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THE NON-ARCHIMEDEAN CORONA PROBLEM

Marius van der PUT

§ . 1 • Introduction and Summary.

Let K denote a complete, non archimedean valued field. The central problem of

this work is the Corona problem (see ( 3 . 1 ) (3 .3 ) ) .

Let K be algebraically closed, K < X^ ,..., X > the Banach algebra of all

bounded analytic functions on the "open" polydisc A(K)11 = [ { X , . . . , X ) C K11!^.^!

for all i^ . Suppose that f^ ,..., f^ C K <^ X^ ,... , X^ > have the property

inf( max | f . ( X ) | | \ C A ( K ) 1 1 } > 0. Are there g, ,..., g C K < X, ,..., X > such
t^i^s i s 1 n

that ^_ f. g. = 1?

The cases (n = 1 and all s) and (n > 1 and s = 2) are proved. The proof

consists of two steps : (3.4) : A reduction of the corona statement to a problem on

uolynomials ( 2 . 1 ) . (2.4) and (2.6) : Solution of this problem on .polynomials for
<n=1, all s) and ( n > ^ 1 , s = 2).

Section 2 contains further alternative problems related to the Corona-conjec-

ture and a discription of ?(l) in terms of complete ideals (see (2 .8) ) .

In section 4 a detailed study of the ring K < X > (i.e. n = 1 ) is made. In

particular a theorem of M. Lazard on zero's of analytic functions is generalized.

As an application of this one gives in section 5 a complete description of the clo-

sed subspaces of c^((K^ ——> K) which are invariant under the anti-shift operator :

T : c^(D^ ——^ K) ——> ^o^o ——^ K^ defined bv

T(a^ . a^. . ̂  ...) = (a^ . a^ . ̂  . . . .^

In the sequel we will use the following notations

N = the set of positive integers ; IN = (N U [ ol ; for any set X, b(X ——> K) is the

Banach space of all bounded maps f : X ——^ K, normed by ||fl| = sup|f(x) j ;
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c^(X ——^K) and c (X ——> K) are the closed subspaces of b(X ——- K) consisting of

all f : X ——> K satisfying lim f(x) = 0,resp. lim f(x) exists.
X -» W x -*-00

For any Banach space E,E1 denotes its dual. For a bounded K-linear map

|̂  : E^ ——<- E^ , the dual map : E^ ——*• E^ is denoted by ^ •. For operations on

Banach spaces like direct sum (I), direct product W and terms as A-orthogonal,

orthonormal, weak Hahn-Banach theorem, spaces of countable type we refer to [5]

Let X^ ,..., X^ be indeterminates, then K^ ,..., X^\ denotes the affinoid

algebra in n-indeterminates over K. That is, K^ ,..., xj consists of all power

series ^_ a^ X^ such that lim | a^ | = 0 . For affinoid algebras we refer to [l,TJ.

§•2 • ~ An inequality for ideals in V[x ,... , X ] .

Let K be an algebraically closed field and V a (rank 1 ) valuation ring with

quotient field K. The maximal ideal of V will be denoted by m = m(V) and the residue

field of V by k. For ideals I C v[x^ ,..., X J having the property I U v ^ 0 we

define : QL (l) = sup [|<^ ||o^ € I 0 V I and

S( I ) = inf( sup |f(;L , . . . , ^ )iK , . . . , ;L € v}.
C .̂̂  I n 1 n 1

Clearly 0<flt(l\<^( I). If-l is generated by f^ ,.... f then S( l ) equals

inf^ max | f^(^ ,..., X ^ ) | | ^,. . . , \ ̂  C VJ. Let c(l) denote the positive real

number satisfying oC(l) = ^(l^^. Put c(n,s) = sup [c(l)|l ideal in

V [x^ ,..., X^] , generated by s elements and I 0 V i- OJ . So c(n,s) C (R uiooj and
c(n,s) ^ 1 .

(2. T ) Con.iecture: c (n, s) < oo for all n and s.

In this section we will show c ( l , s ) = 2 for all s(>-. 2) and c(n,2) = 2 for

all n. In section 3 it is shown that "c(n,s) < oo for all s and fixed n" implies

the Corona statement for dimension n. We start by considering the case n = 1 .

(2.2) Main lemma. Le^ I be a finitely generated ideal in V^ such that I 0 V ^ 0.

There exists a p c V, f> j- 0. such that ^1 c v[xj. and ^1 (̂  m(v) [x] .

-Le^ d = d(I) denote the degree of a generator of the ideal d)(^"1 ! ) c K[x] where f)

is the canonical map v[x] •——^ K[x]. Then. : S-d)2^1 ^ o<(I)d or equivalenty
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c ( l ) ^ 2-^ .

Conversely for every d >/ 1 there exists an ideal J c V^x] with J 0 V ^ 0 and

-J is generated "by two monic polynomials of degree d such that d = d(J) and

c(J) ^ 24 .

Proof. The proof is done by induction.on d. For convenience we introduce on v[x|

the valuation || || , extending I | on V, and given by|| <£. a. X 1 1 | = max |a.|

Since I is finitely-generated, there exists an element f C I such that

||fl| = sup|l|g)|[ g € l). Take p C V with 1 ^ 1 = ||f|| , then ^"^cvfxj and

p ^ I ^ m(V)[x]. If one has shown the inequality c( p l) ^ 2— then it follows

that c(l).< 2-^ since oC ( ^~1 ! ) = ' | ^ I "''^(l) and S" ( p ~''l) = I p\ ~1 S - ( l ) . S o

without loss of generality we may assume that P = 1 . First a lemma :

2.3. Lemma. Let f £ I satisfy |(f|( = 1 then there exists a monic -polynomial g € I

such that f C gV |X] .

