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A NON-ARCHIMEDEAN "CURVE INTEGRAL" AND ITS

APPLICATION TO THE CONSTRUCTION OF POTENTIALS

AND SOLUTION? OF DITOWNTIAL EQUATIONS

Dietmar TREIBE'R

In the opinion of many students integration is the conversion of differentia-
tion. That means more exactly : Integration serves for the construction of primitive
functions and potentials. In this article it will be shown that there is a procedure
of constructing potentials in n . a . Banach spaces, -which is similar to that of the
archimedean case by means of the curve integral.

At first let us remember the corresponding statements and the main ideas of
the proofs in the archimedean case :

Let G. be an open subset of IR and let
OJ : G ——^(ff^.lR)

be a differential form on G, that means : 00 is a mapping from G into the Banach
space of all (bounded) linear maps from IR11 to R. We regard the problem whether there
exists a "potential of a) " > that is a different table function from G to IR, whose
derivative equals to the given 00 . The following two conditions are sufficient for
the existence of a potential of o j :

1 ) G is simply connected ;
2) (^) is differentiable and closed.
If (0 is differentiable, then the closedness of 00 is also a necessary con-

dition for the existence of a potential of LO , as is known by the theorem about
the equality of the mixed second partial derivatives.

A construction of a potential of CO can be given by means of the curve inte-
gral, especially in the case. G = B11 in the following way :

For v C R11 define the curve c ( v ) by
c ( v ) ( t ) : = tv , 0 $t ^1 .

If condition ( 2 ) for uj is fulfilled, then the function
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±v I————> j CJ
^c(v)

defines a potential of oJ .
In the n. a. case the special problem of constructing primitive functions to

continuous functions over the fields © has already "been solved "by Dieudonne [ " ) ]
in his classical work of 19^. Here the construction of primitive functions appears
as a special case of a theorem about the existence of solutions of certain p-adic
differential equations. In 196? van der PUT [U] gave a method of solving p-adic
differential equations by means of an orthogonal base of the Banach space of all
continuous functions from '3 to a n. a. completely valued field. K -S Q,

It is remarkable that all mentioned researches about the existence of solutions
of n. a. differential equations are restricted to the fields <& . The reason :
The elements of ft allow a very useful development into infinite series. Our first
aim is therefore to show that there exists a similar development into infinite se-
ries for the elements of all n. a. Banach spaces.

The procedure of constructing primitive functions over (& , which one gets as
a special case in the works of Dieudonne, van der PUT and in this work, is essen-
tially the same.

We use in this work the following notations :
i ) B , y, N : = real, integer, natural numbers (including 0) ;

R resp. K '.s positive, real resp. natural numbers.
ii) Let K be a n . a. non-trivial completely valued field.
iii) Let E.and E* be n. a. Banach spaces over K.

1 . Development of the elements of a n. a. Banach space into infinite series

1 . 1 . Definition. Let ( u . ) . „ - be a sequence of elements of a vector space V over
— — — ~ " " 1 1 b A

K. Then we call ( u . ) . . , - left-finite iff there exists an n €» Z such that u. = 0€V— — - 1 ife. L ' ' . '•-—— ~~" 1

for all i € 1 with i < n.

1 . 2 . Lemma. Let E be a n« a. Banach space over K. Assume a € K such that 0 <\a\ < 1 .
Then there exists a subset R of E with the following properties :.

i ) For every left-finite sequence ( u . ) . « y of elements of R the series
+00
Cu, a-
i=-«) 1

converges in E.
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ii) Every element u C E has a representation of the form

+o
^ ^= ^ u au = ZI u a1

i=-oo

vith a left-finite sequence ( u . ) . - - of elements of R.

iii) Let u = ZxU. a1 , v ̂  21 v^ a1 be elements of R , represented as limits of

infinite series in the sense of ( i i ) . Assume
n ; = inf [ i ' 6 Z ( u. ^ v. j C Z .

Then :

(al^ HU-VH = ||û  - v^jf . l a ] 1 1 ,< (a l 1 1 .

This implies especially that the representation of the elements of E in the

sense of (ii) is unique.

Proof : Let R be a system of representatives of

[u & E | Hull ^ 1 { / [u G E j Hull $. \&\ \

with O C R . Clearly (i) holds.

