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SOCIETE MATHEMATIQUE DE FRANCE
2e serie, Memoire n° 2 , 1980, p. 55-68

ON QUASI-PERIODS OF ABELIAN FUNCTIONS
WITH COMPLEX MULTIPLICATION

by

D. W. MASSER

1. INTRODUCTION

Let £ be an algebraically presented lattice in C in the sense of [6],

and let 9 (z.),..., © (z) be theta functions on C which give an analytic isomor-

phism from the torus C2/^ to an abelian variety A in projective space. As in

[6] , we may suppose that 9^(0) ^ 0 and that the quotients f. (2,) » 6. (z.)/8^(z)

(1 < i < n) are abelian functions whose Taylor expansions about z « Q have

algebraic coefficients. Let g « g(z) be a quasi-periodic function in the sense

of [5] , analytic at 2 m Q, whose Taylor expansion about z_ « 0 also has

algebraic coefficients. Thus the quasi-periods

(1) n(9»(^) as g ( z+ o>) - g(z)

are independent of z for each a) in £ . The main result of [5] states that if A

is simple, g is not abelian, and oj is non-zero, then T\ s= ri(g,U)) is transcenden-

tal.
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The methods of [5l can also be used in a much easier way to prove that
U + air is either zero or transcendental for any algebraic number a . Presumably
U + air is in fact always transcendental in these circumstances. However, not
even the analogue [4] of this result for the product of two elliptic curves has
been proved in general. In this paper we resolve the problem when A has many complex
multiplications in the sense of [ 6 ] and [ 7 ] . W e prove the following theorem.

Theorem : Suppose A is simple and has many complex multiplications. Then if g
is not abelian and ̂  is non-zero, the number r\ ( g , ^ ) + a(2-n i) is transcenden-
tal for any algebraic number a .

From the example given in [5] it is easy to deduce the following linear
independence property of special values of the classical beta function B ( x , y ) . This
answers a question raised in [5] .

Corollary : As r, s run over all positive integers the numbers B(r/5, s/5) span
a_yector space of dimension 6 over the field of algebraic numbers.

Another consequence, obtained by taking g as a linear function, is the
transcendence in dimension 2 of the expressions p ( T . $ ) introduced by Shimura in
his study [8 ] of algebraic relations between periods. The corresponding result
in dimension 1 follows from the classical theorems of Schneider.

The proof of our Theorem relies on some distribution properties of
certain division fields associated with A. These will be discussed in the next
section. After that we shall give the main transcendence proof. But first we set
up some preliminaries.

Using elementary specialization arguments on Fourier series, it is not
too difficult to establish the existence of a theta function 9(z) with 6(0) ^ 0,
non-degenerate in the sense of [ 9 ] , whose Taylor expansion about .z • 0̂  has
coefficients in an algebraic number field. This will be convenient (but not
essential) for later use. We shall assume that the endomorphism ring of A is
isomorphic to the ring of integers I of a totally imaginary quadratic extension
K of a real quadratic field K . This assumption involves no loss of generality, as
we can always replace •C by an isogenous lattice (cf. [ 7 ] p . 5 9 ) . After strongly
normalizing [ 2 ] , we obtain embeddings ( p . , (fc of K into tt, inducing different
embeddings of K into C, such that for any o in I the corresponding endomorphism

2 IP P̂ 'is represented in C by mapping & « ( z . , z ^ ) to ff̂  « (o ^z.iO ̂ ^ . From now until
the end of section 2 we fix an algebraic number field F , containing all the
conjugates of K, such that the Taylor expansions of f . 0 e ) , . . . , f (zj and Q(z)
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QUASI-PERIODS OF ABELIAN FUNCTIONS

about z, « 0 have coefficients in F.

Next, we suppose f ( z ) , . . . , f (2) to have been replaced by sufficiently
general linear combinations of themselves with coefficients in F. This preserves
the embedding property into projective space, and allows us to assume the follo-
wing additional facts. Firstly, the Jacobian matrix of f (&} , f^z.) at 5. - £ is
non-singular, so that in particular these functions are algebraically independent,
and secondly, the functions f ^ ( z ) , . . . , f (5.) are all integral over the ring
F [ f ^ ( z ) , f ^ ( z ) ] (cf. [ 3 ] p . 5 , Remark 2 . 7 ) .

