*"

which for the solution $' ; of (3 .14) , ^ith v replaced by v, will lead to
x, s

(3.28) <t,.(lk) - 1.$ (k). k . l € K .
A Ad 1 (X)

This proves Theorem 1 . 1 , with 4»(X) • <t»^(l). X € ».

I would like to thank Joop Kolk and Richard van den Dries for several
stimulating discussions on this subject. Also Michel Duflo for inviting me to the
meeting in Le Kleebach, thereby giving me the opportunity to present this result.
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