Assume u € E, u i- 0. Then there exists an n 6 Z such that

lal^1 < Hull .< lal" .

It follows :

(a l < H-1^ ul| ^ 1 .
a

Then there'exists an u € R such that f.

ll^-^ull ^ la| .

Therefore :

^ - \ ^l! ^ laln+

By iterating this process we get ( i i ) . Part ( i i i ) is a consequence of the
strong triangle inequality
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21 The cu^ve integral and its application to the construction of

2 . 1 . Definition.- Let o£(E,E') be the vector space-of all continuous linear mappir

££02LE io E » . Tl̂ . ^(E,E') is a n. a . Banftch space relative to the norm

I I1 I ( := sup t1^1 I v € E' v ^ °1 ' i e ^ ( E , E ' ) .

Assume that G is an open subset of E. A map

^ '• G ————>of(E,E1 )

is called a differential form (or 1-form)^on_G (with coefficients inE') .

^b C ^ : G — — ^ ( E , E ' ) be a differential forn on G. A function f : G___^E*

is called a potential of a) ^_ f is different table on G and for all p € G t^e.
derivative of f a^ p equals to c0(p).

2.2. Definition.. Let G be an open subset of E and

^ G ————^(E^')

be a continuous differential form on G.

i) A curve c in E is a mapping

such that there exist the linnts lim c and. lim c . We call the left limit of
n -» -oo u n-^+oo n ' — — — — — — — — — — — —

c the "initial point of c" , the right limit of c 1^ "end point of c".

ii) A curve c : 1 ——^E is called curve in G iff the ima^e set of c, t^

initial point of c and the.end point of c lie in G.

iii) ^et c : 2 ——^ E be a curve in G. We define the integral of ^ over the
curve c as ;

J ^ : = (̂.
^c n=-00/c^ n^^^-^'

Remember that ^(c^)(c^ - c^) is the image of (c^ - c^) £ E under the

map C0(c^)6 o£(E,E ' ) .

2.3. Proposition. Le^ G be an open subset of E and c : 2 ——^G be a curve in G.
Then :

1) The curve integral defined in 2.2. is K-linear. that means :
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/ .(aCJ + bcS) = a l o J + b | C3 .
Jc ^c ^c

1 1 ) The curve integral is continuous, that means : Let ((^J ) p be a sequence

of continuous mappings, from G to o ,̂ (E,E*) , which converges locally uniform to a

continuous differential form CO on G. Then the sequence ( ( G) ) - converges to

(
Jc"-

iii) Let ((0 )-, „ be a sequence of continuous differential forms on G vith

coefficients in E' , which is uniformly bounded.'and. converges ("pointvise) to a conti-

nuous differential form CO on G. Then ( ( CJ - ) - converges to / CO .
Jc Jc

Proof : simple application of the definitions.

+»
2.U. Definition. Assume u = ^ [ u. a € E. Define a curve c(u) : Z ——^ E by :

i=-0»1

c(u)^ := ^u^ a1

l=-0>

for all n C 2'. Obviously the initial point of c(u) is 0,' its end point is u.

Furthermore :
+00^rj=(^i -°(u^).
n==-<o

2.5. Lemma. ^
CJ : E — — - < ^ ( E , E ' )

is a continuous differential form, it holds for all u,v € E :

(if CJ - ( ^ 1 1 ' .< sup ||t0(p)|l | jlp-vl) s< —— |(u-vHt.||u-vl|
A(u) ^c(v) la l )

+00 . +00

Proof : Assume u , v 6 E , u ^ v , u = /__^u. a , v = / v. a
î flO1 î oo 1

Then there exists a minimal N € ^ such that

^ ^ \ •
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Therefore :

I f f G) - / tJf l ' = l^(c(u) )(c(uL - c(vU
Jc(u) Jc(v) N-1 N . N

+ /' CJ(c(u) )(c(u) . - c(u) )
n^N n n+1 n

- ^ C^(c(v) ) (c(v)^^ - c(v)^) H '
n=N

Now the statement follows -with the aid of the following inequalities ; ( n 6 Z , n^N)

II^^N-I " v j ( '< TTT lju ~ vt l ;

|lc(u)^ - vll , ||c(v)^ - vU .< l|u - v|| ;

l|.c(u)^ - c(v)^ j ( ^ l|u - v/1 ;

|jc(u)^^ - c(u)j| , llc(v)^^ - c(v)JI $ llu - vlf .

