A. C. M. van Rooij W. H. Schikhof
 Group representations in non-archimedean Banach spaces

Mémoires de la S. M. F., tome 39-40 (1974), p. 329-340
http://www.numdam.org/item?id=MSMF_1974__39-40__329_0
© Mémoires de la S. M. F., 1974, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A.C.M. van ROOIJ and W.H. SCHIKHOF

INTRODUCTION.

This paper deals with continuous representations of locally compact groups G into non-archimedean Banach spaces E. In order that G has sufficiently many of such representations G must be totally disconnected, which we assume from now on. If G carries a K-valued Haar measure (where K is the (non-archimedean valued) scalar field) we have a $1-1$ correspondence between the continuous representations of G and those of the group algebra $L(G)$. If G is compact, then $L(G)$ can be decomposed as a direct sum of full matrix algebras over skew fields (Theorem 2.5), which yields as a corollary that every irreductible continuous representation of G is equivalent to a minimal left ideal of $L(G)$. Further, all continuous representations of G can be classified (Theofem 2.8). The theory for compact groups as it is given here is a generalizacion of the results of [2]. If G is locally compact and torsional (i.e., every compact set is contained in a compact subgroup) the results are satisfactory : G then has sufficiently many continuous irreductible representations ; every twosided closed ideal in $L(G)$ is the intersection of maximal left ideals (Theorem 3.1, and corollaries). About non-torsional G little is known.

1. The Banach algebra $L(G)$.
K is a field with a (possibly trivial) non-Archimedean valuation \mid | such that K is complete relative to the metric induced by \mid |. The residue class field of K is k. If $\lambda \in K,|\lambda| \leqslant 1$ then $\bar{\lambda}$ denotes the corresponding element of k. The characteristic of k is p (which may be 0).
G is a totally disconnected locally compact group, \mathscr{F} the collection of all open compact subgroups of G, B the ring of sets generated by the left cosets of the elements of γ. It is known that β consists of the compact open subsets of G
and is a base for the topology of G.

A totally disconnected compact group H is called p-free if no open subgroup of H has an index in H that is divisible by p. (Every H is 0 -free). We assume that G has a p-free compact open subgroup G_{o}.

Then there exists a unique $m: \beta \rightarrow K$ with properties
(1) m is additive
(2) m is left invariant, i.e. $m(x A)=m(A)(x \in G ; A \in ß)$
(3) $m\left(G_{0}\right)=1$.

This m is a left Haar measure on G.

Let $C_{\infty}(G)$ be the K-Banach space of all continuous functions $G \longrightarrow K$ that vanish at infinity. (If G is compact we also call this space $C(G)$). More generally, for a Banach space $E, C_{\infty}(G \longrightarrow E)$ will denote the Banach space of all continuous functions $G \longrightarrow E$ that vanish at infinity. A left Haar measure m on G induces a unique $E-$ valued continuous linear map. $f \longmapsto \int f(x) d m(x)$ on $C_{\infty}(G \longrightarrow E)$ for which

$$
\int 1_{A}(x) \xi d m(x)=m(A) \xi \quad(A \in \notin \xi ; \xi \in E)
$$

1_{A} denoting the K-valued characteristic function of A. In particular ($E=K$)

$$
\int 1_{A}(x) d m(x)=m(A) \quad(A \in \forall)
$$

For all $f \in C_{\infty}(G \longrightarrow E)$,

$$
\left\|\int f(x) d m(x)\right\| \leqslant\|f\|
$$

This integration enables us to make $C_{\infty}(G)$ into a K-algebra by defining a multiplication*; for $f, g \in C_{\infty}(G), y \in G$:

$$
(f * g)(y)=\int f(x) g\left(x^{-i} y\right) d m(x)=\int f\left(y x^{-1}\right) g(x) d m(x)
$$

In fact, it turns out that $f * g \in C_{\infty}(G)$ and $\|f * g\| \leqslant\|f\|\|g\|$.
Thus, $C_{\infty}(G)$ actually is a Banach algebra over K. $*$ is called convolution. When we view $C_{\infty}(G)$ as a Banach algebra under convolution, we usually call it $L(G)$.

