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GROUP REPRESENTATIONS IN NON-ARCHIMEDEAN BANACH SPACES

A . C . M . van ROOIJ and W . H . SCHIKHOF

INTRODUCTION.

This paper deals "with continuous representations of locally compact groups G
into non-arc hi me dean Banach spaces E. In order that G has sufficiently many of such
representations G must "be totally disconnected, which we assume from nov on. If G
carries a K-valued Haar measure (where K is the (non-archime dean valued) scalar
field) we have a 1-1 correspondence between the continuous representations of G and
those of the group algebra L ( G ) . If G is compact, then L ( G ) can be decomposed as a
direct sum of full matrix algebras over skew fields (Theorem 2 . 5 ) , which yields as
a corollary that every irreductible continuous representation of G is equivalent to
a minimal left ideal of L ( G ) . Further, all continuous representations of G can be
classified (Theorem 2 . 8 ) . The theory for compact groups as it is given here is a
generalization of the results of [ 2 ] . 'If G is locally compact and torsional ( i . e . ,
every compact set is contained in a compact subgroup) the results are satisfactory :
G then has sufficiently many continuous irreductible representations ; every two-
sided closed ideal in L ( G ) is the. intersection of maximal left ideals (Theorem 3 . 1 »
and corollaries). About non-torsional G little is known.

1 . The Banach algebra L ( G ) .

K is a field with a (possibly trivial) non-Archimedean valuation | | such
that K is complete relative to the metric induced by | | . The residue class field
of K is k. If A. C K, | X [ ^ 1 then X. denotes the corresponding element of k. The
characteristic of k is p (which may be 0 ) .

G is a totally disconnected locally compact group, Jl the collection of all
open compact subgroups of G, ̂  the ring of sets generated by the left cosets of
the elements of Jf . It is known that >̂ consists of the compact open subsets of G
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and. is a base for the topology of G.

. A totally disconnected compact group H is called p-free if no open subgroup
of H. has an index in H that is divisible by p. (Every H is 0-free). We assume that
G has a p-free compact open subgroup G^ .

Then there exists a unique m : 1Q —> K with properties

( 1 ) m is additive

( 2 ) m is left invariant, i . e . m(xA) = m ( A ) (x C G; A C SS )

( 3 ) m(G^) = 1 .

This m is a left Haar measure on G.

Let C^(G) be the K-Banach space of all continuous functions G ——>K that vanish
at infinity, (if G is cctopact we also call this space C ( G ) ) . More generally, for a
Banach space E, Coo(G ——* E) will denote the Banach space of all continuous functions
G ——> E that vanish at infinity. A left Haar measure m on G induces a unique E-
valued continuous linear map. f»——;^f(x)dm(x) on C^(G ——^ E) for which

^(x) ^ dm(x) = m(A)S (A C ̂  ; 'S C E),

1 denoting the K-valued characteristic function of A. In particular (E=K)

/ 1^ (x ) dm(x) ^ m(A) (A C ^).

For all f C C^(G ——> E ) ,

l | f f ( x ) dm(x),|| ,< ||f || .

This integration enables us to make C^G) into a K-algebra by defining a
multiplication*; for f,g C C (G), y C G :oo

( f * g)(y) = ff(x)g(x'1y)dm(x) =/f(yx""1 )g(x)dm(x).

In fact, it turns out that f ^ g € C (G) and || f ^ g |j $.( j f ( ( llslj .

Thus, C(G) actually is a Banach algebra over K. -^ is called convolution.
t0

When we view Cyr\{G) as a Banach algebra under convolution, we usually call it L(G).
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If H C {IT is contained in G^ , then m ( H ) = [o :H]~1 , so | m ( H ) | = 1.

Set u^ = i^H)"1.-!^ . Then

i|u^l| = 1 , fu^(x)dm(x) = 1

UH ̂  = u^ .

Let E be a Banach space. A representation of G in E is a homomorphism
U : x»——*• U of G into the group of all isometric linear bijections E ——>E. Such

a representation U is called continuous if x ——^U S is continuous for each S €. E.

A linear subspace D of E is U-invariant if U (D) C D for every x € G. If {oj

and E are the only U-invariant linear subspaces of E, the representation U is called

algebraically irreducible. If \0\ and E are the only closed U-invariant subspaces,
U is. irreducible.

For f € C (G) and a e G, define the function L f on G by

(L^f)(x) = f(a~''x) (x € G).

In this way we have constructed a continuous representation L of G in C (G),

the regular representation.

For all f,g € C(G) we have the identity

f X g ' / ^ ( x ) L^ gdm(x).f X g = j f [ x ) L^ gdmW.

