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NEW CONCEPTS IN NONDIFFERENTIABLE PROGRAMMING

J-B. Hiriart-Urruty

Introduction. Numerous studies have been devoted to the determination of the first order necessary

optimality conditions for an optimization problem. The study of such conditions and the applications to

different problems have first been made in a geometrical form, using for that conical approximations of a

subset (Oubovitskii and Milyutin's formalism and its extensions) and separation theorems for convex cones.

In differentiable programming, the objective function and the functions defining the constraint set

(equalities, inequalities, mixed data) are supposed to be differentiable at the considered optimal point.

The best known necessary optimality criterion for such a mathematical programming problem is the Kuhn-

Tucker criterion. In order for the Kuhn-Tucker criterion to hold, one must impose a constraint qualification

on the constraints of the problem; various constraint qualifications have been considered: conditions on

the geometry of the constraint, on the representation form of the constraint, conditions combining the

objective function and the functions defining the constraints.... The introduction of the notion of

subdifferential in convex analysis has allowed the extension of optimality conditions (and their applications)

to nondifferentiable convex problems by replacing the notion of gradient by that of subdifferential. This

concept has appeared very fruitful to handle nondifferentiable convex problems.

During the last years, different attempts in considering nondifferentiable nonconvex problems have

been made: in the absence of both differentiability and convexity assumptions on the functions involved

in the problem, the first step was in defining a new concept coinciding with the notion of gradient in the

differentiable case and coinciding with the notion of subdifferential in the convex case. In Part I, we

mention some "disconvexifying" processes which have been recently developed. This enumeration,

although nonexhaustive, may appear to the reader like a catalogue of definitions. We thought it was not

fruitless to recall these different approaches and to show the evolution of ideas and the successive general-

izations. In fact, each of these concepts has its own interest and for each introduced notion, there exists a

class of functions (including the differentiable or convex ones) which is well adapted. Among all these

concepts, we shall emphasize in the sequel the concept of generalized gradient for locally Lipschitz

functions.

The Part II of this paper deals with the different conical approximations of a subset S at x- G S.

Beside the cones of feasible displacements which are classical in mathematical programming, we give some

further details about the concept of tangent cone such as introduced by F.H. Clarke in [13] and we studied

in [35] in a Banach space setting. The functions ^c and Ao connected with S and introduced in [35]

play a role similar to those of the indicator function 65 and the distance function; wespecify some of

their properties in the context of convex analysis as well as their influences in the comparison results

between tangent cones.
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The Part III is concerned with the "functional" part of the "geometrical" notions of Part 1 1 . Recalling

the definitions of different generalized subdifferentials and generalized gradients, comparison results and

examples are given.

The Part IV of this study is devoted to some examples of necessary (and in certain cases of sufficient)

optimal ity conditions for a nondifferentiable nonconvex optimization problem. The references to develop-

ments on the subject are also indicated.

In many mathematical programming problems, the objective function as well as the functions defining

the constraints occur to be composite functions. The Part V is exclusively concerned with chain rules on

generalized gradients of locally Lipschitz functions. Beside those already existing, we establish a new chain

rule for generalized gradients: the first result in this sense is a general inclusion between generalized -

gradients of the composing functions; after we give sufficient conditions for this inclusion to be an equality.

In the list of references, we just quoted the papers related to the introduction of new concepts in

nondifferentiable programming and to their applications to necessary optimality conditions. In particular,

we hold apart the papers specifically dealing with the study of algorithms for nondifferentiable problems.

Part 1: SOME "DISCONVEX1FYING" PROCESSES.

A.1. B. N. Pschenichnyi's work [55] was probably one of the first attempts in considering nondifferentiable

nonconvex functions. Let f be a function defined on a topological vector space E and taking values in

R. f is said to be quasi-differentiable at XQ G E in the sense of B. N. Pschenichnyi if

( 1 . 1 ) t'(Xo;d)= Iim^[f(Xo+\d)-f(x^)]X~1 exists for all d

and if

(1.2) there exists a nonempty weak* closed subset M^(Xo) of E* such that

f(Xo;d) = Max <x\ d>
x*eM^(xo)

If f is Gateaux-differentiable at XQ, it is quasi-differentiable at XQ and M ,̂) = {Vf(Xo)}; likewise, if f

is a convex function, 3f(Xo) = M^(Xo). The properties of quasi-differentiable functions are studied in

B. N. Pschenichnyi's book [55]; the notion of quasi-differentiability is examined and related to fractional

programming in [9]; Lagrangean conditions for a quasi-differentiable optimization problem are considered

in [17] .

R. Janin generalized the given definition to functions taking values in R by saying that f is sub-lineamable

at XQ when the limit exists in ( 1 . 1 ) (possibly +or-oo) and when the function d -^nx^d) is convex

(as a function taking values in R). The set M^x^) is defined as in (1.2) by setting:

n-3) X'GM^XQ) ^ V d G E . <x», d>< f'tx^jd)

Particular sub-classes of the class of sub-linearizable functions (almost convex functions of the ^st order, of

the y order.. . ) are also exhibited by R. Janin; properties of such functions are detailed in the Chapter I



of [38].

In these two neighboring definitions ((1.1), (1.2) and (1.3)), it is supposed on the one hand that the limit

exists in (1 .1 ) and on the other hand that the function d ^f(Xo;d) is convex. This last (stringent)

condition permits considering the function ^(x^;.) as a support Function and introducing the convex
set M^(Xo).

We shall consider again the quasi-differentiable functions in the Part V.

A.2. Definitions which come near to the definitions of convex analysis are given by E. A. Nurminskii [48]

in the following manner: given a function f from a finite-dimensional euclidean vector space E^ into

R, f is said to be weakly convex if for every x^ € Ey, there exists a nonempty set M^o) of elements

x* such that for all x G E^

(1.4) f(x) > f(Xo) + <x\ X-XQ> + r(xQ, x) where

(1.5) r(xQ, x)l|x-XQir1 -> 0 for x -»• XQ, uniformly with respect to XQ in each compact

subset of E^.

The set M^(XQ) of elements x* satisfying (1.4) is a convex compact subset, supposed to be nonempty by

definition: that is the set of quasi-gradients of f at XQ. Of course, by changing the sense of the inequality

(1.4), one has the definition of weakly concave functions. If f is convex, M^x^) is the subdifferential
8f(Xo) for all points XQ € Ep .

In the definition of weakly convex functions, the relation (1.5) has to be verified uniformly in each

compact subset of E^; so,a continuously differentiable function is weakly convex (and concave) with as

unique quasi-gradient at XQ, VftXp).

By adding -e in the right-hand side of the inequality (1.4), the concept of e-quasi-gradient is introduced

by E. A. Nurminskii and A. A. Zhelikhovskii [49] who also give an iterative procedure for the minimization

of weakly convex functions, formulated in terms of c-quasi-gradients.

The class of quasi-differentiable (resp. sub-linearizable, weakly convex) functions is stable for certain usual

operations such as addition, maximum of a family of functions.

A.3. If one sets the inequality (1.4) with only the following condition on the residual term r:

(1-6) lim rtXo.x^lx-xJr^O
X-^XQ ° °

one finds the notion of >-gradfent (and of ^-gradient with the reversed inequality for (1.4)) studied by

M. S. Bazaraa, J. J. Goode and Z. Nashed [4]. If f is a convex function, for each point x-, the set of

^-gradients of f at XQ is the subdifferential 9f(Xo) and if f is concave, the ̂ -gradients are the

supgradients. In relation with the differentiability properties of a function, we have the following results:

(1.7) If x\ and x^ are > and ^-gradients of f at XQ, then f is Frechet-differentiable at XQ and

x^x^ Vf(Xo) [4, Theorem 4.1]
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(1.8) If f is Frechet-differentiable at x^ Vftx^) is the unique >-gradient and the unique ^-gradient.

Concerning the support function of the set of > -gradients of f at XQ (denoted by 3 > ftx,.)), one has

necessarily (4, Theorem 3.1]:

(1.9) For x* € 3 > f(Xo), V d. <x^ d) < lim inf [f(Xo + Xd) - f(Xo)] X-1

that is

(1.10) Vd, 6^,, ,(d) < lim inf [f(x-+Xd)-f(xJ]\-1 .d, 5*9^x )(d) < '^'y tf(xo+x^-f(xo)lx''

As noticed by M. S. Bazaraa etal [4, p. 399], the relation (1.9) gives a necessary but not sufficient

condition for a vector x* to be a >-gradient. In fact, there is very little to change in (1.9) to have a

necessary and sufficient condition (see A.4 below).

The notions of > and ^-gradients are related to the cones of feasible displacements for the epigraph and

for the hypograph of f from (XQ. ftXg)) [4, Theorem 3.2]; we shall come again to these geometrical

characterizations later on.

