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GROUPTHEORETICAL INVESTIGATIONS ON COMPUTERS

by
Leonhard Gerhards

Many problems in the theory of finite groups depend on the knowledge of the
structure of the lettice V(G) of subgroups of a finite group G and its auto-
morphism group Aut G. Especially for solving problems in the theory of factori-
zation of G and in the theory of group exiensions the structure of V(G) and

Aut G is fundamental. Therefore, a proéfam for computational determination cf
V(CG) and Aut G has been developed for the computer system IBM 7090/1&10 at
1n/a*) | zonn 6], [M), {¥].

The aim of this paper is to give a systematical survey about the program, the
ideas and the mosﬁly detailed theoretical concepts of which are considered in
many other parers [4], [S], [?}. In 6 secticns the present paver mainly written
under ccmputational aspects contains a complete descripticn of the principal '

methods and algorithms of the program in a most effective form,as they are

)
implemented in the computer.

Under the point of view that in general computational algorithms in group theory
are based on time-saving methods.for the representation and multiplication of
elements of G, we develop in section 1. by using parts of the group table T(G)
of G a mpst effective multiplication algorithm for elements of G represented
by a "normal form" of abstract generators and defining relations. In section 2.
methods for the generating of groups by a system of generating elements of G
are discussed [4}. In section 3. the representation of subgroups of G by
"characteristic numoers" [iZ] and the use of Boelean operations are intro-
duced.

In the main section 4. the fundamental princips for determining V(G),namely
the "method of filters" [6] and the "algorithm of composition" [#1] are
discussed. We notice that the developed method is of combinatorial type and
does not require group theoretical ussumptions of G as in Bﬂ.

The central section S. contains a complete description of the determination

of .Aut G for the general case that G contains a "Hall system" H1""’Hr

of subgroups Hi (i=1,...,r) of G [?]. Taking the theory of factorization as a
basis [4], Dﬂ)the automorphisms of C are obtained by "composition of allow-
able automorphisms” of the subgroups Hi(i=1,2) and specizl inner automorphisms.
This algorithm-different from the concept of [5]-has been developed for soli-

vable groups by E. Geller [4].

» . . . .
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66 L. GERHARDS

Finally in section 6 the representation of automorrhisms as permutations or as

words of abstract generators are briefly discussed.

1. Methods for the representation of rroup elements in a computer Af], P+], Eﬂ

1.1 Computational algorithms in finite group theory in general are based on
effective methods for representing and multiplying the elements of a

finite group G in a computer M.

1.1.1 A 1-1-mapping Hp: G+ S of G in a structure S is called a represen-—

tation of G in M, if S can be realized in M and if

(1.1) f&fﬁ=f&9$hﬁf&aﬂpﬁm(%ﬂﬁsc.

1.1.2 The realizstion of S, however, means that the following conditions forjp

are satisfied:

(1.2) Every element a € G can uniquely be represented by the

"normal form" P(a) in M.

(1.3) There exists a most effective unique algorithm for the
determination of the normal form )O(ai,aj) of the product
8; .8, using the normal formsjp(ui) andj’(aj) of the factors

a;,8; for all pairs (ai’aj) =G.

1.1.3 The group table T(G) of G as a special representation

Knowing the group table T(G) of G we can regard the columns of T(G) as

a relation system of the greatest generating system of G with pairwise
different elements or as the right regular representation of G by
permutations of degree |G|. These representations satisfy the conditions
(1.3) and (1.4).

‘Both interpretations of T(G) are extreme cases for representing G in M
by abstract generators with a system ofvdefining relations or by permuta-

tions.

1.2 Representation of G by permutations

1.2.1 I;‘}’: G+ Sr is an isomorphic map of G in the symmetric group Sr of

degree r, then to every element a € G there corresponds &s a normal
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1ese sl

. 1 .
form a permutation®(a) = <; ) of Sr stored in M as a product of

well defined cycles. Such a réé;;;:ntation of G satisfies the conditions
(1.2) and (1.3). But only if the degree r of the permutations is rela-
tively " small (r < 10) the representation of the elements of G by permu-
tations is useful, because multiplication of two permutations of high

degree is a time-consuming process in M.

Therefore, if the degree of the smallest permutation subgroup of Sr
isomorphic with G is relatively high, it seems to be necessary to rerre-

sent the elements of G by abstract generators and defining relations.

1.3 Representation of G by abstract generators and defining relations %1, Mdl

1.3.1 Special generating systems of G

If G is a finite group with a chain <e> = Hoc...cHn = G of subgroups
Hi(i=1,...,n) of G such that

. = . . . = H, _+H, . too.t+ H, . .
H1 <H1_1,a1>, Hl Hl__1 H1_1al H1_1a1 , & e H

the system {aI,...,an} is a generatiﬁg system of G satisfying the

defining relations: -
r. .
i_ 1,1 v 111 .
a, a ool (i=1,...,n)
(1.%)
g Yk, B,i,1 Yk, 8,1,k .
a8, = a, e Y- N k=2,¢404n, i=1,...,k-1
S=1,...,rk—1

Every element g € G can uniquely be written as a word of the generators

B, 5000,8 ¢
1° *“n

IEERRLS (0 A<, i=1,.00,n) ,

1

and the representation ¥: G » S is defined by

85 Pe) = (yheeaty)
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We call a generating system of G satisfying (1.4) a special generating
system of G.
1.3.2 Special generating systems for solvable groups

If G is solvable, one can always find a chain of subnormal subgroups
of G:

«w>=N 4N, @..9N =G
o n

1

with eyclic factor groups Ni/Ni_1 (i=1,...,n) such that

= cees8 > . = <N, 2> .
N1—1 @ By Nl <N1—1’51?