2.6. Theorem. Let

(jj: E ——^.(E,E')

^e a continuous differential form on E vith coefficients in E* . Then the map

F = E ——-E' , defined by

u I——————*- / 00 .
^c(u)

is a potential of co .

Proof : The statement is a consequence of the following inequality :

HF(u) - F(v) - <^(v) (u - v)l| '

^ sup [U(J(p) - cJ(v)l| ) ||p - v||.< —— (lu-vl»f1 (/u - vlj

for all u,v € E. Proof of this inequality for u,v C E ;
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F(u).- F(v) - oj(v)(u - v) =

r +co i
= F(u) - F(v) - C*)(v) 7"'\ (c(u)^ - c(u)^)

Ln=-oo J
r +00 i

+ ^(v) ^ (=(v)^ -= ( v ) ^ ) .
I n=-00 J

Because of the continuity of ^ (v) : E — — ^ E ' we conclude :

+tf0_

= F(u) - F(v) - ^ ^(v)(c(u)^^ - c(u)^)
n=-»x»

+ ^ y(v)(c(v)^ - c(v)^ )
n=-<»

r»

= / [(J - (J(v)l - f [cO- cj(v)] .
^c(u) ^c(v)/c(u) ^c(v)

Now the statement follows from 2.5.

2.7. Definition. Let G be an open subset of E. We now define a mapping; tL , which

orders to every continuous differential form CO on G with coefficients in E' a po-

tential tUc*)) o .̂ C*3:

Let o0 be a continuous differential form on G :

( 1 ) JJ G = E, let d) (oJ) be the map

u——————^(u)^ '

which has "been regarded in 2.6.

(2) _If G is an "open" ball in E, order -to OJ a continuous differential form Co o^ E

by setting (3 equal to zero outside G and equal to 0) on. G. Define :

<t)̂ ) :- ^W I G .

(3) If_ G is an arbitrary open subset of E, which is different from E, then there is

a canonical family (U.). ^ - of "open" balls in G, disjoint two by two, such that G
•———————————'—— i 1 <e/ J.

is the union of the U. . Define :
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<|)Q(w)|l^ := (>^(t>)|u^)

for all i € I.

2.8. theorem. Assume that G is an open .n t̂. .f E. Then the map A (defined in 2.7)
has the following properties :

(i) ^G orders to every continuous diff^ntial form on G (vith coefficient..
i" E') a potential ; '——————~

(ii) ^Q is. K-linear :

(iii) ^G is continuous relative to the canonical topologies of its ̂ f^t^
set_and_LmaRe set (induced by the locally uniform convergent.

(iv) Lgi (^)^^ be a sequence of differential fom,., on r. which is unifor-

mly bounded and converts (pointwi^ to a continuous diff^nt^i ̂  y „, ̂

then the sequenc-e (^fo^ ) )̂  converges (pointvise) to (b^ U^

(v) Fo^ every continuous differential for,. ^ on G the potential (cJ)^

locally extension-bounded. Example 3.2. will show that there are infinite times
differentiable functions, which have not this property.

(vi) 7he definiti°° of the curve integral and. - as a .on^^nce - o,.. ̂ -
traction of potentials depend on the choice of a d.velopment int.n infinite .^^ ^

the elements of E in the sense of 1.2. The mapping ̂  is not char^terized by it.
properties.

proof : Applications of the preceding statements.

-.9. Corollary 1 . The theorem about the equality of the mixed second partial deri-
vatives does not hold in the n. a. case, more exactly :

There exists an infinite times differentiable function f : K2—^ K. such that
for all p t K^ :

57 î (p) ^ 3T77 ^}f
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Proof : Define f by" :

f := (p (x dx + x dy) : K2 ——————^ K.
K

Then we get :

3f Sf
Tx a ^y ~ x

therefore :

^h —^0) ' & = c o n s t ( 1 )-

2. 10. Corollary 2. Let G be an open subset of E and f : G ——»E' be a continously

differentiable function on G. Then f can be represented as the sum of two functions

g,h : G ——^ E' such that :

( 1 ) g is different table and locally extension-bounded on G ;

(2) h is differentiable on G with everywhere vanishing derivative.