A.4. The condition (1.9) which is necessary for x* G 9 > f(Xo) leads to the consideration at x of

different convex subsets the definitions of which are analogous to that of (1.9) but with different lower

and upper limits in the right-hand side. This approach (in a general context) is due to J.-P. Penot [52, 53]

who, using the way in which the derivatives of Denjoy, Young, Saks generalize the notion of a derivative of

a function defined on R, introduced different concepts of generalized subdifferentials.

Let E be a real Banach space, let f : E -^ R be finite at XQ. In fact, J.-P. Penot's definitions are given in

a more general context, by considering functions defined on a topological vector space and taking values in

an ordered topological vector space [53]. For our particular case, JrP. Penot defines successively:

( 1 . 1 1 ) V d G E , f(xo; d) = lim igf [f(Xo +Xv) - f(Xo)]X-1

v-»-d
f(Xo;d)= limsyp [f(Xo+Xv)-f(Xo)]\~1

v-^d

and the analogous "radial" definitions:

(1 .12) fr(Xo;d)= liminf (f(Xo +Xd) - f(Xo)]X-1

f r(Xo;d)= lim sup [f(Xo +Xd) - f(Xo)]X-1

X-*'0'

These definitions lead to the definitions of the lower subdifferential and of the upper subdifferential of f

at XQ by setting:

(1.13) x*eaf(Xo) «- Vd, <x*,d> < f(Xo;d)

x^eiftxo) ^ Vd, (x'.d) < f(xQ;d)
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The radial lower subdifferential ^(XQ^ ^^ the radial upper subdifferential ^^{XQ) are defined in the

same way starting from the definitions given in (1.12).

To make connections with what fs seen above in Section A.3, one easily shows that 3 > f(xQ) is exactly

3f(Xo). As for the preceding approaches, one can relate these different notions to that of subdifferentia-

bility for a convex function and to those of differentiabilities for Gateaux (Hadamard, Frechet... )•

differentiable functions.

The different directional derivatives introduced in ( 1 . 1 1 ) and (1 .12 ) are not generally convex functions

(as functions of d € E). The support functions of the different generalized subdifferentials are the

bicon jugate functions of the corresponding directional derivatives and thereby may be identically equal to

—00 (for instance, 5'ix* » = [t(xQ; .)]**). When one considers a nondifferentiable function, one cannot

say if.for all points, f has ^-gradients or <-gradients or if 3f(x), 3''f(x) ... are nonempty. That is a

difficulty in the utilization of these concepts and in the study of necessary optimality conditions [53, §5].

To assure that the generalized subdifferentials 3f(xQ) and 3t(xQ) are nonempty, it is necessary to make

assumptions which express a boundedness property (in a neighborhood of xJ and a convexity property of

the functions I(XQ; .) and ?(XQ; .). For that, the class of unscarped, tangentially convex functions and

the class of smooth, inwardly tangentially convex functions are considered by J.-P. Penot (53, 3.6—3.12].

A.5. In mathematical programming, an important class of functions is the class of quasi-convex functions.

A function f : E -> R defined on a topological vector space is said to be quasi-convex if S^(f) defined by

{x G E | f(x) < X} is convex for all X. For nondifferentiable quasi-convex functions, two neighboring

concepts have been recently introduced and studied.

Let f be a quasi-convex function, finite at XQ. H. J. Greenberg and W. P. Pierskalla [28], Y. I. Zabotin,

A. I. Korablevand R. F. Khabibullin [63] defined the following set:

(1.14) a*f(Xo)= { x^GE* | f (x)<f(Xo)^<x*.x-Xo><0}

Contrary to previous definitions, this concept is a cone which is related to the normal cones to the level

sets S^(f). H. J. Greenberg etaf called 3*f(Xo) the quasi-subdifferential of f at XQ, whereas Y. I. Zabotin

era/called it the generalized support of f at XQ.

In a slightly different manner, J.-P. Crouzeix [18] introduced the tangential of f at x^ as following:

(1 .15) x»eTf(xQ) o VX<f(xQ) , Sup [<x* ,x-Xo>|xGS^(f ) ] <0 .

Each of these two concepts has its own interest; the properties of the tangential have been studied in

connection with conjugacy and duality theory in quasi-convex analysis [18. 19 ] .

A.6. A notion which is related in a certain sense to 3^.f (or 3f) is the notion of generalized gradient of a

function in the sense of F. H. Clarke [12] (see also N. Z. Shor [59]). Let us recall this definition: given a

locally Lipschitz function f : R" -»• R, that is to say a function satisfying a Lipschitz condition on all

bounded subsets of R", the generalized gradient of f at XQ is the convex compact subset denoted 3f(xQ)

(like the subdifferential) and the support function of which is:
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(1.16) d ̂  f(Xo'd) « lim sup (f(x + Xd) - f(x)] X-1

x XQ
\^Q^

in other words

0.17) x*e5f(xo) <- Vd, <x\d/ < f'(xo;d)

Owing to the Lipschitz property of f in a neighborhood of XQ. let us remark that we also have:

f(Xo;d)« lim sup [f(x+Xv)-f(x)]X~1 .
x-*x^ v-^d

X^O-*-

Moreover, if we denote

Vd, f.(Xo;d)= liminf [f(x+Xd)-f(x)]X~1

X - X Q
X-^0'1'

an equivalent definition of Qffx^) is:

x'eaf(xo) ^ Vd, <x\d> > f.(Xo;d)

If we consider any function f : R" -»• R, the function f*(xQ;.) is necessarily a convex function; if,

moreover, f is a locally Lipschitz function, the generalized gradient is nonempty for all x. The definitions

(1.15) and (1.17) have been considered again in a Banach space context (14, 15] .

An equivalent definition of 3f(xQ) in a finite-dimensional context is the following one: a locally Lipschitz

function is, according to a Rademacher's theorem-fsee [60] or [39]), differentiable almost everywhere; if

we denote by V the set of points where f is differentiable, we have:

(1.18) 9 f (Xo) -co {lim Vf(Xj) Ix.-^Xo, x ,€P} .
|—^00

This kind of characterization of the generalized gradient of a locally Lipschitz function f has been studied

when f is defined on a separable Banach space by L. Thibault [61 ] . Among all the properties of the

generalized gradient, let us recall those ones which will be continually used in the sequel. Let E be a real

Banach space, let f, f-j, f^,.. . be locally Lipschitz functions defined on E, let the generalized gradient of

such functions be defined as in (1 .17) ; then we have [14 ] :

(1.19) 3f(xQ) is a nonempty weak'-compact subset of E*

(1.20) if f is Frechet-differentiable at XQ, the derivative being strong at XQ ([50, p. 71] , [47]),

3f(xQ) is reduced to the F rochet-derivative of f at XQ. If f is convex, 9f(Xo) coincides with

the subdifferential of f at XQ in the sense of convex analysis.

(1 .21) 3(f^ +f2)(Xo) C af^(Xo) +3^X0)

General chain rules on generalized gradients will be considered in the last section. The first part of the

relation (1.20) shows that the generalized gradient is a generalization of the concept of strong derivative.

A sub-class of locally Lipschitz functions, called well-behaved functions, has been considered for numerical
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purposes by A. Feuer [23]. When E s R", a concept of e-generalizedgradient has been introduced by

A. A. Goldstein [25] in order to define a method of descent for locally Lipschitz functions.

We now consider a nonempty subset S of E and we let d§ be its distance function. In a first approach,

F. H.CIarke considered E = R", S closed, [13], and defined the normality to S at XQ as following: the

normal cone to S at XQ € S is the closed convex cone denoted by N(S; x^) (or Ng(Xo)) such that

(1.23) N(S;Xo)=cc3ds(Xo) (closed conical hull of 9d5(Xo))

orequivalently

(1.24) N(S;X(,) =co { .lim Xj(Xj-Xj)} with Xj>0, XJ-»XQ and x, a point of S dosestto Xj.

A slight different definition is considered when E is a Banach space [14, Definition 2]. The generalization

of the notion of generalized gradient to a class of functions broader than the class of locally Lipschitz

functions has been attempted by the way of the normal cone to the epigraph of f at (XQ, ftx^)) [13,

Proposition 3.18]. Let f : R" -»• R'(= R U {+«>}) be a lower semi-continuous (l.s.c.) function, let XQ be

a point where f is finite; then the generalized gradient is defined by

(1.25) 3f(Xo)= {x'eR^tx-.-DeNepiftXo.ftXo))} .

