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MEASURES AND MARKOV PROCESSES ON FUNCTION SPACES

By Peter BAXENDALE

1 . INTRODUCTION.

Let S be a compact metric space of finite dimension and M a smooth complete finite
dimensional Riemannian manifold. We describe the construction of a Markov process
with continuous sample paths in the manifold C ( S , M ) . En particular if S and M are
compact Riemannian manifolds then for each p ^> — dim S and q ̂ > — dim M + 1 , we ob-
tain a different Markov process on C ( S , M ) . We hope that this concrete example will
be the first stage of a more general theory for Markov processes on infinite-dimen-
sional manifolds, in the same way that the close study of Brownian motion on the
real line gave rise to the theory of Gaussian measures on abstract Banach and
Frechet spaces.

For proofs of the results, see [ 3 ] .

2. GAUSSIAN MEASURES ON LINEAR FUNCTION SPACES.

Let E be a separable Frechet space. A (mean-zero) Gaussian measure p on E is a
Borel probability measure on E such that for all E, G E , ^ ( p ) is a Gaussian measure
on IR with mean 0 and variance o ( 0 , where possibly o(0 = 0. Henceforth, all our
Gaussian measures will have mean 0.

Let 0^ ( E ) be the algebra of subsets of E generated by the continuous linear
functionals ^ £ E , then the o-algebra generated by (%(E) is the Borel o-algebra of
E. If H is a separable Hilbert space, there is a canonical additive set function y
on 6C (H) characterised by the fact that ^(y) is a Gaussian measure on K. with mean 0
and variance 11^11 , for each E, (E H . If dim H = oo, y is not o-additive. However, if
i : H -> E is a continuous linear map, i( y ) is an additive set function on QC ( E )
and we may ask whether i( y ) is o-additive. If i est injective and i ( y ) is o-addi-
tive on GC ( E ) , we say that ( i , H , E ) is an abstract Wiener space ( A W S ) , and the ex-
tension of i( y ) to the Borel o-algebra of E is called the corresponding Wiener mea-
sure. We remark that some authors insist that i(H) be dense in E in the definition
of AWS.

THEOREM. - If ( i , H , E ) is a AWS) then the Wiener measure is a Gaussian measure. Con-
versely if p is a Gaussian measure on E^ there exist H and i : H -> ̂ E such that
( i , H , E ) is an AWS with Wiener measure p.
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For fuller details see [9] , [11] and [ 1 2 ] in the case E = Banach space. The cha-

racterisation of Gaussian measures in the theorem is due to SATO [15 ] in the case

E = Banach space. For the general case, see [6] .

The following construction, which we shall need later, is due to GROSS. See [10]
2for the case E = Banach. (The hypothesis that . is in L (p ) is satisfied for all

ili
Gaussian measures p , see [ 7 ] . ) Again the extension to the general case follows from

results in [ 6 ] . For t > 0, define p by p (A) = p ( t 2 A) for A G Borel(E). Then

^t * ^s = ^t+ ' If we put ^^'^ = V^(A-x), then the P( t ,x ,A) form a set of tran-
sition probabilities for a Markov process in E. In fact we may construct a process

{ W : t > 0} with the properties

(a) continuous sample paths

(b) independent increments

(c) the distribution of W - W is independent of s

(d) W = 0o
(e) the distribution of W is p .

{ W : t ^ 0} is characterised by (a) - (e), and'is called the Wiener process in E

generated by p . We remark that if { Z : t ^ 0} is any process in E satisfying

(a) - (d), then 3X G E such that Z - tX is the Wiener process corresponding to
some Gaussian measure p on E.

Example 1. - E = C(S ,R) , and p a Gaussian measure on C(S, IR) . For s,t G S, let

K(s , t ) = j f ( s ) f ( t ) d p ( f ) . Then K is called the covariance of p and satisfies

(i) K(s , t ) = K( t , s )

(ii) V s p . . . , s G S, X , , . . . , \ G (R, 2 A . X . K ( s . , s . ) > 0.
i , j= l ' 1 J x J

Any function K satisfying (i) and (ii) is called a reproducing kernel for S, and

there exists a corresponding Hilbert space H(K) consisting of functions S -> IR,

characterised by

(i) Kg € H(K) , V s E S, where K (t) = K(s , t )

(ii) < Kg, f >y.^ = f ( s ) , Vf € H ( K ) , s £ S.

For details see [ l ] and [12 ] . For K defined as above, there is a continuous inclu-

sion H(K) <—^-^(S) and ( i ,H(K) , C ( S ) ) is an AWS with Wiener measure p.

