Mémoires de la S. M. F.

A. C. M. VAN ROOIJ W. H. SCHIKHOF Group representations in non-archimedean Banach spaces

Mémoires de la S. M. F., tome 39-40 (1974), p. 329-340 http://www.numdam.org/item?id=MSMF1974 39-40 329 0>

© Mémoires de la S. M. F., 1974, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Table Ronde Anal. non archim. (1972, Paris) Bull. Soc. math. France, Mémoire **39-40** 1974, p. 329-340

GROUP REPRESENTATIONS IN NON-ARCHIMEDEAN BANACH SPACES

A.C.M. van ROOIJ and W.H. SCHIKHOF

INTRODUCTION.

This paper deals with continuous representations of locally compact groups G into non-archimedean Banach spaces E. In order that G has sufficiently many of such representations G must be totally disconnected, which we assume from now on. If G carries a K-valued Haar measure (where K is the (non-archimedean valued) scalar field) we have a 1-1 correspondence between the continuous representations of G and those of the group algebra L(G). If G is compact, then L(G) can be decomposed as a direct sum of full matrix algebras over skew fields (Theorem 2.5), which yields as a corollary that every irreductible continuous representations of G can be classified (Theorem 2.8). The theory for compact groups as it is given here is a generalization of the results of [2]. If G is locally compact and torsional (i.e., every compact set is contained in a compact subgroup) the results are satisfactory : G then has sufficiently many continuous irreductible representations ; every two-sided closed ideal in L(G) is the intersection of maximal left ideals (Theorem 3.1, and corollaries). About non-torsional G little is known.

1. The Banach algebra L(G).

K is a field with a (possibly trivial) non-Archimedean valuation | | such that K is complete relative to the metric induced by | |. The residue class field of K is k. If $\lambda \in K$, $|\lambda| \leq 1$ then $\overline{\lambda}$ denotes the corresponding element of k. The characteristic of k is p (which may be 0).

G is a totally disconnected locally compact group, \checkmark the collection of all open compact subgroups of G, \mathfrak{G} the ring of sets generated by the left cosets of the elements of \checkmark . It is known that \mathfrak{B} consists of the compact open subsets of G

and is a base for the topology of G.

A totally disconnected compact group H is called $p-\underline{free}$ if no open subgroup of H has an index in H that is divisible by p. (Every H is O-free). We assume that G <u>has a p-free compact open subgroup</u> G.

Then there exists a unique $m : \mathfrak{B} \longrightarrow K$ with properties

(1) m is additive

(2) m is left invariant, i.e. m(xA) = m(A) (x \in G; A $\in \mathcal{B}$)

(3) $m(G_{0}) = 1$.

This m is a left Haar measure on G.

Let $C_{\infty}(G)$ be the K-Banach space of all continuous functions $G \longrightarrow K$ that vanish at infinity. (If G is compact we also call this space C(G)). More generally, for a Banach space E, $C_{\infty}(G \longrightarrow E)$ will denote the Banach space of all continuous functions $G \longrightarrow E$ that vanish at infinity. A left Haar measure m on G induces a unique Evalued continuous linear map $f \longmapsto f(x)dm(x)$ on $C_{\infty}(G \longrightarrow E)$ for which

 $\int \mathbf{1}_{A}(\mathbf{x}) \, \boldsymbol{\xi} \, \mathrm{dm}(\mathbf{x}) = \mathbf{m}(A) \boldsymbol{\xi} \quad (A \in \delta \mathbf{3} ; \boldsymbol{\xi} \in \mathbf{E}),$

 $\mathbf{1}_{A}$ denoting the K-valued characteristic function of A. In particular (E=K)

$$\int \mathbf{1}_{\mathbf{A}}(\mathbf{x}) \, \mathrm{d}\mathbf{m}(\mathbf{x}) = \mathbf{m}(\mathbf{A}) \qquad (\mathbf{A} \in \delta \mathbf{S}).$$

G $\longrightarrow \mathbf{E}$,

For all $f \in C_m(G \longrightarrow E)$,

$$\left\|\int f(x) dm(x)\right\| \leq \|f\|.$$

This integration enables us to make $C_{\infty}(G)$ into a K-algebra by defining a multiplication *; for f,g $\in C_{m}(G)$, y $\in G$:

$$(f * g)(y) = \int f(x)g(x^{-1}y)dm(x) = \int f(yx^{-1})g(x)dm(x).$$

In fact, it turns out that $f * g \in C_m(G)$ and $||f * g|| \le ||f|| ||g||$.

