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DISCRETIZED FEEDBACK FOR DIFFERENTIAL GAMES

Rémi SENTIS

§l. Introduction

Let us recall a result of minimization for optimal control
(see SENTIS {1}). For any initial condition (t,x) of [0,T] x Rd, we call
?}t',x the set of the controls b of LN(O,T;Rd) such that (1) admits a solution
(which is denoted yb):'

y'(s) = b{s) b(s)EB(s,y(s)) a.e.s€ [t,T]
(1) y(t) = x
with the hypothesis:
@ B is a Lipschitzian multivalued mapping from [0,T] x R‘:l

with convex compact values in the sphere of radius Qp.

For fixed (t,x) we will minimize on ?/:'x the following cost

@) 3, (B +Fy (1)

where F is Lipschitzian and has no propriety of convexity.’ This problem admits
an optimal open-loop control, but we look for a feedback which approaches the
optimum for any initial condition. For that purpose we discretize the interval
of time defining: ’

h = T/n
(4) X = in ' VKEN
n n

ent the unique integer such that t€ [t:,t:*'l[

And there exist multivalued (m.v.) mappings v;,vl;,... ,v‘:‘_l from Rd to Rd

such that
k . 3 d
vn(z)CB(tn,z) ¥zER

and such that for any initial condition (t,x), if we define a trajectory Y

k kel Ky _ k.
(linear on any interval [tn,tn [) by yn(tn) =x with
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0t
n- _
X =X
n
k+l k k, k
€
X x + Vn(xn) h k>0t

then any accumulation point y in C°(0,T;Rd) of (yn)n is a solution of (1)
and is optimal, that is to say:

M) ST L0073, 6

t,x
Let us now consider the following differential game. For any initial con-

‘dition (t,x) the admissible trajectories are the solutions of

v'(s) €A(s,y(s)) + B(s,y(s)) a.e. s€ [¢t,T]

y(t) = x

where A and B satisfy (2). Let F be a Lipschitzian function on Rd.
Heuristically, if u and v are two sections of A and B such

that there exis;é a solution (denoted Yy v) of:
’

y'(s) = u(s,y(s)) +v(s,y(s))
(8)
y(t) = x

then we look for u* and v*, sections of A and B, such thgt

(9 F, #(M) S Flyy, f(D) < Fly, (1)

for any u and v section of A and B.

In general, there do not exist sections u* and v* verifying
(9) and such that u* and v* are continuous with respect to the state variable.
(Obviously there do not exist open-loop controls u* and v* verifying (9).)
The topic of this paper is4to find a couple of strategies which is a saddle-
point for the differential game in a certain class of strategies. For that
purpose we must first define the class of admissible strategies (we use the

notations (4) except hn = 7/2" and we write @ for 2n)

Definition 1. An admissible strategy for the}playe;“U’(pmeIN;SAgugquenge

(un)n [or (vn)n] of elements u, [or vn](which are called discretized feedbacks)

with:
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n—1
= {u?, ,....un-l}e ’Vk

u?
00t
U of the ¢
(10) \ where n is the set of the m.v. mappings u on R verifying :
k
u(z).CA(tn.z)
and :

vn—{vn,v:l ,...,v 1}6 ]'l vk

(10') < where V is the set of the m.v. mappings v on Rd verifying :
- d
v(z) C B(tn,z) VzER
In §2, we exhibit particular discretized feedbacks associated
to each h“ and in §3, let n go to infinity, to show that the sequences of

such discretized feedbacks constitutes a saddle point in the class of admis-
sible strategies (for detailed proofs, see SENTIS [ 2]).

§2. Definition of the discretized feedbacks ﬁn and vn.

The following proposition justifies the term admissible in
definition 1.

Proposition 1. Let us fix (t,x). If (u ) and (v )n are admissible strategies
k.

and if we define a trajectory ¥, linear on each interval [t ,tk+1[ by v, (t ) = X

~and x‘C given by (11)

0t
n _
x5~ Tx
(11)
k+1 k k, k k, k
X Exn +1hn(un(xn) + vn(xn)) k > ent

then any accumulation point y in 7C° verifies(7).
Now let us give two definitions for the cost of a game with initial conditions
(t,x).