The existence of a large supply of Gaussian measures on C(S) is ensured by the

following theorem due to DUDLEY [5].
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THEOREM. - If S is a compact metric space of finite dimension and i : H -> C^S) is

a continuous injection for some a > 0., ^/zen (i,H,C(S)) is an AWS.

Example 2. - Let E, : V ->- M be a smooth finite-dimensional vector bundle, and p a
^ •K

Gaussian measure on C ( ^ ) . Let S, : V -> M be the dual bundle. For x,y G M, define

P(x,y) G L(V^,Vy) by

(v,P(x,y)u) = f (u,f(x))(v,f(y))dp(f) for u(E V*, v G V*.
- 'CO) x y

P is called the covariance of p, and satisfies

(i) PCx.y)^ = P(y,x) ^

(ii) VnG Z'1', x^... ,x^(E M, u^ <E V^ ,...,u^€ V^ , 2 (u.,P(x^,x )u ) > 0.
1 n i,j=l J J

Any P satisfying (i) and (ii) is called a reproducing kernel for E , , and determines

a Hilbert space H(P) of sections of E,, characterised by

(i) P £ H(P) , V u G V*, where P^(y) = P(^(u) ,y)du

(ii) (Pu^iUP) = ("^(^(u))), Vf e H(P) , u G V*.

(See [ 2 ] . ) For P defined as above, there is a continuous inclusion H(P) <—> C ( ^ ) ,

and ( i ,H(P) , C ( ^ ) ) is an AWS with Wiener measure p . We remark that since P(x,x) > 0
^K ^

as an element of L(V ,V ), it may be factored P(x,x) = j j where j is a continuous

linear injection H ->• V for some (finite—dimensional) Hilbert space H . Then the
X X X

Gaussian measure j ( y ) on V is precisely the image of p under the evaluation map

C(0 -> V^, f ^ f (x ) .

i 1̂
THEOREM (DUDLEY-BAXENDALE, [ 2 ] ) . - Suppose H — — > C ' (V) is a continuous linear

injection. If either a < k or a = k and 0 < g < a., then (i,H,C^'3(V)) is an AWS^

where T denotes the composition H 1-^ C^'^W C C^W.

Therefore the Sobolev inequalities [14] , [4], provide a targe supply of Gaussian
a 6measures on the various function spaces C ' (V).

3. MARKOV PROCESSES ON M.

We deal with case S = a point. Our initial information consists of a Gaussian

measure v of mean-zero on C(TM), and X G C(TM). We shall need to impose restrictions

on p and X later. To help the reader visualise the construction we proceed as fol-

lows. Let {W : t ^ 0} be the Wiener process on C(TM) corresponding to p, and let

Z = W + tX. Fix a G M and T > 0. For each partition TT = { 0 = t < t,< ... < t =T},t t o 1 n
define Y = a and Y - exp ( (Z - Z ) (Y )) for r = 0 , . . . , n - l . Let X be the

r r r+1 r r
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distribution of Y in M. Under suitable conditions on p . X and M, the measures An TT
will converge as mesh of TT tends to 0 to some measure P (T , a ) . Then the P(T,a) are

to be the transition probabilities for a Markov process on M. KUSHNER [ 1 3 ] gives

conditions for a sequence of Markov chains with values in some Euclidean space to

converge to the solution of a stochastic differential equation. Our method is to

embed M in some Euclidean space V and to consider a stochastic differential equa-

tion in V. We are concerned not with the limiting procedure, but with the limit

itself. Our conditions will ensure that the stochastic differential equation has

a solution. They may or may not imply that the A converge.

Let M C V be a closed isometric embedding in some Euclidean space V, and h(x)

the second fundamental form at x G M. Define

Y(x) = ^ [ h ( x ) ( f ( x ) , f ( x ) ) d p ( f ) for x E M,
-' C(TM)

then Y is a section of the normal bundle TM -> M. Using the natural inclusions

T M C V and T M C V, we think of p as a measure on C ( M , V ) , and of X ,Y as taking

values in C ( M , V ) . In particular we think of the reproducing kernel P associated

with p as taking values in L(V ,V) . We may choose a Gaussian measure p on C ( V , V )

such that p restricts on p, and X, Y G C(V,V) which restrict to X,Y respectively.

For a G V we consider the stochastic differential equation with values in V :

d^( t ) = (X+Y)(^( t ) )d t + d W ( t ) 0 ( t ) ) )
W

^(0) = a J

where W( t ) is the Wiener process with values in C(V,V) generated by p.