Thus, $C_{\mathfrak{M}}^{(G)}$ actually is a Banach algebra over K. * is called <u>convolution</u>. When we view $C_{\mathfrak{M}}^{(G)}$ as a Banach algebra under convolution, we usually call it L(G).

330

If $H \in \mathcal{N}$ is contained in G_0 , then $m(H) = [G_0 : H]^{-1}$, so |m(H)| = 1. Set $u_H = m(H)^{-1} \cdot 1_H$. Then

$$\| u_{H} \| = 1, \quad \int u_{H}(x) dm(x) = 1$$

$$u_H * u_H = \dot{u}_H$$
.

Let E be a Banach space. A <u>representation</u> of G in E is a homomorphism U: $x \mapsto U_x$ of G into the group of all isometric linear bijections $E \longrightarrow E$. Such a representation U is called <u>continuous</u> if $x \longrightarrow U_x$ is continuous for each $\xi \in E$.

A linear subspace D of E is U-<u>invariant</u> if $U_x(D) \subset D$ for every $x \in G$. If $\{0\}$ and E are the only U-invariant linear subspaces of E, the representation U is called <u>algebraically irreducible</u>. If $\{0\}$ and E are the only closed U-invariant subspaces, U is <u>irreducible</u>.

For f $\in C_{\mathbf{M}}(G)$ and a $\in G$, define the function $L_{\mathbf{a}}f$ on G by

$$(L_f)(x) = f(a^{-1}x) \qquad (x \in G).$$

In this way we have constructed a continuous representation L of G in $C_{\omega}(G)$, the <u>regular representation</u>.

For all f, $g \in C(G)$ we have the identity

$$f \star g = \int f(x) L_x gdm(x).$$

More generally, let U be a continuous representation of G in some Banach space E. For $f \in L(G)$ and $\xi \in E$ we define

(i)
$$f * \xi = \int f(x)U_x \xi dm(x).$$

Thus, E becomes a module over the ring L(G) for which

(ii)
$$||f * \xi|| \le ||f|| ||\xi|| \quad (f \in L(G); \xi \in E)$$

and
(iii) $U_{\chi}(f * \xi) = (L_{\chi}f) * \xi \quad (f \in L(G); \xi \in E; \chi \in G).$

If $\xi \in E$ and $\varepsilon > 0$, then $\{x \in G \mid \|U_x \xi - \xi\| < \varepsilon\}$ is an open subgroup of G. If $H \in \mathscr{N}$ is contained in this subgroup, then $\||u_H + \xi - \xi\| < \varepsilon$. Ordering \mathscr{N} in the obvious way we obtain

In particular, the u_H form a left approximate identity for L(G). Without any trouble one proves that they actually form a two-sided approximate identity.

<u>A closed linear subspace of E is U-invariant if and only if it is a submodule</u> of E. <u>A continuous linear map</u> $E \longrightarrow E$ commutes with every U_x if and only if it is a module homomorphism.

Conversely, a <u>Banach</u> L(G)-<u>module</u> is a Banach space E provided with a bilinear map $*: L(G) \land E \longrightarrow E$ such that $f \ast (g \ast \S) = (f \ast g) \ast \S (f,g \in L(G); \S \in E)$ and such that (ii) holds. Such a Banach L(G)-module is <u>continuous</u> (or <u>essential</u>) if (iv) is also valid. If E is any Banach L(G)-module, the closed linear hull of $\{f \ast \S\} \mid f \in L(G); \S \in E\}$ is the largest continuous submodule of E.

In any continuous Banach L(G)-module E, formula (iii) defines a continuous representation U of G that fulfils (i) : we have a <u>one-to-one correspondence bet-</u>ween continuous L(G)-modules and continuous representations of G.

2 - The structure of L(G) for compact G.

In this chapter we assume that G itself is compact and p-free. We work with the left Haar measure m for which m(G) = 1.

