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SYSTEMS OF QUADRATIC FORMS

by

Albrecht PFISTER

1 • Introduction
In general it is very difficult to solve a system of algebraic equations

in several variables. There are only a few theorems which say more than ordinary
algebraic geometry and yet are not restricted to objects of special type such as
elliptic curves. One of the best known results of the type in question are the
theorems of Tsen-Lang on quasi-algebraically closed fields ( [ 1 5 ] , fs]) which are
repeated in part 2. The essential point in these theorems is the possibility to go
up from a given field K to an algebraic or transcendental extension field L of
K.

In the theory of quadratic forms one would like to have similar "going-
up theorems". Even if the given problem is about a single quadratic form,over L
one is automatically-led to consider"systems of quadratic forms over K. Unfortuna-
tely the theory of systems of, quadratic forms seems to be neafl-y as difficult as
the theory of systems of arbitrary forms. Nevertheless it appears to be useful to -

Qintroduce the concept of H C—fields in analogy to C.-fields and to derive the
corresponding theorems of Tsen—Lang type. This is done in part 5. Full proofs can
be found in the thesis of M, Amer [ l 1 «

The main part of the present paper is part 4o Theorem 5 shows the exis-
tence of fields which are C but not C . The proof uses two recent theoremso • o . - ' •
on places by Jon K. Arason (Theorems 1 , 2 ) which are published here with his kind
permission. Theorem 5 also contains the main theorem of the paper [9~l of S. Lang.

The final part 5 contains a collection of related results, examples and
open problems. Needless to say that it would be most desirable to get further
results on C -fields for i > 0 or .at least for i = 1 in order to solve somei ' • ' • • " • • ' ' . •
of these problems.
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2. C.-fields

Definition. A, field K is called C.-field if for any d > 1 and for any form

f of degree d in n > d variables with coefficients from K the equation

f(x ,...,x ) = 0 has a non-trivial solution in K, i.e. f(a ,...,a ) = 0 for

suitable a- € K, not all zero.k

1 ) K is C if and only if K is algebraically closed.

2) If K is not C then K has an algebraic extension field L of degree

d > 1 and the norm—form cp of L over K is anisotropic in n = d = d va-

riables (anisotropic means : has no nontrivial zero).

By substituting cp into itself we get anisotropic forms cp. of degree d in

n = d variables :i

cp^ = (cp l . - . l cp ) = cp(cp(x^,...,x^), cp(y^,. . . ,y^), . . . ,cp(z^, ...,z^))

d d entries

cp = co(cpj ... |cp^) etc.

Proposition 1 (Artin's Trick). Let K be C. and let f ,...,f be forms of

degree d over K in n common variables where n > r. d . Then the system

f = 0,,..,f = 0 has a non-trivial simultaneous solution in K.

Proof : See [8"|. The idea of the proof consists in substituting the system

^,...,f,
from linear algebra and the case i = 0 is known as the main theorem of elimina-

tion theory (or dimension theory in the terminology of algebraic geometry) one may

suppose d > 2, i > 1 . By example 2 above there exists an anisotropic form cp in

n = d variables where n is arbitrarily large, e.g. n > r.
0 0 0 0

One defines cp inductively by

^1=^1'-^ '-I ̂ -^ i0

<̂r
n

cp is of degree d = d d and has n variables where IL = ^•C—1

If f ,...,f have no nontrivial common zero then all the cp are anisotropic.
1 ' r . k

But for large k we have IL > d which gives a contradiction.

Proposition 2. If K is C. and L is algebraic over K then L is also C . .
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Idea of proof : Let f = f(x , , , , , x ) be the given form over L. Suppose
[L:K] = r and choose a basis w • • • . , w . Put

r 1
x = F x w where the x are variables over K. Then

f ( x ^ , . . . , x ^ ) = f^(x^) w^+o.«+f^(x^)w^ and f = 0 over L if and only if
f - . . . = f =0 over K« This gives a system of degree d in r.n > r.d1

variables over K to which prop, 1 applies.

Proposition ^. Ket K be C^. Then the rational function field K ( t ) and the
formal power series field K ( ( t ) ) are C.
Proof : See [8] for K ( t ) , [ 6 ] for K ( ( t ) ) .

Non-proposition 4. (Artin's Conjecture) Suppose L is complete with respect to
a discrete valuation v. If the residue class field K = L/v is C. then L need
not be C^.

Counter-example : p-adic fields are not C though finite fields are C . See
[4] and [ l 2 ] .