Proof. The element f can be written as f = IA(X-a , ) . . . (X-a- ) (1 -b X).. .( l -b X) where
———— > 1 s 1 t

I t ^ l = 1 ; a , . . . , ag C V ; b ,. . . , b C m(V). We want to show that

g = (X-a ) ... (X-a ) belongs to I. Put (1-b X). .. (1-b X) = 1-h where h 6 V [X]

satisfies Uhll < 1 . For some m > 1 , h111 6 I because I 0 V ^ 0. Hence

g = ^A•~' lf(1+h+...+ h111"1) + h^ belongs to'I.
Continuation of the proof of (2.2) : According to (2.3) there exists a monic

polynomial f £ I of degree d = d(l). After a translation of X we may suppose that

0 is a root of f . Let [g ,..., g j generate I. Write g. = q. f + r. , where

q^ , r^ € V[x] and degree (r^) < d. Then ||r. |l > 1 for all i, since (J)(r. ) € K[xJ

must be zero. Put f. = f + r. for i = 1 , . . . , s, then if - , f ,..., f | generates

I and <()(f. ) = (|)(f ) for all i = 1 , . . . , s.

In case d = 1 this gives that I is generated by JX ,XJ for some ^ € m(V).

Clearly this implies d (i) = & (i) and c(l) = 1 . 'Now we proceed by induction and

suppose d == d(l) > 1 .

Case ( 1 ) : "())(f ) = X^ C k[xj". Let f> C V satisfy | p\ = max i |a || a C V is root

of some f. (i = 0,.. . , s)| . By construction also <()(f.) = X for all i >/ 1 and so
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I f\ < 1 . We consider now the ideal I C v[xj generated by the monic polynomials

\ P~^ t j^X) | i = 0,... , s)j .. By definition

£'(!) = inf j max | X"^ f ^ ( X ) ( | ^ € V, | A. | ^ ( ̂  vhich is also equal to

0^i$s

JP | inf j max | f . ( X ) || X € V ? because all the roots of f ,..., f have
'O^s 1 o s

absolute value ^ ( p \ . So & (?) = ( f "d | & (l;.

If Oc C i U V then a = Z Q^(X) ^ "d f ^ ( ^ X ) for somme

Q ,..., Q C v[x] . After'euclidean division with remainderof all %.(i = 1 , . . . , s)

by the monic polynomial p f ( / 3 X ) one finds an expression

s
c< = ^ ^(X) p f ^ ( / ?X ) such that deg(P. ) < d (i = 0,1 ,. .. , s) . Hence

o^2^1 = J^ p ( ^-' 'x)^)^1 f (X) and for all i = 0, 1 ,. . . , s one has
i=0 ' • 1

p ^^P X) C V[x] since deg P. < d. So we have shown that

\P^{ o< W ^oC( l ) .

*^ *^ -V -
Clearly d(l) ^ d. If d(l) < d then by induction hypothesis c(l) < 2-- and

i ^ d
it follows that also c(l) < 2-, . If d(l) = d, then.the generators

F^(X) = p d f^(p X) (i = 0,... , s) of '? have the property (f){T.) = ())(F ) for all

i = 1 , . . . , s and 0(F^) ^ X'1 . So we are reduced to

Case. (2) : "I = (f , f ,.... f ) ; (()(f.) = <()(f ) for all i ; f (0) = 0 and
0 I S 1 0 0

^)(f^) = (()(f ) for all i, and 0(f ) is a polynomial of degree d, unequal to X^'.

Here we proceed as follows : write (|)(f ) = X^X^ +...+ A, ) with

d > 0, ^ ^ 0, \ € k, X ^ 0. Put f^ = f^ f^ (i = 0,..., s) such that

(f)(f~) = X^ and 0(f'*' ) = (X^ +...+ \): Consider the ideals I'1' = (f4' ,..., f'1' ) and
— - o s

I" = (f^ ...., fg). Then we have 5 (i) = min(S(l~), ^(l '^)) since o(l) equals
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min [•inf( max j f~(X) f^W^ ^\ < i}, inf \ max |f:(X) f^)!)! ^ 1 = 1 ( 1
'O^s i i 1 J • Q^g ' i i l ^

and for X C V, ( X | < 1,we have | f^(^) ) = 1 (all i) and for \ C V, |^ |= 1 ,

we have | f~(X)| = 1 (all i).

Also oC (I) >/ min(o((l ), o( (I )) or in other words : if o< C I" C\ V and

0( C I4' n V then di C I 0 V. Indeed :

s . _ _ s
^ =. ZL P^ f^ and o< = Z. P^ f^ vith P^" . P^ € v[x].

Hence «f^ ..... f^ and ot f~ .. . f" belong to I. The polynomials (^(f"*" ... f4')

and ^(•f^ ... f^) in k[xj are relatively prime. So there are P,Q € v[x] with

1 = (t)(Pf^ ... f^ + Qf^ . .. f^). Consequently I contains the element

o(Pf^ ... f ^ + oCQf^ ... f ^ = (X(l-h) where ||h||<:1. 'As in the lemma (2.3) it

follows that o( C I.