We need some extra conditions on p , X and the embedding M C V

(A 1) V N , 3L^ such that (|x|| < N, ||y|| < N, x,y G M

=> tr(P(x,x) + P(y ,y) - P(x,y) - P(y ,x) ) <L^l lx-y l l 2

and l lX(x) - X(y) l l < L^llx-yll

(A 2) 3K > 0 such that Vx G M,

t r (P(x,x)) < K ( 1 + l l x l l 2 ) and llx(x)112 < K ( 1 + l l x l l 2 )

(A 3) 3K > 0 such that x G M,

||h(x)|| . t r (P(x,x)) < K ( 1 + 11x11).

Notice that (A 1) is independent of the embedding. It is satisfied if

p { f E C(TM) : f is locally Lipschitz} = 1 and X is locally Lipschitz. (A 2) and

(A 3) are automatically satisfied if M is compact.
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PROPOSITION 1 . - Under the assumptions (Al) - (A2)^ there exist extensions p., X., Y

such that the problem (*) has a solution ^ (t) which is continuous with probability

one and has finite moments of all orders. If ^ is any other solution of ( * ) with

these properties,, then PU (t) = ^,(t), Vt > 0} = 1 . The solution ^ (t) is a time

homogeneous strong Markov process whose transition probabilities are given by

P(t,x,A) = P{n (t) G A} where r\ is the solution to ( * } with a = x.

PROPOSITION 2. - Under the assumptions of Proposition 1, ^f a € M, then E, (t) G M

^br (TzZZ. t > 0 with probability one.

This result shows that we have obtained a Markov process in M, and hence that

the process started at a G M is independent of the choices of extension p , X, Y.

PROPOSITION 3. - The Markov process has infinitesimal generator A^ where

(Ah)(x) = ̂  fv^xXfCx), f(x))dp(x) + Vh(x),(X(x))

== y trCv^CxXPCx^)) + Vh(x).(X(x))

for smooth h : M ->- (R with compact support.

Proposition 3 shows that the Markov process on M is independent of the embedding,

so long as there exists an embedding satisfying (Al) - (A3).

4. DISCUSSION OF THE PROOFS AND EXAMPLES.

Given assumptions (Al ) - (A3) on p, X and the embedding, we may choose exten-

sions p , X and h which satisfy similar conditions on all of V. This means that the

stochastic differential equation (») is a particular case of the general type

d^( t ) = a ( ^ ( t ) ) d t + b ( ^ ( t ) ) d W ( t )

where a : V -> V and b : V -> L ( C ( V , V ) , V) satisfy local Lipschitz and global growth

properties. The statement of Proposition 1 now follows from general results on

existence and uniqueness for solutions of stochastic differential equations. See

[8] for such results in the one-dimensional case.

The proof of Proposition 2 goes as follows
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Let f be a diffeomorphism of a neighbourhood U of a in V onto a neighbourhood of 0
in R such that fl maps into R x { 0 } . Let E, be the solution of (*) in V started
at a, and T = time of first exit of E. from U. Let n ( t ) = f ( ^ ( t ) ) for t < T . Then
by It6's lemma for the transformation of a stochastic integral, we see that

dn( t ) = D f ( S ( t ) ) ( X ( ^ ( t ) ) ) d t

+ ^ tr {[D^a)) + D f O ( t ) ) M e ( t ) ) ] [ P ^ ( t ) , ^ ( t ) ) ] } d t

+ Df0 ( t ) ) [ d W ( t ) ( ^ ( t ) ) ] .

2 2
Since D f(x) ^ M x T M + Df^ ° h^^ = v ^IM^^ for x e M* then the above equa-

x x
tion is of the form

dn(t) = a ( n ( t ) ) d t + b ( n ( t ) ) d W ( t )

where

a(y) G |R x {0} and b(y) G L(L(V,V), IR"1 x {0}) for y G tR"1 x {o}.

Therefore, with probability one n( t ) G (R x {0} for t < T, so that S(t) £ M D U up

to time of first exit from U. The strong Markov property now shows that ^ ( t ) G M

for all t ^ 0 with probability one.