More generally, let U be a continuous representation of G in some Banach space
E. For f C L ( G ) and X» £ E we define

( i ) f ^ S = f t ( x ) U ^ ^5 dm(x) .

Thus, E becomes a module over the ring L ( G ) for which

(ii) lit ^ Sll^ ll^ll II^H (f ^ L(G); ^ i E)
and

(iii) U^(f ^ S ) = (L^f) ^ ^ (f C L ( G ) ; ^ € E ; x € G) .
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tf ^ £ E and ^ > 0, then [x 6 G I ||U ^-1| |<6J is an open subgroup of G.

If H £ (V is contained in this subgroup, then 11^^ ^ - ^ 1 1 ^ ^ * Ordering ^T in

the obvious way we obtain

(iv) lim u-. ^S^ (1 C E).
Hfc^ "

In particular, the VL, form a left approximate identity for L(G). Without any

trouble one proves that they actually form a two-sided approximate identity.

A closed linear subspace of E 3_s. U-invariant if and only if it is a submodule

of E. A continuous linear map E ——» E commutes with every U if and only if it is

a module homomorphism.

Conversely, a Banach L(G)-module is a Banach space E provided with a bilinear

map ^ : L(G) X E ——> E such that f ^ (g ^ S ) » (f ^ g) ̂  (f.g ^ L(G); t G E) and

such that (ii) holds. Such a Banach L(G)-module is continuous (or essential) if (iv)

is also valid. If E is any Banach L(G)-module, the closed linear hull of

j f yr ^ | f C L (G) ;S € E } is the largest continuous submodule of E.

In any continuous Banach L(G)-module E, formula (iii) defines a continuous

representation U of G that fulfils (i') »• we have a one-to-one correspondence bet-

ween continuous L(G)-modules and continuous representations of G.

2 - The structure of L(G) for compact G.

In this chapter we assume that G itself is compact and p-free. We work with

the left Haar measure m for which m(G) = 1 .

Let uC denote the set of all normal open subgroups of G. It was proved by

Pontryagin that every element of jf contains an element of i)T . It follows thato
the u^K ^ ^ ) 'form a left approximate identity for L(G).

For any Banach space F and for n C N we consistently view F11 as a Banach space
under the max-norm :

||C5, ,...,\ Jll -aax H^ll (5, -,..., ̂ 6 F).
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If D is a closed linear subspace of a Banach space E, a projection of E onto D

is a linear P : E ——^ E for which

( 1 ) I I P I I ^ 1.

(2 P ( E ) C D.

(3) Px = x for all x C D.

The following lemma is well-known.

2.1. Lemma. Let D be a linear subs-pace of K11 . Then as a normed vector space, D is^

isomorphic to some K"1 . There exists a pro .lection of K" onto D.

The same reasoning used in the classical theory for representations in Banach

spaces now leads to

2.2. Lemma. Let U be a continuous representation of G ^n K" . Let D "be a U-invariant

linear subspace of K11 . Then there exists a projection P q^ K" onto D that commutes

with every U

Every ^ e K" for which 1 ( 3 1 1 ^ 1 determines in a natural way a 1| C k

Consequently, a K-linear A : K" ——> K11 with ||A|| ^ 1 determines a k-linear

A- : ̂  —^n by

A(t) = At (^ e K11 . 1 1 ^ 1 1 ^ 1 ) .

In particular, a representation U of G in K1'1 induces a representation

U : x l——^ U in k11 . The following lemma can be proved as an application of

lemma 2.2.

2.3. Lemma. L^b U be a continuous representation of G in, K11 . Then U is irreductible

if and only if U is irreducible*

A .useful consequence :

.2.4. Lemma. Let U,V be continuous represent at ions of G in K" and in a Banach space E,

respectively. Suppose U to be irreducible. Ff T : K11 ——^ E is a linear map such

that TU = V T(x € G^then

ilTlll = )1T | | U^ll (^ 6 K11).
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If U,V are representations of G in non-trivial Banach spaces E,F, respectively,

we say that they are equivalent if there exists a surjective linear T : E ——*• F

with TU = V T for all x € G and with
x x

IITIU = ( |Ti i ilSK (t, 6 K").

Similarly, two non-zero Banach L(G)-modules, E and F, are called equivalent if

there exists a surjective module isomorphism T : E —-^ F such that

HTSII s HTII l|i(( (1 &K 1 1 ) .

In either case, if T is an isometry "we speak of isomorphism rather than equi-

valence.