Then the system {a1,...,an} is a special generating system of G with

the following system of defining relations:

a.” ¢ N. (i=1,...,n)
(1.5)
-1 .
aaa e N _, (k=2,...,n , i = 1,...,k-1)

1.3.3 If the elements of G are represented as words of the elements of a

special generating system of G with defining relations (1.4) or (1.5),
the computing time for the normal form.f(gdgz) of a product €,°8, in G
using the normal forms_f(g1) and,?(gz) of the factors €,+8, neinly
depends on the number of the generating elements of G and on the form
of the defining relstions (1.4) or (1.5). But by changing the represen-
tation of G and storing parts of the group table T(G) we are able to

make multiplication in M mdre effective.

1.3.4 Change of the representation of G by storing parts of T(G)

Let be
. < = cee =
(1.6) e>=H cHc...cH =G
any chain of subgroups of G with index r, = [Hi:Hi—l}’ (i=1,...,n).

Further let Ri o= {aiJ)/ j= 0,...,ri—1} be a $ystem of representstives
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of a right coset decomposition of H, by Hi_1(i=1,...,n), ago) = e,

Then every element g € G has & unique representation in the form:

(X1) (X2) (Xn)
(1.7) g=a, oy, e U
But if the relations
(Xj) () (u,) (uj) o )
ay ¥ ey a0 el LT f(v,J,l,Aj,Ai)(v41,...,3)

(1.8)

(j=1,0.05n , i=1,...,], Aj=0,...,rj_1, i ceeaTo g

n
are known the system AS1= L) Ri is a generating system of G,and using

i1 ,
() 0
(1.8) a product g = €,°8, Of two elements g, = a teeetan o,

R 1
(u1) (un)
8, = oy Seeer o of G in normal form can te reduced in & finite

number of steps on normal form.
(v,) (v.)

To prove this we denote by Wj a word a, L aj of length j
generated in normal form by elements of 45L. Further let

(x)

(o) _ 10, “n—i) .. ot s »
Wn_1 s o et . Then using the defining relations:

() ) ()
o n a, 1 - wﬁlz a n,!
O ) ) 2) O
o o5 = W 1 an
(Xn,n_1) (Un) B (n) (Xn’n)
[¢1 =W "1



70 L. GERHARDS

ve reduce the product of two words of length n in n steps to the calcu-

lation of n products ﬁ(l) = ﬁ(l—1)w(1—’) (i = 1,.00,0),
ﬁ(o) .

n-1 n-1 n-1
= (o)
n-1 = Yoy

According to this result for the number Zn of effective entries in the

relation table (1.8) by the computer we obtain the estimation:

L)< nl+e (e eulerian number)

1.3.5

Representation and multivlication of the elements of G by syllables in the a's.

Let

5 * * »
(1.9)  <e> = M CH Con@y =63 B =B (k= 1,...m, 10’ <n)

m k

be a chain of subgroups of G, which is coarser than the chain (1.6). Then

)

* . .
Hk-1 (x = 1,...,m*) can be written as a word of the a's in normal fornm:

(x, ) (x. )
(v,) _ k1" : 1k
(1.10) Ak k' = aik—1+1 LI aik

N N . sas *
any representative Aivﬁ of the right coset decomposition of Hk by

and every element g € G can be uniquely represented as a word in the
syllables Aévk)l

(v1) (vm*)
g = A1 Ceent Am*

The corresponding relation tables:

(x.) (x.) (u,) (us)
AjJAil =A11'...-Aj I (52 i)

can be determined by using the multiplication for the a's.

1.3.6 Extension of special generating svstems

If o = (a1,...,an} is a special generating system of G satisfying the

relations (1.4), then the groups Ek of the chain (1.6) and the rerreserta-
. (o) . _ (o) _ o " .
tives ak are given by Hk = <a],...,ak>) ak = ak and for multiplying
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elements of G represented in normal form described in 1.3.h we still use

the tables T . for the words of the right sides of the following extended

ki
relation system:

= 1,000,r
B.u _ . (Byu) R
(1.11) aa; = W a1,...,ak) b= T s k> i
It can easily be shown that it is possible to determine the tables Tki
(ia1,...,k-1),if the multiplication of elements of G of length j < k - 1
can be executed by the‘computer. The latter, however, can be done, because
the complete tablesiji (j >i, j=2,...,k-1, i=1,...,j-1) have

already previously been determined and stored.

1.3.7 Decision of the multiplication form

;) (x)
Assuming that every g = o ! IERRRLN e represented as in 1.3.4 cen

be stored by a normal form as an-tupel‘f(g) = (A1,...,An) in only one
cell, the place using by the computer for storing the relation tables (1.8)

amounts to

' n
= ’ 2 .
(1.12) R = Z. rS o+ ) r r, cells.

