
MÉMOIRES DE LA S. M. F.

J. V. ARMITAGE
The product of N linear forms in a field of series and
the Riemann hypothesis for curves
Mémoires de la S. M. F., tome 25 (1971), p. 17-27
<http://www.numdam.org/item?id=MSMF_1971__25__17_0>

© Mémoires de la S. M. F., 1971, tous droits réservés.

L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf.
emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=MSMF_1971__25__17_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Colloque Th. Nombres [1969, Bordeaux]
Bull. Soc. math. France,
Memoire 25, 1971, P. IT a 27

THE PRODUCT OF N LINEAR FORMS IN A FIELD OF SERIES AND THE
RIEMANN HYPOTHESIS FOR CUVES

^y
J.V. ARMITAGE

!• -• Introduction. Minkowk^s creation of the geometry of numbers -was likened to
the story of Saul, who set out to look for his father^ asses and discovered a

Kingdom. This lecture illustrates the reverse process, for it is concerned with
the remains of my attempt to make a systematic use of Minkowski's ideas to ques-
tions of reduction theory in algebraic geometry. But I discovered that such
methods were usually inappropriate for functionfields in more than one variable
and that where they were not inappropriate I had already been anticipated
(albeit in a different language).

So I shall be concerned primarily with a few debris, together with some conjec-
tures which may be of interest to number theorists and algebraic geometers . In
particular, I propose a conjecture about linear forms which implies the Riemann

Hypothesis for hyperelliptic curves (and probably more generally) and I outline,
very briefly, an alternative formulation of Wei^s proof of the Riemann Hypothesis.

2. - Statement of the Riemann Hypothesis. From an arithmetical point of view, the
basic question is the following : how many solutions has a polynomial congruence

f(x,y) = 0 (mod p ) , f(x,y) € 2 [x,y] ? (l)

The congruence (l) may be construed either as the equation of a curve, F , over
F in the affine plane or as defining a function field L = F (x,y) . More
generally, one considers a function field k(x,y) (or a curve T/k) over a
finite field, k , of q elements.

From a geometrical point of view, the prd61-em is to count the rational points
on F /k ; in terms of function fields, one asks for the number of finite prime

divisors of L of degree 1 (or the number of places of decree 1 at finite

distance). From both points of view, it is more natural to consider curves in
projective space and to include the places at infinity. We shall do so in what
follows.

Let N denote the number of places of degree 1 of the function field Lk ,
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where [ k : k] = n . (Alternatively, N is the number of places of L of

degree n , or the number of points of T/k , rational over k ). Then the

Riemann Hypothesis asserts that

I ̂  - q"-! |^2g q"72 , (2)

where g is the genus* (See Wei^s article C 8 J for a history of the problem).

The zeta function Z(u) of L is the function, of a complex variable u ,
defined by

u ||̂  Z(u) = I N^ u11 = 5 N̂  q"̂  (s = a+it). (3)

n=l n=l

On using the functional equation (essentially the Riemann-Roch Theorem) and (2) ,
-1/2one deduces that the series (3) has radius of convergence not less than q

1/2
and it follows that the zeros of Z(u) have absolute value q . The latter

result is the one usually known as the Riemann Hypothesis. It was first proved,

for g = 1 , by Hasse [5], using abstract complex multiplication, and the general

case was proved by Well [T] 9 using the inequality of Castelnuovo-Severi in a

setting of abstract algebraic geometry whose foundations he had already laid. (All

the ideas introduced thus far are exposed in Chevalley^ Bourbaki Seminar, [ U] ).

3. - The product of N linear forms in a field of series. Let Card(k) = q ,

let K be the transcendental field k(t) and write R = k[t] . For a,b € R 9

b ^ 0 , define the l infiniteT valuation (1) by

1 ^ | = degree a - degree b ^ -^(a/13)
' " h i - ^ ' '

A
We denote the completion of K with respect to the valuation (4) by K . (Thus
A
K consists of the formal Laurent series

a I"1 + a , t"1"1 + ... .)m m-1
^We write P_ for the ultrametric, locally compact, space K , with distance de-

finde by
x | |= max( |x-,| ,. .. , |xjr|) (x c p^) • (5)

i a free R-module given bA lattice A in P^ . is a free R-module given by N linear forms

L! = ^1 "1 + • • • + ^N^

^ ^1 u! + • • • ^N^
A

where a.. € K , u. 6 R and A = A ( A ) = I del (a. . ) ] ^ 0 .
ij 1 ij

(6)
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The "basic question on the product of linear forms is this : given L- » . . . ,L of

determinant A » "bo find the least M.- (a power of q ) such that there exist
polynomials u,,...,u^ , not all 0 , for which

[L^ ... Lj^ M^ A . ( T )

If qs N-l , then it follows form the analogue of Minkowski*s Convex Body
Theorem [6] (essentially the Riemann-Roch Theorem, cf. [3] ) that

M^cT01-^ . (8)

If q<N-l , then (8) is no longer "best possible and I have shown [2] that

M, . ̂ -l)-s . (9)

where s is the least integer defined by ss (N-l)/q-l •

Computations in special cases, together with the consequences which it implies,
suggest the truth of the following conjecture.