If $H \in \mathscr{N}$ is contained in G_{0}, then $m(H)=\left[G_{0}: H\right]^{-1}$, so $|m(H)|=1$. Set $u_{H}=m(H)^{-1} \cdot 1_{H}$. Then

$$
\begin{gathered}
\left\|u_{H}\right\|=1, \quad \int u_{H}(x) d m(x)=1 \\
u_{H} * u_{H}=u_{H} .
\end{gathered}
$$

Let E be a Banach space. A representation of G in E is a homomorphism $U: x \longmapsto U_{x}$ of G into the group of all isometric linear bijections $E \longrightarrow E$. Such a representation U is called continuous if $x \longrightarrow U_{x}$ is continuous for each $5 \in E$.

A linear subspace D of E is U-invariant if $U_{x}(D) C D$ for every $x \in G$. If $\{0\}$ and E are the only U-invariant linear subspaces of E, the representation U is called algebraically irreducible. If $\{0\}$ and E are the only closed U-invariant subspaces, U is irreducible.

For $f \in C_{\infty}(G)$ and a $\in G$, define the function $L_{a} f$ on G by

$$
\left(L_{a} f\right)(x)=f\left(a^{-1} x\right) \quad(x \in G)
$$

In this way we have constructed a continaous representation L of G in $C_{\infty}(G)$, the regular representation.

For all $f, g \in C_{\infty}(G)$ we have the identity

$$
f * g=\int f(x) L_{x} g d m(x)
$$

More generally, let U be a continuous representation of G in some Banach space E. For $f \in L(G)$ and $\xi \in E$ we define

$$
\begin{equation*}
f * \xi=\int f(x) U_{x} \xi d m(x) \tag{i}
\end{equation*}
$$

Thus, E becomes a module over the ring $L(G)$ for which

$$
\begin{equation*}
\|f * \xi\| \leqslant\|f\| \quad\|\xi\| \quad(f \in L(G) ; \xi \in E) \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{x}(f * \xi)=\left(L_{x} f\right) * \xi \quad(f \in L(G) ; \xi \in E ; x \in G) \tag{iii}
\end{equation*}
$$

If $\zeta \in E$ and $\varepsilon>0$, then $\left\{x \in G \mid\left\|U_{x} \zeta-\xi\right\|<\varepsilon\right\}$ is an open subgroup of G. If $H \in \mathcal{H}$ is contained in this subgroup, then $\left\|u_{H} * \xi-\xi\right\| \leqslant \varepsilon$. Ordering $\mathscr{\sim}$ in the obvious way we obtain

$$
\begin{equation*}
\lim _{H \in \mathscr{}} u_{H} * \xi=\xi \quad(\xi \in E) . \tag{iv}
\end{equation*}
$$

In particular, the u_{H} form a left approximate identity for $L(G)$. Without any trouble one proves that they actually form a two-sided approximate identity.

A closed linear subspace of E is U-invariant if and only if it is a submodule of E. A continuous linear map $E \rightarrow E$ commutes with every U_{x} if and only if it is a module homomorphism.

Conversely, a Banach $L(G)$-module is a Banach space E provided with a bilinear $\operatorname{map} *: L(G) \times E \longrightarrow E$ such that $f *(g * \zeta)=(f * g) * \zeta(f, g \in L(G) ; \xi \in E)$ and such that (ii) holds. Such a Banach $L(G)$-module is continuous (or essential) if (iv) is also valid. If E is any Banach $L(G)$-module, the closed linear hull of $\{f * \xi \mid f \in L(G) ; \xi \in E\}$ is the largest continuous submodule of E.

In any continuous Banach L(G)-module E, formula (iii) defines a continuous representation U of G that fulfils (i) : we have a one-to-one correspondence between continuous $L(G)$-modules and continuous representations of G.

2 - The structure of $L(G)$ for compact G.

In this chapter we assume that G itself is compact and p-free. We work with the left Haar measure m for which $m(G)=1$.

Let X_{0} denote the set of all normal open subgroups of G. It was proved by Pontryagin that every element of γ contains an element of γ_{0}. It follows that the $u_{H}\left(H \in X_{0}\right)$ form a left approximate identity for $L(G)$.