Finally, we fix throughout the paper elements a , a , a , a of an
integral basis of K over the rational field $, and if d is the discriminant of
K^ we put a = VS. For a in K we denote by Tr(a ) , N ( a ) the trace and norm

<P, 4)5
respectively of a from K to $. We write ^ » (a , a ) , and we multiply vectors
of C componentwise, as in [ 6 ] .

2. DIVISION FIELDS

For a prime S, > 2 we define F. as the field generated over F by the
numbers f^((^/A) (1 < i < n) as ̂  runs over all periods of £ such that
9^ (U)A) ^ 0. It is easily seen that F̂  is a Galois extention of F. It is
known from class field theory and the results of [ 7 ] that for all sufficiently large

S, the field F̂  contains M^ = F(e v z ) and has degree at most dc3 for some
c independent of & . i n fact it is convenient for us to derive elementary proofs
of these statements in the course of obtaining the required distribution
properties of F

We shall also need the less elementary fact that the degree of F. exceeds
3c' t for some c' > 0 independent of SL. During the conference Professor Shimura

showed me how to deduce this from the results of [ 7 ] , and I am grateful for his
permission to include a sketch of the proof in the Appendix to this paper.

In the proofs of the following two lemmas, we shall ignore problems
arising from zero denominators; they can be dealt with by standard tricks as in [ 5 ] .

Lemma 1 : Let £ be sufficiently large. Then F contains Mp

Proof : We use an analytic representation of the Weil .pairing. Consider the
function
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9(&2 ) 9(2 ) 9(£ + Az )

Y?!^ " — — — — — — — ^ — — — — ^ — — — — '" " eOz^) 9(2^) 9(2^ + &2^)

It is readily checked that ^ ^l'^ is an abelian function in each variable
separately when the other variable is held fixed. It follows (as in [9] pp.94-96)

that y. (Zi'2^ is a rational function of f^(2^) , . . . , f^(2^) and
f (2^),....,f (2^. Moreover the coefficients of this rational function can be

supposed to lie in F.
Let E(2 ,2 ) be the Riemann form associated with 9(2) (see [7] p.20).

We easily verify that

(2) ^ (a)A,a^A) s exp{2-n- iE(t^,(^)/&)

for any OL , a)« in JC. Now E(2,,2^) is integer-valued on the product -C x -C , and
~1 ~'2 - 1 - 2 ^ ̂  j /^

we may fix a) , (D- such that E( ^, u^) ^ 0. Then (2) implies that e lies

in F for all SL sufficiently large. Hence Lemma 1 is proved.

Next let Ip be the Galois group of Fp over F. For all & sufficiently

large, there is a standard homomorphism p frcxn Ty to the multiplicative

group of I/ AI. This is defined by the property that for ^) in 1^ and any o

in I corresponding to p(i|/ ) we lave (cf. [7] p. 63 or the Appendix to [l] )

(3) (f^(o)A))^ = f^(go)/&) (1 < i < n)

for any of the generators of Fp . Whenever Fp contains M^, we write A^ for

the Galois group of F- over M. .

Lemma 2 : Let SL be sufficiently large. Then for any o in I corresponding to

an element of P(A. ) we have

^ <Pi ^ ^
(4) o ' c ^ o o s i (mod & ) .

Proof : Let ^ be an element of Ap , and let 0 in I correspond to p(^).

Applying ^) to (2) and taking into account the equations (3) , we obtain

exp{ 2TTiE(g U)^,g y^)/A) " exp(2 7TiE( y^, ^)/&) .
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It follows that

(5) S^y^go)^) 2 E(y ,oi ) (mod & )

for all y , (̂  in jC.

Next, fix any a) ^ 0 in X . Then according to [7] (Theorem 4, p.48)

there exists ^ in K with ^ = - ^ such that

E( g a) , g^y ) = Tr(^o.O^)

for all o,» 0,, in I. We deduce that

^ ^ ̂  4»2 ^2 .̂ 2
(6) ^fifflO) iQQ.^ ss K a 5 +K a d »

where

K == K(O.»O.,) = ^(o. o^ - o. o^).

Now the left hand side of (6) is not identically zero in 0.9 o.i and hence we

may fix o , o in I such that K ^ 0. Put ^ SB 5,*^ » ^ = 2^(ri ln (5) ; then

by (6)

tp, <P, <P, 4)9 ipn 4)5 tpi ^
(7) K 'o 0 + K o 0 = K + K (mod &) .