This is a geometrical definition and thereby it is more difficult to work with it. We adopted the same

definition in a Banach space context for a function taking possibly values in R; for details see [35]. For a

function taking values in R, f'tx^;. ) defined in ( 1 . 1 6 ) is convex (as a function from E to R) and one

would have defined a sort of generalized gradient by adopting the same definition as in (1 .17 ) . Let us note

at once that this notion does not coincide with that one geometrically defined in (1.25); example:

f(x) = -Ix)172, 3f(0) = 0 and adopting the definition (1.17) , 3f(0) would be R.

For some comparison results between the generalized gradient and some other concepts recalled in this

Part I, see Parts III and V.

Part II: CONES CONNECTED WITH A SUBSET OF A BANACH SPACE.

ll.A. Let E be a real Banach space, let S be a subset of E. By intS, cQS and bdS. we denote respectively

the interior, the closure and the boundary of S. By S° we mean the complementary set of S in E and

the interior of S0 will be denoted extS. In the sequel, by E we shall mean the topological dual space E*

endowed with the weak* topology. B* is the unit ball in E* and the norm of an element x * G E * is

denoted by ||x*H» .

If L is a linear topological space and L* its topological dual space, thepo/ar cone of A C L is given by:

A° = {x*G L* I V a C A , <x*, a> < 0} .

We recall the definitions of several kinds of feasible displacements which are classical in mathematical

programming. Let S be a nonempty subset of E and x^GcJZS.

Let S^(XQ) = (S-Xo)t~"1 for every t>0; V(XQ) denoting the filter of neighborhoods of XQ in E, the
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family (S^x^) 11>0; Mx^)} is a filtered family [6, p. 125-126].

Definition 1. d€E is said to be an adherent displacement for S from XQ if and only if

d€ limsup S^(XQ)= {d€E 13 / ^ tO , d^d wW Xo+^dnSS} .

An equivalent definition of an adherent displacement d is given by saying that there exists a sequence

{x^JCS converging to XQ and a nonnegative real sequence {X^} such that d= lim X^X^-XQ). A

slightly different definition consists in considering the weak adherent displacements d, that is to say by

supposing in the definition above that X^Xp—Xo) con^rges weakly to d; see (5, 27].

Definition 2. d € E is said to be an interior displacement for S from XQ if f for every sequence {d^}
*

converging to d and for every sequence {Xp} C R converging to 0, one has XQ + X^d^ € S for n

sufficiently large.

The set of interior displacements will be denoted by I(S; XQ) (or I§(Xo)) and the set of adherent

displacements by T(S;XQ) (or T§(Xo)). I(S;XQ) is an open cone and T(S; XQ) a closed one. For various

properties of these cones, we refer to the Chapter I of P.-J. Laurenfs book [40].

The radial cones of feasible displacements which correspond to T(S; XQ) and I(S; XQ) are defined as

following:

Definition 3. d G E is said to be a radial adherent displacement for S from XQ if there exists a sequence
«

{\^} C R converging to 0 such that XQ + Xpd € S fora// n.

Definition 4. d € E is said to be a radial interior displacement for S from XQ if there exists e > 0 such

that X Q + X d G S fora// XG]0 ,e [ .

The set of radial adherent displacements will be denoted by T^S; XQ) (or T^XQ)) and the set of radial

interior displacements by D(S;XQ) (or D^x^)). If S is locally star-shaped at XQ, D(S;XQ) = T''(S;XQ).

Generally, T^S.'x^) and D(S;XQ) have no topological property.

All these cones have been extensively used (under different names) in mathematical programming since

their definitions for geometrical purposes in the thirties. The cone of interior displacements is essentially

used when the constraint set S is defined by inequalities and the cone of adherent displacements when S

is defined by equalities. The cone D(S; x^) (sometimes called cone of feasible directions) has a particular

interest for the algorithmic point of view (see for instance [64, §2.4]).

Beside these notions, F. H. Clarke introduced in the case where E is finite-dimensional and S a closed

subset of E the notion of tangent cone to S at x^GS [13, Definition 3.6]. We adopted the same defi-

nition in the context of a Banach space for S being an arbitrary nonempty subset of E and XQ e cCS

[35, Definition 3]. We recall that the tangent cone ^j(S: XQ) is the closed convex cone defined as

following:

(2.1) ^(S;XQ)= [ads(Xo)]°= {dGE|dg(Xo;d)=0} .



We have given a sequential characterization of ^(S; XQ) when XQ G c£S [35, Theorem 1 ]. We make

here the case XQ 6 bdS a little more precise.

Theorem 1. Let S C E and x^ebaS; d€^(S;Xo) if f for every sequence {x^} C bdS converging to
•

XQ and fcr every sequence [X^] C R converging to Q. there exists a sequence {dy,} convergmg tc d

we/? (/?ar x^ + X^dp € S /bra// n.

Proof. The same characterization has been proved by replacing "{XpJ C bdS" by "{x^} C cSS" [35,

Theorem 1 ) ; so the announced property holds if d € ^/{S; XQ). Conversely, let us consider a sequence
*

{x^} C cfiS converging to XQ and a sequence {Xy^} C R converging to 0. We examine the quantity

c^Xn+Xnd).

If d^Xp + Xy,d) > 0, x^ + X^d € extS; so, there exists ̂  € [x^, Xp + X^d[ which is on bdS. Let

o^ € ] 0, 1] be such that x^ 3B Xp + (1 - ̂ n^n + ̂ n^ and we set ^n = ̂ n^n- The sequence {^ } C R^

converges to 0 and Xp + /ipd = x^ + Xpd. {x?} C bdS converges to XQ and according to the announced

property, there exists a sequence {dp} converging to d such that ^<p + ̂ ipdp £ S for all n. Therefore,

ds(Xn+/2nd)<^Hdn-d||<Xnl|dn-d||. Briefly, in any case [ds(Xn+Xnd»]Xn-1 < lld^dll ; conse-

quently, lim [d3(x? +Xnd)]Xn~^ st 0 for the considered sequences {x^} and {X^}. So,de^(S;Xo)

[35, characterization (1.2)].

Observations. 1. As for T(S;XQ), <^(S;XQ) depends only on adherent points of S (<^(S; XQ) is

<$/(c£S; XQ)). Let us bear in mind that ^(S; XQ) is a convex cone which a/ways is included in the

(non necessarily convex) cone T(S; XQ) [35, Theorem 23. A more precise comparison result between

these two types of cones is given for E finite-dimensional in [323.

2. The elements d €= ^/(S; XQ) express a certain "tangency" property in a neighborhood

of XQ but contrary to the other cones I(S;XQ), T(S; XQ), .... one cannot say that (^IS;XQ) is really
^

a conical approximation of S at XQ. For example, if S^ = {(x-j, x^) I x^ + x- + |x^| st 0} and

Ss3 { (x^.x^) |X2-Log (Ixi |+1X0} , at XQ=(O,O) one has: <^S^;Xo) = (0) and ST^:^} •s

{ ( x i ,X2 ) | x2+ |x^ l<0 } .

Concerning the cones of adherent displacements, we only have:

bd(T(S; XQ)) C T(bdS; XQ) C T(S; x^) n T(SC; x^) (XQ C bdS)

whereas for the tangent cones, we always have: ^(bdS; XQ) = < (̂S; XQ) n ̂ (SC; XQ) [353.

3. It is worthwhile observing that if S^ C S^ and if XQ € (bdS-i) Fi (bdS^) we generally

cannot assert that ̂ (S-i; XQ) C ^/'(S^; XQ). Example:

Si- { ( x^ ,X2)eR 2 | x2 -x^>0} , 82= {(x-i, x^) e R*XR | x^ - x^ sin 1/x^ > 0} U {(0.0)}

S ^ C S 2 andat XQ^ (0,0), ̂ (S^; XQ) = RXR+ , ̂ ^x^ = {(x^, x^) € R2 | x^ - lx^| ̂  0} .

The radial counterpart of the characterization given in Theorem 1 is the definition of the radial tangent

directions.
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Definition 5. d € E /s said to be a radial tangent direction to S at XQ /7 for every sequence (x } C S

converging to XQ and for every sequence (Xp } C R converging to Q. one has x- + Xpd G S for n

sufficiently large.

The set of radial tangent directions to S at XQ is called the radial tangent cone to ? at x- and dpnoted

by<^(S;Xo) (or^(xo)).

It dearly follows from the definitions that ̂ (S; x^) C ̂ "(S; x^) and that <^(S; x^) C T''(S; x^).

Example: S= {(x-p x^) € R2 | x^ + Ix-jl^O); at x^= (0,0). one has < (̂S; XQ) = (0}XR^.

<^S;Xo)= {0}XR and T''(S;Xo)= {(x^x^) 1x^0 or x^>0} .