For any Banach space F and for $n \in N$ we consistently view F^{n} as a Banach space under the max-norm :

$$
\left\|\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|=\max _{i}\left\|\xi_{i}\right\| \quad\left(\xi_{1}, \ldots, \xi_{n} \in F\right) .
$$

If D is a closed linear subspace of a Banach space E, a proiection of E onto D is a linear $P: E \longrightarrow E$ for which
(1) $\quad\|P\| \leqslant 1$.
(2 $\quad P(E) \subset D$.

$$
\begin{equation*}
P x=x \text { for all } x \in D \tag{3}
\end{equation*}
$$

The following lemma is well-known.
2.1. Lemma. Let D be a linear subspace of K^{n}. Then as a normed vector space, D is isomorphic to some K^{m}. There exists a projection of K^{n} onto D.

The same reasoning used in the classical theory for representations in Banach spaces now leads to
2.2. Lemma. Let U be a continuous representation of G in K^{n}. Let D be a U-invariant linear subspace of K^{n}. Then there exists a projection P of K^{n} onto D that commutes with every U_{x}.

Every $\xi \in K^{n}$ for which $\|\xi\| \leqslant 1$ determines in a natural way a $\bar{\xi} \in k^{n}$. Consequently, a K-linear $A: K^{n} \longrightarrow K^{n}$ with $\|A\| \leqslant 1$ determines a k-linear $\bar{A}: k^{n} \longrightarrow k^{n}$ by

$$
\bar{A}(\bar{\xi})=\bar{A} \bar{\xi} \quad\left(\xi \in K^{n},\|\xi\| \leqslant 1\right) .
$$

In particular, a representation U of G in K^{n} induces a representation $\bar{U}: x \longmapsto \bar{U}_{x}$ in k. The following lemma can be proved as an application of lemma 2.2.
2.3. Lemma. Let U be a continuous representation of G in K^{n}. Then U is irreductible if and only if \bar{U} is irreducible.

A useful consequence :
2.4. Lemma. Let U, V be continuous representations of G in K^{n} and in a Banach space E, respectively. Suppose U to be irreducible. If $T: K^{n} \longrightarrow E$ is a linear map such that $T U_{x}=V_{x} T(x \in G)$, then

$$
\|T \xi\|=\|T\| \quad\|\xi\| \quad\left(\xi \in K^{n}\right)
$$

If U, V are representations of G in non-trivial Banach spaces E, F, respectively, we say that they are equivalent if there exists a surjective linear $T: E \longrightarrow F$ with $T U_{x}=V_{x} T$ for all $x \in G$ and with

$$
\|T \xi\|=\|T\|\|\xi\| \quad\left(\xi \in K^{n}\right)
$$

Similarly, two non-zero Banach $L(G)$-modules, E and F, are called equivalent if there exists a surjective module isomorphism $T: E \longrightarrow F$ such that

$$
\|T \xi\|=\|T\|\|\xi\| \quad\left(\xi \in K^{n}\right) .
$$

In either case, if T is an isometry we speak of isomorphism rather than equivalence.

For every $H \in X_{0}, u_{H}^{*} L(G)$ is a two-sided ideal in $L(G)$ consisting of all functions $G \longrightarrow K$ that are constant on the cosets of H. Thus, $u_{H}{ }^{*} L(G)$ is finitedimensional, and, as a normed vector space, is isomorphic to $K[G: H]$. We have already observed that the $u_{H}\left(H \in \gamma_{0}\right)$ form a left approximate identity in $L(G)$. Then $\sum\left\{u_{H} * L(G) \mid H \in \mathscr{V}_{0}\right\}$ is dense in $L(G)$.