2 . 1 1 . Remark. Assume Char(K) = 0, G an open subset of K. The CLuestion arises whether

exists a function (J), which orders to every continuous function from G to K a primi-

tive function and furthermore has the following properties :

( 1 ) (() orders to the function x^G the primitive function ^-j- x I G(n 6 N) ;

(2) <f) is K-linear ;

(3) $ is continuous .(relative to the canonical topology of the space of all conti-

nuous functions from G to K, which is induced by the locally uniform convergence).

The function (̂  defined in 2.7. is linear and continuous. But it has not the

property ( 1 ) : For instance the primitive function of x : K ——^K, which one calcu-*

lates using the method described above is the following :

1 2p x - g ,
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The following theorem will show that the properties ( 1 ) and (3) are not inde-

pendent and that from this reason a function as described above generally does not

exist.

2 .12 . Theorem. Assume Char(K) = 0 and that the restriction of the valuation of K

to (R is non-trivial. Let G be an open subset of K and let C°(G,K) denote the space

of all continuous functions from G to K. Then generally it does not exist a mapping

() : C° (G ,K) ———————>C°(G,K) ,

which is continuous and fulfills

^iGi^.x^lG

for all n C IN.

Proof : (cf. Dieudonne [l] ) Let G be the "open" ball in E of radius 1 around the

center 0. Assume that < )̂ is a mapping as described above. Let p be the unique prime

number such that the restriction of the valuation of K to ^ is equivalent to the

p-adic valuation of (^.

Put :
2n

f . ^p^ - ^ G

for all n C N. Then ( f ) . . . converges to the zero-function on G, but ( t > ( f ) ) ^ ,-n n € N n n (- N
does not converge at all (Convergence relative to the canonical topology of
C ° ( G , K ) ) .

Remark. Assume k € K , k > 1 , G an open subset of E. In the same way as in the real
analysis one can define k-differential forms on G with coefficients in E' also in
the n. a. case. Using the preceding results it is easy to show that in this case
•too every continuous k-differential form on G has a. potential.
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The examples of this section shall illustrate the connection between the
notions of continuity, (partial) differentiability and existence of primitive func-
tions. Furthermore they show some consequences of the lack of a mean value theorem
in the n. a. analysis.

3 . 1 . Example, (cf. Dieudonne bl ) There exists an injective function f : E ——^E ,
which is different table on E and whose derivative is vanishing everywhere.

Proof : Define f by

We get the following inequality : For all v,w C E

llv - wll2 ^l|f(v) - f(w)||' ^ —— II v - w||2

3.2. Example. There exists a function f : E ——> K, which is different table on E

with everywhere vanishing derivative, but which is not locally extension-bounded.

Proof : The valuation of K is non-trivial. Therefore there exists an a £ K such

that 0< \ a | < 1 . Assume v 6 E, Hv|| ^- 1 . Then we can find a map i : IN ——*• IN such

that

i ,i(n) . . ( i ,n ____1 i i 2 n ?
lal < min|(al . (n^D.llvll k' <

for all n € (N. Define for n 6 IN :

n n i(n)p := a v , q := a v + a v.n n

Let U be the "open" ball of radius I a| l|v|( around a v and \ its charac-n 'n
teristic function. Define :

00sf := V7 a^Y .
A^ ^n
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Obviously f is differentiable on E. with everywhere vanishing derivative.

Furthermore :

|f(p^) - t(<l^)l ^ (n-H).Hvll. a i(n) = (n+l)(lp^ - q. |( .

3.3. Example. There exists a function f : K2 ——> K, which is partially differen-

tiable on K and whose partial derivatives are vanishing everywhere, but which is

not continuous in 0. Especially continuous partial differentiability does not imply

continuity.

Proof ; Assume a € K, 0< | a I < 1 . For all n fc IN let U be the "open" ball in K2

of radius la^ around the center (a11 , a11). Define f as the characteristic func-

tion of the union of the Un

3.U. Example. There exists a function f : K ——> K, which is extension-bounded on K

and therefore equicontinue us on K, but which is nowhere different table on K.

Proof : Define f by :

+DO +w

•°' - 5- •2t -
Obviously it holds for all b,d 6 K :

|f(b) - f(d)| $• |b - d( ,

thus f is extension-bounded on K. Assume

^ ° f: \ a" C K .
n=-Ch n

Let R be the subset of K defined in 1 . 2 . Then R has at least two elements.