In the case that the number of generators of G is greater than 2 the
computer proves,if the sequence of the relative orders r, of the genera-
tors oy allows a multiplication in form of syllables in the sense of
1.3.5. Thereby a splitting of the words represented in the a's is

selected by the computer in such a way that using the indices

x
* * .
S = r. = |H :H of the chain (1.9) of G
X . 3 k k-1
J=1 +1
k-1 '
* *
m 2 m
the number § := ) S, * ) 55, of cells for storing the
k=1 ig=1 K3
R
k>i

multiplication tables is minimal. Empirically we get n* = 2,3,h.
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2. Methods for generating groups by a system of generating elements [%1

2.1 Let G be a group generated by the generating system {a1,...an}. Then if

we develop a method, which allow us to construct Hk = <l

k—1’ak> from

Hk—1 and & (k = 1,...,n), Ho = <e>, G can be generated in n steps. If

we denote by H a subgroup of G and by a an element of G with a 4 H,

vthen H = <H,a> can be obtained by determining appropriate cosets of H.

For in the case that U := %jﬂbi is the uniocn of all cosets of H determined

in the process of generation and &h ¢ U for every h € U we obtain = U.

2.2 Computational method

2.2.1

Fundamental princip of the method

2.2.2

Let H be a subgroup of G, a ¢ G, a ¢ H and let U denote the list for
storing the group H= <H,a> in the computer.

Starting with U := H every element g € U may be multiplied from the

left side by a. If there exists an element b = a g withge U, b ¢ U,
the list U must be extended by the coset Heb and U := <H,a> is compietely
determined if asg € U for all g€ U. Finding a new representative b,
together with Hb all cosets Hb? (j = 2,000, = 1) can be stored in U,

where r is the smallest integer with v e H.

Rationelization of the method

Because the generating procesé of a group is an often repeated procedure
in group theoretical program systems, it scems to be profitable to
abbreviate the method described in.2.2.1.

First of all it is easy to see that having determined the system

£1 = (bI""'bs} of all such representations of the coset decomposition
of H by H with bi e all only additional representatives can be found
amorig the products bick‘ where °y c.&z is the set of all representatives
constructed up to now by the generating process. By this procedure we
reduce the number of left multiplications with the element a, which
must be executed by the method of 2.2.1.

Now, if the number of gencratcrs of G is greater than 2 we additionally
|

can suppress further left multiplications.

Therefore, let 4t = {a .,an} be a generating system of G with

x



Grouptheoretical

' (s (v)
= - . PP
Hy = <a 000,82, H = <>, (i =1,,,4,n; n>2) and by (i=1,...,n;

v = o""’rv—l) may denote a representative of the coset decomposition of

Hi by Hi-1' Further set U as in 2.2.1. Then according to (1.7) every element
8

g € G can be written as“normal form in the biv’G:

. (v1) (vn)
(2-1) g=b’ LI bn

with the defining relations

(v.) (v;) (u,) (u,)
k i° _ 1 k .
(?.2) b C b, b, oot by , (x > 1),
._1) (r ._1) .
() (ry (1) e .
If now ﬁ% = (b1 seeesby ""’bk—1""’bk-1 } is such a generating
system of representatives for Hk—1 without the representatives bgo) = e

(i = 1,...,k-1))every representativeb of all cosets Hk—1b with

aka_1(1 kalb # @ can be determined in the following way:

Storing Hk_ltJ Hk—1ak in U, a := ak is the first element of 1%.

Next we form the products g = b1bo of all b1 € ia of the increasing system

£

4 and all elements bo € j%. If g ¢ U we store g in (;1 and Hkm1g in U.

Then fﬁ is completely determined)if the described procedure cannot be countinued.
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3. Representation of groups by characteristic numbers [6], [42]

3.1 Characteristic numbers

Let G be a finite group, {U} the set of all subgroups U £.G of G and
{S(U)} the set of all systems S(U) consisting of all cyclic subgroups
of G with prime power order contained in U. Then jt 1is easy to prove
that there exists av1-1-correspondence {U} «> {S(U)} between {U} and
{s(u)}

(3.1) G 2U <« 5(U) = [<z>€G / <z> U, [<z>] = p*,a > 1, p prime}

Therefore, & system
(3.2) E(u) = CHPPRR (Ue G, m=|s(u)])

of generating elements of all cyclic subgroups of S(U) form a unidhely

determined generatlng system. of U of a special form.

First of all we llst the elements of E(G) in the computer. Then, if U < G

and if E(U) = {2z; ,...,2; } € E(G) ({i,,...,i.} € {1,...,]E(C)]|}) ic a
i 11 1 1
complete generating system E(U) of U,by

. 1 N

(3.3) ku]l = ] 2
J=1

a dual number is defined, which uniquely corresponds to the subgroup

U of G: K[U] <> U, This number K[U] shall be called the'charscteristic

number"of U < G,and every U € G may be stored in the computer by its

cheracteristic number K[U].

3.2 Boolean operations for characteristic numbers

The Boolean operations of intersection "A" and disjunction "V" are useful

for time-saving calculations with characteristic numbers:

K[u] A k[V] = k[uav]
eV = K[U] A K[v] = K[u] (U,V,W = G)
(3.4) glu,vs] > k[U] v k[V] _
<, v> = W (KUVKIVD) Ak[W] = k[u]vk]V]
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L. Determination of the lattide V(G) of all subgroups of G [ ], t ]

4.1, Fundamental princip for determining V(G)

b.1.1

Let ¢k be the set of all dual numbers with k digits, where k = |E(G)!,
E(G) as in 3.1 .

Then for any"dual number

.