5. C . ̂ fields.

Definition 1 ' . A field K is called C.Afield if every system of r quadratic
forms over K in n common variables has a non-trivial simultaneous zero in K
provided n > r.2 1.

Remark. This definition replaces prop. 1 for the special case d = 2. As is shown
by the examples below it is impossible to deduce the property C . q from the corres-
ponding assumption for r = 1 .

Proposition 2 ' . If K is C^ and L is algebraic over K then L is also C q .1 i
Proof : Sams as for prop, 2e

Proposition 3 ' . If K is C . q then K ( t ) and K ( t ) ) are C . q .
Proof : Sam(< as for prop, 5,

Open Problem 4 ' . Suppose L is complete with respect to a discrete valuation v .
Suppose the residue class field K = L/v is a C.Afield. Is L a C . q -field ?

Remark. It seems unlikely that the answer to this problem is yes. However I do
not know of any counter-examples. For one quadratic form ( r = 1 ) over L the
answer is yes by the theorem of Springer [ 1 1 ] . For two or three quadratic forms
the answer is yes in special cases, see the examples in §5.
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1 ) Let K be the quadratic closure of (^ (in a fixed algebraic closure ?>) that
is the union of all towers (^ = K < K, <K < . . .< Q where [K , : K ] = 2 foro 1 2 m+1 m
all m > 0.
Every quadratic form in 2 or more variables over K is isotrppic. But K is not

q ' 2 2 2C . T o see this consider the system x - y z , z + x y + y of r = 2 quadratic
0 / Kforms in n = 5 > 2.2 = 2 variables over K. If ( x , y , z ; is a non-trivial zero

of the system then y ̂  0, so without loss a generality y = 1 , x = z and
4x + x + 1 = 0. But this equation has no solution in K since the order of the

4G-alois group of the polynomial x + x + 1 over Q is divisible by 5. There is
another proof as follows : K is quadratically closed but has algebraic extensions
L which are not quadratically closed. If K were C then by prop. 2' L were
also C which implies L quadratically closed : contradiction.

2) Let ^ be the field of 2—adic numbers, let % be a fixed algebraic closure
of 0 . The Galois group of G- of Q over 0 is soluble (as a profinite group)
therefore contains a (5,5)-Hall-subgroup H. Let K be the fixed field of H.
K has thefollowing property : Every finite extension of K has degree 5 «5 for
some i > 0, j > 0 ; every finite extension of 0 contained in K has degree
prime'to 5 and 5. The polynomial

f(x) = (x5 + x 4- l ) ( x 5 + x2 + 1 )

of degree 8 has no zero in K since both factors are irreducible over ^ . On the
8 6 2 5 5 8other hand the non-trivial zeros of a form x + a.x z + a_x z + . . . + a z with6 5 o

a ^ 0 are in 1-1-correspondence with the non-trivial zeros ( x , y , z , w ) of the
system

2 2 2 2 2x -yz, y -zw, w +a.-yw+a.y +a-yz+a z +axw+a xy+a xzb 4 £- o 3 _) \
qof 5 quadratic forms in 4 variables. This implies that K is not a C -field

though K has an "o d d " Galois group H which furthermore contains only the two
primes 5 and 5.
We will show in §4 that a field K whose Galois group is a p-group for some odd
prime p is actually a C -field.
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4. C ^fields

Definition. Let p be a prime. A field K is called p-field if any finite exten-

sion field of K has p-power decree (over K).

We start with two recent theorems of Jon K. Arason.

Theorem 1 . Let L be a field, let K be a p-field and let X : L -A K U {00} be a

place. For any finite extension field M of L with pX [M : L] the place can be

extended to a .place \i : M -» K U {°0} .

Proof : Let v be a Krull valuation of L belonging to ^. ¥e may suppose that

the residue class field L/v of v is contained in K,

We shall first treat the case where (L,v) is henselian. Then v has exactly one

extension w to M. Furthermore by a theorem of Ostrowski ( [10] , ch. G, th. 2)

[M : L] = x^ [w(M^) : v(L*)].[M/w : L/v]

where w(M*), v(L^") denote the value groups, x denotes the characteristic exponent

of K (i.e. x = char K if char K is a prime, x = 1 it char K = 0) and d is an

integer, d ^ 0.

By assumption on [M : L] it follows that [M/w : L/v] is prime to p. Since

L/v c: K and K is a p-field the embedding L/v c: K can be extended to an embed-

ding M/w c K. This gives rise to a place n, : M -> K U {00} extending A .