In the set of all central idempotent elements of $L(G)$ we introduce an ordering \leqslant by

$$
e_{1} \leqslant e_{2} \text { if } e_{1} * L(G) \subset e_{2} * L(G)
$$

Let ε be the set of all minimal non-zero central idempotents. The elements of ε are linearly independent and have norm 1. Then for every $H \in \mathcal{W}_{0}$ only finitely many elements of ε are $\leqslant u_{H}$. One proves easily that $u_{H}=\sum\left\{e \in \varepsilon: e \leqslant u_{H}\right\}$. For every e $\in \varepsilon$ there exists an $H \in \delta_{0}$ with $\left\|u_{H} * e-e\right\|<1$; then $e * u_{H} \neq 0$. By the minimality of e it follows that $e=e * u_{H}$, so

$$
e * L(G)=e * u_{H} * L(G)=u_{H} * e * L(G) \subset u_{H} * L(G) .
$$

By lemma 2.1, e $* \mathrm{~L}(\mathrm{G})$ is isomorphic to some K^{n}.

We need one more definition before we can formulate the structure theorem for $L(G)$. Let ($\left.A_{i}\right)_{i \in I}$ be a family of Banach spaces. We set

```
    i\inI
    In a natural way, }\underset{i\inI}{\oplus}\mp@subsup{A}{i}{}\mathrm{ is a Banach space under the norm defined
by }|x|=\mp@subsup{\operatorname{sup}}{i\inI}{|}|\mp@subsup{x}{i}{}|\mathrm{ . If all the A. are Banach algebras (or L(G)-modules),}\underset{i}{\oplus}\underset{I}{\oplus}\mp@subsup{A}{i}{\prime
becomes a Banach algebra (an L(G)-module).
```

It is now relatively easy to prove the following analog to a classical structure theorem for finite groups.
2.5. Theorem. For e $\in \mathcal{E}$ set $L(G)=e * L(G)$. As a Banach space, $L(G)$ is isomorphic to some K^{n}. Every $L(G)$ is a two-sided ideal in $L(G)$. If $f \in L(G)$, then $f=\sum_{e \in \varepsilon} e * f$ and $\|f\|=\sup _{e \in \mathcal{E}}\|e * f\|$. The formula

$$
(S f)_{e}=e * f \quad(e \in \varepsilon ; f \in L(G))
$$

yields an isomorphism of Banach algebras

$$
S: L(G) \longrightarrow \underset{e \in \varepsilon}{\oplus} L(G) e
$$

For every $X \subset \mathcal{E},\{f \in L(G) \mid e * f=0$ for every $e \in X\}$ is a closed two-sided ideal in $L(G)$; all closed two-sided ideals of $L(G)$ are of this form. The minimal non-zero two-sided ideals are just the $L(G)$ e.

In the following lines, instead of "minimal non-zero left ideal of $L(G)$ " we simply say "minimal ideal". L(G)e , being a finite-dimensional left ideal of $L(G)$, contains minimal ideals. As in the purely algebraic representation theory of finite groups, each $L(G) e$ is a sum of minimal ideals ; every minimal ideal lies in some $L(G)_{e}$; and two minimal ideals are isomorphic (as $L(G)$-modules) if and only if they are contained in the same $L(G){ }_{e}$.

Let $n(e)$ be the dimension (as a K-vector space) of a minimal ideal that is contained in $L(G)$ e. It follows from lemma 2.1 that for every e $\epsilon \in$ we can choose an $L(G)$-module structure on $K^{n(e)}$, so that the resulting module $I^{(e)}$ is isomorphic to the minimal ideals that lie in $L(G)$. The module structure of $I^{(e)}$ induces a continuous representation $W^{(e)}$ of G in $K^{n(e)}$

The following generalization of 2.5 is not hard to prove.
2.6. Theorem. Let. U be a continuous representation of G in a Banach space E; let * be the corresponding module operation $L(G) \times E \longrightarrow E$ For $e \in \mathcal{E}$ set
$\mathrm{E}_{\mathrm{e}}=\{e * \xi \mid \xi \in E\}$. Each E_{e} is a closed submodule of E . The formula

$$
(S \xi)_{e}=e * \xi
$$

yields an isomorphism of Banach $L(G)$-modules

$$
S: E \longrightarrow{ }_{e \in \xi}^{\oplus} \quad{ }^{E} e^{-}
$$

The restriction of U to E_{e} is called the e-homogeneous part of U. If $E_{e}=E$, then U itself is called e-homogeneous. (Observe that always $\left(E_{e}\right)=E_{e}$).