II.B. Let S be a subset of E; in [35], we have introduced the function jug defined as following:

(2.2) ^x; = ̂ oo if x € 50, -̂ <,c^ ff xCS {d^ = +00)

When S is nonempty and different from the whole space, jug takes its values in R* and is not identically

equal to +«. From the definition (2.2), it is obvious that {x G E | ̂ g(x) < 0} = intS and that

S-i C S^ ̂  j-i§ < p.^ . Moreover, JLI§ is a l.s.c. function iff S is a closed subset. Let us also note that

^c£S ̂  ̂ S-
First of all, we shall study the properties of jug in view of convexity.

Proposition 1. jug is a convex function iff S is convex.

Proof. If ^g is convex, S= {x G E | ^g(x) <0} is convex. Conversely, if S is a nonempty convex set,

different from E, it is sufficient to show that for all X € [0,1 ] and for all x,y £ S

d (Xx+(1-X)y) > Xd Jx)+(1-X)d (y)

This is easily done using the convexity property of cfiS.

The convexity of jug is suggested in an equivalent form as an exercise by N. Bourbaki [10, p. 150 Exercise

18]. At this stage, we assumed no closedness property of S. If S is a nonempty convex subset of E such

that extS ̂  0, ̂ g is a proper l.s.c. convex function and we easily deduce that ^^g = cfij-ig = (^g)'*.

For the properties and characteristics related to ^g in view of convex analysis, we may suppose without

loss of generality that S is closed. I(S;XQ) and T(S;XQ) are referred to as convex approximations to the

set S at XQ; some connections between these cones and the subdifferential of /ig are expounded in the

following proposition:

Proposition 2. Let S be a nonempty closed convex subset of E, different from E.

(a) 9/^g(x) /s nonempty for a// x€S.

(b) if XQ € bdS, we have:

(b^) a^g(Xo) C N(S; XQ) and X^x^) C 3jug(Xo) for all X> 1.

(b2) [9^g(Xo)l ° = T(S; XQ) and {d C E | ̂ (x^; d) < 0} = I(S; x^).

Proof. Under the assumptions made, ^g is a proper l.s.c. convex function with Aig""^ (R) = S. If intS = 0,
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^g is the indicator function 5§. So, for all x G S, 3^s(x) = N(S; x) and the announced results are

verified.

(a) Let us consider now the case where /htS^O. If Xo^intS, 8/xg(xQ) is obviously a nonempty compact

subset of E^. Let XQ e bdS; we consider the directional derivative h of ^3 at x^, that is

Vd€E . h(d)=^(Xo;d)=lnf [/is(Xo+Xd)]X-1 = lim ̂  [^(Xo+Xd)]X--1 .

h is a positively homogeneous convex function and we first prove that

(2.3) c£(domh)=T(S;Xo) .

Let d € 1(8°; x^); according to the definition of 1(5^ XQ), for every sequence {X^} c R* converging to

0, one has XQ+X^dCS 0 for n sufficiently large. Consequently, h(d) =+w and by the relation

KS0; x^) » (T(S; x^)] c we have: domh C T(S; XQ).

Conversely, let d € I(S; x^). For a sequence (Xp) C R* converging to 0, one has XQ + Xpd e S if n is

sufficiently large. Thus, ^s(xQ+Xnd)=-dJxQ+Xnd) and since -||d|| < - lim [d ^(XQ +\|d)3\T~1 ^0.
5 n~^00 S

we have h(d) € R. So, I(S; XQ) C domh. But S being a convex set with nonempty interior, cJ2I(S; XQ) is

T(S;XQ) [40,Ch.l]. Hence the result (2.3).

Let do€T(S;XQ) and we consider a sequence {dp} converging to do. We have

V X > 0, [^(XQ + Xdp)] X-1 > l-d c(Xo + Xdn)] X-1 > -\\6^\ .

So, h(d^)>-||dj| and consequently c£h(dQ) > -||dol|. c£h takes its values in R*;then (cfih)**=cfih

is the support function of a nonempty set, namely of 3/2g(xQ).

(b) /x§< 63 and if XQ G bdS, ^I§(XQ) = S§(XQ) = 0. This implies that 3jug(xQ) C 35g(xQ) = N(S; x^). By

definition of 9/Lig(xQ),

x'ea^xo) ^ V x e s , <x»,x-xo> < -^^x} •

Obviously, X3jLXg(Xo) C ̂ (x^) for all X > 1 .

The support function of B^XQ) is ciZh; so, [9^g(xQ)]0 = {d G E | c£h(d) < 0} . Following the construc-

tion of cfih, c£h(d)<0 iff cJ2h(d) is finite. We also have: domh = (d G E | h(d) < 0}. Consequently,

dom(cfih) is c£(domh), that is to say T(S;XQ) (by the equality (2.3)).

Since we supposed intS ̂  0 and x^ebdS, 0^ S^tx^^). So, there exists d such that ^(XQ; d) < 0; let

us take such a d .

For every sequence {dp} converging to d and every sequence {Xp} C R* converging to 0, we have for

n sufficiently large

t-^o-^n^lV"1 < ̂ o-^n^V1 Îdn-dll

Since P-'MQ: d) < 0, for n > n^, -d ^XQ + X^d) < 0, that is: XQ + X^ G S. Therefore,

{deE|^(Xo;d)<0}CI(S;Xo) .

Conversely, let d G intS — XQ. We consider u € intS such that d = u — XQ; there exists e > 0 such that
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dgct"^^ By the concavity property of the function d on S (Proposition 1), we have:

^o^d^e .

Consequently ^(x^; d) < 0 and intS - x^ C {d G E ( ̂ ; d) < 0}. The result then follows from the

relation I(S;XQ) = R^(intS -x^) and from the homogeneity property of ^(x ;.).
5 o

As we shall see now, there are analogies between the conjugate function ̂  and the support function 5* .
w S

Proposition 3. S being a nonempty closed convex subset of E,we have

(a) ^^bdS3^ ^^S^-
(b) if S /s compact, ̂  is a finite function such that 5g < ̂  < 5g + a where a = /i'(0).

Proof, (a) Since ^<5g, 5g<^. Let x* G^^ 3^(x); let us consider x^bdS such that

x* € a^(Xo). According to the characterization property of a subgradient [40, Theorem 6.4.2], we have

x» € 3^(xo) o ^(x») +^(XQ) = (XQ, x*) .

But a^s(Xo) C N(S;XQ) = 35s(xo); consequently

5s(x*)+5s(xo)=<xo,x»> .

For XQ € bdS, ^(XQ) = ̂ (x^) = 0; hence the equality ^(x*) = 5*(x*).

(b) a=^(0) is by definition ^p d^(x). If S is compact, ̂  is a finite function and

Vx*, S^x-X^x-XSgtx^+a .

Example: Let us take the unit ball B in E;then j n = Max (1, ||-|| ).

Remarks. 1. Under the assumptions of Proposition 2, let x^GbdS. From the definition of ^, we have
the following equivalences:

(O^a^(xo)) o (VxGbdS.O^ 8^(x)) o (intS^O) ^ (I(S;Xo)^0) .

Otherwise, we recall that the center of S [ 1 1 ] is defined as following:

C(S) - {x € S I d (x) > d (x) for every x e S } .

I nth is definition, d^(x) is supposed to be finite. If S is compact, the center C(S) is precisely a/i'(0).

The function A§ defined by: Agtx) = dgfx) - d (x) is obtained by infimal convolution of

^ and of the norm function ||-|| [35, Proposition 1 ]. If S is nonempty and different from E, Ao is a
Lipschitz function with constant 1.

It S^ C S^. we know that ^^^S^ and consequently ^ V JI-IK^ V ll-ll. So, if S^ and S^ are
closed subsets of E. then

^^ ̂ < ̂  •

Proposition 4. If S /s convex, Ag /s co^rex. /^ Ag 75 co/?rex, ^e/7 cCS is convex.



Proof. If S is convex, /i§ is convex (Proposition 1)and A§ which is î§ V IHI is also convex [40,

Corollary 6.5.3]. Conversely, if A§ is convex, cJZS = (x e E | A§(x) < 0} is convex.

Proposition 5. Let S be a nonempty closed convex subset of E. If XQ € bdS,

aAgtXo) = a^x^) n B» .

Proof. When x^ € bdS, ^(x^) = AS(XQ) = 0; so

x-eBAgtXo) o A^x*) = <Xo,x*> .

But Ag = (̂ ig V II •ID* at ̂  + 6g» [40. Corollary 5.5.4]. Consequently,

x»eaAg(Xo) o (Atg(x•»=<Xo,x•> and 5g,(x*» = 0» . Hence the result.

Remarks. 1. Let us remark that for XQ G bdS, the infimal convolution of the functions /ic and il*|| is

exacrat (x^, 0). The expression of 9Ag(Xo) at XQ^boS is similar to that of ad^XQ) which is

N(S;XQ) HB*. This yields

3ds(Xo) n a^(xo) = 3As(Xo) .