^1 ^2
But with a as in section l, we have a = - a and0 0 0

K(o^aQO^) = a-K(o^o^). Hence if we put a^ = 0,14) » ^2 ss ̂  ̂ ^ in (5) ' we

obtain

<p, ^ ^_^ ^ (^_^ _ <p. ^ ^
(8) a (K o o - K o o ) = a- (x - K ) (mod & ) .

From (7) and (8) we deduce the congruences (4) of Lemma 2, provided t is sufficien-

tly large.

Lemma 3 : Let S. be sufficiently large, and let 6 in I be prime to A . Then

there are at roost 4 elements a (mod 9, ) of I such that both o and o + 6

correspond to elements of p(A« ) •
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Proof : If A is sufficiently large and g i a + 6 both correspond to elements

of p ( A ) the" fran I'enma 2 we have

<Pi 4>i 4>2 4)2
(9) ( o + 6) ( o + 6) « (o •••6) (o •*• 6 ) s ^ ("od & )

<PI
as well as (4). It follows after a simple calculation that x • a satisfies the

congruence

jp< 9 (D< Jpi (p^
(10) 6 "x2 + $ • 5 'x + 6 s 0 (mod x,).

Let p be any prime ideal divisor of & in the Galois closure of K. Since <5 is

prime to o and therefore to p, (10) shows that there are at most 2 possibilities
<Pl ^Pl

for n (mod o ). Each of these determines at most one possibility for o (mod P )'
92 ^2

by (4). A similar argument works for g and o ' and we conclude that there
4>i tPi <?2 ^

are at most 4 possibilities (mod p ) for the quadruple (o » o KJ i 0 ) •

However, we have (7 « s, a. + s^ a^ + s^ a^ + s a- for rational integers Si^^^'

and these rational'integers can be expressed as fixed linear forms in the conjugates

<P, 4>, 4)5 <?2
o ^ ,0 ,0 of o. If & is sufficiently large we deduce that there are at most

4 possibilities (mod p ) for the quadruple (s., s , s-, s ), and therefore at most

4 possibilities (mod I ) . This implies Lemma 3.

The main result of this section can now be proved. It gives a distribution
tpi 4>2 2

property of the set of 5 « (o ft ) in t for 0 in I corresponding to elements of

P ( A ^ ) .

Proposition : Let a be a sufficiently large prime which does not split in the

quadratic field K . Then there exist positive constants c, c ' , c" independent of

^ such that

(i) the field F. has degree at most cSL ,
x, ^

(ii) there is a subset D. of A(, , containing at least c' S. elements, such— _ _ — • — — - — — — jc "~~~ x. __^___________________ ————— ———
that for any distinct elements o, , 0^ ĵn I corresponding to elements of P^o )

we have

( 1 1 ) • Ifil - 221 > CMSL1/2 •

Proof : Let c , c«... denote positive constants independent of SL . We give first

the proof of (i), which does not use class field theory or the results of [7] .

For x > 0 let I(x) be the set of elements 6 of I with 0 < 1^1 < x ; clearly

I(x) contains at most e x elements. Now every element 6 of I( x, ) is prime to
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t , because we have

4>i <P, <P,.<P, <Pi ^ 4)7 5 ^
| N ( 5 ) j « j6 *5 ̂  ̂  2! « 1 6 'HS " I 2 < &2,

and the splitting assumption on S, implies that every prime ideal factor of &
has absolute norm A2 or A4. Select X with 0 < \ < 1 arbitrarily for the
moment; X will be specified later during the proof of ( i i ) . Consider the integers
o « s a. + ŝ  a^ + ŝ  a^ + ŝ  a^ (0 < s^, s^, s^, s^ < A )which correspond to
elements of p (A< ) ; their number is exactly the cardinality of A. . For each

1/25 in I(X & ) delete all the a such that 0 + 6 also corresponds to an element
4 2of p ( A . ) . By Lemma 3 , we delete altogether at most 4c,X i integers. The

remaining integers (if any) correspond to a subset D« (possibly empty) of A^ ,
and clearly ( 1 1 ) holds with c- » \ for any distinct 0 , , 0 remaining. A simple

—4 2geometric argument now shows that D. contains at most ĉ  A, & elements.
Hence A. contains at most 4c^ X A2 + c^ X"4 A elements, which

implies ( i ) , since M has degree at most c A .
To verify (ii) we recall that the degree of F. exceeds c &

2(see Appendix), and therefore A- contains at least c- A elements. Hence,
4 1choosing X above as the largest number with 4c X < •=• c-» we see that D«

1 2is left with at least -r Cg 9, elements. This completes the proof of the Proposition.
The Proposition continues to hold even when A splits in K , but then the

proof is more elaborate. As we do not need the full result, we omit the details. We
end by remarking that the estimate ( 1 1 ) is best possible for any set D^ containing
at least c' i elements.