Let \mathscr{K}_{O} denote the set of all normal open subgroups of G. It was proved by Pontryagin that every element of \mathscr{K} contains an element of \mathscr{K}_{O} . It follows that the $u_{U}(H \in \mathscr{K}_{O})$ form a left approximate identity for L(G).

For any Banach space F and for n c N we consistently view F^n as a Banach space under the max-norm :

$$\|(\xi_1, \dots, \xi_n)\| = \max_i \|\xi_i\| \quad (\xi_1, \dots, \xi_n \in F).$$

If D is a closed linear subspace of a Banach space E, a <u>projection of</u> E <u>onto</u> D is a linear P : $E \longrightarrow E$ for which

- (1) $||P|| \leq 1$.
- (2 P(E) C D.
- (3) Px = x for all $x \in D$.

The following lemma is well-known.

2.1. Lemma. Let D be a linear subspace of K^n . Then as a normed vector space, D is isomorphic to some K^m . There exists a projection of K^n onto D.

The same reasoning used in the classical theory for representations in Banach spaces now leads to

2.2. Lemma. Let U be a continuous representation of G in K^n . Let D be a U-invariant linear subspace of K^n . Then there exists a projection P of K^n onto D that commutes with every U.

Every $\xi \in K^n$ for which $||\xi|| \leq 1$ determines in a natural way a $\overline{\xi} \in k^n$. Consequently, a K-linear A : $K^n \longrightarrow K^n$ with $||A|| \leq 1$ determines a k-linear \overline{A} : $k^n \longrightarrow k^n$ by

 $\overline{A}(\overline{s}) = \overline{As} \quad (s \in K^n, ||s|| \le 1).$

In particular, a representation U of G in K^n induces a representation \overline{U} : $x \longmapsto \overline{U}_x$ in k^n . The following lemma can be proved as an application of lemma 2.2.

2.3. Lemma. Let U be a continuous representation of G in K^n . Then U is irreductible if and only if U is irreducible.

A useful consequence :

2.4. Lemma. Let U,V be continuous representations of G in K^n and in a Banach space E, respectively. Suppose U to be irreducible. If $T : K^n \longrightarrow E$ is a linear map such that $TU_x = V_y T(x \in G)$, then

||TS|| = ||T|| ||S|| (S $\in K^n$).

If U,V are representations of G in non-trivial Banach spaces E,F, respectively, we say that they are <u>equivalent</u> if there exists a surjective linear $T : E \longrightarrow F$ with $TU_{\downarrow} = V_{\downarrow}T$ for all $x \in G$ and with

$$||T\mathfrak{S}|| = ||T|| ||\mathfrak{S}|| \qquad (\mathfrak{S} \in \kappa^n).$$

Similarly, two non-zero Banach L(G)-modules, E and F, are called <u>equivalent</u> if there exists a surjective module isomorphism $T : E \longrightarrow F$ such that

 $\|T\xi\| = \|T\| \|\xi\|$ ($\xi \in \kappa^n$).

In either case, if T is an isometry we speak of isomorphism rather than equivalence.

For every $H \in \mathscr{N}_{O}$, $u_{H} \neq L(G)$ is a two-sided ideal in L(G) consisting of all functions $G \longrightarrow K$ that are constant on the cosets of H. Thus, $u_{H} \neq L(G)$ is finite-dimensional, and, as a normed vector space, is isomorphic to $K^{[G:H]}$. We have already observed that the $u_{H}(H \in \mathscr{N}_{O})$ form a left approximate identity in L(G). Then $\sum \{u_{H} \neq L(G) \mid H \in \mathscr{N}_{O}\}$ is dense in L(G).

In the set of all central idempotent elements of L(G) we introduce an ordering $\boldsymbol{\varsigma}$ by

$$e_1 \leq e_2$$
 if $e_1 * L(G) \subset e_2 * L(G)$.

Let \mathcal{E} be the set of all minimal non-zero central idempotents. The elements of \mathcal{E} are linearly independent and have norm 1. Then for every $H \in \mathscr{U}_{O}$ only finitely many elements of \mathcal{E} are $\leq u_{H}$. One proves easily that $u_{H} = \sum \left\{ e \in \mathcal{E} : e \leq u_{H} \right\}$. For every $e \in \mathcal{E}$ there exists an $H \in \mathscr{U}_{O}$ with $||u_{H} \neq e - e|| < 1$; then $e \neq u_{H} \neq 0$. By the minimality of e it follows that $e = e \neq u_{H}$, so

$$e * L(G) = e * u_{H} * L(G) = u_{H} * e * L(G) C u_{H} * L(G).$$

By lemma 2.1, $e \star L(G)$ is isomorphic to some K^n .