1oi-r
By ME) =] 29 ¢ ({ie.nibe (0, k))
J=1

the corresponding subset H = (zi seeeaZs } s E(C) determines & subgroup
U := <H> € G of G. It is obvicus‘that di%ferent dual numbers

M(H), M(H') ¢ ¢k, M(H) # M(H') may generate the same subgroup <H> = <E'>
of G.

Theoretically we obtain the set {U} of all subgroups U< G of G in the

following way:

Going forwards in the natural order of ¢k we seccessively determine the
generating sets <HY =:U for all M(H) e ¢k. Then for every calculated U

the generating system E(U) may be determined and the corresponding
characteristic number K[U]. - so far as different from the already listed -

shall be stcred in the list of characteristic numbers.

But this basic idea cannot be realized by the computer, because the

number of dusl numbers successively to be proved is 2kJ and the generating
process of groups is a time-consuming procedure.

Therefore this considerations require the devolopment of a more effective
method selecting only such dusl numbers M(H) € ¢k, the corresponding

.subsets <H> of which in general are subgroups of G not yet generated.

4.2 Combinatorial method for the determination of V(G)

4.2.1

The filter method [€]
Starting with the dual number O and using the method mentioned in 4.1.2
we reach an uniquely determined dual number F1 1= M(H(1)) € ¢k - called

a filter of ¢k - such that
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<H(‘)> =G, <H'># G for all M(H') < M(H(‘)) .

By the filter F, the set w[r,] = tu(x(3)) ¢ F /w3y A r =5

is defined and WEFJ again defines a system

r
(4.2) IF 1=t "1/, = e lofF 11

of ordered subsets wrl[F"I of ¢k, where w‘i[:FJ (1<j< IW[FJ!) consists
of the 2i-1 following dual numbers M(H(T’j))of the element M(H(j) € wf_‘FJ
and vwhere i is the exponent of the smallest power of 2. in F1 being not O.
For all M(H(T’j)) we get <H(T’j) > =G and only a dual number M(H)EQ[F1}:=

= tbk\):lF l can lead to a proper subgroup U := <> € G of G. This, howover,

means that having determlned F the first dual number to be proved by the

1
computer is F + 2 lying 1n the number sequence BEF ‘ 2 %) of all dual

numbers between ¢ LF ] and ¢ LF ]
Proving M(H ) € B[F{_l1 we obtain either:

. » . .
(a) M(H*) determines a subgroup U := <H > of G, the characteristic number
K[U] of vhich is stored or not. If not,l{ﬁl] must be stored and in

both cases M(H*) + 1 is the next dual number to be proved.

or:
(8) M(H*) determines G = <H’>.

*
If there does not exist a M(H ) e BLF ] such that <H > = G, we reach
the first dual nuber of ¢ [__F] and by ! deleting all I‘ollowirg ot

dual numbers, we are comming to the first dual number of BIF I to be

proved. But if we obtain G = <H > by a generating process F2 = M(H )

determines a new filter of ¢

Assummg now that we have elready found j filters Foyeon ’Fj of ¢

similar to the case of Fl the filter F, defines the set

w&‘;j] = {M(H(k)) € ¢k / M(H(k))'\Fj = Fj} and the set systems
N |
Generally we denote in the i‘ollowmg by BLF 71 ! the set of all dual
numbers between ¢ I_Fk] and ¢> II' ] (1<, 1 T4 < rk both defined by

a filter Fk similar as for F1.
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Z[?sl &nd Q[?j]. The system E[}jl consists of the dual number sequences

r, o .
¢ JLFé] (rj = 1,...,leFjll), the elements of which sre the 2 -1

(r,,7)

. (r;)
following dual numbers M(H ¢ ) (x = 1,...,2°-1) of the element M(H

w[}b] and where i is determined by Fj'

1

If Fj has been constructed, only the M(H') ¢ B{}j]1+1 (i= 1,...,]¢[?j]|—ﬂ

must be proved:

(a') If <H'> =: U SG, ve store K[U] ir k(U] # k[U*] for a11 k[U¥]

alrcady been stored.

o . " 5 3
(8") 1f M(E™) A F, = F, for 0 <t <j, veget <i>=0 and ME) + 2%
is the next dual number of ¢K to prove by the computer, where i

is the exponent of the smallest power of 2 of F£ being not O.

* . .
(y') If <H > = G by a generating process, F, := M(E") of ¢k is a
X J+1
new filter of ¢ .

. . ' . . * - 14
In the cese that neither (B') nor (y') isvalid for M(H ) ¢ B]_Fj]1 :
i
: s i+1 )=, - . )
we are comming to the first dual number of ¢ 1LFJ] and using Fj to
1 i+2 »

B the first dual number of B[}j , which must be proved.

i+1

4.2.2 The algorithm of filters can be completed by introducing "filters of
maximal subgroups" and "filter sequences". Using these supplementary
conceptions developed in deteil in [6] the program of determining
V(G) can seccessfully be applied to finite groups G with relatively
sm;ll order ]G| and less complicated lattice structure.
Therefore, it seems to be profitable to supplement the program by an
additional "algorithm of composition" E?ﬂ described briefly in the

following section.