Now we have W (l)^ d >. min^d")^ d , o< (I'")^ d ) which is. by

induction hypothesis (d = d(l ) < d and d = d(I ) < d) greater or equal to

mi^S-d")^^ " 1 ) . Sd")^"12^"1^. One checks easily that

dd^d'-l) .<. (2d-1)d+d- and dd~(2d+-1) ^ (2d-1)d+d~ .

Consequently o( (I)d >, min(^(^)2d~'l , ^( I+)2 d~1)= ^d)2^1 .

This finishes the proof of the first part of (2.2) .

To- show that the bound c(l) 4. 2— is best possible w«. construct an example :
f)3_ 4 ' u-

Write X - 1 = Q.G where Q and G are monic polynomials of degrees d-1,resp. d.

Put f (X) = p^ F( p~^yi} and g(X) = ^> ̂  ̂ ~ 1 X) where p C V, and 0 < I ^ | < 1 .

Then f and g are also monic polynomials belonging to V [x]. Take J = (f,g). Using

the notation of case ( i ) above we clearly have J = (F,G) and 6 (J) = 1 . Hence

6 ( J ) = l^ l . Further let 0 ^ o< C J 0 V. Then < ^ = p ( X ) f ( x ) - + q ( x ) g ( x ) , where '

P»q. fc ^i^} and where one may suppose deg p < d and deg q < d. Hence
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°< P~^ = P.^X)/^ f ( ^ X ) g ( P X ) . Now F(X) » ^"d f ( ^ X ) and G(X) = ̂  g (^>X) .

Using the fact that the equation 1 = P F + Q G-with deg P < d , deg Q < d has

only .the solution P » X^1 and Q = Q,one finds-thai p(/^ X) = <^ /o~d X11"1 .

Hence p ( X ) ' = <Y ^-2d+1^d-1 ^ ^ p(x) £ v[x] yields ^Ip2^1 | . So one finds

0((J ) = |^| 2d-1 and c(J) = 2-^ .

(2.4. ) Corollary. Let I be a finitely generated ideal in v[x] such that I f\ V ^ 0.
Form the ideal J = C\ ^I(X)|X C V?» where l(^) denotes the image of I under the

V-algebra homomorphism V [x] ——> V which sends X to X . Then :

J2 C I 0 V C J and o (l)2 < oc(l) ^ 6 (l).

Further c( l ,s) = 2 for all s( ^ 2 ) .

Proof : From the definit-ions it follows that $(l) = sup )|o/| l<^ € J} »

SW2 = sup(|o(||o< 6 J2^ and <^(l) = sup Hod | 0(^1 f\ vl So the first two
statements of (2.4) are quivalent. The second and third statement of (2.4) follow
immediately from (2.2).

Remarks. Corollary ( 2 . 4 ) will suffice us in proving the Corona conjecture for
dimension 1. In the rest of this section we discuss some more detailed results
which might be useful- for dimension > 1.

(2.5) Lemma. Let I be an ideal in V [x] generated by f ,... , f such that
I -0 V ^ 0. Let Z denote the set of all roots of f ... f which belong to V. Then :

(i) J = Q t l ( X ) | X £ v^ is equal to 0 ^ l(A.)| A. f z]. In particular J is a
principal ideal.

(ii) I F\ V is a principal ideal.

(iii) Suppose that s = 2, |lf^| =l l f^l l= 1 and deg (|)(f^) = d^. Let p , p^ $V[xJ

be given such that max(Up^| , Up^ll ) = 1 ; p^ f + p^ f = o( £ V, Q( ^ 0 and
<ieg (|>(p.,) < d^ , deg (|)(p^ < d^ . Then | << l = o< ( l ) .
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Proof, (i) Put S*{1) » min { max | f . (z) | |z C z}. Clearly 6^ (I) ><f(l).
Ulis 1

The statement in (i) is equivalent to ^(l) = i^(l). We prove this by induction

on f deg(f.).< If A ^ V satisfies (A-z| >, f for all z ^ Z where
i3!

P = max 1 ( z - z ( | z , z 6r Z J then for any z 6 Z one has

max | f . (A.) | \ max |f.(z)l. The set J A € V l | A - z | < f for some z 6 Z l is
•KUs 1 Ui^s- 1

equal to a disjoint union B \J ... U B ( t > 1 ) of "open" spheres with raddi P
\ t

Each f. can be written as i. f.. such that for all i and j» the roots of f..
j=1 ^ • iJ

belonging to V also belong to B. .
J

Then S{l) = min (inf ( max If.(JL)D). For any i € f l , . . . , s} and
1^1 \ 6B . 1^i^s '

J
j^{l,...,t} there exists a constant f. . such that | f. (A) I = f . . | f . . (A) | for

Ij 1 1J Ijs s
all A €• B. . Since 2. deg(f..) < 2. deg(f.) for all j, the induction hypothesis

J i=1 1J i=1 1

gives inf (max | f.(A.)( ) = min (max | f . (z) | ) . Hence <$'(!) = min (max lf.(z)p.
A.6B. 1^s z€ZUB. 1^s z 6 Z 1<i<s 1

