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FIXED POINT THEOREMS WITHOUT CONVEXITY

Jean-Paul PENOT

A large amount of fixed-point theorems without convexity conditions are available
(and are useful) in analysis. We quote a few samples "before delineating the pur-
pose of this paper :

- the Banach-Cacciopoli-Picard theorem and its numerous generalizations ( c f . for
instance-H. BREZIS ( 1 9 6 5 ) , M. EDELSTEIN ( 1 9 6 1 ) , ( 1 9 6 2 ) , R . D . HOLMES ( 1 9 7 6 ) , S.
LEADER.(1977). A. MEIR - E. KEELER ( 1 9 6 9 ) , V . M . SEHGAL ( 1 9 6 9 ) . . . )

- the Lefschetz fixed point theorem (for recent and refined formulations see
F . E . BROWDER ( 1 9 6 5 ) , ( 1 9 7 5 ) , R . F . BROWN ( 1 9 6 5 ) , ( 1 9 7 1 ) . G.FOURNIER ( 1 9 7 5 ) , L.
GORNIEWICZ ( 1 9 7 3 ) , A . GRANAS ( 1 9 6 7 ) , J. LERAY (19 7 2 ) and its connections with to-
pological tools (as acyclic-valued mult if unctions) see D . G . BOURGIN ( 1 9 7 3 ) , G.
CONTI, P . . NISTRI ( 1 9 7 5 ) , S. EILENBERG - D. MONTGOMERY . ( 1 9 ^ 6 ) , J . M . LASRY - R .
ROBERT ( 1 9 7 6 ) , M . J . POWERS ( 1 9 7 0 ) , ( 1 9 7 2 ) . . . ) '

- fixed point theorem using an order structure ( H . AMANN ( 1 9 7 5 ) , G. BIRKHOFF ( 1 9 U 8 ) ,
B. KNASTER ( 1 9 2 8 ) , . L . A . TALMAN ( . 1 9 7 7 ) , L. TARTAR ( 1 9 T U ) . . . ) '

- fixed points using special structures as geometric structures (H.POINCARE, G.
BIRKHOFF, A.WEINSTEIN ( 1 9 6 8 ) , ( 1 9 7 7 ) , or special topological assumptions ( t r e e s . . .
c . f . T.VAN DER WALT ( 1 9 6 7 ) ) or particular analytical hypothesis (as holomorphy).

The purpose of this work is to derive fixed point theorems in some situations
which are not too far from convexity (thus the title should be more modest). More-
over we focus our attention on boundary conditions. The connection between fixed
point theory and differential equations revealed by G. VTDOSSICH, K. DEIMLING
( 1 9 7 4 ) , R . H . MARTIN ( 1 9 7 3 ) , S. REICH ( 1 9 7 6 ) justifies this particular attention.

§ . 1 . PRELIMINARIES - THE CONVEX CASE

The following definition will be used throughout this paper to express a boundary
condition. It goes back to G. BOULIGAND and A. MARCHAUD and is extensively used :

in optimisation theory and invariance results for differential equations.

1 . 1 . Definition
The tangent cone to a subset X of a t . v . s . E at x6 X is the set T X of ve E
such that there exists a net (^>xp^ in ( 0 , + ° ° ) x x with limit ( 0 , x ) such that
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v = lim t . ( x . - x ) .

If E is metrizable T̂ X is equivalently the set of right derivatives of conti-
nuous curves c : [ p , l ] -̂  E (for which J-J^Q c ( t ) exists) with c ( 0 ) = x ,

0 being an accumulation point of c ( X ) . Another useful characterization of
T̂ X is the following one : vc- T X if and only if lim inf t'^x+tv.X) = 0 ,

t \ 0
with d ( y , X ) = i n f { d ( y , x ) | xeX} .

When X is convex, T̂ X is easily seen to be the closure of the radial tangent
cone to X at x , T̂  given by T̂ X = B (X-x) .x x •"

Looking for a fixed point of f : X -^ E , where X is a subset of a t . c . s . (lo-
cally convex topological vector space) E is a problem equivalent to the search
of zeros of the associated vector field

v^.(x) = f ( x ) - x .

This point of view justifies the introduction of tangential conditions on v

On the other hand, when E is a Hilbert space, this problem can be embodied in
the more general .problem of solving a variational inequality : instead of solving
v^.(x) = 0 one looks for solutions of v ( x ) 6 N X , where N X = (T X ) ° is the

I X X X
normal cone to X at x . When X is convex this inclusion is equivalent to
(v ^ . ( x ) | y - x ) < 0 for every yC X . We quote a result of H. BREZIS ( 1 9 6 ? ) , t h . 2 ,
as an illustration of this point of view.

1 . 2 . Proposition
Suppose -X is a compact convex subset of a Hilbert space E and I - f is
pseudo-monotone. Then there exists' x^ X such that v , . ( x ' ) = f(I) - x€ N X .
In particular, if for each x€-X f ( x ) - xC T̂ X , f has a fixed point.

One can get rid of the compactness assumption on X provided

. lim inf ( x - f ( x ) | x ) > 0 .
[x|-H- oo
x <- X

We do not pursue this line, although more general results (involving multivalued
mappings in more general Banach spaces) are likely to hold true.

The following result is a far reaching generalization of the classical Schauder-
Tychonoff theorem. Simple proofs have been given by S. REICH ( 1 9 7 6 ) , V . M . SEHGAL
( 1 9 7 7 ) and various generalizations considered by S.REICH (1972),J.P.AUBIN,B.CORNET
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( 1 9 T 5 ) , F . E . BROWDER ( 1 9 6 8 ) , KY FAN ( 1 9 6 9 ) , LASRY ROBERT ( 1 9 T 6 ) , V . W . PETRYSHYN -
P . M . FITZPATRICK ( 1 9 7 ^ ) .