For every H € JC , u ^ L(G) is a two-sided ideal in L(G) consisting of all

functions G ——> K that are constant on the cosets of H. Thus, Up ^ L(G) is finite-

dimensional, and, as a normed vector space, is isomorphic to KL^^J . \je have already

observed that the Urj(H €. Jf ) form a left approximate identity in L(G). Then

Z. {u_ ^ L(G) | nejr ( is dense in L(G).
I H 0 )

In the set of all central idempotent elements of L(G) we introduce ah ordering

^ by

e^ ^ e^ if e^ W L(G) C e^ » L ( G ) .

Let 6 'be the set of all minimal non-zero central idempotents. The elements

of £ are linearly independent and have norm 1 . Then for every H € c/T only finitely

many elements of 6 are ^ VL- . One proves easily that u_ = ̂  [e e & : e $• u., ( .

For every e € 6 there exists an H C cT with l|u-, X- e - e || < 1 ; then e ^ u., ^ 0.

By the minimality of e it follows that e = e ^ u,, , so

e ^ L(G) = e ^ u^ ^ L(G) = u^ X- e )fr L(G)C u^ ^ L(G).

By lemma 2 . 1 , e x L(G) is isomorphic to some K .

We need one more definition before we can formulate the structure theorem

for L(G). Let ( A . ) . ^ - be a family of Banach spaces. We setli i. c> l
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® A . = \x € TT A . | if 6 > 0, then | j x . l | > ^ for only finitely many i f .
i€l 1 ie I 1 1 }

In a natural way, © A . is a Banach space under the norm defined
i C I 1

by ) j x | j = sup | | x . | | . If all the A . are Banach algebras (or L(G)-modules), (9 A .
i€I 1 1 id 1

becomes a Banach algebra (an L(G)-module).

It is now relatively easy to prove the following analog to a classical
structure theorem for finite groups.

2 . 5 . Theorem. For e C & set L ( G ) = e ̂  L ( G ) . As a Banach space, L ( G ) is iso-e e
morphic to some K . Every L ( G ) is a two-sided ideal in L ( G ) . If f C L ( G ) , then

f = Z_ e yr f and ( | f ) [ = sup | | e ^ f | ( . The formula
ec& e€,6

( S f ) = e ̂  f ( e C & ; f C L ( G ) )

yijglds an isomorphism of Banach algebras

S : L ( G ) ——> ® L ( G )
ee& e

For every X c 6 , [f € L ( G ) I e -̂  f = 0 -for every e € X\ is a closed two-sided
ideal in L ( G - ) ; all closed two-sided ideals o f , L ( G ) are of this form. The minimal
non-zero two-sided ideals are just the L ( G )

.In the following lines, instead of "minimal non-zero left ideal of L ( G ) " we
simply say "minimal ideal". L ( G ) , being a finite-dimensional left ideal of L ( G ) ,
contains minimal ideals. As in the purely algebraic representation theory of finite
groups, each L ( G ) is a sum of minimal ideals ; every mini-mal ideal lies in some
L ( G ) ; and two minimal ideals are isomorphic (as L(G)-modules) if and only if they
are contained in the same L ( G ) .

Let n ( e ) be the dimension (as a K-vector space) of a minimal ideal that is
contained in L ( G ) . It follows from lemma 2 . 1 that for every e € <£ we can choose
an L(G)-module structure on K , so that the resulting module I is isomorphic
to the minimal ideals that lie in L ( G ) . The module structure of I induces a
continuous representation W of G in K



336 A.'C.M. van ROOIJ - W.H. SCHIKHOF

The following generalization of 2.5 is not hard to.prove.

2 . 6 . Theorem. Let .• U be a continuous representation of G in a Banach space E ; let yr

be the corresponding module operation L ( G ) X E ——*• E. For e € ̂  set
E = j e ̂  ̂  I ̂  € E J . Each E is a closed submodule of E. The formula

( S ^ ) = e ^ 1 (3 € E)

yields an isomorphism of Banach L(G)-modules

S : E ——> ^ E
eel e

The restriction of U to E is called the e-homogeneous -part of U.

If E = E , then U itself is called e-homogeneous. (Observe that always (E ) = E ) .

Let U be an irreducible continuous representation of G in a Banach space E.
Choose 3 G E , 3 ^ 0 . There must exist an e £ 6 with e ^ 5 ̂  0. As L ( G ) is a sum
of minimal ideals, there must exist a minimal ideal D c L ( G ) with D ̂  ^ ^ ( 0 ) .
Applying lemma 2.4 (consider the map f i——^ f -̂ ̂  ( f £ D ) ) we get

2.7 Corollary. Every irreducible continuous representation of G is equivalent to
one of the W . In particular} it is finite dimensional.