J J

(ii) Let p 6 V be such that f> s max(HfU |f ^ i}. (Here we use of course

that I is finitely generated). Let f 6 I denote an element in I which has minimal

degree under all elements f ^ I with UfH = ( f \ . As in (2.3) one finds that

P f is a monic polynomial of degree d. For f ^ I we write P f q + R( f )»

where q,R(f) 6 V[x"| and deg(R(f))< d^ . The ideal I generated by

^ P^ R( f ) ( f 6 I } is again finitely generated and clearly I. A V = I f\ V and

d(l ) < d = d(l). Induction on d(l) (the cases d(l) = 0 or 1 being trivial)

completes the proof,

(iii) If Idl < K (I) then for some f € V, | p |> l<x l and q. , q ^ V(x]

we have p = q. f +. q^ f . It follows that p = ot^" q... + rf and

P^ = <* ? q^ - rf^ for some r ^ V[xJ. Since max( |lp^|| , (JpgH ) = 1 one has

B r U = 1 and (|>(p.,) = (|)(r) ( j)(f?) , ^(p^) s ((r) <|>(-fJ. This contradicts the assumption
deg ( ) ( p ^ ) < d^ and deg (|)(p^) < d^ .
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(2.'6) Corollary, ̂ t I C V J X ^ ,..., X^3 be an ideal generated by two elements and

satisfying I Q V ^ 0. Then c(l) < 2. Moreover c(n,2) = 2 for all n ^ 1 .

proof' Let ^ C V satisfy ( ^o | = max(||f^(l , |l f^l ) where ^ , f^ generates I.

The. inequality c(l) < 2 would follow from c(^~1 !) < 2. So without-loss of gene-

rality we may assume p ^ 1 . So we can suppose 1 = ||f l| ^ II f ||. If |)f || < 1 .we

can replace f^ by f^ + f . So without loss of generality we can suppose

1^1 1| ^ 1 1 ^ 1 1 = 1 . After a linear change of X^ ,..., X we have that <()(f ) and

<t)(f^) are monic polynomials in X^ with coefficients in k[X ,..., X _ "|. Using

Weierstrass-preparation and division for the affinoid algebra K\X ,..., X } -0

r) V[x^ , . . . , X^] (see [1J Satz 1 ,2 of Kap. I) one finds : For any f C v[x ,.., x ]

and any 7r C V, 0 < \r\ < 1 there are <i,r,s € v[x, ,..., X ]satisfying
i n

f = qf^ + r + Trs and deg r < d - deg ( ( ) ) ( f . ) ) .
n

Given an expression fi = q^ f^ + q^ f^ , fi ^ 0, ^ € V. Then q is not

divisible by f^ in K^X^ ,..., X ^ ? . Hence for suitable -rr € V, (|Tf| small enough)
one has

(̂  = qf^'+ r + -'n- s with q,r.s C V[x^ ...., X^|(r(|^ I-TT ( and

deg^ ( r ) <: d^ .
n

Substituting this and possibly dividing by an element (^ 0) in V one finds

^ = P^l + ̂  ̂  ; °̂  c vt (y ^ ot max(||P1 It . ll PgiD = 1 and

deg^ (|)(p^) < d^ , deg^ < p ( p ^ ) < d^ = deg^ (|)(f^). In this we substitute for
n n n

x! '' " ' ^-1 elements ^ i » • • • » ^ n-1 c v' put ^ = ^ A 1 » • • • » x -.1) then one

has

^ = P/^ > ^n^l^ >xn) + p2{^9xn)f2{A9XTl) an<i (2 '5) part (iii)

yields )<?( 1 = oc ( ( f ^ (A, X^) ,f^(^,X^))) ̂  ̂  (l). Further

^ (( f^(^ ,X^) , f^(X,X^))) > ^ ((f^a.X^),fg(^,X^)))2>.. S (I)2 has as consequence

0< (I) > (T (I)2 . Moreover c(n,2) >/ c( l ,2) = 2. So c(n,2) = 2.
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Remark. In the next proposition and. corollary -we will give an algebraic inter-

pretation of 6 '(l) .using complete ideals and integral closures of ideals. We

will use tacitely the exposition on complete ideals given in [o] appendices 2,

3 and U.

(2.7) Proposition. Let V be a (rank 1 ) valuation ring with field K (not necessa-

rily algebraic closed) and I a finitely generated ideal in V^X ,».. , X ~] with

IH V ^ 0. Let I' be the integral closure of I jtj^ K(X ,... , X ) and a an element

of V\ I'Q V. Then there exists a finite field extension L ̂  K and a valuation-

ring W with quotient field L, W F\ K =• V and a V-algebra homomorphism

() : V[X, ,.. . , X ] —^ W such that <()(a) ^ (()(l)W (or equivalently

la | = |<)(a) | ^ > sup|(|)(l)|^).

Proof. Since a t I' there exists a valuatibnring W T of K(X »..., X ) such that

W^vfx ,..., X ] and a t IW^ . Choose b € I with IW^ = bW^ . The rank of W ̂  is

finite (in fact 4 n+1). Hence there are prime ideals p 3 q in W^" with

p = 1+hgt q. and b/a C p\q.. Now U = W^/qW^ is a valuationring of rank 1 and -we have

a canonical map ^ : V^X »..., X ] ——^-W——> U satisfying

] ^ ( a ) | y = la|^ > max 1 ^ ( ^ ) 1 ^ vhere ^ f^ ,.. . , fg ) denotes a set of

1^-i^s

generators for the ideal I. Let A denote completion with respect to the given

valuation in particular K denotes the completion of K. Then ^ extends to a

K-algebra homomorphism, also denoted by ^ : K &C ,. .. , X ] ——> QtCuf. Here Qt(U)

is the quotient field of U. This map V extends further to a K-algebra homomorphism