We need one more definition before we can formulate the structure theorem for L(G). Let $(A_i)_{i \in T}$ be a family of Banach spaces. We set

 $\bigoplus_{i \in I} A_i = \{ x \in \prod_{i \in I} A_i \mid if \ \varepsilon > 0, then ||x_i|| > \varepsilon \text{ for only finitely many } i \}.$

In a natural way, $\bigoplus_{i \in I} A_{i}$ is a Banach space under the norm defined i $\in I$ by $||x|| = \sup_{i \in I} ||x_{i}||$. If all the A_{i} are Banach algebras (or L(G)-modules), $\bigoplus_{i \in I} A_{i}$ i $\in I$ becomes a Banach algebra (an L(G)-module).

It is now relatively easy to prove the following analog to a classical structure theorem for finite groups.

2.5. <u>Theorem</u>. For ecc set $L(G)_e = e * L(G)$. <u>As a Banach space</u>, $L(G)_e$ <u>is isomorphic to some</u> K^n . Every $L(G)_e$ is a two-sided ideal in L(G). If $f \in L(G)$, then $f = \sum_{e \in \mathcal{E}} e * f$ and $||f|| = \sup_{e \in \mathcal{E}} ||e * f||$. <u>The formula</u>

 $(Sf)_{e} = e * f \quad (e \in \mathcal{E}; f \in L(G))$

yields an isomorphism of Banach algebras

 $S : L(G) \longrightarrow \bigoplus_{e \in \mathcal{E}} L(G)_{e}$

For every $X \subset \mathcal{E}$, {f $\in L(G) \mid e * f = 0$ for every $e \in X$ } is a closed two-sided ideal in L(G); all closed two-sided ideals of L(G) are of this form. The minimal non-zero two-sided ideals are just the $L(G)_{e}$.

In the following lines, instead of "minimal non-zero left ideal of L(G)" we simply say "minimal ideal". $L(G)_e$, being a finite-dimensional left ideal of L(G), contains minimal ideals. As in the purely algebraic representation theory of finite groups, each $L(G)_e$ is a sum of minimal ideals; every minimal ideal lies in some $L(G)_e$; and two minimal ideals are isomorphic (as L(G)-modules) if and only if they are contained in the same $L(G)_e$.

Let n(e) be the dimension (as a K-vector space) of a minimal ideal that is contained in L(G)_e. It follows from lemma 2.1 that for every e $\epsilon \epsilon$ we can choose an L(G)-module structure on K^{n(e)}, so that the resulting module I^(e) is isomorphic to the minimal ideals that lie in L(G)_e. The module structure of I^(e) induces a continuous representation W^(e) of G in K^{n(e)}

The following generalization of 2.5 is not hard to prove.

2.6. <u>Theorem</u>. Let U be a continuous representation of G in a Banach space E ; let * be the corresponding module operation L(G) $X \to E$. For $e \in \mathcal{E}$ set E₂ = {e * S | S $\in E$ {. Each E₂ is a closed submodule of E. The formula

(SŠ) = e * Š (Š€ E)

yields an isomorphism of Banach L(G)-modules

The restriction of U to E_e is called the e-<u>homogeneous part</u> of U. If $E_e = E$, then U itself is called e-<u>homogeneous</u>. (Observe that always $(E_e)_e = E_e$).

Let U be an irreducible continuous representation of G in a Banach space E. Choose $\mathfrak{F} \in \mathfrak{F}, \mathfrak{F} \neq 0$. There must exist an $e \in \mathfrak{E}$ with $e \star \mathfrak{F} \neq 0$. As $L(G)_e$ is a sum of minimal ideals, there must exist a minimal ideal D c $L(G)_e$ with $D \star \mathfrak{F} \neq (0)$. Applying lemma 2.4 (consider the map $\mathfrak{f} \longmapsto \mathfrak{f} \star \mathfrak{F}$ ($\mathfrak{f} \in D$)) we get

2.7 <u>Corollary. Every irreducible continuous representation of G is equivalent to</u> one of the W^(e). In particular, it is finite dimensional.