717

) of
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4.2.3 The basic concepts of the algorithm of composition [14]

Generating G successively by Biseee,B Ve obtain & chain <e> =
= GOC GI Coee C.Gn = G of subgroups Gi = <51 yeos ,a.i> (i=1,...,n) of G.
The generating systems E(Gi) (see 3.4 ) mey satisfy:

E(6,) N E(G) = B(G;) (k>1i, i,k=1,...,n) .
Dividing the elements of E(Gn) into sectionsCi(i=1,...,s) of length

of length r (|E(G )| = s+1+r,
‘ 1 "*n
r <1, Cs+1 =@ if r = 0), the filter method described in 4.2.1 can be

1< IE(Gn)l and one further section C_,

applied on each Ci obtaining a set Ti of subgroups of G. Any two of these
Ti will not necessarilybe disjoint, but by eleminating tzose corresporn-
.ding characteristic numbers,we obtain the disjoint sets Ti. But in general
UT: is not yet the wanted set {U} of all subgroups U s G.

Wle make the following definitions:

The determination of K]:H:[, H = <U,V>,by K[_yl and K[V] is called
"composition" and K[H] will also denoted by K[K[U], K[V]].

A set ‘6 of characteristic numbers is said to be closed by composition,

if K[K1 ,K2] e\g for arbitrary elements of K 5K, sf and C(B) is called
'the closure of ‘{’, . )

We denote by:

*
E; = (K[U]/ U e T}
Efyeves 3= C(E, V. UE) . |
Dyseeesy = E1,...,;\(E1u...UEi) , (A =1,...,8 + 1)
p; = kK] ¢ B VB L i-/6 e B Kpe By, )

Then clearly we obtain:
(4.3) K[K[K1 ,KQ], K[K;,Ké]] = KE(D(1,K;], K[Ke,)(é]]
(L.4) E, = C(Ei) (1= 1,000y + 1)

By (4.3) and (L4.4) we easily get for the elements of D, :
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. . *
If L (r»=1,2 3 2 <1< s+l), then there alvays exists K, e E
*

and K, ¢ E

' - - %
5 such that 1(,'_}_(1 ,KQI = K'gg y K;]».

Tyeunyi-t

From this result it follows immediately

(4.5) cl§E1u._..UEi) = DiinuE1 (i=2,...,5+1)

R
and by (%.5) we obtain an inductive algorithm for determining the
set of all subgroups of G:

In the first step ve have E, = C(E1). Suppose C(E1L/...LJEi) =

=D \/E1\/...kJEi has already been determined. Then by successive

LT |

K¢D . with all K' ¢ E . We get the

cos K )
composition of all € El 1yeeesi Tyeeusi

+1’
) This method must be repeated until finally

).

closure C(E1U...u B

in C(E,v...V
we obtain C(E1LJ Es+1

4,3 Output of the progrem for determining V(G)

4,3.1 Operating on the 1ist of characteristic numbers by using a special
sorting program and going downwards from C to <e> by determining the
respective layer of maximal subgroups we get the following output of

the program system:

A) Table of all subgroups of G devided in conjugation series and
represented in the form of abstract generators and defining

relations

B) Lattic V(G) in a special number code

4,32 Using spécial properties of group theory additionaly we obtain:
C) List of normalizators and centralizators of all subgroups of G

D) List of charachteristic subgroups of G and characteristic series:

CStrum, Frattini group, Fitting group, commutator group, descending

central series, commutator series, - and U-series a.o..
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5. Determination of the automorphism group Aut G of G [5], [?1l7£%1, 1

5.1 Range of the program system

5.1.1

Hall systems of a finite group G [4], [7]

The determination of Aut G by the program descrited in this section is
possible, if the finite group G conteins a system gl := {H1,...,Hr} of
subgroups Hi (i=1,...,r) of G - called & Hall system of G - such that

the following conditions are satisfied:

a) G=H1-...~Hr
(5.14) H.H o= H H (i,k = 1,...,r3 i # k)
'(lHila[Hk]) =1

b) Every two Hall systems of G are corjugate in G.

Sylow basis of a solvable group G [Y]

If G is a finite solvable group with |G| = p?1c...-p:r’ it is well known
that G contains a complete Sylow system P1,...,Priof pi-Sylow subgroups
of G (i=1,...,r) - called a Sylow basis of G - satisfying (5.1). Heving
constructed the lattice V(G) of G the computational determination of a
Sylow basis P1,...,Pr easily follows from the detgrmination of the

r %) .

n P, and the correspornding
i1

characteristic numbers K[Ki] (i=1,...,r). #i

Pp;-Sylow complements K. ,...,K of G, {Ki[ =

Since Pi = [f) Ki ki=1,...,r) defines a Sylow basis of G, we obtain:
5
. .
(5.2) Py < K[Pi]= /_\1 Kk, (i=1,..0,r)
54

Groups containing a chain of normal Hell groups [?l

If there exists a chain of normal Hall groups for G, i.e, a chain

G = Gr=>'... 26,@G_ = <e> vith G,9C, ([Gi[,[G : Gi]) =1 (i=1,...,r),
then G always conteins a Hall system H,,...,E_satisfying (s.1) (H],
Theorem 2.1). Beyond that it can be proved that if k is the only index
with Gk/Gk_1 not solvable; for every i # k there exists a Sylow basis

P. ,...,P, of H. such that
1, i,my i
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(5.3) Ph seee P P ,Hk,P P RN

. NN -4 e
1 1,n1’ »k-1,1° *"k-1,n k+1,1° ? k+1,nk+1

k=1

oo P e
Y, ’Pr,nr
is a "complete Hall system"of G satisfying (5.1) ([3], Theorem 4.1).

Considering the proof of r’-ﬂ , Theorem 4.1 it is possible to determin a
complete Hall system(5.3) of G if V(G) is constructed.