^ : K J X ^ ,.... X^ , T^ ,..., T g ] — — > Q t ( U ) A where ^(X^) = ^ (X^) and

^ ( T . ) = 'TT"1 a"1 ^ ( f . ) . Here ' n ' ^ V t O ^ ^ K ^ i s chosen such that
' J J

|7r"1 a"1 4 ^ ( f . ) l ^ 1 for all j = 1,...,t. The kernel of +' clearly contains

the .ideal J of K:(x, ,...,. X , T, ,..., T \ generated by STTaT: - f . i ._,( 1 n i s j i i i ' i — i » » . » s

So J ^ ( 1 ) . Let M be a maximal ideal of Klx ,..., X^ , T^ ,..., T^ J which contains

J. As is well known (L?] Theorem U . 5 ) , M is the kernel of
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a map ^ : idx ,..., X » T » . . . » T t ——^ F, where F is a finite field extension

of K. Let W denote the valuationring of F, then ^L induces a V-algebra homomorphism

^ : V[x ,..., X ] —^W such that | ^C(a) | = | a| > max \\(f.)\ „. .1 n w v i^g 1 w

Choose elements « , . . . , o ( € W algebraic over K such that max|o<'.-'?t(X. )| , is

1^s

small eriough to ensure that (J) : v[x. ,..., X ] —•> W given by

(|)(X.) = oC . ( i=1 , . . . ,n) has still the property ( a ) > max | < i ) ( f . ) ( . Let L be
1 1 • 1$i^s 1 "

the quotient field of im ^ and W = W 0 L. Then L is a finite extension of K

and ^ : V[x, ,..., X ] — — ^ W has the required properties.

Definition. To formulate the h.ext corollary easily we define (^(l) for ideals

I CV[X ,..., X ] with V 0 I ^ 0 and K = Qt(V) not (necessarily) algebraically

closed as follows : S (1) = inf} sup | f(^,. , . . . ,A ) | ,r|W 0V any valuationring
f C I n

such that Qt(W) is a finite extension of K and X. ,..., \ any elements € wj .

(2.8) Corollary. With the notations of (2.7). The following ideals are equal •:

a) i* r\ v
b) Ii = 0 ^V f} ((r^dlW^W QV any rank 1 valuationring and

() = v[x^,..., X^j ——>W any V-algebra homomorphism?

c) I : 0 [v n ̂ '"^(^Wjlw ^> V any valuationring such that Qt(W) is a finite

extension of K and ^ : v[x^ ,..., X^J ——»W any V-algebra homomorphism} .

In particular SW a sup l|o(l |o^ € 1 ' 0 V^and for any-rank 1 valuationring W 3V,

W H K = V, we have g(l) = £(IW [x^ ...... Xj).

Proof. Clearly I 31. and (2.7) yields m V 31 . Take a € I» n V. Then a4 is

integral over I. Hence for any W 3 V and any () ; V(^X, » . . . » X ] ——^W the element

()(a) is integral over ^(l)W. Since W is a valuationring this means (|)(a) € ())(l)W.

This shows I* 0 V C I< .

Further the formula for ^(l) follows at once ft?om the definitions and

(T(I) = 5( IW[X^ ...., X^\} follows from 1 ^ = 1 ^ .
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Remarks. The conjecture c(n,s) < DO can now be restated in the following -way :

There exists an integer A, only depending on n and the number of generators of I

such that (I' F\ V)A C I f} V.

In this form one does not need the condition that V is a valuationring. More

general we conjecture the following :

Let R be a normal domain» I a finitely generated ideal in R[x] such that

I r\ R ^ 0. Then there exists an integer A, only depending on R and the number of

generators of I, such that ( I ' O R ) C (l 0 R) , where I' is the integral closure

.of I î . R [X] and (I F\ R f is the integral closure of I 0 R i_n_ R.

As we have seen this conjecture is true if R is a valuationring (then A = 2).

Also if R is a Dedekind domain the conjecture is true with A = 2. Further one sees

that this conjecture would imply c(n,s) < M (all n,s) and consequently it would

solve the Corona problems for any dimension.

In the following proposition we give still another formulation of the conjec-

ture c(n,s) < &o for all n and s.

^•^ Proposition. Let V be a rank } valuationring with algebraically closed

quotient field K and let f G V[X, ».. . , X ] define a nonsingular hyperplane of

K [X ,..., X ] . Suppose that there exists an integer A only depending on n such

that the ideal I C V(X, ,..., X 1 generated by f and -^ (i=1 ,.. . ,n) satisfies———————^—— -j ^ ,—______—— ____— y A. _—————————--—
1

(I1 n V)A C I C V. Then c(n,s) < oo for all n and s.

Remark. Note that the condition I 0 V ^ 0 is equivalent to saying that f defines

a non-singular hyperplane over K. Further both I 0 V (or 0( (l)) and I' F\ V (or

^ ( l ) ) are measures (or if one wants multiplicities)for the singularities of the

hyperplane over V associated with f.