1 . 3 . Proposition ( B . HALPERN ( 1 9 6 5 ) , ( 1 9 T O ) , B . HALPERN - G. BERGMAN ( 1 9 6 8 ) ) .

Let X be a non empty convex compact subset of a t . c . s . E and let f : X -> E
be continuous. If f ( x ) - xe T X for each . x e - X then f has a fixed, point.

It is not known whether the result is still true if X is closed and convex and
f is compact with v, . = f - I tangent to X . However partial answers are known :
see corollary U . 3 . and proposition 1 . U . , 1 . 6 . below.

1 . 4 . Proposition (BREZIS ( 1 9 6 5 ) , corollary 21 for the singled valued case) .

Let X be a nonempty closed convex subset of a - C - . c . s . E and let F : X ->• E be
a closed-convex valued multifunction with closed graph and F(x) compact. If
F(x)c X for each x in the boundary 3X of X , then F has a fixed point.

Proof : If int X = 0 , X = 3X and the result is simply Ky Fan's theorem. If

int X ^ 0 , we may suppose O^int X so that corollary U.3. below and the relation

X - xcT X give the result. []

1.5. Theorem

Let X be a closed convex subset of a i.c.s. E such that there exists a con-
tinuous inf-compact quasi-convex function h : X -»• ]R (i.e. for each n , X =
^""l ((-oo^n] ) is convex compact ).If f : X -^ E is compact . and f(x)-x^ T X for
each X G . X , then f has a fixed point.

Let us note that the assumption on X is satisfied if E is a normed space and

if X is boundedly compact (i.e. its intersection with any closed ball is compact).

Proof : Without any loss of generality we suppose 0 & X , h(x) ^ h(0) = 0 for any

xdX . We choose a continuous function s : ]R -»• (_0,lJ with s(r) = 0 for r ^ 0 ,

s(r) = 1 for r ^ T and for xe-X we set

s^(x) = s(n-h(x)) , f^(x) = s^(x) f(x) .

Let x e X .If h(x) < n we have T X = T X as X H U = X n U ' for a neighbor-

hood U of x , thus

f^(x) - x = s^(x)( f (x)- x) + ( t -s^(x))(-x) C T^

as -x = 0 - x € T X and T X is convex. If h(x) = n , we have f (x) -x = -xx x n
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and -x^T X as tx6X for t£ [ 0 , 1 ' ] , since h is quasi-convex. We may apply
proposition 1 . 3 : there exists x £ X with ^(x^) = \ ' As (x^) is contained
in the compact set [ b , l ] f ( X ) , (x^) has a limit point x̂  in X . We take

k > h(x ) and'we choose n $ k + 1 with x in the neighborhood h ( ( - o ° , k ) )

of x̂  in X . Then s^(x^) = 1 , thus x^ = ̂^ = ̂^ • D

If X is a non void closed subset of a n . v . s . E , a vector v€-E is said to be
metrically normal to X at xeX if v ̂  0 and if lim inf t d(x+tv,X) = | v | .

t ̂  0
Any vector normal to X at x in Bony's sense ( BONY ( 1 9 6 9 ) ) is metrically nor-
mal "to X at x . Moreover it is easily seen that if v6T X then v is not metri-
cally normal to X at x .

1.6.Proposition ( S . REICH ( 1 9 7 6 ) )

Let X be a non void closed convex subset of a Banach space E . If f : X •> E
is continuous and such that, for each xc 3X^ f ( x ) - x is not metrically normal
to X at x . Then one of the following conditions implies that f has a fixed
point

a) X is compact .
b ) f is compact and E is uniformly convex .

c ) f is non expansive ( | f ( x ) - f ( y ) | < |x~y[ tor each ( x , y ) ^ X x X ) , X is
bounded and E is uniformly convex.

d) f is a contraction (for some k & ( 0 , l ) one has [ f ( x ) - f ( y ) [ ,< k|x-y | for
each ( x , y ) C X x x ) .

The proof consists in showing that Pot has a fixed point, P being the metric
projection on X , and observing that if x ^ : P ( f ( x ) ) then f ( x ) - x is metrically
normal to X at x . Thus the result is valid if f : X -»• E is nonexpansive,
if X has the fixed point property for nonexpansive maps and if X is a nonexpan-
sive retract of some subset Y of E containing f ( X ) . Convex sets which are non-
expansive retracts of the whole space have been recently characterized by B.
BEAUZAMY ; note that if the unit ball or if every closed affine subspace of E is
a nonexpansive retract of E , then E is a Hilbert space ( H . FAKHOURY ( 1 9 7 2 ) ) .

Before leaving the convex case, we give a rather special result.

1 . 7 . Proposition (compare with C. M A Y E R • ( 1 9 6 5 ) , V . 2 . 2 . )

|Let X be a convex compact subset of a t . c . s . E and let F : X -> E be a
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| multifunction with closed convex graph. If F(X) DX then F has a fixed point.

Proof : Let H = F'^X : for y € X H(y) = { x £ x|y e F ( x ) } . Its graph G ( H ) is the

symmetric of G ( F ) n X x X , hence is closed and convex. Hence its values are closed

and convex. Ky Fan's theorem implies that there exists xe X such that x € - H ( x ) ;

thus x ^ F ( x ) . Q

§.2. ^CTACTJ:0^0^_^^y^5ffr5

Our main result relies on the following striking fixed point theorem due to J.