Let U be an irreducible continuous representation of G in a Banach space E. Choose $\mathcal{\xi \in E}, \mathcal{\xi} \neq 0$. There must exist an e $\in \mathcal{E}$ with e $\mathcal{\xi} \neq 0$. As $L(G)$ is a sum of minimal ideals, there must exist a minimal ideal $D \subset L(G)$ with $D * \xi \neq(0)$. Applying lemma 2.4 (consider the map $f \longmapsto f * S(f \in D)$) we get
2.7 Corollary. Every irreducible continuous representation of G is equivalent to one of the $W^{(e)}$. In particular, it is finite dimensional.

Now let F be any Banach space. Every $\mathrm{n} \times \mathrm{n}$-matrix induces in a natural way a $\operatorname{map} F^{n} \longrightarrow F^{n}$. Thus, every $W^{(e)}$ induces a continuous e-homogeneous representation $W^{(e)} \otimes I d_{F}$ in $F^{n(e)}$. (To explain the notation we observe that F^{n} is linearly isometric to $K^{n} \otimes_{K} \mathrm{~F}^{\mathrm{n}}$). Together with Theorem 2.6 the following gives a complete classification of all continuous representations of G.
2.8. Theorem. Every e-homogeneous continuous representation of G is isomorphic to $W(e) \otimes I d_{F}$ for some Banach space F. The given representation determines F up to an isomorphism of Banach spaces,

For e $\epsilon \varepsilon$ let a_{e} be the set of all linear module homomorphisms $I^{(e)} \rightarrow I^{(e)}$. Obviously, a_{e} is a K-Banach algebra. But it follows from lemma 2.4 that a_{e} even is a valued skew field containing K. It turns out that every commutative subfield
of $\mathbb{a}_{\text {e }}$ is obtainable by adjunction of roots of 1 to K. Hence, if K contains "enough" roots of 1 , then $\vec{a}_{e}=K$.

In a natural way, $I^{(e)}$ becomes a normed vector space over a e. As in the algebraic theory, $L(G) e$ (as an algebra or an $L(G)$-module) is isomorphic to the algebra of all $e^{-l i n e a r ~ m a p s ~} I^{(e)} \longrightarrow I^{(e)}$. But this time the isomorphism is also an isometry. It follows that, if G is abelian, then every $L(G)$ is a valued field, and $L(G)$ is power-multiplicative. (A Banach algebra A is power-multiplicative if $\left\|a^{n}\right\|=\|a\|^{n}$ for all a $\in A$ and $\left.n \in N\right)$.
 follows that $L(G) . e$ (as a Banach algebra or a Banach $L(G)$-module) is isomorphic to the algebra of all $n(e) \times n(e)$ matrices with entries form \mathscr{A}_{e}. Here the norm of a matrix is the maximum of the norms of its entries.

3 - Representations of locally compact groups.

K, k, p, G are as in chapter 1. We assume every element of $\|$ to be p-free.
G is called torsional if every compact subset is contained in a compact subgroup. If G is torsional then so is every closed subgroup and every quotient of G by a closed normal subgroup.

The additive group of a non-trivial valued local field is torsional : for each $n \in \mathbb{N},\{x| | x \mid \leqslant n\}$ is a compact open subgroup. The multiplicative group is not torsional : if $|x|>1$, then $\lim \left|x^{n}\right|=\infty$. The general and special linear groups are not torsional. However, the following group G of triangular $m \times m$ matrices

$$
G=\left\{\left(\alpha_{i j}\right) \mid \alpha_{i j}=0 \text { if } i<j ;\left|\alpha_{i i}\right|=1 \text { for all } i\right\}
$$

is torsional : for each $n \in \mathbb{N}, H_{n}=\left\{\left(\alpha_{i j}\right) \in G| | \alpha_{i j} \mid \leqslant n^{i-j}\right.$ for all $\left.i, j\right\}$ is a. compact open subgroup.

We now formulate the main

3.1. Theorem. Let G be torsional and let $I C L(G)$ be a proper closed two-sided ideal. For every $f \in L(G)$ there exists a maximal modular left ideal $N \supset I$ such that $\|f \bmod I\|=\|f \bmod N\|$.