.5.2 Decomposition of Aut G of a finite group G containing alall system l"{j

5.2.1 Let G = H1- ...'Hr be a factorization of G by a Hall system'®:= {51,...,Hr}.
If A= Aut G, H= G we denote by:

TA(H) = {y ¢ A/ vH = H} the fix group of H related to A

NG(H) the normalizer of H in G

F® =N NG(Hi) the system normalizer of ¥ in G
i=1 ’
r(¥) = O Thue G(Hi) the fixgroup of #.

1(g) the innereutomorphism of G induced by g ¢ G

According to these definitions we obtain the following fundamental result
of the decomposition of Aut G:
If G = F(’mg;...w(z{)gs, then fut G = T(g1)r(ﬁe)+...+r(gs)rc;o

et Gl={T@R ! [0:F(R]

'5.2.2 By this decomposition of Aut G it is obvious that every y e Aut G cen be
represented as a product -r(gi)e‘y1 of an element y, € r'(®¥) and a special
inner automorphism {(gi) of G. Therefore the determination of I'(¥) plays

the fundamental role in the development of the program system.

5.3 Characteristic mappings and special subgroups of a factorization of G [’1],[5]

5.3.1 Characteristic mappings
Let G = H1~H2 = H2-H1, H1nH2 = <¢> be a factorization of G by H1,H2. Then

to every hi e H (i=1,2) there corresponds a map hik : I-H‘-» H defined by:
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,\

w
=

~

=2
»
=2
I

2 = 1h2(‘\H for all h2 € H2

2By h2h1H2l\H1 for all h1 € H1

22
ES
=2

n

It is easy to verify that these mappings are equivalent with

(5.5) “hythy = hythy * hyih,
and by (5.5) multiplication in G is completely determined. Therefore,
the mappings hik (i=1,2) together with the defining relations of the
components Hi(i=1’2) of G determine the structure of G. From the
theory of factorization we get further that the mappings hik form a
permutation subgroup of the symmetric group Slﬂkl of degree |Hkl.

Special subgroups 'of the factorizated group G [s]

There exists a homomorphism 1, : H, + I, _of H, onto NN, , with
1,k i 1,k 1 1,k

cernel

(5. . ={h, € H, / bkh =

(5.6) N, {hle}ll/hlkhk h for all hkeﬁk)_

N, is the maximal normal subgroup of G contained in H, (i=1,2). An
other group important for the determination of Aut G is the fix group
Fi of Hk

’

(5.7) Fi ='{hi € Hi / hklhi & hi for ell hk € Hk} ;
which can be represented by
(5.8) F, = NG(Hk)nHi (i,k=1,2; i#k)

If G = H1-...-Hr)then according to these investigations for every

subgroup Gi,k = HH = HH, (i,k=1,...,r, i7k) we can form the

groups I, Nk,Fg,the determination of which may be described in the

k’

following section.
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5.4 Computational determination of Hi P,F?,N?
- ,k

’

S5.4.1 Determination of Hik

The elements of the components Hi (i=T,...,r)'of G = H1'...'Hr may be
numbered in the same sequence as they are generated by the generating
program of H. Then, generating the subgroups % x = Hin= Hkhi

(i,k = 1,...,r; i # X) on the onehand es a product of H,,H_on the other

hand as a product of H J. we obtain by comparing the products:

(1) (S=13---alﬂkl)

ki

(1), () (50, ) - nDy n(®) o 0)s

(5.9) gm0 =m U ony hy ing (1< < lHiI)'

From these relations we obtain the permutation hgl)k of Hk related to the
1 1

element hil)c H, hg ), )k = (gv) If 1 runs from 1 to IHi‘ we get

Hi X Fixing s (1 <s 5_[H |) we similary can determine for variable 1
b

(1 = 1,...,|H |) the permutation h( s)_ (1 ) related to h(s) e H_end if

s runs from 1 to ]Hk] ve get Hk 5
:]

5.4.2 Determination of F? and ﬁ?

E(H ) may be deflned as in 34 , Then by (5.8) resp. by the result after

(5. 6) F resp. N? can be determined by a generating process:

F; = <z;> vith z; ¢ L(H ), z2;2, z e W "for all z e E(Hk)

=
4

<z.> with z; € E(H )

i 5 2,24 k e H; for all 2, € E(Hk)

5.5 Determination of T'(®)

5.5.1 The.monomorphism of T'(}) in Aut H1x...xAut Hr

N

For vy € T(&) let Y, € Aut H; be the automorphism of H; obtained by the
restr;ctionof Y on H: and Ai the group containing all yiHi.

Then the map T, : r®@) - A defined by y + o0 =Yy defines a
homomorphism of T'(¥) onto A, and it can easily be s;lown that

g : I(¥) > 1 := Aut H.x...x Aut H

(5.7) * T

Y > a i= (°1”"’ur) 3oag = Loy
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is a monomorphism of I'(¥) in the direct product Aut H x...xAut H .
.5.2

Necessary and sufficient conditions for a € I to be an automorphism of G [51

Let be a = (a1,...,ur) el, a; € Aut Hi' Then o is an automorphism of G, if
and only if for all hi € Hi and all i,k = 1,...,r; i # k the following

relations applied on all hk ¢ H are satisfied:
. -1
L3 = .h.
(5.8) , a, o h.ko a (a5hy )k

The relations (5.8), howewer,are valid if and only if they are velid for

all elenments hio) of a generating system {hi} of Hi epplied on all elements
by € H-

Furt‘her,.beca.use aiF‘i‘ = F]; and uiNl; = N}; (i,k = 1,...,r; 1 # k) with y € T(%),
t(y) = (a1,... ,ar), a; € Aut Hi,it follows that only such automorphisms

a, € Aut Hi (i = 1,..‘.,r) can lead to an automorphism y of G which are elements

of
(5.9) 2= (o ) <N“))
5.9 i k=1 \Aut H Ui N That 1, N30/
= 1 . 1
k#1

Before we describe the computational determination of the automorphism group

* . . .. .
A:, A S !\i S Aut H,, ve shall give an algorithm for determining T(¥) in the

following section.