Now let F be any Banach space. Every n x n-matrix induces in a natural way a map $F^n \longrightarrow F^n$. Thus, every $W^{(e)}$ induces a continuous e-homogeneous representation $W^{(e)} \otimes \operatorname{Id}_F$ in $F^{n(e)}$. (To explain the notation we observe that F^n is linearly isometric to $K^n \otimes_K F^n$). Together with Theorem 2.6 the following gives a complete classification of all continuous representations of G.

2.8. <u>Theorem</u>. Every e-homogeneous continuous representation of G is isomorphic to $W^{(e)} \otimes Id_F$ for some Banach space F. The given representation determines F up to an isomorphism of Banach spaces.

For $e \in \mathcal{E}$ let \mathfrak{a}_e be the set of all linear module homomorphisms $I^{(e)} \to I^{(e)}$. Obviously, \mathfrak{a}_e is a K-Banach algebra. But it follows from lemma 2.4 that \mathfrak{a}_e even is a valued skew field containing K. It turns out that every commutative subfield Group representations

of α_e is obtainable by adjunction of roots of 1 to K. Hence, <u>if K contains</u> <u>"enough" roots of</u> 1, then α_e = K.

In a natural way, $I^{(e)}$ becomes a normed vector space over \mathcal{R}_{e} . As in the algebraic theory, $L(G)_{e}$ (as an algebra or an L(G)-module) is isomorphic to the algebra of all \mathcal{R}_{e} -linear maps $I^{(e)} \longrightarrow I^{(e)}$. But this time the isomorphism is also an isometry. It follows that, if G is abelian, then <u>every</u> $L(G)_{e}$ <u>is a valued</u> <u>field</u>, and L(G) is <u>power-multiplicative</u>. (A Banach algebra A is power-multiplicative if $||a^{n}|| = ||a||^{n}$ for all a \in A and n \in N).

As a Banach space, $I^{(e)}$ is isomorphic to $(\mathfrak{A}_{e})^{n(e)}$ for some $n(e) \in \mathbb{N}$. It follows that $L(G)_{e}$ (as a Banach algebra or a Banach L(G)-module) is isomorphic to the algebra of all $n(e) \ge n(e)$ matrices with entries form \mathfrak{A}_{e} . Here the norm of a matrix is the maximum of the norms of its entries.

3 - Representations of locally compact groups.

K,k,p,G are as in chapter 1. We assume every element of \mathcal{J} to be p-free.

G is called <u>torsional</u> if every compact subset is contained in a compact subgroup. If G is torsional then so is every closed subgroup and every quotient of G by a closed normal subgroup.

The additive group of a non-trivial valued local field is torsional : for each n $\in \mathbb{N}$, $\{x \mid |x| \leq n\}$ is a compact open subgroup. The multiplicative group is not torsional : if |x| > 1, then $\lim |x^n| = \omega$. The general and special linear groups are not torsional. However, the following group G of triangular m x m matrices

$$G = \left\{ (\alpha_{ij}) \mid \alpha_{ij} = 0 \text{ if } i < j; |\alpha_{ii}| = 1 \text{ for all } i \right\}$$

is torsional : for each $n \in \mathbb{N}$, $H_n = \{(\alpha_{ij}) \in G \mid |\alpha_{ij}| \leq n^{i-j}$ for all $i, j \}$ is a compact open subgroup.

We now formulate the main

3.1. Theorem. Let G be torsional and let $I \subset L(G)$ be a proper closed two-sided ideal. For every $f \in L(G)$ there exists a maximal modular left ideal $N \supset I$ such that ||f mod I|| = ||f mod N|| .

<u>Proof</u>. First, assume that G is compact. Then $L(G) = \bigoplus_{e \in \mathcal{E}} L(G)_{e}$ where \mathcal{E} is the e \mathcal{E} collection of minimal central idempotents of L(G). (Theorem 2.5).

Then I = \bigoplus L(G) for some $\mathfrak{D} \subset \mathcal{E}$, $\mathfrak{D} \neq \mathcal{E}$, and $f = \sum_{e \in \mathfrak{D}} e \star f$.