CARISTI. The original proof being quite involved, for the reader's convenience,
we reproduce here with the kind authorization of its author a simple elementary

proof (which does not use transfinite induction). See also H. BREZIS - F.E. BROWDER

(1976), J. EISENFELD - V. LAKSHMIKANTHAM (1976), W.A. KIRK (1976), J. SIEGEL (1977).

2 . 1 . Proposition (J. CARISTI ( 1 9 7 5 ) )

Let (M,d) be a complete metric space, f : M -^ M be any (not necessarily conti-
nuous) map, g : M -*• ]R be lower-semi-continuous such that for each x c M

• d ( x , f ( x ) ) ^ g(x) - g ( f ( x ) ) .

Then f has a fixed point.

Proof : (J.P. PENOT (1976)) . We order M by setting x > y iff d(x ,y)^g(y)-g(x) .

We set M(x ) = {y€ M|y ^ x} . W e define inductively an increasing sequence (x )
in the following way. We choose x arbitrarily and when x , . . . , x are given ,

we choose x . fc M(x ) with g(x , ) < inf g(M(x ) ) + 1/n. Thus x >, x and

for each x G M ( x . ) C M ( x ) we haven+1 n

g(x) >inf g(M(x^))> g^+i) - 1/11

d(x.x^) ^ g^+i^ ~ s(x)

so that the diameter of M(x ) is not larger than 2/n . As (M,d) is complete
the intersection of the deereasingsequence of closed subsets <M(x )) ^ con-
tains exactly one point x^ . This point is a maximal element of (M,<) as x ^ x^
implies x€M(x ) for all n . As t(x^) .̂ x^ , we must have t(x^) = x^ . []

2.2. Remark : It would be interesting to know if the same result holds true for

a multifunction F : M-o M with non void closed values such that

d(x,F(x))^ g(x) - inf g'(F(x)) , x( M .

The answer is positive in the special case g(x) = (1-k) d(x,F(x)) with k^ - (0 , l )
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and F having a closed graph (this case includes the case F is k-lipschitzian,

due to S.B. NADLER (1969)) .D

The following notion will dispense us with a compactness assumption.

2.3. Definition

Let A be a non void closed subset of a n.v.s. E , let x€.E \ A and let

me[p,l] .'A point a6 A is a point of m-attraction of x in A (written.

aeA (x)) if there exists e > 0 such that for every t € [o,e]

d(x ,A) ,$ d(x,A) - md(x. ,x)
U 0

with x^ = x + t(a-x). A is said to be m-attractive for x if A (x) i- 0 ;

A is said to be m-attractive if A is m-attractive for every x€ E \ A .

It is clear that A^(x)DA^(x) if k< m . If g(t) = d(x+t(a-x)/|a-x| , A) ,

then for a€A^(x) we have D^O) << - m , and conversely, if D^O) < - m .

then a€A^(x). D'"g being the right-upper Dini derivative of g . In particular.

ife^=d(..A) is differentiable at x with e , (x) (a-x) < -m|a-x| . then a ^ A ( x )
if a^A . m

2.U. Lemma

| If a is a closest point to x in A , then a € A - ( x ) .

This follows from the fact that, for each t G f0'1] l^""8-! = (l-t)|x-a|

= d(x,A) - |x -x|. []

Combining this lemma and a result of M. EDELSTEIN we get the following corollary.

2.5. Corollary

If A is any closed non void subset of a uniformly convex Banach space E there

exists a dense subset D of E \ A such A is m-attractive for each x^. D and

each me [o,lj .

The following examples ar'e' immediate consequences of the lemma or the definition.

a) A is 1-attractive if A is boundedly weakly compact (i.e. for each closed

ball B , AHB is weakly compact)

b) In particular A is 1-attractive if A is weakly closed and E is a refle-

xive Banach space (or more generally, if E is -o. dual space and A is weak -clo-

sed).

c) Any closed ball of a n.v.s. is 1-attractive.

d) A finite union of m-attractive subsets is m-attractive.
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Some more examples are given in the following lemmas. The first one shows that

any bounded closed subset is attractive for any point which is remote enough.

2.6. Lemma

Let A be a bounded closed subset with diameter a. in a Hilbert space E and

let m€(0,l). For any x€E with d(x,A) > a( 1+m)( 1-m)"1 any point of A is a

point of m-attraction for x in A .

Proof : Without loss of generality we may show that if 06A then 06 A (x) if

d(x,A)>d(1+m)(l-m)~1. For such a point x , we have m<(r-a)(r+a)~1 with r = |x|.

Thus for each a e A we obtain (x-a|x) >r(r-|a|) ^ r(r-a) > mr(r+a) ^ mr|x-a| .

For t > 0 small enough we get

(0-t)x-a|x) ^ mr|(l-t)x-a|

thus, for x, = (l-t)x , (x-a|x) ^mr|x,-a| and
" V \t

|x-a|2 = |x-xJ2 + |x^-a|2 + 2t(x^-a|x) ^ (m|x-xj + |x^-a|)2 .

Taking the infimum on a^A we get d(x,A) > md(x,x.) + d(x,,A), for t small
0 0

enough , thus 06A (x). []

2.7. Lemma

IIf A is a closed affine subspace of a n.v.s. E^then for each mfe(0,l) A is

m-attractive.

Proof : Let x ^E \A . Without loss of generality we may suppose A is a linear

subspace of E . We choose a6 A with |x-a| < m~ d(x,A). For every y € A and

ie [b,1 ) we have, with x^ = x + t(a-x)

|x+t(a-x)-y| = (1-1)1 x-(l-t)~''(y-ta)|

hence d(x^,A) = (l-t)d(x,A)

as (1-t) (y-ta) runs over A as y runs over A . We get

d(x^,A) -< d(x,A) - tm|x-a| = d(x,A) - m|x,-x| . Q

2.8. Corollary

I Any half-subspace (or union of half-subspaces) is m-attractive for all m6(0,l).