Proof. First, assume that G is compact. Then $L(G)=\underset{e \in \mathcal{E}}{\oplus} L(G)$ where \mathcal{E} is the collection of minimal central idempotents of $L(G)$. (Theorem 2.5).

Then $I=\underset{e \in \mathcal{E}}{\oplus} L(G)_{e}$ for some $D c \mathcal{E}, \mathscr{D} \neq \varepsilon$, and $f=\sum_{e \in \mathcal{E}} e * f$.
Clearly, $\|f \bmod I\|=\max _{e \notin \mathscr{D}}\|f * e\|=\|f * d\|$ for certain $d \notin \mathscr{D}$.
We identify $L(G)_{d}$ with the algebra of all $n(d) \times n(d)$ matrices over a_{d}.

$\|(d * f)(\xi)\|=\|d * f\|\|\xi\| \cdot \operatorname{Let} N_{d}=\left\{g \in L(G)_{d} \mid g(\xi)=0\right\}$; then
$\left\|d * f \bmod N_{d}\right\|=\|d * f\|$. For $e \in \mathcal{E}, e \neq \varnothing \operatorname{set} N_{e}=L(G)_{e}$, and let $N \subset L(G)$ be the closure of $\sum_{e \in \mathcal{E}} N_{e}$. Then N is a maximal modular left ideal contai$\operatorname{ing} I$, and $\|f \bmod N\|=\left\|d * f \bmod N_{d}\right\|=\|d * f\|^{\circ}=\|f \bmod I\|$.

Observe that one can make a non-zero $n(d) \times n(d)$ matrix s over \mathcal{O}_{d} such that $N_{d} * s=\{0\}$ and $s * s=s$. (The columns of s are suitable multiples of ξ). We need this remark in the second part of this proof.

For the general case we may assume that f has compact support, so $f=0$ outside a compact open subgroup H. We have the obvious embedding $L(H) \longrightarrow L(G)$.

By the foregoing there exists a maximal modular left ideal M of $L(H)$, with identity e_{o}, for which $M \supset I \cap L(H)$ and $\|f \bmod I \cap L(H)\|=\|f \bmod M\|$, and there exists an idempotent $s \in L(H)$ with $M * s=\{O\}$. By maximality, $M=\{g \in L(H) \cdot \mid g * s=0\}$. Set $J=\overline{L(G) * M+I}$. J is a closed left ideal of $L(G)$, containing I. For all $g \in L(G)$

$$
g * e_{0}-g=\lim _{V \in J}\left(g * u_{V} * e_{o}-g * u_{V}\right) \in \overline{L(G) * M} \subset J,
$$

so J is modular. We next prove $J \neq L(G)$.
Let $j \in J \cap L(H)$. Then ($j-j * s) * s=0$, so $j-j * s \in M$. Also; $j * s \epsilon \overline{(L(G) * M+I)} * \operatorname{sc} \overline{I * s} \subset I$ and $j * s \in L(H)$, so $j * s \in M$. Therefore, $J \cap L(H) C M$, so that $J \neq L(G)$. Trivially, $J \cap L(H) \supset M$, so $J \cap L(H)=M$.

Being a proper modular left ideal, J extends to a maximal modular left ideal N of $L(G)$. By the maximality of M we still have $N \cap L(H)=M$.

By lemma 2.4, the canonical map

$$
\rho: L(H) / M \longrightarrow L(G) / N
$$

satisfies $\|\rho(\eta)\|=\|\rho\|\|\eta\| \quad(\eta \in L(H) / M)$. Using the fact that
$\lim _{V \in \mathscr{V}}\left\|u_{V} \bmod M\right\|=\lim _{V \in \mathscr{V}}\left\|u_{V} \bmod N\right\|=1$ we see that $\|\rho\|=1$, so ρ is an
isometry. Hence, $\|f \bmod N\|=\|f \bmod M\|=\|f \bmod I \cap L(H)\| \geqslant$
$\|f \bmod I\| \geqslant\|f \bmod N\|$.
3.2. Corollary. Let $H \in \mathscr{N}$ and let I be a closed two-sided ideal in $L(G)$.