Now let F be any Banach space. Every n X n-matrix induces in a natural way a
map F ——^F . Thus, every W induces a continuous e-homogeneous.representation

W'' IS Id in F . (To explain the notation we observe that F is linearly iso-

metric to K" ® „ F 1 1). Together with Theorem 2 . 6 the following gives a complete clas-
IV

sification of all continuous representations of G.

2 . 8 . Theorem. Every e-homogeneous continuous representation of G is isomorphic to
W S) Id- for some Banach space F. The given representation determines F up to an
isomorphism of Banach spacesc

For e £ 6 let OC be the set of all linear module homomorphisms I —^1
Obviously, ̂  is a K-Banach algebra. But it follows from lemma 2.U that €L even

is a valued skew field containing K. It turns out that every commutative subfield
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of J3L. is obtainable "by adjunction of roots of 1 to K. Hence, ̂  K contains
"enough" roots of 1 , then % = K.

In a natural way, I becomes a normed vector space over '6L . As in the
algebraic theory, L ( G ) (as an algebra or an L(G)-module) is isomorphic to the
algebra of all % -linear maps I^67 ——^ I{e) . But this time the isomorphism is
also an isometry. It follows that, if G is abelian, then every L ( G ) is a valued
field, and L ( G ) is power-multiplicative. (A Banach algebra A is power-multiplicative
if | | a111| = | | a | | n for all a C A and n 6 N ) .

As a Banach space, I is isomorphic to (Q, )n^e/ for some n ( e ) € N. It
follows that L ( G ) (as a Banach algebra or a Banach L(G)-module) is isomor-phic to
the algebra of all n ( e ) x n ( e ) matrices with entries form QC • Here the norm of
a matrix is the maximum of the norms of its entries. , x

3 - Representations of locally compact groups.

K,k,p,G are as in chapter 1 . We assume every element of Jf to be p-free.

G is called torsional if every compact subset is contained in a compact

subgroup. If G.is torsional then so is every closed subgroup and.every quotient of

G by a closed normal subgroup.

The additive group of a non-trivial valued local field is torsional : for

each n C IN, $ x | |x| .̂ nj is a compact open subgroup. The multiplicative group is

not torsional : if Ixl > 1 , then lim |x | = o0 . The general and special linear

groups are not torsional. However, the following group G of triangular m x .m ma-

trices

G = [ (oC ^ .) I ^. ̂ . = 0 if i < j; | o( .^ | = 1 for all i (

is torsional : for each n C IN, H = [ (o( . .) C G | I o(. . | ^ n1"'3' for all' i,j ( is a.n i j i j i
compact open subgroup.

We now formulate the main
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3 . 1 . Theorem. Let G be torsional and let I C L(G) be a proper closed two-sided

ideal. For every f c L(G) there exists a maximal modular left ideal N o I such

that . | | fmodl| | = l i fmod'N|i .

Proof. First,, assume that G is compact. Then L(G) = <$> L(G) where £ is the
ec.6 e

collection of minimal central idempotents of L(G). (Theorem 2.5) .

Then 1 = 0 L(G) for some <£) c <£, , S ^ & , and f = ^ e ^ f.
' e € ^ e , ecf.

Clearly, ||f mod I It = max || f ^ e If = (| f y. d || for certain d ^ o@ .
e^

We identify L(G) with the algebra of all n(d) x n(d) matrices over fita. d

(See the end of Chapter 2). There exists a. 3 C W. ^^ with

) l ( d K f ) ( 3 ) l l = l i d ^ f | | 11^11 . Let N^ = ^g € L ( G ) ^ | g(S) = 0^ , then

11 d ^ f mod N ^ | / = ||d » r f || . For e £ 6. , e ^ ® set N = L ( G ) . and let

N C L(G) be the closure of J~^ N . Then N is a maximal modular left ideal contai-
ec& e

ing I, and | | f m o d N | | = ||d ^ f mod N^ j| = | | d ^ f l | ' = K f m o d K I .

Observe that one can make a non-zero n(d) x n(d) matrix s over % , suc-h thatd
N^ ^ s = [0( and s x- s = s. (The columns of s are suitable multiples of S ). We

need this remark in the second part of this proof.

For the general case we may assume that f has compact support, so f = 0 outside

a compact open subgroup H. We have the obvious embedding L(H) <——^-L(G).