The result of the preceding proposition completes the properties of Proposition 2 on the structure of

3^s(Xo) since

(2.4) 3^(Xo)=^ (XaAs(Xo)} .

The following figure illustrates this special structure.

N(S;x.
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2. If S is convex, d g3S d§ - A§ (or fig - d J appears as a difference of two convex functions.

The conjugate of the difference of two convex functions may be calculated with the ••difference introduced

by B. N. Pshenichnyi [56]; this gives additional relations between 5*c » ^c and ^S •

3. It S C E and XQ € bdS, the index of angularity of bdS at XQ, denoted by ah.jo(Xo)» is

defined by: "lyjc^o^ = a^' ̂ s^o^ '̂ Definition 5]. Moreover, XQ is said to be a regular point of

bdS if ^-is^o^ ^> ®' ^ ^ ls a "^"^Pty closed convex set of E and if XQ G bdS, we remark that

o^g(Xo) = d(0, a^s(Xo)); therefore:

XQ is a regular point of bdS iff every x on the boundary of S is a regular point.

Starting from the structure of 3A§(Xo) for an arbitrary subset S C E, we defined in [35, Definition 4] the

concept of symmetric tangent cone to S at XQ e bdS by taking the polar cone of 8Ac(xQ); let us recall

this definition:

Definition 6. The symmetric tangent cone to S at XQ G bdS is the closed convex cone of E* denoted by

^(S;XQ) and defined by:

^/(S; XQ) = [9As(Xo)] ° = ̂ TS; XQ) n -̂ S0; x^) .

For comparison results between ̂ /(S; Xp) and ^(S; XQ), between. int^(S;XQ) and I(S;XQ),see

[35,§I].

Part III: GENERALIZED SUBD1FFERENTIALS AND GRADIENTS OF A FUNCTION.

Let us denote by F(E,F) the set of functions from E to F(F = R\ R,...); feF(E.R) is said to be

Lipschitz in a neighborhood of XQ if f is finite in a neighborhood VQ of XQ and if there exists k such

that |f(x)-f(y)|<k|lx-y|| for all x.yGVo.

The different generalized subdifferentials described in Part I (A.4, A.6) may be connected with the different

kinds of feasible displacements for epif from (x^, ftx^)) in the following manner:

f(Xo;d)= Inf {/iGR 1 (d,^)eT^(xQ.f(xQ))} (inf 0 = -too)

f(xQ; d» = Inf {fi e R 1 (d, fi} C l^ (XQ, f(Xo))}

f,.(xQ; d) = Inf ̂  € R | (d. 11} C T^ (XQ. ftx^))}

ftXo; d) = Inf [fi € R | (d, fi) G D ^ (x^, ftx^))}

(3.1)

and

8f(Xo) = {x* G E* | (x*, -1) € [1̂  (XQ, f (Xo)) ] 0 }

(3.2) 3f(xo) = {x* € E* | (x\ -1) e [T^^ (XQ, ftx^))]0}

a^xo) =. . . , a''f(xo) =...

The radial directional derivatives ^(XQ; .) and f^x^;.) have also been used by M. S. Bazaraa and
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J. J. Goode [3]; in their work, they noticed the connection with the radial cones of feasible displacements

as in (3.1).

In a similar way, the generalized gradient of f at XQ (Definition (1.25)) 'may be described as following:

^(XQ)' {x*eE* Kx'.dXf^x^d) for all d}
where

f°(xo; d) = Inf Oi e R I (d, n) € ̂ ^ (XQ, f(Xo)) [35. Proposition 2].

The support function of 9f(Xo) is the biconjugate function (^(XQ;.)] •*. By the same construction, the

concept of radial tangent cone induces the concept of radial generalized gradient of f at XQ:

a^Xo) = {x* € E* | <x\ d> < f^txo; d) for all d}
where

f^Xo; d) = Inf Oi e R I (d,^) € <^^ (x^, U^)} .

According to the inclusions between the cones used in these definitions, we have

3f(Xo) C 3f(xo) C a*"^)

a,.f(xo)c ̂ ^
Examples. 1 . f : x ^-|x|; ^f(O) = ̂ (0) = 0 and 8f(Xo) = ̂ {x^) = [-1, +1]

2. f : x -> -\x\72: af(0) = 0 and 3'^) = R .

As application, we shall examin properties of the generalized gradient of the function .̂ Some of them

are slight generalizations of properties established in the convex case (Proposition 2).

Propositions. Let S be a nonempty subset of E, different from E. Then

(a) if XQ € intS, a^(Xo) = -3d (XQ); //• XQ e S H bdS, a/igtXo) is nonempty.

(b) forevery XQGS, n^^p, ̂ (XQ, 11^}}) = ̂ (S;XQ) where 11^ designates the projection

on E in a parallel direction to R.

(c) /V XQ € S n bdS, SAgtXo) C ^Als(xo) n B<

(d) for^^XoeS, ^^^-{dKd.OE ̂ ^ (Xo^s^o^ •

Proof, (a) If XoGintS, jug == -d ^ is Lipschitz in a neighborhood of XQ and ^(x^) is a nonempty

convex compact subset of E^ . If XQ^SnbdS, ^(XQ) = 0 and ^(x^)^ iff (0,-1)G ̂  , (XQ,O)

[35, Theorem 5]. Let us suppose that (0,-1) G ^pj^^O). We consider a sequence {x^CS

converging to XQ; the sequence (Xp,-d (Xp)) is a sequence of epi ̂ 3 converging to (XQ.O).

According to the sequential characterization of the tangent cone, for every sequence {X-.} C R* converging

to 0, there exists a sequence (d^, c^) converging to (0.-1) such that (x^ + \^. -d c^^n^ is in

epi îg for all n. So,

^n + W = -^c^n + \A) < -dgc^n) + ̂ ^
Consequently
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-lidnll < [dgc(Xn»-d^(Xn+X^)]Xn-1 < ̂  .

Now, (d^Op) converges to (0,-1). This yields the contradiction.

(b) We have IÎ epî g) = dom^s«S. Let [6.0} E ^pjpjxo.0) and let us consider a sequence

{x^} C S converging to XQ and a sequence (Xp) C R* converging to 0. There exists a sequence

{(dp, o^)] converging to (d, o) such that (Xp + X^d^ -d Jx^) + X^) € epi ̂ 3 for all n, that is

Xn+X^eS for all n. So,

"E^ <^epi ̂ {XQ. 0)) C < (̂S; x^) .

Conversely, let d € ^(S; XQ). We have to show that there exists a € R such that (d, a) G < ^ - „ (XQ,O).

Let us take (7>||dj|. We consider a sequence {(x^Yn)} C epi ̂ 3 converging to (XQ. 0) and a sequence

{Xp}CR* converging to 0. Since d€ ^/(S;XQ), there exists a sequence {dp} converging to d such

that Xy, + X^dp € S for all n. We set o^ = a:

^S^n-^Vn^-d^+X^) < -d^(Xn) + Xnlldnll

< Yn'^V for "^"o •

Thus (d,o)e ^p,^(Xo,0).

(c) We know that: x* e 9A3(xQ) o Vd€E,<x* ,d> < As(Xo;d) .

A§ is a Lipschitz function with constant 1; therefore Ag(xQ;d) < ||d|| and 9A§(xQ) C B*. The inclusion

3Ag(Xo) C 3jLig(Xo) is equivalent to this one:

(3.3) ^epi^(^0)C ^^.0) .

Let (d, a) € <yepi jiic^o' 0^ w® consider a sequence {(Xp, y^)} C epi Ag converging to (XQ, 0) and a

sequence {X^} C R* converging to 0. We construct the sequence {x^} as following:

f^n^n if xnes

^SS such that Ijx^-xjl < dsfx^)+X^ if x^eS0 .

Similarly, we set y^ as y^ if x^ € S; y^3S 0 if Xy, ̂  S.

The sequence {Xn,7n) converges to (x^, 0) and by the construction itself (Xp,y^) Gepi^§. Since

(d, a} € ^/epj „ (XQ, 0), there exists a sequence {dp,0p} converging to (d, o) such that

^n + ̂ n^) ' -dsc^n + xndn) < Vn + Vn

for all n. If x^ G S, this reduces to: A^x^ + X^d^) < Yn + X^n .

If Xy, e S^ by the Lipschitz property (with coefficient 1) of Ag, we have

^Xn-^nd^llXn-xJI+Xnan

<ds(Xn)+Xn(an+Xn)<yn+Xn(an+X^) .

Finally, (x^ + X^, Yn + Xn(an + X^)) G epi Ag. Thereby, (d. o) belongs to S/e^^o.O)
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and the inclusion (3.3) is verified.