This follows from the fact that A is m-attractive whenever its boundary 3A is
m-attractive.
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2 . 9 . Lemma

[ Every polyhedral convex subset of a n . v . s . E is m-attrative for every m ^ ( 0 , l ) .

Proof :Suppose first that F is a closed linear subspace of E , that
p : E -»• E = E/F is the canonical projection and that A = p'^A) for some k-at-
tract-ive subset A of E (endowed with the quotient norm). Then for every m ^ ( 0 , k )
A is m-attrative as for each x£E\A we have d ( x , A ) = d ( x , A ) for x = p ( x )
and we can find a€A with m|x-a| ̂  k | x - a | , p ( a ) = a given in \(x) which
implies that forx = x + t(x-a), x , = p ( x . ) /" . " t
d(x^,A) = d(x^,A) ,< d ( x , A ) - kt[x-a[ ,$ d ( x , A ) - mt|x-a| = d ( x , A ) - m d ( x , , x ) .
If A is a polyhedral subset of E , then there is a closed subspace F with fi-
nite codimension, and a polyhedral convex subset A of E/F such that A=p~ 1(A),
p being the canonical projection. The result follows from the first part of the
proof and examples a) or b ) above as E/F is finite dimensional, [j
In the following statements we use the classical Hausdorff distance to define lips-
chitzian mult if unctions.

2.10 Theorem

Let X be a non void complete subset of a normed vector space E , and let
F : X-> E be a k-lipschitzian multifunction with closed values ( k c [ o , l ) ) .
If there exists m > k such that for every x&X the set F ( x ) of points of
m-attraction of x in F ( x ) has a non void intersection with x + T X , then F
has a fixed point.

2 . 1 1 Corollary

Let X be a non void complete subset of a normed vector space E , and let
F : X ̂  E be a k-lipschitzian multifunction ( k c [ o , l ) ) . The following two con-
ditions ensure that F has a fixed point :
a) for every x€ X F ( x ) - xCT X
b) for some m e ( k , l ) , for every x€X , F ( x ) is m-attractive for x .
These results extends theorem 3.h. in Reich : X is not supposed to be convex, and
F is not supposed to be compact-valued.

Proof: We suppose F -has no fixed points and we are going to built an auxiliary
mapping f : X -»• X which violates Caristi's fixed point theorem.

We choose q > 0 small enough so that r = v^ - k > 0 and we set g ( x ) =
r d ( x , F ( x ) ) , a continuous function. For a given xc X we choose
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z€.F (x)n (x+T X) and e(x) > 0 such that
ID. X

d(x ,F(x) ) ,$ d (x ,F (x ) ) - m|x-x | .
0 o

. for every te [o,e(x)] , with x, = x + t(z-x). As z-xeT X , we can find

t e(0,min(q,e(x))) with

d(x^,X) < tq|z-x[ ,

hence we can also find y e X with

d(x^,y) < tq|z-x[ = q.|x^-x |.

Thus | x -x [ > (1+q.) |x-y[ . For each w € F ( x ) we have

d(y ,F(y ) ) < d(y,x^) + d(x^,w) + d ( w , F ( y ) )

hence d(y ,F(y) ) ^ d(y,x^) + d(x^ ,F(x)) + d (F (x ) , F ( y ) ) .

It -follows that

d(y ,F (y ) ) .$ |y-x^[ + d(x,F(x))-m|x-x^| + k|x-y|

<: d (x ,F (x ) ) - (m-q)[x-x^ |+ k|x-y|

< d (x ,F (x ) ) - [(m-q)(l+q~1) - k] |x-y|.

Setting y = f (x ) and dividing by r we obtain

g ( f ( x ) ) < g(x) - d ( x , f ( x ) ) .

Thus the self map f : X -> X has no fixed point, contradicting Caristi's fixed

point theorem. []

Now we relax the assumption in theorem 2 .10 that F is a contraction. We suppose

F is pseudo-strongly-contractive in the following sense : for all r > 0 there

exists c > 1 such that for all x,yeX , x'e F(x) , y ' €F (y )

|(l+r)(x-y) - r(x'-y') | >c |x -y | .

This condition strengthens the classical definition of pseudo-contractive mappings

(F.E. BROWDER (1967 ) ) . If F is a single-valued contraction (with Lipschitz cons-

tant ke[o, l ) ) then F is pseudo-strongly contractive as

| ( l+r) (x-y) - r (F (x ) -F (y ) ) | ^ (1+r)|x-y| - r |F(x)-F(y) | ^ (1+r(1-k)) |x-y| .

Moreover we have the following lemma in which J. denotes the duality mapping of

the n.v.s. E .

2 . 1 2 . Lemma

IF is pseudo-strongly contractive if D = I - F is strongly accretive in the
following sense : there exists c > 0 such that for all x,y (. X ,



138

x ' 6 D ( x ) , y ' e D ( y ) there exists z eJ(x-y) such that

<x'-y',z> ^ c|x-y|

Proof : Suppose D is strongly accretive. Then for x ^ y in X , x 'GF(x )

y '€F(y) we have x-x' € D(x) , y-y' € D(y) thus for some zeJ(x-y) we get

< (l+r)(x-y) - r(x*-y'). z> = <x-y.z> + r <(x-x1) - (y-y').z> > |x-y|2 + cr|x-y|2

hence

|0+r)(x-y) - r(x'-y*)| > (1+rc) |x-y| . []

2.13. Remark : Pseudo-strongly contractive mappings associated with constants
c^. > 1 such that lim inf r (c -1 ) > 0 are characterized "by the fact that

i-O^

D = I - F is strongly accretive. The preceding proof shows that this condition is

sufficient. Conversely, suppose we are given a function r <-*• c on (0,+~) with

lim inf r (c ~l)> c > 0 in such a way that for all x,y6 X , r > 0 x'6 D(x) ,
r

„ V > c > 0 in such a way that for all x,y 6 X , :

y'6 D(y) we have

|x-y+r(x'-y')[^ cjx- y| .