By the foregoing there exists a maximal modular left ideal M of L(H), with

identity e^ , for which M 3 I n L(H) and llf mod I r\ L(H)|| = 1 1 f mod M |( , and there

exists an idempotent s C L(H) with M % s = jo ( . By maximality,

M =^g € L (H) | g ^ s = O j . Set J = L(G) ^ M + I. J is a closed.left ideal of L(G),

containing I. For all g C L(G)

g ^ e^ -,g = lim (g k Uy ^ e - g ^ u^) C L(G) * M c. J,

so J is modular. We next prove J ^ L(G).

Let j C J U L(H). Then (j-j ^ s) ^ s = 0, so j-j ^ s C M. Also,,

j * s € (L(G) ¥r M + I) ^ s c I ^ s;c I and j ^ s C L(H),.so j ^ s C M. Therefore,

J 0 L(H) C M, so that J ^ L(G). Trivially, J f\ L(H) 3 M, so J A L(H) = M.
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Being a proper modular left ideal, J extends to a maximal modular left ideal N
of L ( G ) . By the maximality of M we still have N 0 L ( H ) = M.

By lemma 2.4, the canonical map

f): L ( H ) / M — — > L ( G ) / N

satisfies l l^rpl l = l l p l l 11"} I I (^ C L(H ' ) /M) . Using the fact that

lim I ) LL mod M| | = lim ] j u* mod N || = 1 we see that || P\\ = 1 , so D is an
vcjr v vcjr v '
isometry. Hence, || f mod N || = ||f mod M || = || f mod I U L (H) | l ^

II f mod I H ^ || f. mod N l| .

3.2. Corollary. Let HC Jf and let I be a closed tvo-sided ideal in.L(G).

Then the canonical map L(H)/1 0 L(H) ——^ L (G) /1 is an isometry.

3.3. Corollary. Jf G is abelian and if I is a maximal modular ideal of L(G).
then L(G)/I is a valued field which is the completion of an algebraic extension
of K.

Proof. For every HC(J^ , I 0 L ( H ) is a maximal ideal of L ( H ) of finite codimension,
and L ( H ) / I H L ( H ) is a valued field.

The corollary now follows from the observation that the union of the canonical
images of the L(H) / I 0 L ( H ) (H € J ) is dense in L(G) / I .

3.4. Corollary. For each two-sided closed ideal 1C L ( G ) the Banach algebra L ( G ) / I
is reduced ("Spectral synthesis"). In particular, for each f G L ( G ) there exists an
(algebraically) irreducible continuous re-presentation T of L ( G ) in some Banach
space such that t iT || = 11 f (1 (f £ L ( G ) ) . ("The Fourier transformation is an
isometry"). For each x € G, x ^ e there exists a continuous irreducible re'presen-
t-ation U o_f G in some Banach space such that U ' ̂  I. ("Gelfand-Raikov Theorem").

The representation space of an irreducible , representation of an abeli.an group

may have dimension greater than 1. If K is "big enough" this cannot happen :
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3.5• Theorem, Let G be an abelian torsional group and suppose that the equation

^ n = 1 has n distinct roots in K for every n <r {['Hg : H^ ] : H^ , H^ <s-^; H^/H^

cyclic}. Let G"be the group of all continuous homomorphisms ofG in<teo /^.K : l̂  I = 1 ,

topologized vith the compact open topology. Then every maximal modular ideal M of

L(G) has codimension 1 and there is an Q^ 6 G^such that the homomorphism

L(G)—» L(G)/M has the.form

f»——>f^^ "V^x)^^"1^ (f 6:L(G))

The map M ——^ c< is a homeomorphism of the collection of maximal modular

ideals, vith the Gelfrand topology, onto G? The dual group G^is also torsional and

the Fourier transformation f » • •> f^ given by

^ ( O C ) = ff{x) ^(x'^dx (f € L ( G ) )

is an isometrical isomorphism of L(G) onto C^(G^. Finally, the canonical map

G ——> G^^is an isomorphism of topological groups.

Proof. See Corollary 3.U and [l], 4 . 3 . 1 6 and 5 . 2 . 1 1 .

We mention (without proof) a result for not-necessarily torsional groups.

Define B(G) = fx € G : U = 1 for every continuous irreductible representation U of
( X •

Gk It is clear.from the definition that B(G) is a closed normal subgroup.

3.6. Theorem. B(G) is a discrete torsion-free subgroup of G, and is contained in

every open normal subgroup of G. lf_ G is either abelian or discrete or- torisonal

then B(G) = ^ e ^ . B(G) has a trivial intersection vith the center of G.

We end vith a

Conjecture ; Let G be a locally compact totally disconnected group, such that all

elements of o^are p-free a where p is the characteristic of the residue classe field k

oj* K. Then B(G) = } e J , i.e. G has sufficiently many continuous irreducible repre-

sentations.
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