CONJECTURE. 1^ q < N-l , then

^ - ̂ w} , (10)

where Y is the integer defined by

Y-l ^ (N-q-l)/2q172 < Y • (II)

4. - The conjecture implies the Riemann Hypothesis in the hyperelliptic case.
Let L be a function field of transcendence degree 1 defined over the finite
field k and let N = N-, denote the number of places of L of degree 1 .
We show that if N is bigger than q , then the genus of L cannot be too small.

More precisely, we have :

PROPOSITION. Let q s 2g , N>q+l and suppose that the Conjecture is true.

Then -, /^
——— 2q-L/" g s> N-q-1 . (12)

Proof. It follows from the Riemann-Roch Theorem that there exists t € L

that has simple poles at the places of degree 1 and no other singularities.
Thus L is a "totally real" extension of k(t) of degree N ; that is, L has

an imbedding
A A

9 : L ->- K x ...x K ,

along the diagonal, where at each infinite place L is to be viewed as contained
A

in K .
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The integral closure 0^ of R in L has an R-basis ( a-, . . . , a ) and if

e ( a ^ ) = (a^ , ... , a^) , (13)

then the matrix A = (a..) gives rise to a lattice A and a corresponding set of
?linear forms. The determinant del A is D , where D is the discriminant of

the extension L/K and

iD2 1=^^-D . (14)

Now, for u^, . . . ,u^e R , the product L ... L is the norm N, ^ of
an element ^ € 0, and so has absolute value ( U ) at least 1 if ^ ^ 0 . On
the other hand, the Conjecture implies that

1^|L,.. .L^ ^-^-Y ,N-̂  . (15)

So, from (II) ,

(N-q-1) / 2ql/2^ g .

This completes the proof of the Proposition. Of course, the result (12) is an

immediate consequence of (2), but our purpose is to derive (2) from (12).

COROLLARY. Lf L is hyperelliptic, then the Riemann Hypothesis is true for

L .

Proof. If L is hyperelliptic, then it is quadratic over some subfield, k(x).

Namely, L = k(x,y) where y = g(x) and x = (J^/U) is the ratio of differentials

of the first kind.

Without loss of generality, we may suppose that the condition q ^ 2g of the

Proposition holds. So it suffices to verify N > q+1 . We show that if this condi-

tion does not hold,, then the desired result can be obtained by considering a rela-

ted field.

Suppose that L has N <q-l places of degree 1 . Consider the field L^

defined by

V2 = a g(x) (16)

where a ^ k . For x € k , the equation (l6) has a solution if and only if

y2 = g(x) has not. Consequently, the new field has 2q-N > q+1 places of de -

gree 1 . We now apply the Proposition with L in place of L and 2q-N in

place of N , and so obtain the desired inequality.

One would like to find an argument \2) resembling the proof of the Corollary in

the general case, but there are apparently insurmountable obstacles. In the general

case, we have a curve T/k and the Frobenius F(r) on T induces an endomorphism

on the Jacobian. We want a curve T^ such that the Frobenius F(T^) = -F(T) .
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Professor Serre has pointed, out to me that the argument given above in the hyperel-
liptic case is essentially a Galois descent applied to the Jacobian. Since, in that
case, r has an automorphism of order 2 which is - 1 on the Jacob ian, one can
descend the Jacobian to obtain the Jacob ian of F . I n general, the descent
yields an abelian variety which is not obviously a Jacobian.

5. - Comments on the Conjecture. Perhaps the most interesting feature of the
Conjecture and the consequent Proposition is that, together, they throw some light
on the relative depths of the ordinary Riemann Hypothesis and its analogue for
curves. The latter appears to be analogous to the problem of finding the precise
lower bound for the discriminant of a number field and so, presumably, is less
deep than the problem of determining the abscissae of the zeros of C, (s ) .

From the point of view of the geometry of numbers, there are at least two pos-
sible approaches to a proof of (10).