Therefore there exists for all j C IN an

^ £ B - ^ | .

Define d. := b - b. a'3 + ^. a'3 C K. Then we get d. ^ b and
<J J J J
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f(d.) - f(b) f 1 , if j is even,
J_______ — /

I 0, if j i 0, if j is odd.d. - b
J

Furthermore : lim d. = b, therefore : f is not different table at b.
J

j ->oo

3 . 5 . Example. There exists a function f : K ——> K, which has no primitive function.

Proof : Let S be the set of all elements of-K, whose development into a series in
the sense of 1 . 2 . is finite. It is easy to show that the characteristic function of
S has no primitive function.

4. Application of the curve integral to the solution of differential equations over
n. a. Banach spaces.

In this section we give an existence theorem about the solutions of n. a.
differential equations. The proof - a construction by means of the curve integral-
is omitted.

4 . 1 . Definition. Let G resp. G' be an open subset of E resp. E ' . Let

0. : G K G' ——^ ^ ( E , E « )

be a mapping. We are searching solutions f : G ——» G' of the- differential equal ion

Wd f = 0 ( p , f ( p ) )

for all p C G.

In the case E = Y^ , E' = ^(m^ € IN ) we regard the differential equatic

'9f,
F/P . f (p) )

^(p , f (p)Jy
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for all p C G. Especially in the case E = E' = K "we search for solutions of the
differential equation

f ' ( x ) = F ( x , f ( x ) ) .

U.S. Theorem. Let G res-p. G' be an open subset of E resp. E ' . Let

D: G / G' ——> o^ (E,E'.) be a continuous mapping. Assume that
II : G ———^ R^ , g : G ——^ G'

are continuous functions. Let N be an isolated subset of E. Then there exists a

f ; G ——————> G^

of the differential equation ()0 such that

l i f (p ) - g(p)l l ' ^ <^(p)

for all p £ G and moreover f and. g have the same values on N.

U.3. Corollary. The set of solutions of the differential equation {¥'} is dense in

the canonically topologized space of continuous functions from G t.p G * .

Espacially the set of potentials of a continuous differential form is dense

in the space of continuous functions.

5. Analytic solutions of n. a. differential equations.

In the last section ve have seen that the s-et- of solutions of a n. a. diffe-

rential equation is dense in the space of continuous functions. If one regard's

analytic n. a. differential equations and searches only for analytic solutions, one

gets a uniqueness theorem. Moreover an estimation of the radius of convergence of

a solution will "be given which generally cannot be improved.

5.1. Theorem. Assume Char(K) = 0. Let

^ L a n . x n y m : K 2 — — K

n,m=0

be an analytic function in a neighbourhood of 0. Then there exists a unique analytic
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solution f of the differential equation

f = F (x . f ) ) ( 1 )

such that f (0 ) = 0.

Furthermore we have the following estimation for the radius of convergence of
^

f : If F converges on the "closed" ball in K of radius r £ (R around 0, then we

get :

fW ^(exp) ——————————r-———————— (2 )
( i i n+m i ?max^ sup |a ^Jr , 1 J

n,mC(N

The exponential function and its differential equation show that this estima-

tion generally cannot be improved.

Proof : It i s easy to show that there is a unique sequence (b ) ,» of elements of

K such that the formal power series

f' b x"^c "
fulfills the differential equation ( 1 ) . Now the statement follows if the inequality

(2) is proved.

Obviously for all k € N the (k+l)-th formal derivative of f is a sum, whose

single terms are of the form

•^n+m . (j ) (j )
————In ^x^ t 1 ... f m . (3)
ox dy

(n,m C »N^ , n+m C[l.....kj , j ^ ,..., j^ C N, J^ +. ..+ j^-+ n = k).

Assume r € R according to the assumption above. Put

i i n+m ^ •
01 := â,, la""1 r c B-n,m c w ) ,

Then it holds n,m € N :

^ n+m yi
|.^^F(x,f(x)) (0.6) f » |nl m! a^ \ .< -^ . (U)
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Using (3) and (4) one proves the following inequality :

If^^o)! s< m&x^ ̂• ' ^ ir̂

for all k C W. Therefore and because of the wellknown formula

lim -^/T^T = f(exp)
n -*00

we get :

lim sup -S./jbJ' = lim sup
—». i^\n -n0 n "^co
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