3. THE AUXILIARY FUNCTION

We return now to the situation in section 1. We suppose a and

B "E n(g»^) + d (2TT i ) are algebraic for g,u) as in the Theorem, and we shall

eventually deduce a contradiction. We may assume that the field F of sections 1

and 2 contains a • B and the coefficients in the Taylor expansion of g(z) about

z » Q. Recall from [6] that 3/ 3z , 3/32^ map the ring

fi = F [f (z),...,f ( z ) ] into itself. Since 9g/3z , 3g/3z are abelian

functions analytic at z. = 0, there exists h in ft , with h(fi) ^ 0, such that

h 3g/ 3z., h 3g/ 3z- lie in fi . Putting f {z) » (h(z))~ , it is easily verified

that the ring generated over F by the functions
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23
(12) f ^ ( 2 ) , . . . , f (2,),f^(£),e ,g(£) + az^

is mapped into itself by 3/92 , 3/92 and 3/32^. Also the argument of Lemma

2.1 of [5] shows that for some integer p > 1 the function \(z) » h(z) (©^(z) )p

is a theta function whose product with any of the functions (12) is entire.

For a large parameter k write

L = [k4^] , S « [k^10] .

and let c, , c ,... denote positive constants independent of k.

Lemma 4 : There exists a non-zero polynomial P of degree at most L in each

variable, whose coefficients are rational integers of absolute values at most
c Ick 1 , such that for each positive integer s < S the function

•
23

(Kz^z^) « P(f^(s.), f^(z), e ,g(z) + oz^)

has a zero of order at least k at (2,2-) « s(h) ,2iTi).

Proof : This is routine. Compare the proof of Lemma 5.1 of [5] , and note that

when (2,2-) = s( (^,2 iri) for an integer s, we have

g(z_) + oz^ - g(0) + s6 .

Next, we need a simple inequality for the absolute height function H

defined on the field of algebraic numbers (see [10] , § 1 . 1 for the definition

of the logarithm of H). Let Q(X,,... ,X ) be a polynomial of degree at most L in1 q i
X (1 < i < q), with rational integer coefficients of absolute values at most

U, and for algebraic numbers B,,..., B put y • Q(B«y.» B ) • Then by estimating

separately at each valuation we obtain

q L.
(13) H ( y ) < U n { ( L + 1 ) ( H ( B , ) ) } .

i-1 -

Lemma 5 : Let A be a sufficiently large prime» and for positive integers r < &

and s put t « s + r/& . Then the functions (12) are analytic at (2,2-) « t(y, 2 iri),
S.and their values at this point lie in Fp and have absolute heights at most c«s.
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Proof : Analyticity follows as on p. 247 of [ 5 ] , since X (0) ^ 0. The correspon-
ding values of all the functions in ( 1 2 ) , except possibly the last, lie in Fp
by Lemma 1 , and their absolute heights are at most c. by well-known properties of the
Neron-Tate height on A (cf. [ 2 ] p.307). We deal with the remaining function as in
[ 5 ] by noting that f(z) = g(2£) - 2g (zj is a rational function of f , ( z ) , . . . , f (z)~ H- 1 1 — n -with coefficients in F. If m = 2 - I/the proof of Lemma 3.5 of [ 5 ] shows that

-̂2 ̂
m(g(ty) - tn ) = m ( g ( r y / & ) - rnA) = - £ 2 P . ,

i=0 1

where

B^ as f(21ry/jl) (0 < i < H - 2).

Hence e = g(t^) + at (2 Tri) satisfies

A'2 S, 2 imAc = m(sA + r) - A £ 2 - 6. ,
i=0 i

and so lies in F, . Again we have H(B. ) < c. (0 < i < A - 2) and so from (13 )
X. p 1 4

with q = £ we deduce H(mJlc) < c s. This immediately gives the desired estimate for

H ( e ), and completes the proof of Lemma 5.