5.5.3

Construction of I'(£) by composition of allowable automorphisms of the A; [ﬂ N [‘ﬂ

Let G1,G2,K be finite groups and uy G, > K (i1 = 1,2) epimorphisms of Gi
= = G
on K, then G1é G, := {(g,»8,) / g; € Gy» uy81= _u2g2} forms a subgroup of G x G,,

called the direct product of G‘,G with united factor group K.

2

From [?] it follows:

S Aut G, T =T, (u1)n'rA (02) and if ¢ :T >
G G

is defined by ¢ v = (01.a2) s Y €T, a5 = g.y= Ylui’

If G = U1-U2, U1f\U2 = <e>, AG

+ Aut U, x Aut U

1 2

u.sAi := T i=1,2), then

i olu, (
i

A := ;OI‘ = A1)|2A2 = {(a’,az) / a; € Ai, wiay = uza%
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wi .o . = = i = =Y.
ithps : Ay > K := A/Y , cern ug =Y, (i = 1,2) and vhere Y Y. x Y,
is the maximal normal subgroup of A, which can be represented as a direct

product of the components Yi € Ai .

Using these results we can give an inductive algorithm for determining
T(¥) by composition of allowable automorphisms of A;, Ai = A; € Aut Hi
(i=1,000,r):

If G = H1~...-Hr is a factorization of G by the Hall system ]f =(H1""’Hr)

it -is obvious that}i :={E1};..,Hk}1s a Hall system for Gk = H1°...-Hk,
and F(k& is isomorphic with a subgroup S, S Aut Hlx,..XAut He.

If\we set A(k) 1= Sk n (A:X...XA;)

inductively be determined in (r-1)-steps by calculating the groups

-1)

s A(1) = AT the group A(r): r(¥) cen

p(K)
’

*

from A'F and A (k = 2,00.,r).

Using the results mentioned above by setting U
(k-1)

1 = Gk—1’ U2 1= Hk we get

k .
Y (a1,...,ak_]) e A /(a1,...,ak_1,€k) EAT, g = 1lek),

1
Y. = {a, e A¥ /7 (e yenese 0 ) ¢ A(k) e. =1id,, (i = 1,...,k)} and the
2 k Ak 17k * i Bi ’ ’

computational test is given by proving a system of much simplerrelations

than (5.8):

. -1 .
a. e Y, <> a. 0 h o o, h
’ k—1) 1 J kJ J k¥ (5 = 1,00.,k=1)

h.k (a.h,)k
J Jd

(5.9) (a1,...

for all h, ¢ H

Kk K’ hj € Hj applied to all hj € Hj’ hk € Hk, respectively.

-1
X hjk

hkj (akhk)j

for all hj € Hj’ hk € Hk applied to all hk € Hk’hj € Hj’ respectively.

e Y > a

(5.10) o 5 X

ohkoa
J (3 = 1,000,k"1)

1"

Ir Ci is the automorphism group obtained by the restriction of the wanted

(k) .
(k) A /Y, Y = Y1x Y, it follows A(k)= c, A C

group A™" ' on U; (i =1,2) and if K := > 1 %

n
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(k-1)

A representative B := (u1,...,ak_1) of the decomposition of A by Y1

- can be composed with a representative a
) e A%

e *
" of the decomposition of Ak by Y2

to an element (a1,,..,u s if and only if all pairs (ui,a )

k-1"% k
(i = 1,...,k-1) satisfy the relations (5.8). Since K':Ci/:ti (i=1.2),ve get

for every representative B at most one representative %s which can be

(x) k) )

. ' . - - k
composed to (B,ak) e A'"’, Therefore, if (B,ak) € A( , then (BB, akuk) € A(

with B = (31,...,Ek_1) e ¥, and Ek e Y,

5.6. Determination of A* [1], [¥]

The method briefly described in the fclloving has been devélopped in {23

and used for a Sylow basis of solvable groups in Pﬂ.

5.6.1 Homotypic and isotypic sets

Let A* be the automorphism group defined by (5.9) for any group H e ¥ of
the Hall system éf G.

If & = {a’,...,an} is a generating system of H satisfying tﬁe defining
relations R, (o) = ... = Rs@mJ = e, then a 1-1-mapping a : ﬁ + H is an

automorphism of H if and only if H = <aa1,...,uan> and Rj(aoﬂ = e (j=1,...,8).
*
The group A* ve want to construct determines a subset I(h) = {ch/a € A} of H,

for every h ¢ H and it is obvious that by the sets I(h) the set of elements

of H is devided in disjoint classes.
The fundamental idea of the developped method is to determine for every

h ¢ H a subset S(h) = H as small as possible such that I(h) = S(h); h1 e S(h) »

> S(h,) = S(he).