Clearly, $||f \mod I|| = \max ||f \ast e|| = ||f \ast d||$ for certain $d \notin \mathcal{D}$. $e \notin \mathcal{D}$

We identify $L(G)_d$ with the algebra of all $n(d) \ge n(d)$ matrices over \mathfrak{A}_d . (See the end of Chapter 2). There exists a $\mathfrak{F} \in (\mathfrak{A}_d)^{n(d)}$ with

$$\begin{split} \|(\mathbf{d} \star \mathbf{f})(\mathbf{\tilde{5}})\| &= \|\mathbf{d} \star \mathbf{f}\| \|\mathbf{\tilde{5}}\| \text{. Let } \mathbb{N}_{\mathbf{d}} = \{\mathbf{g} \in \mathcal{L}(\mathcal{G})_{\mathbf{d}} \mid \mathbf{g}(\mathbf{\tilde{5}}) = 0\}; \text{ then} \\ \||\mathbf{d} \star \mathbf{f} \mod \mathbb{N}_{\mathbf{d}}\| &= \||\mathbf{d} \star \mathbf{f}\| \text{. For } \mathbf{e} \in \mathcal{E}, \mathbf{e} \neq \mathcal{D} \text{ set } \mathbb{N}_{\mathbf{e}} = \mathcal{L}(\mathcal{G})_{\mathbf{e}}, \text{ and let} \\ \mathbb{N} \subset \mathcal{L}(\mathcal{G}) \text{ be the closure of } \sum_{\mathbf{e} \in \mathcal{E}} \mathbb{N}_{\mathbf{e}} \text{. Then } \mathbb{N} \text{ is a maximal modular left ideal containing I, and } \||\mathbf{f} \mod \mathbb{N}\| = \||\mathbf{d} \star \mathbf{f} \mod \mathbb{N}_{\mathbf{d}}\| = \||\mathbf{d} \star \mathbf{f}\|| = \||\mathbf{f} \mod \mathbb{I}\|. \end{split}$$

Observe that one can make a non-zero $n(d) \times n(d)$ matrix s over $\partial_t d$ such that $\mathbb{N}_d \times s = \{0\}$ and $s \times s = s$. (The columns of s are suitable multiples of \mathfrak{F}). We need this remark in the second part of this proof.

For the general case we may assume that f has compact support, so f = 0 outside a compact open subgroup H. We have the obvious embedding $L(H) \longrightarrow L(G)$.

By the foregoing there exists a maximal modular left ideal M of L(H), with identity e_0 , for which $M \supset I \cap L(H)$ and $||f \mod I \cap L(H)|| = ||f \mod M ||$, and there exists an idempotent s \in L(H) with $M \neq s = \{0\}$. By maximality, $M = \{g \in L(H) \mid g \neq s = 0\}$. Set $J = \overline{L(G)} \neq M + I$. J is a closed left ideal of L(G), containing I. For all $g \in L(G)$

$$g \star e_{o} - g = \lim_{V \in V} (g \star u_{V} \star e_{o} - g \star u_{V}) \in L(G) \star M \subset J,$$

so J is modular. We next prove $J \neq L(G)$.

Let $j \in J \cap L(H)$. Then $(j-j \neq s) \neq s = 0$, so $j-j \neq s \in M$. Also, $j \neq s \in (\overline{L(G) \neq M + I}) \neq s \in \overline{I \neq s} \subset \overline{I}$ and $j \neq s \in L(H)$, so $j \neq s \in M$. Therefore, $J \cap L(H) \subset M$, so that $J \neq L(G)$. Trivially, $J \cap L(H) \supset M$, so $J \cap L(H) = M$. Group representations '

Being a proper modular left ideal, J extends to a maximal modular left ideal N of L(G). By the maximality of M we still have $N \cap L(H) = M$.

By lemma 2.4, the canonical map

$$\rho: L(H)/M \longrightarrow L(G)/N$$

satisfies $\|\rho(\eta)\| = \|\rho\| \|\eta\| (\eta \in L(H)/M)$. Using the fact that

$$\begin{split} &\lim_{V \in \mathcal{N}} || u_V \mod M || = \lim_{V \in \mathcal{N}} || u_V \mod N || = 1 \text{ we see that } || \rho || = 1, \text{ so } \rho \text{ is an } \\ & \text{vec} \mathcal{N} \\ & \text{isometry. Hence, } || f \mod N || = || f \mod M || = || f \mod I \cap L(H) || > \\ & \text{ } || f \mod N || . \end{split}$$

3.2. Corollary. Let $H \in \mathscr{N}$ and let I be a closed two-sided ideal in L(G). Then the canonical map $L(H)/I \cap L(H) \longrightarrow L(G)/I$ is an isometry.