Proof of (2.9). Let an ideal J = (g ,..., g ) C V[X ,..., X 1 which satisfies

J 0 V i- 0 be given. Put n = m+s and consider f = g, X . , + . . .+ g X , . The ideal1 m+1 s m+ s

I in V[X , . . .» X ] generated by f and <—— ( i=1,.. . ,m) is also generated by

g^ . , . . . , ^ . ̂  ...., h^ where h^ ^ 1^ X^ . Since I 3 Jvfx^ ...., X^j

it is clear that 0((l) >, .\ (J) and S'(l) ^ S ' (J) . The proposition will be

proved if we show 'V (l) = ^ (J). Take (Y € I ^ V. Then o< =2^P- g- .+ ̂ q.- h-
— 1 j j
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with p^ , q. C V[x , . . . , X^3 . After substituting X = . . . = X^ =. . .= 0 in this

equation one obtains ( X G j ^ V . S o I ^ I V = J O V.

§.3 Bounded analytic functions on an open poly-disc.

Let K be a non-archimedean valued complete field and X. , . . . » X indeterminates.
K. < X, » . . . , X > denotes the algebra of all formal power series1 n

<: ^1 <^nf = 2-a o< X., . . . X with coefficients in K such that
. ^ ,....^ 1

sup I a | < O Q . It is a Banach algebra w.r.t . the multiplicative norm
^i ' -" '"n

I f f / I = sup|a | . The "free" affinoid algebra K ^ X . . . . . . X } consisting of all
^"••^n Q( ^ • n3

expressions ^a X ... X n such that lim|a | = 0, is a closed^>. . . .o<^ ' n cx^,....,^
subalgebra of K ^ X. ,..., X > .

Let V denote the valuationring of K and S the multiplicative set V\joi .then

K < X, , . . . , X ^ = S'^V^X, ,..., X ]1). In part'icular it follows that1 n ' 1 n -J

K < X ,..., X ^ is noetherean if the valuation V is discrete. (The converse is also
I n '

true).

An analytic interpretation of K < X ,..., X > is the following : If the

valuation V is non-discrete then K < X, , . . . » X > is the algebra of all bounded1 n
analytic functions defined on the "open" polydisc A (K)11 = j(^. ,..., ^ ) C K I

all ( ^ . ( < 1^ . The norm as defined above, coincides with the supremumnorm on

A(K)1 1 . (Proofs and more details can be found in C6J ) . So K < X , . . . , X ^

is the non-archimedean analogue of the Hardy space H°° (/\) of an open polydisc

A C C11 .

The Corona con.iecture is :

Let K denote the algebraic closure of K which is given the unique valuationalg
extending the valuation of K. Then the image of - ^ (K )11 in the maximal ideal

space of K < X , . . . , X > (which is given the Gelfand topology) is a dense subset.

A more explicit formulation (see [2j pg. 163, for the proof of the equivalence

of the two statements) is :
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( 3 . 1 ) The elements f ,..., f C K < X ,..., X > generate the unit ideal if and

only if 6" = inf ( max I f.Wl^C A (K - ^f > 0.
————— ^i^s 1 a16 -)

One implication in this statement is trivial, namely : if f. ,..., f generate

the unit ideal then j^ g. f. a 1 for some g ,.... g € K < X ,..., X -> .
i=1 1 1

It follows that ^ > (max (|g. l| ) >>0. The other implication will be proved in

this paper for n = 1 and for n > 1 , s = 2 in a more precise form :

(3 .2) Theorem. (Coroma statement for dimension 1 ) . For any f ,..., f C K < X >
satisfying ||f . /( < 1 ( i=1, . . . ,s) and ^ = inf { max If.Wll^^K -, )) > 0

1 s ^^i^s 1 ^ 6 -
there are g ,...., g^ € K<X> with J, g^f^ = 1 an^ max Hg^h < b .

i=1 1^i^s

(3.3) Conjecture (C ). There exists a constant A ̂  1 such that for any——^————— i^g ————————————————— ———————————

f ,..., f 6 K < X ,..., X > satisfying llf^l| < 1 ( i=1 , . . . ,s ) and S > 0

there are g, ,..., g C K ^ X ,.... X ^ with 21 g- t, = 1 and maxl |g.H<^1 s 1 n ^^ 1 1 i

Remarks. ( 1 ) Of course (3.2) is the special case (C ) of (3 .3) .————— • i, s

(2) Let f ,..., f € K ^ X ,..., X ^ and L 3 K a complete valued field,. .

Then (> as defined in ( 3 . 1 ) is e(iual to inf! max I ̂ ^^ ̂  ^ ^^lo.^^ •

1<i^s

In other words S does not depend on the field K. ,

Proof. We may of course suppose \\f^\\ < 1 for all i and S > 0. It suffices to

show for any p C K^ , 0 < \^\ < 1 , that ^ = inf ^ max | f^(pA)H A. C A (K^g)^

1^s

is equal to <S\ = inf ) max | f. (/^A) I I \ £ A (L ^ ? .
d ( ' i / a-Lg j

1^i.<s

Since ^ >/ 5' -> 0 and f^(^X).. . . . fg(pX) ^ ^ig^i ' • • • ' \} an(i every

residue field of this affinoid algebra is equal to K we find that

if ( / O X ) , . . . , f ( P X ) t generate the unit ideal. Hence 5 >>• S > 0.
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Write f. = Z f . X ' ( f . . € K and i = 1 , . . . , s ) and put g. = Z- f. X'^ ;
i i, 'x i, .X i ^ i ̂  ̂  i ,<x

all this in the well known shorthand X = (X, , . . . , X ) ; '-̂  = ( ̂  „ , . . . , <x ) andI n I n
X'^ = X 1 . . . X n . For fixed p there exists N such that for all i, f . ( ^ X ) - g . ( / ? X ^

considered as an element of K S x , . . . , X ^ has norm < S - . It follows that, with

the notation h . ( X ) = g . ( ? X ) and I = (h ,..., h ) V[x ,. . . , X 1 , one has

? = inff max , h . ( X ) j | ^ = {\ . .. , Z ) C K". . all | ^ . | $ l( = 5( l) and
1 $ i^s 1

L = ^ (IW[X, » . . . , XL ]) where W denotes the valuationring of L. So the

equality ^ ., = S ^ follows from (2 .8) .