Definition 2.  The cost of the game for the two discretized feedbacks u and
vo is the subset of R defined by :
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n k
t x(un Vn) {F(xn) such that there exist§ (xn)k verifying (11)}

Definition 3. The cost of the game for the two admissible strategies (u )
and (vn)n is the subset of R denoted by Jt,x«un)n’(v ). ) and containing
the accumulation points of all the 'sequences (a )

verifymg an€J, () (v ) ).
Let us yet define the lower and upper optimal cost -functions Wk and
Wk as FRIEDMAN [ 1] by decreasing induction :

W (x) = Fx)
2)
=% =k =k, Gt
W (x) = Max Z (x,u) and Z (x,u) = Min 1(x+(u+v)h
n uEA(tg,x) n n ) VGB(tk,x) I}
and :
P = F
az2")
Ak ok ~k ik
W (x) = Min Z (x,v) and Z (x,v) = Max W 1(1{+(|.1+v)h
n VGB(t ,x) O n ueA(t}:,x) n n)

Now we can exhi;bit the m.v. mappings ?‘1: and v:, which do not depend on the
initial conditions.

u (x) = Arg Max E (x,u)
13) ue A(t x)

v (x) = Arg Min Z (x,v)
uGB(t: ,x)

We can prove easily by induction the following :

Proposition 2. All the mappings W:, 73, ﬁ:, 2: are Lipschitzian (with
respect to x) with constant K (independent of n and k).
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§3. Saddle point theorem .

Proposition 3 We have when n goes to infinity:

6.t _ K
W) > W (ex) W) > wh(t,x)

moreover:
- +
Wo(t,x) < W (t,x)

principle.of the proof.

First we show by decreasing induction on k that

Tx) - X (x) < @G-k) Co(h )2 vk
n n+1 - n
And as 0 +1t is equal to (26nt) or (29nt+1) we have.according to proposition 2:
n .
-—-ent o’ +1t
) W) - wn“ (x) < Cih with C; = CoT + 2KQ

Hence if we denote:

W (t,x) = li% sup Wn (x)

6.t
we can show easily according to (14) that Whn (x) = W (t,x). We show exactly

the same way that ﬁnn x) » w+(t,x). The end of the proposition is a conse-

quencge of the following fact:
i W
(x) < W (x) ¥x,n,k Q.E.D.
n — n

The following proposition is fundamental and is proved in FRIEDMAN [1],

using the m.v. mappings:
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Arg Min Tvikn (x+(u+v)h ) and . Arg Vf( 1(x+(u-0-v)h )
veB(tX,x) uGA(tk,x)

Proposition 4

We have

Wo(t,x) = W (t,x)

We write thus W(t,x) instead of W (t,x). This number is called the value
of the game.

Proposition 5

n-1
For any u L€ II e ac ve have
- k=0 -

Aent
(15) Jt,x(unﬁn) iwn (x)

(This means that any element of the left-hand side is smaller than the right-
hand side.)

Proof

Using the notations (11) (changing v: into 5:), we note that there exist q:E Vn(xs)
such that

k+1 -k k, k k N y

X, Gxn +,hn(un(xn) + qn) Vk > ent
Thus we have:

oy = 256k, q > @ ekt

nn n =~ 'n

Rewriting this inequality for k from 6 t to n, we obtain (15). Q.E.D.
We have evidently also:

6 _t

. ~ = N
a6y I @ v) > W (x)
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Let n go to infinity in (15) and (16), we deduce immediately from the pro-
positions 3 and 4 the following:

Theorem

For any admissible strategy (un)n and (vn)n’ we have:_
SCRIN AR CRA I ARG I IS

Thus we have:

W(t,x) = Min Max Je

v) (u) x((un)n’(vn)n) = Max  Min Jt x((un)n’(vn)n)
n’n " n’n

’ CRNCR I

.

And if y is an accumulation point in C° of trajectories Yn axxociated to ﬁn and

V_ we have
n B& have

W) = 3 (@)L G = Fiym)
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