The first begins by observing that if q = N-2 , then (9) already gives the
same bound for JYL, as does (10) . This suggests the possibility of using induction
on N , for fixed q .

In order to make the induction step, one would like to use an argument along
the following lines. Without loss of generality (cf. the proof of (9) given in
[2]), we can write the linear forms as

L! = u! ̂ i ̂  + • • • + ain~l) ̂  (1<: i5SN) (IT)

with ]a-, | ^ q~ . Write L'. = L.-L- . Then we obtain N-l linear forms in N-l
variables of determinant A and the induction hypothesis implies that there exist

polynomials, not all 0 , such that

|L1^ ... L'J ^ q"^ , (18)

1/2where 6 = (N-2) + (N-q-2)/2q . After a suitable unimodular substitution on the
variables, we may suppose that

](o^-a^) ... (a^-o^)| ^ q~6 A . (19)

Now, if there is no cancellation of terms of highest degree in t on the left

hand side, then the inequality (19) implies that

[a- ... aj <: q-6-1 A (20)-I • • • ^

and this implies (12).
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Unfortunately, there does not seem to be any way of dealing with the case when
cancellation takes place. Maybe one could deal with this by making further nor-
malizations of the coefficients in (IT). Even if it did not lead to a best pos-
sible result, such an approach might still yield a result which would imply good
estimates for character sums. Again, if the a. are taken to be a "basis for a
hyperelliptic field, then one might be able to achieve a normalization of the
desired kind.

A variation on the induction theme is suggested by a method of Mordell, which
allows one, in certain circumstances, to replace an N-dimensional problem by a

related (N-l)-dimensional problem, (cf. [l] , for references and a generalization).
In the present situation, we denote by X- the lower bound of the numbers \
with the property that for any set of N linear forms , L. ,..., L«- , in N
variables, of determinant 1 , the inequality

\\ ... L^ X , (21)

has a non-zero solution in R . If n is similarly defined with reference to
the inequality

|L^ ... L^ (L^ +.. .+L^)1^ U , (22)

where L- , . . .L - are linear forms of determinant 1 in N-l variables, then
an argument analogous to that in [l] yields the relation

,N-2^ N-l , .
"N -̂1 • (23}

If one could ensure that the minimum of the product on the left hand side of
(22) were attained for values of the variables such that IL-+...+L- | ̂  1 ,
then one could deduce, from (23) and the induction hypothesis, that

ST^"
where a = (2ql/2(N-l) (N-2) + (N-l) (N-q-2) )/2q172 (N-2)

and, once again, this gives the desired result (with A = 1 ).

Accordingly, this second approach reduces the problem to that of the study of
the critical lattices of the regions

K ^ • • • -̂1 (x! + • • • + ̂ -l5! <= 4

and

1^2 • • • -̂ll̂

in the space P-pn
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6« - We il^s proof in the language of the geometry of numbers. The problem

considered in § 2, is, in some ways, more general than that of the Riemann

Hypothesis for curves, since the coefficients a.. of the linear forms (6)
A 1^

are arbitrary elements of K . This suggests that one might try to imitate Wei^s

argument in the more general setting. It was with this in mind that I translated

Weil^s proof into the language of the geometry of numbers, but, so far, I have

not been able to carry out the details of the argument except in the case when

the a. . come from a basis of an algebraic extension L/K .
ij

The first part of the translation has already been published, [3] , and we

begin by recalling the main ideas.

Let L be a finite algebraic extension of degree N of the field K = k(t)

and suppose that the divisor of poles of t splits completely in L . (This latter

supposition is not necessary ; it makes the situation analogous to the case of

a totally real number field and affords considerable simplification in the present

exposition).

Let a be a divisor of L/k of degree deg(a) and write a = a o , where

o is divisible only by finite primes and a by infinite primes. The Riemann-

Roch Theorem is concerned with the dimension of the k-vector space L(a) where

L(a) = { a € L : \> (a) s v (a )

and p runs through all prime divisors of L . It is easy to see that the space

L(d ) can be regarded as the intersection of two k-vector spaces L(o ) and L(o )

and that L(a ) defines a lattice A( o) in P,, , of determinant A ( o ) , whilst

L(o ) defines a convex body C ( o ) of volume V(d ) . The ratio

^1 = ^dego ^N-l+g ^
V(Ct)

and the Riemann-Roch Theorem is now an immediate consequence of Mahler s analogue

of Minkowsk^s Theorem, together with a suitable identification of the polar lat-

tice and polar body.