(3 ) Let f, ,. .. , f C K < X, ,..., X > satisfy U f . |j < 1 for all i and let L 3 K—— i s i n ———^- ^ i ———— — ' — —
be a complete field. Suppose that there exists a constant A and

s
h , . . . , h € L < X ,.... X > satisfying max H h . \\ < A and H h.g, = 1.

i & i n -L . _ _ < J . - L

Then there are g , . . . , g C K < X. , . . . , X ">> with max ||g. || < A and

A 6 ^ ' 1 -
Proof. Let E the closed subspace of the K-Banach space L generated by 1 and all the

coefficients of all h. . Choose an 6 > 0 such that (1+ L )max ||h. \\ < A. Since E
is a Banach space over K of countable type there exists a K~li near map I tE-^K.wi th
1(1) = 1 and Ni t f '$- ^ t . Let E < X , . . . , X > denote the closed subspace of
L < X. ,..., X > consisting of the power series with all coefficients in E. Of
course E < X . , . . . , X > i s a K < X - , . . . , X ^> -module and the extension1 n 1 n
L : E < X^ ,...., X^ — — > K < X^ ...., X^ > of 1. defined by L^e^X^) =^l(eJ?

is K ^ X » . . . , X > -linear and | |L | | ^1+£ . Hence g^ = L ( h ^ ) (i=1 ,... ,s) have

the required properties.

( U ) The two preceeding remarks imply for the purpose of (3.2) or (3.3) we may
replace K by any complete valued field L ̂  K. In particular we may suppose that K
is algebraically closed and maximally complete*

(3 .4) Theorem. c (n , s+ l ) < oo implies (C ).—i^————— -——^— n»s
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Proof. We consider first the following statement :

(T ) : Let K "be an algebraically closed, maximally complete field K. There existsn,s

a constant A >. 1 such that for any f ,..., f C K^X ,..., X } with

( i f ^H < 1 ( i=1. . . . ,s) and ? = inf jmax | f ^ ( A ^ ,..., A ^ ) I | A ^ , . . . ,A ^ € K ,

1$i^s
£

all | A^ I -$ 1 S ^ 0 there are g^ ..... g^ C KJX^ ,... , X^| such that ^ g^ =1
i=1

and* maxj) g • |( < ( .

The theorem will now follow from the following two lemmas.

(3 .5 ) Lemma. (T ) implies (C ). '"—•—•^——-• n) s ' n. s

(3.6) Lemma. c(n,s+l) < 60 implies (T ).———— ———— n,s

oo
Proof of (3 .5 ) . Choose a sequence ( T T , ) , _ - € K with 0 < ] IT | <- 1 , | K , \ < | T T , , ,
—————————— •̂  "C= 1 b " \ - i ' I

and lim | 7r ^ = 1 . Put f^(x) = f . (7rx) for i = 1 , . . . , s . Clearlyt ' l i t

f t . . . , f t C K | x , , . . . , X 1 . Using (T ) it follows that there are
1 s l l n » n,s

g^ .. . . , g^ € K [X^ ,.. . . X^ I with Z_ g\ f\ = 1 and max ||.g^ \\ < S -A .

Put g^ = ^(g^)./ ̂  , where (g^ € K. and put h^ = 21- (g^) 7r "^'X^ .
1 « 1 0< 1 w 1 |o/l^2t 1 ^ t

Then we have llh? || ̂ ITT"^ | S "A and H h^ f. = 1 + 21L a X^ for suitable
1 " i=1 1 1 |^|>/t 1'0(

a i ,o ( C K •

Unfortunately lim h. does not exist in general and we have to construct our
t —^ 1 / ^ ^

solutions g- » • • • » g out of f h - ( . _ < ^y a Banach limit process. Let b((N ——^ K)1 s l. lJt=^

denote the Banach space of all bounded sequences in K, provided with the supremum-

norm. By c(N ——> K) we denote the closed subspace of b(lN ——>K) consisting of all

sequences a = (a ) for which lim a exists. Since K is maximally complete there

exists a K-linear map ^ : b(N ——> K) extending "lim" on c (N——> K) with ||^|| = 1 .

Put h^ = Î L X01 , (h^) € K and put H. , s ((h^).)., C "b(N ——>K).
1 1 0» Id 1 » 0^ 1 0\ 'C"~ -I
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Define g^ = 9(H^ ) and g^ = ^S^^ X0' . Clearly ||g |̂ < ̂  for all i. We

will have finished after shoving ^g. f. = 1 . Now

&ifi ' ̂ 'J, f,^'i-» " i . r " " • ' " ""a « -• -"'

^^"^"'.r-^ ,̂ ., '>,^',':.,>-'-

t3' t ' r- /' s

^ ^ ^ = 1 + L, ^ X ' it follows that lim ^_ ^ f. (h^).. = 11-1 i < " l > ^ t * ' t -^.o i=-i ^+r=o<1 ' /3 l x

or 0 according to c< = 0 or o< ^ 0.