Then the canonical map $L(H) / I \cap L(H) \longrightarrow L(G) / I$ is an isometry.
3.3. Corollary. If G is abelian and if I is a maximal modular ideal of $L(G)$, then $L(G) / I$ is a valued field which is the completion of an algebraic extension of K .

Proof. For every $H \in W, I \cap L(H)$ is a maximal ideal of $L(H)$ of finite codimension, and $L(H) / I \cap L(H)$ is a valued field.

The corollary now follows from the observation that the union of the canonical images of the $L(H) / I \cap L(H)(H \in \mathcal{U})$ is dense in $L(G) / I$.
3.4. Corollary. For each two-sided closed ideal I C L(G) the Banach algebra $L(G) / I$ is reduced ("Spectral synthesis"). In particular, for each $f \in L(G)$ there exists an (algebraically) irreducible continuous representation T of $L(G)$ in some Banach space such that $\left\|T_{f}\right\|=\|f\|(f \in L(G))$. ("The Fourier transformation is an isometry"). For each $x \in G, x \neq e$ there exists a continuous irreducible representation U of G in some Banach space such that $U_{x} \neq I$. (Gelfand-Raikov Theorem").

The representation space of an irreducible representation of an abelian group may have dimension greater than 1. If K is "big enough" this cannot happen :
3.5. Theorem. Let G be an abelian torsional group and suppose that the equation $\xi^{n}=1$ has n distinct roots in K for every $n \in\left\{\left[\mathrm{H}_{2}: \mathrm{H}_{1}\right]: \mathrm{H}_{1}, \mathrm{H}_{2} \in \mathscr{N} ; \mathrm{H}_{2} / \mathrm{H}_{1}\right.$ cyclic $\}$. Let G be the group of all continuous homomorphisms of G into $\{\alpha \in \mathbb{K}:|\alpha|=1$, topologized with the compact open topology. Then every maximal modular ideal M of $L(G)$ has codimension 1 and there is an $\alpha_{M} \in G^{\wedge}$ such that the homomorphism $L(G) \longrightarrow L(G) / M$ has the form

$$
f \longmapsto f\left(\alpha_{M}\right)=\int f(x) \alpha_{M}\left(x^{-1}\right) d x \quad(f \in L(G))
$$

The map $M \longrightarrow \alpha_{M}$ is a homeomorphism of the collection of maximal modular ideals, with the Gelfrand topology, onto G. The dual group G^{\wedge} is also torsional and the Fourier transformation $f \longrightarrow f^{\wedge}$, given by

$$
f^{\wedge}(\alpha)=\int f(x) \alpha\left(x^{-1}\right) d x \quad(f \in L(G))
$$

is an isometrical isomorphism of $L(G)$ onto $C_{\infty}(G)$. Finally, the canonical map $G \longrightarrow G^{\wedge}{ }^{\wedge}$ is an isomorphism of topological groups. Proof. See Corollary 3.4 and [1], 4.3.16 and 5.2.11.

We mention (without proof) a result for not-necessarily torsional groups. Define $B(G)=\left\{x \in G: U_{x}=I\right.$ for every continuous irreductible representation U of G \}. It is clear. from the definition that $B(G)$ is a closed normal subgroup.
3.6. Theorem. $B(G)$ is a discrete torsion-free subgroup of G, and is contained in every open normal subgroup of G. If G is either abelian or discrete or torisonal then $B(G)=\{e\} . B(G)$ has a trivial intersection with the center of G.

We end with a
Conjecture : Let G be a locally compact totally disconnected group, such that all elements of \mathscr{N} are p free, where p is the characteristic of the residue classe field k of K. Then $B(G)=\{e\}$, i.e. G has sufficiently many continuous irreductivie representations.

BIBL IOGRAPHY

[1] SCHIKHOF, W.H. Non-archimedean harmonic analysis. (Thesis). Nijmegen, 1967.
[2] SCHIKHOF, W.H. Non-archimedean representations of compact groups. Comp. Math. $\delta 3$ (1971), 215-232

> A.C.M. van ROOIJ and W.H. SCHIKHO
> Université de Göttinger