We set u = x - y -, v = x* - y' and we take z £J(u+rv) .

As we may suppose u ^ 0 , z^. is non null ( | z | = |u+rv| ^ c |u|) and we can

introduce w .̂ = z^/ |z^| . We have

c |u| ^ |u+rv| = < w , u+rv> ^ |u| + r<w ,v> ,

hence if w is a weak limit point of (w ) as r ->• 0 we have ,

r-W»r^

(cr-1)
r

r^ 0
<w,v> ^ lim inf ———— |u| ^ c |u| .

Moreover |w| ^ 1 as |w | ^ 1 ,

<w,u> ̂  lim inf <w ,u+rv> > | u [ -
r^O. rr

"+
|2Hence z = |u|weJ(u) and <z,v> > c|u|2 . Thus

<z,x'-y«> > c|x-y|2 . []

A subset^ X of a t.v.s. E is said to be tangent tally convex if T X is convex

for each x r X ; it is said to be pseudo-convex if X-xc^(T X) for each x ^ X ,

where eo(A) is the closed convex hull of A .
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2 . 1 4 . Theorem

Let X be a tangentially convex and pseudo-convex complete subset of a normed

space E and let F : X-l> E be a lipschitzian pseudo-strongly-contractive multi-

function with weakly compact values such that F(x)cx + T X for each x € X .

Then F has a fixed point in X .

If X is weakly compact or if E is a reflexive Banach space and X is weakly

closed then the assumptions imply that X is convex (J.BORWEIN, R.O'BRIEN (1976 ) ) .

Thus we are not very far from the convex case. For a related result see K. DEIMLING
(197^) . •

Proof : Choose r > 0 so small that rF is a contraction mapping. Observe that

G = [l + r(l-F)] is a single-valued contraction mapping : for u = x+r(x-x') ,

v = y+r(y-y') with x ,yCX , x ' € F(x) , y'€ F(y) we have

|u-v| ^ c^|x-y|

and c < 1 . We will show that the domain of G contains X . Given a€ X we

define H : X-4> E by

H(x) = k F(x) + (l-k)a

with k = r(r+"l) . H is easily seen to be a contraction mapping. Moreover, for

every x€,X we have H(x)-xCT X as T X is convex and F(x) -xcT X, a-x ^ T X.
X X X X

Let b be a fixed point of H (corollary 2 . 1 1 ) . We have

be^r+ir^b) + (r+i)"^ ,

hence for some c e F ( b )

a = (r+l)b - rce b + r(l-F)(b) .

This shows that a belongs to the range of I + r(l-F) which is the domain of G .

The restriction of G to X is a contraction which must have a fixed point as X

is complete. This fixed point is also a fixed point for F . Q

The following result generalizes th.1 in J. REINERMANN - R.SCHONEBERG (1976) and

results due to W.G. DOTSON Jr (1972) , P. KUHFITTING (1977) .

2 . 1 5 Theorem

Let F : X-t> E be a nonexpansive multifunction with weakly closed values, where

E is a Hilbert space and X is a closed subset of E such that for some x ,^-X

either (a) X is starshaped w.r.t. x (i.e. x +t(x-x ) C X for tC (0 ,1 ) , x€ X)

or (b) X is tangentially convex and x -xG T X for each x£ X .
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Then if F(x) -xCT X for each x e 3X and if X is "bounded or contains
x

an invariant bounded subset S , then F has a fixed point.

Proof : Using the method of J. REINERMANN and R. SCHONEBERG (1976) which relies on

a result of M.G. CRANDALL and A. PAZY, it suffices to show that for each A € ( 0 , 1 ) .

AF has a fixed point. As XF is a contraction, we are reduced to show that for

each x63X AF(x)-x CT X (corollary 2 . 1 1 ) . We may suppose x = 0 . Let

y€F(x ) hence y-x 6 T^X . In case (b) we have Ay-x = X(y-x) + ( 1 - A ) (-x) € T X asx x
-x &T X and T X is convex. In case (a) we can find sequences (t )C]R ,

(x ) C X with lim t = + °° , lim x = x , lim t (x -x) = y-x. Then Ay - x =

lim s^(y^-x) with s^ = At^+1-A , y^ = (At^+1-X)"1 ^x^€X , hence Xy-xCT^X.Q

§.3 - ^^PA^7^_M4PP^5

Let (M,d) be a metric space, and let A be a subset of M with diameter 6(A) =

sup d(a,b). A point a of A is said to be diametral if sup d(a,x) = <S(A) .
a,b 6 A ' x€ A

3 . 1 . Definition

A class C of subsets of (M,d) is said to be normal if each non void member A

of C with 6 (A) > 0 contains a point a e A which is not diametral for A .

Recall f c . f . P.A. MEYER (1966 ) ) that a class C of subsets of a set X is said to

be compact if each subfamily of Cwith the finite intersection property has a non

void intersection. A topology on X is not needed in this definition . For ins-

tance the class of finite subsets is compact.