(d) Let x^GS and let us consider u such that (u,0» € <^epj^ JXQ.JLI^XQ)). This means that

(u.nXO for all (n, 0) e Nep, (x^Ats(Xo l ) ; consequently u€[8^(Xo)]0.

Conversely, Ngpj^x^^Xo)) being the normal cone to an epigraph, 6<0 for all (n, 9} in this cone.

We distinguish two cases: 6 < 0 and 9 = 0. If 6 < 0. -n0"~1 G ̂ (Xo); for all u G [3^(Xo)]°,

<u,-n0"~ XO and <u,n><0. Let 0=0. ^(Xo) is nonempty; so. there exists a sequence {n^o^}
of ^pi/io^o^S^o^ converging to (n, 0) and such that o^<0 for all k. Consequently,

<u.n>= lim <u. n^> < 0. that is to say (u,0)€ ̂  (Xo^stx^)).

Remarks. 1. If XQ € S n bdS, the results (c) and (d) of the proposition above bring the discrepancy

between the tangent cone and the symmetric tangent cone. We have

^s;xQ)=nE(^p,^(xQ,o))
^(S;XQ)D{deEl(d.O)e^p,^(xQ.O)} .

So, if the domain of the support function d »-*• ̂ 3 (XQ; d) is equal to the level set (d € E | {i^ (XQ; d) < 0 }.

then^(S;Xo)=^Is;Xo).

2. The tangent cone to the epigraph of the indicator function $3 is ^/\S'. XQ)XR . If XQ € S n bdS,

in general we have not the inclusion: ^S; XQ)XR^ C ̂ p, (x^, 0); consequently, the inclusion

8^(XQ) C N(S; XQ) is not generally true. Likewise, other properties of 8^3 (XQ) established in the convex

case (Proposition 2) cannot be extended to the nonconvex case.

Example. Let S = {(x^, x^) € R2 | x^ - Ix^^O}; then at XQ= 0, ̂ S^) is the set {(O^) | x^G R}

whereas ̂ pj (XQ, 0) is equal to {(x^, x^, X3l | x^ = 0, Max (0, x^) <X3) .

In [35] we introduced the notion of symmetric generalized gradient of a function as following: let XQ G E

where feF(E.R) is finite; the symmetric generalized gradient of f at XQ, denote by Df(Xo) is defined by

Df(xQ)= (x'GE* IVdeE^x^dXf^XQ^)}

^ere ^(XQ; d) » Inf {/, € R | (d, n} e%p^(Xo, ftx^))} .

Some elementary properties of f^x^;. ) are collected in the following Proposition.

Proposition 7. Let f be finite at XQ. Then,

(a) ^(XQ; .) fs a l.s.c., convex, positively homogeneous function from E to R and

f^.Xf^Xo;.).

(b) if there exists d such that f^x^; d) = —oo, domf^Xo;. ) which is equal to

{deElf^Xo.'d)—"}

is a nonempty closed convex cone with apex 0.

(c) the support function of D^x^) is [^(x^;.)]** and if Df(xQ)^0, 5-,, ^f^x^;.).
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(d) Df(Xo)^0 o ^(XQ;.) takes its values in R*

^(0-1)$%p,^f(xo))

(e) if the function d •-^(x^d) is bounded in a neighborhood of 0, Df(xQ) is a compact subset

of^'

Proof. The inclusion %p^(xo, f(Xo)) C ^p^(Xo,f(Xo)) impliesthat f°(Xo;.) < f^;.). The proofs

of different properties are similar to those of [35, Theorem 5].

v v
Remarks. .For a nonempty subset S of EXR. let S be defined by: (x,0)eS o (x.-O} eS.-we-remark

that if (XQ, 0^) e c£S. ^(XQ, -^ = ^A^Q. OQ). This remark combined with the general result
S s

^u^-^S^Uo)

yields that D(-f)(x^ = -Offx^. [34, Chapter VII]. This equality (or the equivalent relation

(-^(XQ; d) = ^(XQ; -d)) allow us to derive optimal ity conditions for maximization problems from

corresponding conditions for minimization problems.

Comparison results. 1. Generally, we have: M(x^) C Dftx^). From the theorems comparing

the tangent cone and the symmetric tangent cone (see [35, §1]), it follows that BftxJ = Df(xQ) at least

in two cases: first.'when f is convex (in a neighborhood of xj and secondly when f is Lipschitz in a

neighborhood of XQ. In fact, when f is a convex function, finite and continuous in a neighborhood of

XQ, all the notions we have spoken about coincide.

2. If (Xo,f(Xo)) is a regular point of the graph of f. int%p,^(Xo, ftx^)) is included in Iepjf(XoJ(XoJ

[35, Theorem 4]. So, cfi(f(Xo;.)) <fv(Xo;.) and 8f(Xo) C Df(Xo). More particularly, this last inclusion

may be directly proved if f is Lipschitz in a neighborhood of XQ.

3. If f is Lipschitz in a neighborhood of x^, we also have: B^x^) = 3f(xQ). The question whether

the different subdifferentials and the generalized gradient are generically equal has been recently investigated

[41 ]\ [54].

Part IV: NECESSARY OPTIMAL1TY CONDITIONS. SUFFICIENT OPT1MALITY CONDITIONS.

We consider the optimization problem of mathematical programming in general form. For S a

nonempty subset of E and f G F(E,R), we consider

(P) Minimize f (locally) on the subset S.

IV.A. x^GS is said to be a local minimum of f on S if f is finite at XQ and if there exists a neighbor-

hood VQ of XQ such-thai f(x) > f(Xo) for all xESHV^ . For sake of simplicity, we shall give examples

of necessary optimal ity conditions in particular cases.

Theorem 2. If XQ is a local minimum of f on S and if f is Lipschitz in a neighborhood of XQ, then

< 4 - 1 ) f * (xQ;d)>0, VdeT(S.-XQ) .



Theorems. Let X Q € S and let us consider a convex cone M with apex 0 included in T(S;XQ). If f is

a function Lipschitz in a neighborhood of XQ and if XQ is a local minimum of f on 3, then

(4.2) Oe8f(Xo)+M°

Proofs. See [32] or [35, § 1 1 1 . 1 ] .

For developments on necessary optimality conditions in a general context (non necessarily locally Lipschitz

functions), we refer the reader to the papers [53, 35]; for the locally Lipschitz case. see more particularly

[14,321.

IV.B. In this section, we give some indications about sufficient optimality conditions. In [31]. we intro-

duced the following definition of pseudo-convexity in the nondifferentiable case:

Definition 7. A locally Lipschitz function f : E -^ R is said to be locally pseudo-convex at XQ if there

exists a neighborhood V of XQ such that

(4.3) V x e V , f (Xo;x-XQ)>0^f(x)>f(Xo)

If the property holds for all XQ € E, we shall simply say that f is locally pseudo-convex. If the relation

(4.3) holds globally (i.e. V = E), f will be simply called pseudo-convex. Let us remark that, as in the differ-

entiable case [44], we have:

f pseudo-convex =» f "strictly "quasi-convex.

A similar kind of concept was introduced by H. Tuy [37] {semiconvex functions) but Tuy's definition

requires the existence of the directional derivative d ̂  f'(Xo; d). We give now some examples of sufficient

optimality conditions extracted from [34, Chapter V].

Theorem 4. Under the following hypotheses,

(a) f is locally pseudo-convex at XQ

(b) the constraint set 3 verifies the condition (L) below

(L) 3 V, neighborhood of XQ, such that for all x € V H S, x — XQ € T(S; XQ). If the necessary

optimality condition (4A) is verifiedat XQ, then XQ is a local minimum of f on S.

Theorem 5. Let x^GS be such that T(S;XQ) is convex; a necessary condition for XQ to be a local

minimum of f on S is that

(4.4) 8f(Xo)n-lT(S;Xo)]°^0 .

Moreover, if f is locally pseudo-convex at XQ and if S verifies the assumption (L) at XQ, then (4.4) is a

sufficient condition for XQ being a local minimum of f on S.

PartV: GENERALIZED GRADIENTS OF COMPOSITE FUNCTIONS. APPLICATIONS.

The principal results of this section have been announced as a Compte Rendu Acad. Sciences de Paris [36].
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V.A. In numerous problems (optimal control, fractional programming, best approximation, estimation ...),

the objective function and the functions defining the constraint set occur to be composite functions.

An example: The response of a physical system is a quantity y(t) satisfying a relation of the type

yttl^tt.'a) where 0 is a known function of t and a, t an auxiliary parameter (time for example) and

a an unknown parameter of R". For several values of t, t^ .. .,t̂ , one only has access to noisy obser-

vations of y(t;), namely y j=y( t , )+^. By making m observations (m » n), one chooses a 'GA

(constraint set) minimizing t(a) = $(y^-0(t^;a), . . .,y^-0(t^; a)) on A. In particular, the choice of
m ^

$(u^,. . .,u )̂ = 2 Uj corresponds to the least squares estimation.