To prove Proposition 3, suppose E, is started at x e M. By It6's lemma,

h0(t)) - h(x) = (Ah)a(s))ds
-'o -I: D h O ( t ) ) d W ( t ) a ( t ) ) .
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Take expectations and let t -> 0 :

E ( h f e ( t ) ) - h(x)) 1 ( t . , . . ^ . . . _ , / , , , , ,———-——^———————= E - ^ (Ah) (^ ( s ) )ds -^(Ah)(x) .
; o

Example 3. - Let M C V be an isometric embedding with induced inclusions T M C V
» x

x G M. Let P = orthogonal projection V -> T M, and define P = P o P . There

exists a continuous map 6 : V -> C(TM) given by (0v)(x) = P (v) for x € M, v G V, and

the isometric image of V in C(TM) is precisely H ( P ) . The important fact is that

there exists a Gaussian measure with covariance P such that P(x,x) = natural iso-

morphism of T M with T M. It is easy to see that P varies smoothly, so it satisfies

conditions (Al) and (A2). If we take X = 0, we obtain a Markov process on M with

infinitesimal generator — A (where A = Laplace-Beltrami operator on M) under the

sole condition that there exists an embedding of M with |lh(x)|| < K ( l + || x|| ) for
some K > 0.

Example 4. - Let G be a second order differential operator with C coefficients,

satisfying G ( l ) = 0 , and Gh(x) < 0 whenever x is a local maximum of h. Then there

exist a Gaussian measure p on C(TM) and X G C(TM) satisfying condition (Al ) such
that

(Gh)(x) = ^ f v 2 h ( x ) ( f ( x ) , f ( x ) ) d p ( x ) + V h ( x ) ( X ( x ) ) .

Therefore, given suitable growth conditions on the coefficients of G, there exists

a Markov process on M with infinitesimal generator G.

5. THE GENERAL CASE.

Let S be a compact metric space of finite metric dimension, and K a reproducing

kernel on S. Let P be a reproducing kernel for TM -> M. Then we may define

Q(s ,x , t ,y) = K(s , t )P(x ,y) € L(T^M, T M), a reproducing kernel for the product bun-

dle (() : S x TM ->- SxM. We remark that H(Q) is naturally isomorphic to H(K) { g ) H ( P ) .
Suppose also X G C ( < ( ) ) .

As before let M C V be a closed isometric embedding in some Euclidean space V,

and let h(x) be the second fundamental form at x G M. Think of elements of C(<()) as

continuous functions SxM ->- V. We list some assumptions :

(A 4) H(K) C C (S) is a continuous inclusion, for some a ^> 0

(A 5) 3C > 0 such that t r (P(x,x)) < C and

tr(P(x,x) + p(y,y) - P(x,y) - P(y ,x) ) < Cl lx-y l l 2 , Vx,y G M

(A 6) 3C > 0 such that ||X(s,x)|| < C and



138

l lx ( s ,x ) - X( t ,y)11 2 < C( l lx -y l l 2 + d(s , t ) 2 0 1) , some a > 0, for all s , t G S,

x,y G M.
(A 7) 3C > 0 such that l l h ( x ) l l < C and ||h(x) - h(y) l l < C||x-y||

for all x ,ye M.

We remark that (A 4) and (A 5) separately imply that K and P are covariances for

Gaussian measures on C(S) and C(TM) . Together, they imply that Q = K ® P is the

covariance for a Gaussian measure p on C^) . Choose extensions i7, "X and "h as before

(so that, e.g. p is a measure on C(S x V , V ) ) and define

Y(s,x) = ^ h'(x)(f(s,x), f(s,x))di7(f) for s G S, x G V.

k kFor js = ( s . , . . . , s , ) G S and _x = (x , . . .,x ) £ V , consider the stochastic dif-
k i K.

ferential equation in V :

d^(t) = (X+¥)(s^ ,^( t ) )d t + d 'W(t ) (s^ ,^( t ) )

^(0) = x ^
i = 1 , . . . , k (**)

PROPOSITION 4. - We assume (A 4) - (A 7 ) . There exist entenszons ^ X^ 'h' such that

(**) has a solution (^ ^ (t) ,. . . ,^(t)) in V which is continuous uith probability

one^ has finite moments of alt orders and is unique in the sense of Proposition 1.

For each fixed s_ = (s , , . . . ,s , ) the solution is a time homogeneous strong Markov

process whose transition probabilities are given by

P(t,^,A) = P { n ( t ) e A}

uhere n(t) = (n,(t),...,n (t)) is the solution (**} uith initial condition

r^(0) = y^, i = l,...,k .

PROPOSITION 5. - J /_aG M^ then the solution 0, (t),. . . ,E. (t)) is in ̂  for all
t ^ 0 uith probability one.

The proof of these results go just as in the previous case. We need the full

strength of the assumptions in

PROPOSITION 6. - Suppose we have (A 4) - (A 7 ) (with the same a in (A 4) and (A 6 ) ) .