3.2. Theorem

Let (M,d) be a bounded metric space, let f : M ->- M be a non expansive map.

Suppose C is a class of subsets of M such that

a) "C is compact.

b) C is stable under (finite or infinite) intersections.

c) C is normal.

d) C contains the closed balls of (M,d) •

Then f has a fixed point.

The proof we give is a simple abstraction of Kirk's proof.

Proof : Let ^ be the class of non void invariant members of C :

7 = {CC- C| f (C) c C}
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We have M'€ ̂  . Using Zorn's lemma, , we first show that ( ̂  ,C) has a minimal ele-

ment. If "Q is a totally ordered subfamily of y then F = — G belongs to C! , is
G£Q

invariant, and non void by a). Hence F is a lover bound for Ci and ^ is inductive.

Let N€ <? be a minimal element. We want to show that N is reduced to one .ele-

ment, hence consists of a fixed point of f . If this is not the case, i.e. if the,

diameter 6 of N is strictly positive, there exist a6N and r£ (0 ,6) with

NCB'(a,r)., the closed ball with center a and radius r .

Let

P = { x £ N [ N C B ( x , r ) } = Nn f]^ B(y,r ) .

Then P ^ 0 , P belongs to C by b) and d). Moreover P is different from N

as its diameter is ir^r < 6. If we show that P is invariant, we get a contradiction.

We first observe that the smallest element C € C which contains f(N) (which

exists by b)) is included in N and thus is invariant. Hence C coincides with

N .

Then we choose aCP and observe that for every x ^ N

d ( f ( x ) , f ( a ) ) $ d(x.a) ^ r .

Thus f(N) C B(f(a),r). As N is the smallest element of C which contains f(N)

we also have NCB(f(a),r) by d). Hence f ( a ) € P and P is invariant. []

3.3. Remark : Suppose the closed balls of (M,d) are compact for a topology 0

on M which is coarser than the metric topology. Then the class C of compact seisin

(M,o) satisfies b) (and obviously a) and d)). Hence if c) is satisfied, the

result holds.

This occurs for the weak -topology of a dual Banach space when M is a weak -

closed bounded convex subset with a normal structure (BROWDER - GOHDE - KIRK theo-

rem) .

In the same spirit we give now an adaptation of a result of W.A. KIRK (1970) which

does not use normal structure. Given a non expansive mapping f of a metric space

(M,d) into itself, for x € M we set

p(x) = 6(0(x ) ) = sup d(x,fn(x))
n>.1

where 6(A) is the diamter of A and 0(x) is the orbit of x :

0(x) = {x^xLf^x),...) .

As the sequence p(fn(x)) is non increasing, it has a limit r(x) (possibly infi-
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nite) called the limiting orbital diameter of f at x . If for each x€ M p(x)

is finite and r(x) < p(x) whenever p(x) > 0 , f is said to have diminishing
orbital diameters (KIRK (1970) ) .

S.^. Theorem

Let (M,d) be a metric space, let f : M ->• M be a non expansive mapping which-

has diminishing orbital diameters. Suppose a class C of subsets of M is given
verifying.-

a) C is compact.

b) C is stable under arbitrary intersections.

c) Any closed member of the family C ' of countable intersections of unions of

increasing sequences of members of C belongs to C .

d) C contains M and the closed balls of M .

Then f has a fixed point.

proof : The class of non void invariant members of C has a minimal element N by

Zorn's lemma, a), b) and d). Again we show that we get a contradiction if we sup-

pose the diameter 6 of N is strictly positive. Given a6N we have p(a)> 0

by minimality of N , thus for some iterate b = f^a^f awe-have p(b) < p(a)
For each k .̂ 1 let

F^ = {x€M| 3m£3N Vn ^ m d(x,fn(a)) $ p(b) + 1/k}

= U H ^"(a), p(b) + 1/k)
m ,̂1 n^m

and let F = H F, .
k>,1 k

Let us show that F is closed. Suppose (z ) C F and (z ) -^ z . Given k >^ 1

there exists p with d (z ,z) < 1/2k and m£]N such that d(z , f^a)) ^

P ( b ) + 1/2 k for n >. m . Thus for n ^ m we have d ( z , f n ( a ) ) ^ p (b ) + 1/k

We conclude z € F^ for each k ^ 1 and thus z e F ; so F is closed.

Assumption c) implies, that F £ 7 . A s F O N C C and f ( N O F) C N O F , by mini-

mality of N and the fact that bC F we obtain N = N OF

Given k > 1 the closed ball B(x,p(b) + 1 /k )nN with radius p(b) + 1/k and

center x in NCFc.F^ contains the orbit of some iterate f^a) of a . Hence

the balls B(x,p(b) + 1/k)n N , xr N have the finite intersection property. As-
sumptions a) and d) imply that
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B - n i ( x , p ( b ) + 1/k)ON
K xfcN

is non void as is B = I B, . For each x£B we have N C B ( x , p ( b ) ) . This means
k$.1 K

that each point of B is a non diametral point of N . Introducing .P as in the
proof of theorem 3 . 2 . , the same argument shows that 6 > 0 leads to a contradic-
tion. []
Assumptions a) and d) are usually satisfied by endowing M with another topology
(J for which the closed balls of ( M , d ) are compact. This occurs in the following
corollary which contains a classical result of BROWDER ( 1 9 6 5 ) , GOHDE ( 1 9 6 5 ) ,
KIRK d 9 6 $ ) ( C i s taken to be the family of weak-closed convex subsets).