A second example: Generalization of the problem of Fermat-Weber.

Let {K,}^Q be a family of nonempty subsets of EJet {CT;}!3 . be a family of functions from R to

R. The optimization problem consists on minimizing 2 <7j[d^.(x)] on KQ. In the problem of Fermat-

Weber, the subsets K, are reduced to points and KQ = E. The consideration of distances to subsets and the

introduction of a constraint set come naturally, specially for localization problems. In particular, the

constraint KQ may have the following structure:

dp(x)<dj V j=1 , . . . ,q . d c ( x ) > d ^ V k = q + 1 . . . . , r where {F^} is a family of subsets of E.

P
If the functions o,- are locally Lipschitz, the criterion f= .2 a. o a^ is locally Lipschitz. More generally,

one may consider criterions of the following type: x -^(d« (x),.. ..d« (x)) with ^ locally,Lipschitz.

Beside those already existing, we shall establish a new chain rule for the generalized gradient of composite

functions.

First of all. let us recall a definition and a property of a class of locally Lipschitz functions.

Definition 8: [15]. A function f G F(E, R), Lipschitz in a neighborhood of XQ is said to be regular at x-

if the directional derivative f'(Xo;d)= lim ^ [f(Xo+Xd) - f(Xo)]X-1 exists and/is equal to f*(xQ;d) for

all d€E.

In this definition and in the sequel, we refer to regularity at XQ only for functions which are Lipschitz in

a neighborhood of XQ. Convex or continuously differentiable functions f : E -r R are examples of

functions which are regular at each point of E. As an immediate consequence of the definition, we have:

(5.1) if f is regular at XQ and if a : R-»R is continuously differentiable at ^^ with

a'(HxQ)) > 0, then o o f fs regular at XQ. In particular,

(5.2) if —f is regular at XQ with f(Xo) ̂  0, 1/f is regular at XQ.

In (5.1), o o f is not regular at XQ in general when or'(f(Xo))<0 (take for example o(u) =-u). We

emphasize that in the context of nondifferentiable problems, the regularity condition is a rather stringent

hypothesis; geometrically, the regularity of f at XQ means that

CE {Î fx,,, fix,,))} » T l̂x,,, fIx^M ' y^a- ̂ o" •



If f : E -»• R is regular at each point, f is clearly quasi-differentiable on E and the quasi-differential

M^x^) is equal to a^x^) (see definitions in Part I). Conversely, F. H. Clarke [15. § 16] proved the

following interesting result:

(5.3) if f : E -*• K AS quasi-differentiable, if M^ is compact-valued in E* and if the set-valued mapping

M.c: E^^ E* is upper semicontinuous, then f fs regular and M^ 8f.

A counter-example typical in this respect is the following one: E = R, f-j(x) = x^ sin 1/x if x ̂  0,

f-1 (0) = 0. f^ is locally Lipschitz, quasi-differentiable at each point (since differentiable); f-j is not regular

at 0 and M^ (0)={0), 3^(0) = [-1, +1].

V.B. Chain rules for generalized gradients.

E, Ei,Eo,... are real Banach spaces; we shall not distinguish the duality products < . , . > between the

different spaces and their topological dual spaces.

The first two chain rules (Rules No 1, No 2) are from F. H. Clarke [15, §13, 14 ] ; we recall them here for

the convenience of the reader.

Rule No 1

Rule No 2

(i) Let F be continuously differentiable, let f be locally L/psch/tz.

Then, by denoting DFtx^) € JC(E ̂ , E^) the differential operator of

F at XQ, one has:

8( foF) (Xo)ca f (F (Xo) ) °DF(Xo) .

(ii) Equality holds if either f (or -f) is regular at Ftx^) or DF(XQ) is

suriective.

(i) Let f and o be locally Lipschitz; then:

9(a o f)(xo) C co {3o(f(Xo)) . 3f(Xo)} .

(ii) Furthermore, if o is continuously differentiable, or if a (or —a) is

regular at f(xQ) and f continuously differentiable, one has:

3((7° f ) (Xo)=a<7( f (Xo) ) .a f (Xo) .

Rule No 3

-^R" Theorem 6. Let F = ( f^ , . . ..f^) f^rid ^ be locally Lipschitz. Then,

m
•^
• •' •'•m'

a(^ ° F)(xo) c co {.5 u^, | (u^, . . ..uj e a^F(xo))

^-•^m)6^^^) •

Moreover, if the functions f, are regular at XQ, if ^ is regular at F(XQ) and if B^Ftx^)) C R^ , the

equality holds.
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Proof, (i) Let d € E. Let us consider a sequence {x^} converging to XQ and a sequence {X^} C R*
converging to 0; let us set:

E^ {^(F(Xn+Xnd)]--^[F(Xn)] } .X^--1

^ : R"1 -^ R is locally Lipschitz and by the mean value theorem [41], there exist F^ € ] Ftx^). F(Xn + Xy,d) [
in R"^ and u^eWP^} such that

(5.4) En = <F(Xn + X^d) - F(Xn), u^> • X^-1 (u^ » (u^ .. .u^))

According to the same theorem, there exist x^ e ] x^, x^ + X^dt and y^ e af,(x1) for all i = 1, . . .,m
such that

fi(Xn+Xnd)-f,(Xn)=Xn<y^d> .

Briefly, from (5.4):

^ ^'ii^^-^^l^x^ •
The set-valued mappings 8f, : E ̂  E^ and ̂  : R"^^ R"1 are upper semicontinuous [14, Proposition 7].

When n-^oo, Fn-^F(Xo) and X^XQ. So, by taking appropriate subsequences,
. E*

V i = 1 , . . ..m y'——0-^ 7, e 3i,(xJ
(5.6) " i « o

"„————^ u ie^^F(Xo)) .

Lê t us denote by D the set {x* € E» | x* = ̂  UjX*,, (u^,.. .,u )̂ € 3^(F(Xo)), (x^,.. .,x^) in

jj^ ̂ ^ } • D is a compact subset of E^ and we derive from (5.5) and (5.6):

lim^up E^<Max {<x», d> | x* € 0} .

So,(^o F)*(xQ;d)<5^(d) for all dGE and consequently, 8(^0 F)(XQ) C coD.

(ii) Let us consider the expression E^= {^(F(Xo+Xnd)] -^(x^)] • \^\ f, being supposed to be

regular at XQ, one has for each i:

f j(Xo+Xnd)-f j(Xo)=Xnff(Xo;d)+Xne^ with lim e ' = 0 .

Let €„ be the vector (e^,.. ..c^)1'. let V(XQ; d) be the vector (f^(Xo;d),.. ..^(x^.-d))7. Since ^ is

Lipschitz, E° may be written as

E^= {<^lF(Xo)+XnV(Xo;d)] -^(Ftx^)] }• X^"1 +0(1)1^11 .

^ is regular at F(Xo);so, îm^ E^= ^'(F(XQ);V(XQ; d)). Let (u^,. . .,uJ G B^Ftx^)) and

(x^,.. .,x^) € ^^ 3f,(Xo); since Wix^]} C R^

^ u,<x*,,d> < ̂  u,f;(Xo;d) < ^'(F(Xo);V(Xo;d)) .

Consequently, 5^(d) < (^?o F)'(Xo;d) for all d; hence the announced result.
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Comments. These different calculus rules have many consequences and applications. Let us begin by the

Rule No 3 we have just proved.

• Rule No 3. As a first consequence, we have

C-\. If <r isccntin'jously daferentiable,

(5.7) . 3(^0 F)(XQ) C ̂  ̂  (F(Xo))3f,(Xo)

with equality if the functions fj are regular at XQ and if VV?(F(XQ)) € R^ .

One cannot expect the equality in (5.7) with only the hypothesis that ^ is continuously differentiable (at

leastwith m>1). That is this estimate (5.7) (with equality if -^-(F(Xo))>0 for alt i) which was proved by

A. Auslender [2] for functions of the type <^(x, f^(x), . . .,fn(x)) where the (regular) functions fj have

a particular structure. We shall give later the exact evaluation of 3(<poF)(xQ) when E is finite-dimensional.

By taking <^(x) = .II Xj, one has as a particular application:

(5.8) 3( ̂  fj)(xo) <= ̂  ^,^o)3^o)

with equality if the functions f, are regular at XQ am//7 f j(Xo)>0 fora// i.

C .̂ Let us consider <p defined by <p(x) = .Max x.. <^ is obviously regular and if e, is the i-th row
*• i=1 , . . .,m

vector of the identity (m,m) matrix, one has: 3^(F(Xo))=co {e; 1 i, f^x^) = Max fj(Xo)}. Applying the

formula of Rule No 3, one finds again the estimate (and the exact evaluation when the functions fj are

regular) of the generalized gradient of Max f, [14, 34 Chapter V].