3.3. Corollary. If G is abelian and if I is a maximal modular ideal of L(G), then L(G)/I is a valued field which is the completion of an algebraic extension of K.

<u>Proof</u>. For every $H \in \mathcal{N}$, $I \cap L(H)$ is a maximal ideal of L(H) of finite codimension, and $L(H)/I \cap L(H)$ is a valued field.

The corollary now follows from the observation that the union of the canonical images of the L(H)/I \cap L(H) (H $\in \mathcal{A}$) is dense in L(G)/I.

3.4. Corollary. For each two-sided closed ideal I C L(G) the Banach algebra L(G)/I is reduced ("Spectral synthesis"). In particular, for each f \in L(G) there exists an (algebraically) irreducible continuous representation T of L(G) in some Banach space such that $\|T_f\| = \|f\|$ (f \in L(G)). ("The Fourier transformation is an isometry"). For each x \in G, x \neq e there exists a continuous irreducible representation U of G in some Banach space such that $U_x \neq I$. ("Gelfand-Raikov Theorem").

The representation space of an irreducible representation of an abelian group may have dimension greater than 1. If K is "big enough" this cannot happen :

3.5. Theorem. Let G be an abelian torsional group and suppose that the equation $S^n = 1$ has n distinct roots in K for every n $\in \{[H_2 : H_1] : H_1, H_2 \in \mathcal{N}; H_2/H_1$ cyclic}. Let G be the group of all continuous homomorphisms of G into $\{\text{Me} \mathbf{K} : |\alpha| = 1,$ topologized with the compact open topology. Then every maximal modular ideal M of L(G) has codimension 1 and there is an $\mathcal{A}_M \in G$ such that the homomorphism L(G) \longrightarrow L(G)/M has the form

$$f(\alpha_{M}) = \int f(x) \alpha_{M}(x^{-1}) dx$$
 (f $f L(G)$)

The map $M \longrightarrow \alpha_M$ is a homeomorphism of the collection of maximal modular ideals, with the Gelfrand topology, onto G. The dual group G is also torsional and the Fourier transformation $f \longmapsto f$, given by

 $\mathbf{f}^{\bullet}(\boldsymbol{\alpha}) \stackrel{\scriptscriptstyle {}}{=} \int \mathbf{f}(\mathbf{x}) \, \boldsymbol{\alpha} \, (\mathbf{x}^{-1}) \, \mathrm{d} \mathbf{x} \qquad (\mathbf{f} \in \mathcal{L}(\mathcal{G}))$

is an isometrical isomorphism of L(G) onto $C_{\infty}(G)$. Finally, the canonical map $G \longrightarrow G^{-1}$ is an isomorphism of topological groups.

Proof. See Corollary 3.4 and [1], 4.3.16 and 5.2.11.

We mention (without proof) a result for not-necessarily torsional groups. Define $B(G) = \{x \in G : U_x = I \text{ for every continuous irreductible representation U of G}\}$. It is clear from the definition that B(G) is a closed normal subgroup.

3.6. Theorem. B(G) is a discrete torsion-free subgroup of G, and is contained in every open normal subgroup of G. If G is either abelian or discrete or torisonal then $B(G) = \{e\}$. B(G) has a trivial intersection with the center of G.

We end with a

<u>Conjecture</u>: Let G be a locally compact totally disconnected group, such that all elements of \mathscr{N} are p-free, where p is the characteristic of the residue classe field k of K. Then $B(G) = \{e\}$, i.e. G has sufficiently many continuous irreductible representations.

BIBLIOGRAPHY

[1]	SCHIKHOF, W.H.	Non-archimedean harmonic analysis. (Thesis). Nijmegen, 1967.
[2]	SCHIKHOF, W.H.	Non-archimedean representations of compact groups. Comp. Math. 23 (1971), 215-232
		A.C.M. van ROOIJ and W.H. SCHIKHO

Université de Göttinger