3 . 5 . Corollary
If f : M -»• M is a non expansive mapping in a weak -closed convex bounded subset.
of a dual Banach space and if the class C of weak -closed convex subset of M is
normal, or if f has diminishing orbital diameters, then f has a fixed point.
The following criterion (whose proof is similar to a result of M . S . BRODSKII and
D . P . MILMAN ( 1 9 4 8 ) ) shows that a kind of convexity condition is helpful for veri-
fying the normality of a class.

3 . 6 . Lemma
If each member C of a class C of compact subsets of a metric space ( M , d ) is
such that for any finite family a , . . . ,a of distinct points of C there
exists ac C with

d ( a , x ) ̂  1 / n ( d ( a ^ , x ) + . . . + d ( a ^ , x ) )
for each xC C , then C is normal.

The same result holds if the members of C are non compact but if their measures of
noncompactness are strictly less than their diameters (the proof is left to the
reader).
The problem of characterizing Banach spaces with a normal structure (BRODSKII -
MILMAN ( 1 9 4 8 ) , GOSSEZ-LAMI-DOZO ( 1 9 6 9 ) , ( 1 9 7 2 ) . . . ) can be broaden to the problem
of characterizing riemannian manifolds (or more generally finslerian manifolds with
a connection) which possess a normal structure.
For instance, it is easily shown that any convex(in the riemannian sense) subset of
the unit sphere of a Hilbert space with diameter less than 1 has a normal structure,
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$.4. AN ELEMENTARY HOMOTOPY ARGUMENT

In this section we develop as the result of a joint work with M. LASSONDE an ele-
mentary argument following the lines of A. GRANAS ( 1 9 7 6 ) showing that a fixed-point
result on a nonconvex domain is a consequence of a fixed point theorem on a closed
convex domain. This argument replaces the use of degree theory ; it relies on the
use of special homotopies. As we wish to apply this method to various classes of
mappings we follow an axiomatic approach. Our setting takes place in a fixed con-
vex subset of a t . v . s . , which is in general either the whole space or a convex
cone.
We consider a t . v . s . E , a convex subset D of E with O€D ,, a class C Qf subsets -
of D and for each subset X of D a class M ( X , D ) of mult if unctions from X
into D with closed graph in X x D and bounded range. We adopt the following as-
sumptions :

( G 1 ) For each C (- C and each F^-l^X.D) with F ( C ) C C , F has a fixed point.

(G2) Each bounded subset of D is contained in some member of C

(G3) If F ^ M ( C , D ) with C C C , and if X is a closed subset of C , then
F [ X . £ M ( X , D ) .

(G4) If X is a closed subset of Ce C , and if VC M ( X , D ) is such that
F ( x ) = {0} for each x in the relative boundary 9 X of X in C , then
the extension ^ of F to C given by ^(x) = {0} for x ( = C \ X belongs
to M ( C , D ) .

( G 5 ) If X is a closed subset of D and if F e M ( X , D ) , then for each continuous
function s : X ̂  fo,l] , the multifunction G given by G ( x ) = s ( x ) F ( x )
belongs to M ( X , D ) .

We first give an easy consequence of the preceding axioms.

4 . 1 . Lemma

Let X be a closed subset of some Cfc: C with Oc X , let F( M ( X , C ) with
F ( X ) C C and F( x ) = {0} for each x in the relative boundary 8 X of X in C.
Then F has a fixed point in X .

Proof : Let ^ ̂ M ( C , C ) be the extension of F by {0} on C \ X (G4) .
As ^ ( C ) C C , ^ has a fixed point x in C ( G 1 ) . As ^ ( C Y X ) = {0} and 0< X,
we must have xfc X , thus x«. F ( x ) . \\

k . 2 . Theorem

| Suppose X is a closed normal subset of D , with 0 in the relative interior
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X \ ^ X of X in D. If Fe-M(X.D) is such that x^tF(x) for each

(t,x)€.(0,l) x 3-X , then F has a fixed point.

Proof : We consider the nontrivial case where FJ 9 x is fixed-point free. Then

x^tF(x) for each (t,x)£ [0,1] x 3^x. Let C ^ ' C with { 0 } U F ( X ) C C (G2), and

let Y = XHC . Then ^YC9 X . Let
Li U

B^ = {x(=.X | 3t£ [0,1] , x e t F ( x ) } , B = B ^ U {0} .

We show that B is closed in X . Let x £ X be the limit of a net (x . ) . of B.

Using a subnet if necessary, we can find a net (t.). in [p,l1 with

x^et^F(x^) . and suppose that ( ' b - ) - c - r has a limit t in [0,1] .If 1 = 0 ,

we have x = 0 as F(X> is bounded. If t > 0 , we have x/t£F(x),as F has a

closed graph. Hence x€ B in each case.

As X is normal and A = 3 X is disjoint from B , we can find a continuous func-

tion s : X ->- [o,1'l with s l A = 0 , s | B = 1 . Let G : X -»• D be given by

G(x) = s(x) F(x) .

Then G€M(X,D) by (G5) and G(x) = {0} for each x € A = 8 X , hence also for

each x€ 3 Y . Moreover G ( Y ) C C as C is convex. As 0 € Y = X O C , G has a

fixed point y £ Y . Then yc.s(y) F(y) , thus yc. B and s(y) = 1 . Thus y is

a fixed point of F . Q

4.3. Corollary

Suppose X is a closed normal subset of D with 0 in the relative interior

X \ 3 ^ X of X in D and x^T^X for each x ( -9^X . If F&M(X,D) is such

that F(x)-xcT X for each xe3^X then F has a fixed point.x u

Proof : Suppose x £ t F ( x ) for some ( t , x ) c (0 ,1 ) x 3^x . Then (l"1-"! )x^ F(x) -
X C T X , and this is a contraction to x ^T X as t"1-! > 0 and T X is ax x x
cone. [J

When the class M is invariant by translation, any point a in the relative inte-

rior of X can replace 0 .