Then for each integer p > 0., and T > 0 there exists a constant C > 0 such that for
all s.,s^ G S and x ,x., G M, then

«E(11^(T) - ^(T)!)21") < Cdlx^ll213 + d(s , t )2 p a)



139

where (^.(t),^(t)) is the solution of (**} corresponding to s_ = (s . ,s^) anJ

x_ = (x ,x?.

k k tFor each s = ( s . , . . . , s , ) G S and x = (x , . . . ,x ) G M , let v» be the distri-— 1 k. ~~ 1 k. s,x
bution of (E;. (t) ,. . . ,^. ( t)) as in Proposition 4. For each fixed t, these form a

consistent family of finite-dimensional distributions which yield a measure on

F(S x M,M) = set of all functions S x M -> M with the o-algebra generated by the

evaluation maps. The estimate in Proposition 6 enables us to prove that C(SxM,M)

has full outer measure, so that we obtain a measure v> on C ( S x M , M ) . Now for

h E C(S,M) define P( t ,h ) = image of v>^ under the mapping C(SxM,M) -> C(S ,M)

f _^ ( s — » f ( s , h ( s ) ) ) .

Then the Markov property of the finite—dimensional distributions ensures that the

P( t ,h ) form a set of transition probabilities for a Markov process with values

in C ( S , M ) .

THEOREM. - K, P and X satisfying (A 4 ) - (A 7 ) determine a Markov process on

C(S ,M) with continuous sample paths. Suppose F : C(S,M) -> IR is of the form
^

F(h) = G(h(s ) , . .. , h ( s - ) ) for some s_ = ( s . , . . . , s , ) and G : M -^"IR smooth function

with compact support. Then F is in the domain of the infinitesimal generator A of

the Markov process^ and

(AF)(h) = ^ tr [ V ^ C h C s p , . . . , h(s^)) o (K ® P).(^,h(^))]

+ ( V G ) ( h ( s ? , . . . , h ( s ^ ) ) [ X ( s ^ h ( s p ) , . . . , X ( s ^ , h ( s ^ ) ) ] ,

k » k

where (K ® P) ( s ,h(s ) ) : n T, . .M -> n T, / .M has matrix- - ^ h(s? ^ h(s^)

•K(s. ,s . )P(h(s. ) , h(s.)) j and V is covariant differentiation with respect to the1 J 1 J ^
product Riemannian structure on M .

To show that there exists a version of the Markov process with continuous sample

paths we use the same method to construct a measure v on the space

C([0,°°) x S x M, M) in such a way that the image of \> under evaluation at time t

is v .

Finally notice that C(SxM, M) is a topological semi—group with respect to

( f . g ) ( s , m ) = f ( s , g ( s , m ) ) for f , g G C(S x M, M) and has a continuous left action

on C(S ,M) by ( f . h ) ( s ) = f ( s , h ( s ) ) for f G C(S x M, M ) , h G C(S ,M) . The Markov pro-

perty of the \> lifts to the equation v * v = v , and we obtain a randoms, x t s t"' s
process Y in C(S x M, M) with continuous sample paths and independent increments
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on the left, in the sense that P(Y G A | Y , r < s ) = v _ { f : f . Y G A } . Fort [ r t~s s
fixed h G C ( S , M ) , let Z = Y h. Then Z is a Markov process with values in C ( S , M )
and is precisely the Markov process of the theorem. We claim this is the appro-
priate generalisation of the construction at the start of Section 2 to the non-
linear case.

Example 5. - Suppose S and M are compact Riemannian manifolds and p > -r dim S,
1 .q. ̂ > -^ dim M+l. Then the Sobolev inequalities [ 1 4 ] give continuous inclusions

L^S) C C^S), L^TM) C C^TM)P q
? 9for some a > 0. Then L (S ) = H(K) and L (TM) = H(P) for reproducing kernels K on

S and P on TM which satisfy (A 4) and (A 5 ) . We take X=0 and note that (A 7) is
satisfied, and we obtain a family of measures v on C(S x M, M) and corresponding
Markov process on C ( S , M ) . For different pairs ( p , q ) we obtain different K and P,
and therefore a different process.

Example 6 . - Let S , p and K be as above. Suppose now M is a complete finite dimen-
sional Riemannian manifold whose injective radius is bounded away from zero. Theni ^ i
for q > -. dim M+l, we have the continuous inclusion L (TM) C C (TM) (see [ 4 ] ) . If
there is an embedding M C V satisfying (A 7) and such that the geodesic distance
metric on M is uniformly equivalent to that induced from V , then the reproducing^
kernel P of L (TM) satisfies (A 5 ) . Take X=0 and apply the theorem.
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