We can now carry out the extrapolation on division values. Let C denote

any absolute constant.

i/8Lemma 6 : Let i be an integer with 0 < i < C, let A < S be a sufficiently

large prime which does not split in K , and for positive integers r < SL and

s < S + ^' le^ t = s + r/H . Then 4>(z,z.) has a zero of order at least k/21

at (z^z-) = t (a^27Ti) .

Proof : If i < C is the first positive integer (if any) for which the lemma is

false, there is a differential operator D of minimal order at most k/21 such that

C m D ^{t^ , t (2TT i)) ^ 0

for some t as in the lemma. Since the rational primes which do not split in K

have density -r , the number of such primes not exceeding S is at least
(i—1 Vfl

c S /log k. The maximum modulus principle then gives

(14) logi E. I < -c.ykS^^^/log k.
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But D 4> (z,z.) is a polynomial in the functions (12) of total degree at most c-k.

Using (13) and the standard estimates for its coefficients, we deduce from Lemma

5 that

i-/8log H(^) < c^k log k + c ^ k ( A + log s) < c^kS-7.

Again by Lemma 5 we see that ^ lies in F , and so by (i) of the Proposition its
3 ^degree is at most c..t • This leads to

log 1 ^ | > - c^Si3S±/B> -c^5172 •

This contradicts (14) and thereby proves Lemma 6.

At this point let us remark that it is possible to deduce a final contra-

diction from Lemma 6 by purely analytic methods involving diophantine approximation.
This approach does not use the result (ii) of the Proposition. In this way we can

obtain a proof of the Theorem independent of class field theory and the results

of [7] .

4. COMPLETION OF THE PROOF

We fix a prime t satisfying

k2 < a < 2k2

which does not split in K . We begin by eliminating g(^) + a2« from the auxiliary0 •'function.

Lemma 7 : There is a non-zero polynomial Q of degree at most M < cl^L in each
variable, with coefficients in F, such that for each positive integer r < ^ the
function

^(2,23) • Q ( f ^ ( z , ) , f ^ ( z ) , e 3)

has a zero at ( £ , z ) " (r/&) (^,2 iri) .

Proof : The functions f . ( z . ) » f^ (2.) and g(£} are algebraically independent (cf.
Lemma 2.3 of [ 5 ] ) , and it follows that ^( ^ , 2 , ) is not identically zero. An applica-

2tion of Lemma 6 of [ 4 ] immediately gives a polynomial Q of degree at most c . , L ,
with coefficients in F, such that the function
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» z^
0 (f^(2),...,f^(2.),f^(&),e -)

is not identically zero but vanishes at the points where $(z^z.J has a zero

of order at least 3L+ 1. In particular, by Lemma 6 above with C « 161 , this

function vanishes at the points specified in Lemma 7. There is now no difficulty in

constructing the required polynomial Q by the method of Lemma 2.5 of [5] , since

the ring F [f^ (z) ,... ,f^(z; ] contains (f^(2))'1 and is integral over

F[ f^(z) , f^ (z)3.

The final contradiction is obtained by using the Proposition together

with well-known results on polynomials. We need first some preliminary remarks.

By the Jacobian condition on f^ (.2) and f^ (z) at z « .0, we may fix a neighbourhood

^ of 5 » 0 such that

(15) I f (z^) - f,(z^)l > c^lz^ - z^l

holds for any z^, z^ in J^ where f(z) « ( f^(z) , f^(z)) . We recall the set D of

the Proposition, and we let Ip be the set of integers a * s.a. + s a + s 04 + s a

(0 < s ,s ,s«,s < A) corresponding to elements of p(D.). Let ^ be a compact

set in C containing all the corresponding points gi^/SL . For any p > 1 we

can cover ^ with no more than c.- p ° small balls of radius u"5. Since I

contains at least c,^ A2 elements, there exists a subset Jp of I , containing

at least c,g p 9, elements o , such that the corresponding points oo)/£ all

lie in the same ball̂  say ^ . Let z^ be the centre of ^} . A less direct

application of the Box Principle gives an integer r with 1 < r < \i such that

'"O- ^ < ̂ ^

for some period ^ of JC . It follows that for any z in ^ we have

(16) Irz -^1 < rlz - z^l + c^-1 < c^ p"1 .