The assumption x^ T X is satisfied if X is a closed proper convex subset of E
x -1

with 0€ int(X) : -x<=int(T X) hence belongs to a half-space h ((O,-H»)) contai-

ning int(T X)(with h€E ' ) whereas x belongs to'the opposite half-space h"1^ ,0)).,

It is also satisfied for some nonconvex subsets » for instance the epigraph X =

{(r,s)£]R2 | s >, h(r)} of h : r «^ - -( |r| + 1 ) in E = B2 ..

It is easy to show that the axioms we gave subsume several cases : compact multi-

functions (A. GRANAS (19T6)), condensing mappings (C.J. HIMMELBERG, J.R. POTTER,
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F . S . VAN VLECK ( 1 9 6 9 ) ) , ^-condensing mappings ( V . W . PETRYSHYN, P. M . FITZPATRICK
(197^) < . . ) . The details will be given elsewhere. More general boundary conditions
as in M. MARTELLI - A. VIGNOLI (197^) could be considered with slightly stronger
axioms.

§.5. CRITICAL POINTS AND FIXED POINTS

The present section was suggested by the reading of J-P. AUBIN (1977) which pre-
sents related results obtained recently by J . p . AUBIN and F . H . CLARKE .
The problem of looking for fixed points of a map is embodied in a broader setting :
one seeks sufficient conditions for a map f : X -»• F , where E and F are t . v . s . ,
X is a subset of E , to have a critical point, i . e . a point a£X with f(a) =0.
We begin with a slight generalization of a classical notion.

5 . 1 . Definition
A function h : E -»-B* = ] R U { + ° ° } is said to be pseudo-convex at a point aGdom h
if h ( x ) ̂  h ( a ) whenever

ih(a,x-a) = : lim sup t~1(h(a+tv)-h(a)]
t^O.v^x-a

is non negative.
h is said to be pseudo-convex if h is pseudo-convex at each point of its domain.
It is easy to verify that any continuous convex function is pseudo-convex.

5 . 2 . Theorem
Let E and F be t . v . s . , .let X be a subset of X , f : X -*• F be any map
such that
a) - f(x)CT^^ f ( X ) .
If there exists a pseudo-convex map h : F -*-]R' such that

b) dom h3f(X) ,
c) h(0) = 0 . h (y) > 0 for every yc Y = f(X ) , y ^ 0 ,
d ) h attains its minimum on Y ,
then f has a critical point a in X .

Usually h is taken to be a norm on F .
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Proof : Let b = f(a) be such that h ( b ) = min h ( y ) . Then for every w€T-Y—— * y^y b
we have

ih(b,w) ̂  0
as the definitions show immediately. In particular, we have

dh ( b , - f ( a ) ) ̂  0 .
As h is pseudo-convex at b we obtain h(0) - h ( b ) -̂ 0 . Hence h(b)=0, b=0. j]

5 . 3 . Corollary
Let E be a t . v . s . , F be a normed vector space, X be a subset of E ,
f : X -»• F be a map with a boundedly compact image Y = f ( X ) . Then if
-f(x)€:T , v Y for every x6 X there exists a€X with f(a) = 0 .

Proof : Take for h the norm of F . Q
With the same choice for h we obtain the following variant of this corollary
using the weak lower semi-continuity of h .

5 . 4 . Corollary
Let E be a t . v . s . , F be a dual Banach space, X be a subset of E , f : X -*• F
be a map with a weak -closed image Y = f ( X ) , Then if -f(x)€ T,./ x Y for every
x€X there exists a€X with f(a) = 0 .

Now we add a differentiability assumption on f .

5 . 5 . Definition
Let E,F be t . v . s . and let XC. F . A map f : X -*• F is said to be M-diffe-
rentiable (MICHAL-BASTIAN1 differentiable) at a point a 6 X if there exists a
continuous linear map u C L ( E , F ) such that lim t [f(a+tv)-f(a)-u(x)] = 0 .

t\,0
v-»x
x+tvCX

This notion is weaker than Frechet differentiability but stronger than Gateaux
differentiability. It plays a convenient role in optimization theory and opti-
mal control theory.
Note that although! f^a) is not uniquely defined by the preceding definition if
a is not interior to X , the value u(x) of u on x-6 T X is independant of the
choice of u and will be denoted by f * ( a ) . x .
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It is easy to show that if f : X -> F is M-differentiable at Q.€ X with deriva-
tive f ' ( a ) then f ( a ) (T^X)C T^^Y with Y = f ( X ) . Hence the condition
- f ( x ) € T / ^f(x) is implied by the condition - f( x ) e' f ( x ) (T X ) .
Let us remark that the condition used by J . P . AUBIN and F . H . CLARKE is still
stronger as they deal with the tangent cone as defined by F . H . CLARKE (or peritan-
gent cone) which is smaller than the usual tangent cone. For instance when E = ] R 2 ,
X = 3R x { 0 } ( J { 0 } x ]R , the peritangent cone at the origin is { 0 } whereas T X = X .
Let us state a fixed point theorem as an application of the preceding results.

5 . 6 . Corollary

Let E be a dual Banach space (resp. a Banach space), X be a subset of E
g : X ->• E be a M-differentiable mapping such that

a) ( l - g ) ( X ) is, a weakly closed (resp. weakly boundedly compact) in E
b) g(x)-x<= ( l - g ' ( x ) ) ( T X) for each x e 8X
Then g has a fixed point in X .

Proof : Take f = I - g . []
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