It remains to reduce the general case to the henselian case. Let (L,V) be a hense-

lian of (L,v) (See [10], ch. F, th. 2). Then 'L/v'= L/v c K, the place

A : L -» K U {00} belonging to v extends A., and L/L is separable. From the last-

statement it follows that L- ^ M is isomorphic to a direct sum .©, S. where the
•b 1=1 1

r^i r^
M. are finite field extensions of L. For each i there is an embedding

a. : M -> I?, which is the identity on L. The equation .E [S\ : 'L] = [M : L] and

the assumption pX [M : L] imply that there is at least one j with pX [%. : 'I/|.
r^i r^ rs. r^i <3

By what we have shown above A. can be extended to \i : M. -^ K U {00}. p, o o?. :
, . J d

M -> K U <oo} is the desired extension of A. to M,

Theorem 2. Let K be a p-field and let t,,...,t be independent indeterminates

over K. Then the rational function field K(t,,.,.,t ) has an algebraic extension

M with the following properties :

(i) M is a p-field

(ii) For each N-tuple (a ,...,a^) C IT there is a K-place A : M -> K U {00} with

X( t^ ) = a. for i = 1,...,N.
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Proof : To simplify notation we -write _fc,= (t,,..«,t ). Let K(j^) be the algebraic

closure of K(_^) and let M "with K(j^) C M C K(j^) be maximal "with the property

that each finite extension M of K(j^) contained in M has degree prime to p.

Such an M exists by Zorn's lemma. We "will sho that M is a p-field. Assume

first that M has a separable extension "whose degree is not a power of p. Then

there is a Galois extension with the same property. Applying Sylow theory we get a

proper extension of M with degree prime to p contradicting the maximality of M.

Assume second that M has an inseparable extension N of degree not a power of p.

Then char K = char M = q. is a prime different from p and the separable part N

of N is of p~power degree over M. Consider the subfield N == {a : a € N }s s
of N • Since M has no immediate extension of degree prime to p we must have

M = M' c N q-. Therefore [N : N ^/[N : M] is a power of p. Since [N : N q]s L s s J/ s -' - s s J

is a power of q. too we must have N = N .

But then N = N is separable over M : Contradiction.s

Now let A : K(_fcJ -» K U {00} be a K-place with ^(t^) = a. for i = 1,...,N

(Such a place can easily be constructed by induction on N), Consider all pairs

(L^) where L is a field, K(_fc;) c L c M, and \ ; L -» K U {00} is a K-place

extending X . By Zorn's lemma there exists a maximal pair (L,^-) of this kind.

Applying Theorem 1 to L we conclude that there is no finite extension M of L,

LC M CM, with [M : L] prime to p. But p | [M : L] is also impossible since
0 0 0

the "degree" [M : K(_b.)] is "p-free" by construction of M« Thus L = M which

proves (ii).

¥e are now able to prove a theorem on systems of forms over a p-field which in par-

ticular shows that p-fields are C q if p ^ 2.

Theorem ^. Let K be a p-field. Let f ,...,f be fonus over K of degrees

d,,..,,d in n common variables. Suppose n > r and pXd. for i = 1,...,r.

Then f ,«..,f have a non-trivial simultaneous zero over K.

Proof : We may suppose n = r+1 . The ideal (f ,...,f ) d'efines a certain alge-

braic set W in protective r-space. The idea of the proof is as follows ; By a

specialization argument using Theorem 2 one reduces to the case dim W = 0. Then

Bezout's theorem is applicable and provides a K-rational point on W.

Let F.,.«.,F be the generic n-variable forms of degrees d,,,..,d over K.

Thus the coefficients of F ,...,F are independent indeterminates t^,...,t^

over K and N = (V) +/..+ ^r^).

Since n = r+1 the algebraic set V in protective r-space over the algebraically

closed field K(_b.) defined by F ,...,F has dimension 0» By Bezout's theorem

the number of points of V counted with multiplicity equals d,, ... . d . Let
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now M c K^T)" be as in Theorem 2. We sbill show that V contains H at least one

M-rational point P. For this we note that any point

P = (^ > • • • > ? . ) € V c: P (K(_^)) uniquely defines its fields of rationality over M,

namely M(P) = M(— ,..., ——t1-) it §. ^ 0. Suppose M(P) ^ M.
-J 'J J

Then [M(P) : M] is a finite power of p since M is a p-field.

If M(?)/M is inseparable then necessarily p = char K = char M and the multi-

plicity of P € V is divisible by p. If M(?)/M is separable then the number of

conjugate points of P over M equals [M(P) : M] which again is divisible by p.