Two elements h1,h2 € H are called "isotypic", if I(hl) = I(h2), 'homotypic",
if S(h1) = S(hz). Two subgroups U,V of H are called isotypic, homotypic, if the

elements {ui},{vi} (i =1,...,r) of U,Vcen be ordered totally (ui seee sty 1,
1 r
{v: seee,v. } such that I{u. ) = I(v. ), S(U, ) = S(v., )(x = 1,...,r), respectively.
i i i i i iy

n

.. . -
Then it is evident that every system §' = o f, bl =ab; (i = 1,...,m, a €A



Grouptheoretical ... 87

of a minimal generating systems‘&-{b},...,b ) of H can be found among

the systems 4 = (b‘,...,b } with b' S(b ). These generating

systems are also called homotypic.

5.6.2 The correspondence h > S(h), h ¢ H

The correspondenceh~ S(h). € H can be obtained by using a decomposi-
tion of the lattice V(H) of H in disjoint classes developped by the
method [3].

The group A* induces an equivalence relation rA* on V(H) satisfying:
a) U rA,;V=——-§ lu] = |v]

b) Ur*V_ﬁ U and V contain (are contained) the same number
(in the same number) of subgroups of any class of
ro, .
A

(5.11)

c) U rN,V A U cyclic, abelian, normal => V cyclic, abellan,
normal, respectively.

* . s
a) Fix groups U rel. A generate classes consistirg of only
one element.
It can be verfied that to every equivalence reletion r on V(H) there
corresponds an uniquely .defined equivalence relation n(r), which is the
i * * . .
supremum of all relations r <r ) satisfying (5.11) a,b)CEJ,DGD.

Further,if ro is the coarsest relation on V(H) satisfying (5.11),a),c),d)

then h,,h, € H; U,V € V(H) are homotypic if and only if <hy > n(ro) <h, >,

2
U n(ro)V, respectively. Then it is possible to develop an algorithm for

*) ry<r, &> br1V = U r2 V for all U,V ¢ V(H). By the relation < the

syqtem of all equivalence relatlons on V(H) forms a lattice, if infimum

and supremum of T, T, are defined by:

2

4] (rlémz) Ve==> Ur1 V‘VUrz v

U (r1V’r2) V <==> There exists a chain U=U_,..,,U =V
1 n
of subgroupf of H tuch that

Ui, U #0057, Uy (i = 1,00.,0-1)
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constructing n(ro) starting with an equivalence relation r satisfying (5.11),a).

Tn case of a Sylow basis for a solvable group G see [l}].

If d(h) is the number of homotypic elements of h in H, then for any system
f= {hl,.'..hn} of elements of H the number d(f) of homotypic systems of f
n
in H is given by d(f) = 1 d(hi).
i=1

5.6.3 Optimal generating systems

There exists an algorithm [3] to determine an "optimal" generating system
for H, i.e. a generating system & = {b1,...bm} such that d(b) is minimal.
Optimal generating systems of H are minimal systems, but in general optimal
generating systems are not appropriate generating systems of H for multipli-
cation and generating procedures. f’ractically this means that beside an
optimal generating system &= (b1,...bm} we use a situable generating

system 9L = {a1,... ,an} of H with defining relations Rs('tl) = e.

If we know a representation of the elements of <t as words in the b's and
conversely: = V(b), &= W(»OL),then we can prove the homotypy of & system &'

in the following way.

I B'> =H, o' = V(&'), B" = W(a') =2, R(!) = e, then there exists an
automorphism a € Aut H such that ' = o. For if R(of) = e, then a :0 U
defines an endomorphism of H in H. Since £" = W) = W(ad) = aW(0t) = of

and 8" = &' it follows 8' = of and according to <&'> = H o is an auto-

morphism.

If H: = P is a p-Sylow subgroup of a solvable group,in [‘f] is deduced that
irk = {b1,...bm} is a optimal generating system of P and if 4 = {c1,...,cs}
is a special generating system of the commutator subgroup P', then the

system Ol = bus = (c,,...cs, b'l""bm} is a special generating system of P.

5.7 Representation of automorphismsin the computer

5.7.1 Répresentation of automorphismsas permutations

Let & = {b1 ye o ’bm} be an optimal generating system of H with a minimel

number d(®) of homotypic systems and M: =\m/S(bi), then the complex
i=1
L%, . -

M= (h4, =Dbyeyh o= bm’ hm+1"'hm+t} is A"-invariant. If a ¢ A", then

N(a) may denote the permutation induced by a on M:
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(a) = hi =["1}(1i=1,..,, m+t ). Since b = M,it follows immediately
an. h
i K .

* ., - .« - . * .
that A 1is isomorphic to the permutation group on M induced by A . By this

. * .
permutation group A is represented in the computer.

5.7.2 Representation of automornhisms of T(¥)

The fix group Q) is isomorphic to a subgroup of D = ATX...X A:. If
L:y=>a= (01,...,ur) is the homomorphism of. I'(H) in D, the automorphism

vy e T(#) shall be represented by z(y) = (a1,...,ar). Multiplying YioYp €T

the images g(y1) and ;(Yz) must multiplied componentwise. Using the
representation as permutations for the components finally it is possible

to represent the elements of A; uniquely as normal words in abstract generators
with defining relations. This importantly accelerates the process of multi-

plication for elements of TI'().
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