We now fix p < c so large that (16) implies that rz - ^ lies in ̂  for all

jz in A . Hence by (15) and ( 1 1 ) , we conclude that

(17) I f ( x o ^ ) A ) - l(ro (^/A) ; > c^^ to^ - ^!/& > c^^i."172
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for any distinct o - » a 5 in J. .
We now return to Lemma

ordinary cyclotomy shows that the polynomial
We now return to Lemma 7. Since M < c L , r < ĉ  and & > k ,

2 TT irA,R(X^X^) « Q(X^,X^e )

is not identically zero. We have also

(18) R(f^(r^/Jl),f^(ro) /&)) » 0.

Let a be an element of J. , and apply the corresponding automorphism ^ of Ap
*? "rr ' /P

to (18) . Since ^) fixes Mp » F(e ), we find using (3) that

R(f^(r5a)) /A), f^(rgo)A)) « 0 .

Because J contains at least c^- i,2 elements, it follows from (17) and the usual
S, 25

estimates for zeroes of polynomials (e.g. Lemma 8 of [6] ) that R is identically

zero. This contradiction completes the proof of the Theorem.

APPENDIX

Lower bounds for degrees of division fields.
We prove here the main fact used in section 3 , namely that the field F̂

has degree at least c & for some c > 0 independent of 9 . . The proof is based
on an argument shown to me by Shimura during the conference, and I am grateful for
his permission to include it in this paper.

Since the abelian variety A is simple, the CM-type dual to (K;lp , <P )
has the same form <K ;^/ , ^ ) (see [ 7 ] section 8, and especially pp. 73, 74).
Fix ̂  ̂  0 in £ , and let ̂  « f^/t . I f A is sufficiently large then ©^(t) ^ 0
and t̂  is a proper b -section point of A in the sense of [ 7 ] ( p . 6 3 ) , where or is
the principal ideal of K generated by A . We now appeal to the Main Theorem 2 of
[7] (p. 135, but see also p. 118 ; this is where we need our hypothesis on the endomor-
phism ring of A ) . Using the basic properties of Kunaner varieties and fields of
moduli ( [ 7 ] Proposition 1 6 , p.30, and Theorem 2 , p . 2 8 ) , it is not hard to see that
our field F contains the class field K over K specified in Main Theorem 2.X, x *
This corresponds to the ideal group H of K defined (mod !. ) as follows. The
ideal CL of K* prime to i. is in H if and only if the ideal a a2 of K is
the principal ideal generated by an element y of K such that UU is the absolute
norm of 0- and p 5 1 (mod SL ) .
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Thus if G^ is the group of ideals of K prime to H , the Galois group
of K^ ovar K is isomorphic to Ĝ  /H , and we proceed to show that the latter
quotient has order at least c' £3 for some c' > 0 independent of & .

To each \ in I prime to & we associate the principal ideal of K
tp! ^2generated by X A . This induces a homomorphism $ from the multiplicative

group of I/ £1 to G / H« . It suffices to prove that the kernel ker($) of ^ has
X. K

order at most c"H for some c" independent of i . However, let A in I prime to

SL correspond to an element of this kernel. Then after an easy calculation (see

[7] pp. 73,74) we find that the resulting element p of K must be of the form

eAN(X)/X , where c is a root of unity in K. Now there exists a positive integer

m < 12 independent of c such that c"1 = 1 , and we deduce that ^(NtX))"1 = ^(mod A).

This, together with its complex conjugate, implies that

(19) (NO))21" = (\ ^\ h ̂  2)2m = 1 (mod & ) ,

and also \ = X (mod SL ). Applying (p , tp to the latter congruence, we obtain

(20) (xV" H a V1'1. a"2)2"'a'''2)2" ( m o d i ) .

Fix any integer r with 0 < r < A , and let N be the number of integers \ (mod SL )

in I, prime to & , such that (19) and (20) hold as well as

Tr( A410) = (A^ ^ ^4m ^ a^)410 + 0 "S^ = r (mod t ) .

«)

For any such \ , the number x = (X l)4m satisfies

2x2 - rx + 2 •=• 0 (mod SL) .

A simple counting argument, as in the proof of Lemma 3, now shows that N < 2(4m)4

for & sufficiently large. It follows that in this case ker($ ) contains at most
4

2(4m) & elements, and this leads to the desired lower bounds for the degree of F
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