It follows that the number of points P € V with M(P) ^ M - counted with multi-

plicity - is divisible by p. Since the total number d, , • • • , d of points of

V is not divisible by p there must be a t least one P € V with M(P) = M i.e.

P is M-rational. From now on let P = (S.,...,S .) € V be M-rational.

Let f.,...,f be the given forms over K. Let a ,...,a^ be the coefficients of

f ,..,,f corresponding to t,,...,t . By Theorem 2 there exists a K-place A. :

M ^ K U {00} with A.(t .) = a., i = 1,...,N. \ may be further extended to a map

\ : M [x^,...,x^] -» K[x^,...,x^] U {00} by defining X(x ) = x , j=l,...,r+1.

Then ^(F.) = f. for i = 1,...,r. Since P = (^,...»§^-i) c V is M-rational we

can suppose §. € M for j=1,...,r+1. Let v be the multiplicative valuation of

M belonging to A.. Since not all S. = 0 the v(§. ) are not all zero and there is

some i such that v ( § . ) ^ v ( § . ) for all j=l,...,r+1 and v(g^) > 0. Scaling

P by •— shows that we may suppose v (§ . ) : ^1 for all j, |̂  = 1 . Then ^ - ( S . )

is finite for all j, and ^ (§ . ) = 1 . Thus X(?) = (\{^),...,x^^ )) is a point

in P^.(K). Clearly f^(P)) ^(^K^P) =-V(F^(P)) = 0 for i=l,...,r, i.e.

^.(P) ^ W o This proves the theorem.

Corollary 1 . Let K be- a p-field, p^2. Then K is C q,

Corollary 2. (S. Lang [9]) Let K be a real closed. Then K is "oddly C^" that

is any system f.,...,f of forms of odd degrees over K in n>r variables

has a common non-trivial zero over K.

Conjecture (Converse of Cor. 1 ) . If K is C^ then K is a p-field for some

prime p ^ 2.

For the motivation of this conjecture see Exemple 2 in §5.

5, Related results and problems

a) 'p-adic fields
Though p-adic fields are not C there are some remarkable positive results
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on systems of quadratic forms,

Pro-position 5. (Demyanov, Birch-Lewis-Murphy [51)
Let f,,f^ be two quadratic forms in at least 9 variables over a p-adic field K.
Then f ,f^ have a non-trivial common zero in K,

Pro-position 6 • (Birch-Lewis [2]) Let f ,f ,f^ be three quadratic forms in at
least 1 5 variables over a p-adic field K. Suppose in addition that K is non-'
dyadic and that the residue class field k of K has at least 49 elements. Then
f ,f ,f^ have a non-trivial common zero in K.

For K = Q,^ the corresponding result onthree quadratic forms has been verified

by F. Ellison [5] provided f ,f ,f are all in diagonal form.

b) Extensions of odd degree

A well-known theorem of T, Springer says that a quadratic form f over K
which becomes isotropic in a field-extension L with [L : K") odd already must

be isotropic over K. This theorem does not generalize to systems of quadratic

forms.

Counter-example : K = %, L = ^v^),

^ = ^ ^1 ^29^ =^2 ~ 2^9 ^ = ̂ 2 - ̂ f ^ = 2X?2 - ̂ Y

For any non-trivial solution of the system we have x. x x ^ 0.
? "̂  "̂  "̂  5 3

Then x^'" = 2x^ x^x = 4x ' , x^ = x^ x^x = 2x^ , (x^,x^,x^) ^ ( A, /2, 1 ) .
Thus we have a non-trivial solution in L but none in K«
Remark : M Colliot-Thelene has pointed out that the counter-example is in a sense
non-geometric and that it would be more interesting to have a counter-example with

n > r (n variables, r quadratic forms).

c) Function fields over (R
Con.iecture (s. Lang [9]). Suppose K is of transcendence degree n over a real

closed field R. Suppose also that K is non-real, i.e. -1 is a sum of squares

in K. Is it true that K is a C^-field ?
Besides the case of forms of odd degree mentioned in Corollary 2 above the only

case where the conjecture is known to be true is the following : n = 1, one quadra-

tic form. This goes back to Witt. A modern proof can be founc in [7, ch. XI, th.

1.8]. The next cases to look at are :
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n = 1 , two quadratic forms in 5 variables
or n = 1 , one biquadratic form in 5 variables
or n = 2, one quadratic form in 5 variables.

An attempt in this direction has been made in [ 1 ] but without final success,
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