€3. Let us point out that the Rule No 1 (ii) with E^ = R^ also gives another case implying the equality in

the estimate of the Rule No 3 without any regularity assumption on </?, when F is continuously differen-

tiable.

• Rule No 1

CA Let x d € E let f., H be defined on R by f. c«(X) = f(Xo + Xd). By applying the Rule No 1 with
t* 0- • '-Q'- 0

EI = R, E^ = E and P = F^ ^ : x ^ ̂ o + xd' one obtatns:

(5.9) 3tx ^WC<^ f(xo ) 'd>

with equality if f [or —f) is regular at XQ.

If E = R", as pointed out by F. H. Clarke, one can state:

(5.10) for almost all XQ, 3^ ^(X)'= <3f(Xo+Xd), d> for all X .

The inclusion (5.9) can be directly obtained by proving that for all v€R , f ^ ^(0; v) < f'(Xo;vd); with this

relation, the mean value theorem can be proved in a straightforward manner. When E-j and E^ are finite-

dimensional, the estimate of Rule No 1 also appears as a consequence of results of [33].

•Rule No 2. The estimate (i) given in this rule appears as a particular case of the inclusion given

in Theorem 6 but the conditions (ii) ensuring the equality work only when f is real-valued.



80

Let us give some examples of applications.

Cg. By taking a(x) s 1/x, we have:

(5.11) if f(Xo)^0, 3(l)(xo)=- af(xo) .
f (f(Xo)]2

This relation, combined with (5.8) and the remark (5.1) yields:

< g(Xo)3f(xJ - 9g(xJf(xJ
(5.12) if gtx^O, ̂ L}{^ C w 0 0 _ ° °

g [g(xo))2

with equality if f and -g are regular at Xy f(x^) > 0 and g(Xo) > 0.

These different relations allow us to apply the necessary (resp. the sufficient) optimality conditions (see

Part IV) to fractional programming, that is to say to optimization problems where the objective function f
m P i

has the form x *-»• f(x) == [ n f,(x)] [ n g;(x)] "•. In particular, the context of our approach is more
i=1 ' j=1 j

general than that of J. M. Borwein [9] who treats the quasi-differentiable case.

Cg. By applying the Rule No 2 (ii) to o(x) = |xj, one derives that if f Is continuously differentiabie and if

f(x^)=0, aif|(xQ)= [-Vf(xQ),Vf(xQ)L Generally speaking, we only have

aifl(Xo) C co {3f(Xo) U -8f(Xo)}

if f(xQ) = 0; the equality does not hold even for functions regular at XQ.

Cj. There is another case where the convexifying operation "co" is unnecessary in the formula of Rule No 2,

that is when o is monotone in a neighborhood of f(xQ). Indeed, if o : R ->• R is an increasing (resp.

decreasing) function in a neighborhood of u ,̂ one has Sofu^) C R (resp. R_) (this result remains true if

a : R -> R is not necessarily locally Lipschitz).

The Rule No 3 (ii) applied with m ss 1 yields another equality case in the frame of Rule No 2, that is:

(5.13) /f f is regular at x^/f a is regular at f(x^) and if 3o(f(xQ)) C R^, then

a(aof ) (Xo)=3o( f (Xo)) .3 f (Xo) .

Example: if f is regular at x^ and if f(Xo) = 0, one has: af^) = [0.1]af(Xo).

Remarks. Due to the local nature of the notion of generalized gradient, the required properties on the

functions (Lipschitz property, continuous differentiability . . .) need to be assumed only in a neighborhood

of the considered points.

The results (5.13) and (5.7) are extensions of analogous results established in the convex case by

C. Lescarret [42. Propositions 3 and 6].

V.C. An exact chain rule in the finite-dimensional case.

In this section, we shall suppose that E = R".

For g : R^ R5 satisfying a Lipschitz condition in a neighborhood of XQ^ R1', F. H. Clarke [16] defined
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the generalized Jacob/an matrix of g at XQ as following:

Definition 9. The generalized Jacob/an matrix of g at XQ, denoted by ^(g; XQ), is the set of matrices

defined by

^(g;Xo)-co{jim J(g;x,)}

in th is definition, X j converges to XQ, g is different/able at x. for each i and J(g;X() is the usual

Jacob ian matrix.

^(g;XQ) is a set of (s,r) matrices and we denote by e^^S^o^ the set of transposed matrices A^ with

AE^(g;XQ). If g is continuously differentiable at XQ,^(Q;XQ] is reduced to (J(g;XQ)}. In the
3g

case where s^l , g'(x) is represented by a row vector (—(x)) whereas the column vector is the gradient
ox.

Vg(x) G R1'. In order to preserve the given definition of 3g(x-) (see (1 .18) ) and the coherence of notations,

we shall consider the elements of Qgtx^) as elements of R*^ (and not of (RQ*). So, we generally have:

(5.14) ^T(9;Xo)C(^g1(Xo),..,^g,(Xo)) .

This inclusion is strict even for very regular functions gj; for example, if g : R -»• R^ is defined by

g(x)=(|x|.|x|)T,wehave ^(Q-.O)^ {(u, u) | u € [ - 1 . + 1 ] } .

Let us consider again the frame of Rule No 3 with a continuously differentiable function î ; we shall give

an exact evaluation of 8(1^ o F)(XQ) using the generalized Jacobian matrix of F at XQ.

Rule No 3 bis

pn r___^ pm Theorem 7. Let F be a locally Lipsch/tz function, let ^> be continuously

\. differentiable. Then,

^ ^ Y ^ a^oFHx^^F.-x^V^FtXo))

R
Proof. According to Definition 9, it is easy to show that 8(<^ o F)(XQ) contains the set vt (F;XQ)V^(F(XQ)).

For the converse inclusion, we follow the proof given by F. H. Clarke [16, Lemma 2] in the case where

m at n. This proof is based on the following property: if g : R01 -> R is a locally Lipschitz function, if A

is a subset of R" of measure 0, one does not modify 3g(xQ) if the points Xj are constrained to the com-

plement of A in the definition (1.18). We then apply this result to g = < ^ o F by taking A = (x e R" | F is

nondifferentiable at x).

As examples, if F = (f-p . . ..frp)1': R" -»• ̂ n} is locally Lipschitz, one has:

3( ̂  f,)(Xo) = { ̂  A, | (A-,,. . .A^) € ^(F.-XQ)}

a( .̂  f,)(xo) = { ̂  n. fj(Xo)A, I (A^, . . .,A^ € ^(F.-XQ) }

By taking <^(x) = Xj, we find again the following "projection" property:

^j(Xo) = (A, 1 (AI, . . .,A,,.. .,A^) € ^(F.-XQ)} .
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Remarks. 1. An exact chain rule such as in Theorem 7 with a nondifferentiable function <p cannot be

obtained; the function <^(x) = Max Xj allow to construct simple counterexamples.

2. Other generalizations of the notion of derivative have been successively introduced for vector-valued

functions: the notion of "derivate containers" by J. Warga [62] and the concept of "screens" by H. Halkin

[29]; although conceptually related to the notion of generalized Jacobian matrix, their definitions seem

more difficult to handle.

Addendum. After having finished this work, we became aware of three papers which also deal with the

generalized gradient and related definitions. The first paper is that of B. Pourciau [J. of Optim. Theory ̂ nd

Applications, Vol. 22, No 3 (1977). 311—351 ] ; B. Pourciau gives a definition of the generalized derivative

of a function f : R" -> Rk by taking a^x^) = n co {f(x) | x e B^x^) n L(f')}; in this definition,

L(f) is the Lebesgue set of f. When f is real-valued, ^(x^) is exactly the generalized gradient but in the

vectorial case (k > 1), we do not know whether ^(Xg) and ̂ (f; x^) really coincide.

The two other papers are those of R. Mifflin and have reference to semismooth and semiconvex functions

[SIAM J. Control and Optimization, Vol. 15, No 6 (1977), 959-972, Math. of Operations Research, Vol 2.

No 2 (1977), 191—207]. Semismooth functions are particular locally Lipschitz functions possessing a

semicontinuous relationship between their generalized gradients and directional derivatives. In the first

paper quoted above, R. Mifflin gives a chain rule (inclusion) as in Theorem 6 (with E = R") and shows that

a semismooth composition of semismooth functions is semismooth. Note that the functions called quasi-

differentiable by R. Mifflin are in fact regular following the terminology of F. H. Clarke. In the second

R. Miff tin's paper, the class of weakly upper semismootb functions is introduced; such functions also have

a semicontinuous relationship between their generalized gradients and directional derivatives but this rela-

tionship is weaker than the corresponding one for semismooth functions.
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