It follows from the foregoing that each integral divisor Q has a unique

representation in the form (A (a) , C(a ) ) where A (a) is a sub-lattice of the

lattice A (e) correspondig to the ring 0,. and C(a) is a convex body (in fact

a "rectangular box") contained in the unit cube ||x|| ^ 1 in P^ . Thus each inte-

gral divisor Q has a unique representation
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A =

^11

V21
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0

0
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... 0

• • •

a,,
... t N

where |v.. l<|v.. l , l ^ j< i<N, v. . ̂  R and I del A I = q^ a . We may ac-

cordingly identify divisors of given degree as points of certain subsets of the

locally compact topological vector space

A i,.T2A^2
j\^= (26)

It is now a comparatively straightforward matter to set up the theory of cor-

respondences in the space j)- , to obtain the appropriate version of the Lefschetz

fixed point formula and finally to imitate Wei^s proof of the inequality of

Castelnuovo-Severi.

We turn now to the situation presented by N linear forms in the most general
AM

ease. We consider the algebra K with componentwise multiplication and we replace
Am

the integers 0 by a fixed R-order A of K ; namely, the R-order generated

by the N linear forms (6). Suppose that

(.25)

., , . . N-l+v] del A ] = q ' (27)

We consider those lattices (free R-modules) M c A which are tf irreducible^ and

have the property that

A M C M . (28)

Then A /M is a k-vector space of dimension m , where

^ = |det M| / | del A | .

We define such a lattice to be prime and of degree m . Then the number of prime

lattices of degree 1 generalizes the number of finite prime divisors of degree 1

in a function field and one might hope to prove the appropriate generalization of

(2) , with the number Y in (27) in place of the genus g .
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Unfortunately, in order to introduce enough multiplicative structure into the
problem, it appears to be necessary to take A to be the lattice corresponding to
the order 0^ in the function field L ; so the hope of a significant generali-
zation may prove to be illusory.

When Alice performed the subtraction 365 - 1 for Humpty Dumpty in her head, he
looked doubtful and said : "^d rather see that done on paper". No doubt a similar
preference is felt by the reader on seeing the foregoing sketch. I do intend to
publish the details some time, though I still hanker after the linear forms
conjecture.

T. - Postscript to the lecture. Professor Serre suggested to me that there
ought to be a restatement of the conjecture in the language of vector bundles. He
had already supplied me with some of the necessary vocabulary when commenting on
the work alluded to in § 1 . Needless to say, anything that is incorrect in what
follows represents my contribution, though the converse is not necessarily true.

The matrix A = ( a^ - ) of coefficients in (6) defines a vector bundle over the

projective line. The statement that there exist u ,...,u ^ 0,...,0 in R such
that (10) holds can be reinterpreted as saying that there exist integers \ ,...,X
with

X^+. . .+X^ -(N-1)- Y + deg(det A) , (29)
for which

H T ( X ^ , . . . , X ^ ) A u || ^ 1 (-30)

where u = (u^,.. . ,u^) and T( X^ , . . . , \ ) is the diagonal matrix diag

{A....A.
The inequality (30) asserts that at least one member of the family , (B , of

vector bundles corresponding to the matrices T ( X ,.. . ,X ) A possesses a non-
trivial section. On taking the Nth exterior power of (B , we see that the Chern
class c^( X ^ , . . . , \^) of the bundle determined by T(X ,...,\J A is

c^(^, . . . ,X^) = -deg (del A) + X^ + ... + X . (31)

So the conjecture now reads : ^ c (\ ,...,\ ) :> -(N-l)- Y , where Y isJ- J, 1M ————
given by (II) , then at least one member of the family © has a non-trivial section.

In this context, it is interesting to note that, given such a bundle (or matrix),
there exists a matrix Y = diag { y^,... ,y^} such that | y | ^ " 1,... , ] y ]^ 1
and a unimodular aatrix U (with elements in R and determinant 1 ) such that

-Zl -U
A = Y diag f t 1 ,..., t N } . U (32)
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where the u^,..., |j are the successive minima of the convex body

C = { x € P^ :||A-1 x|| ^ l } .

(The reduction (32) follows immediately from the characterization of convex bodies
given by Mahler [6] . It is strongly reminiscent of Grothendiec^s Theorem on the
decomposition of vector bundles over the Riemann sphere).
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FOOTNOTES

P. l8 v) We use the same notation for the ordinary absolute value, as
in (2) . There will be no danger of confusion.

P. 20 (^j The argument just given may be adaptable to the cases of curves
(or function fields) y - = g(x). Those would include all cases
necessary for the estimation of character sums and Kloosterman
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