Since ^ extends "lim" we are done.

proof of ^.6). Choose polynomials p^ ,..., p^ 6 K [x ,... . X^] such that

|lp^ - f^|| .< & c(n,s+D ̂  ̂  ^ g^^ ? > 0 and ^ C K^ ^ = (A,,...,^ ),

all ( A ^ | ^< 1 ^ is the set of all maximal ideals of Kfx, ,..., X ; there are
v 1 ni

h^ ,..., h^ C K[x^ ,..., X^^ with max||h^ || ^ 1 and Zlh.f. = p with

p^6 K. 0 < |p^ | ^ 1 . Consider the ideal I = (p^,..., p^) in v[x^ ...., X ] .

Clearly I H V ^ O a n d ( f ( l ) ^ S ' . Hence for some

k^ , k^ ,..., k^ C V[X^ ,..., X^] one has ^ k.p. = o^ . « € V and
, . i=0

|oc|>^ ^c (n .s+ l ) ^

Then ^ oc-1 ^^ + OC- 1 ^ S: h^f^ = 1 + r^""1 ^(f^) . By

construction l| ̂ ^ k^(f^-p^)|| < 1 and consequently u = 1 + f^\. (f.-P ) is
1=1 s i=1 1 1 1

auni t inK[x^ ,. .. . X^ ^ . Hence finally JL u~1 (<x ~1^ + o<~\ h. )f. = 1 and

for every i. || u~1 ( o / ~ 1 k . + ^ "''k h. ) II ^ ^ -c(n,s+1)
1 o i .

Remarks. ( 1 ) Unfortunately it seems in general impossible to choose the

P^ ..... Pg in tne proof above such that (p^ ,...,p^)n V ^ 0. So we can not prove

c(n,s) < O Q ===^ (T^^). However by a trick, similar to the one used in (2.6) we can

prove "c ( l ,2 )< t0 ==» (T -) for all n" :n,2



Corona problem 303

Proof. We taay suppose using Weierstrass-preparation, that f. and f are monic poly-

nomials in X of degrees d and d . In any equation g f, + g^t^ ='n',TT € V, TT ^ 0 ;

g » g- € K J X »..., X \ , max(l|g U » || g II ) = 1»one can, using Weierstrass-

division,reduce g and g such that degy (g ) < d and deg (g ) < d . Further one

can assume that max( |( g j ( , ( l g | ( ) = 1 . Shoose X^ ( 1 ,...? A. ) 6 V11"1 such

that m a x ( ( ( g ^ ( X ,X^)/( , Hg^ (X .X^ ) ( ( ) = 1 . Then

g ( ^ , X )f ( Z.X ) + g . ( X . X )f,(;l,X ) = TT , and g J X . X ), f , ( X ,X ) are1 n 1 n 2 n 2 n i n i n
polynomials in X . From (2.5) part .(iii) it follows that

| n l = o ( ( ( f ^ ( - X , X ^ ) f ^ ( X . X ^ ) ) ^ ( ^ ( ( f ^ . f ^ ) ) . Hence |irl= o< ( ( f ^ , f ^ ) )>^( ( f ^ ,f^) )~2

by c(l ,2) = 2.

•(2) It seems likely that Corona-conjecture for dimension n implies c(n,s)^ oo

for all s.

(3.7) Corollary. (G -) is true for all n >/ 1 and vith A = 2.——————is. ^ o ———————————— ———————

§4. Interpolation and zero's.

In this section we study the ring K < X > in more detail. First of all we

generalize a theorem of Lazard ([3J ; theoreme 2). to the case of bounded analytic

functions. We use approximately the same notations as in [3] ;

A divisor D defined (or rational) over K is a map D :A(K ) -> 2 satisfying ;

for any P , U < P < 1 , there exists a rational function over K (i.e. an element

of K(X) ) which has a divisor (in classical sense) E satisfying E(^.) = 0 if

|^| > P » E(X) =D(>.) if |X| ^ P . The divisor D is said to be positive if

D(X) ,̂ 0 for all X (or D >/ 0 in the obvious ordering of divisors). Further the

set <S- of all divisors which are rational over K is.considered to be a susbet of
K.

o9- for every complete valued field L 3 K.Li

Let t?t(K) denote the algebra of all power series over K with radius of

convergence >y 1 . For any f€ j r (K) we denote by (f) its divisor. To show that

( f )Co8^ we remark that for any P , 0 < p < 1 , any ideal in K ^X,<^'is principal

and generated by a polynomial € K[x] . In particular thereexists a polynomial

P C K[X] with PK [X,pt = fK [x,p| . Hence (f) C ^^.
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There, is a convenient.way to represent a positive divisor over K ([3]; (4 .3) ) :

The set^llll^ C A(K^g) ; D(X) ^ 0^ is at most countable and can be written as

^i^l with IS < ^2 <"• • Let Q! € K[x! be a Polynomial with (Q.)(^) = D(;l)

if |^|^ ^ and (Q^)(^) . 0. if |^| ^ ^ ,. Let P^ = Q^ and P^ = Q^(Q^)~1 for

i > 1 , and normalize the P^ 's by the condition P.(0) = 1 if |^. > 0 and P. = Xd

if ^ = 0. Now we write (formally or with the interpretation of [3] ; (4.3) )
D = IP. .

( 4 . 1 ) Lemma. I^_ fC^(K) a^d. (f) = IP^. Put e~1 = (fR^^O). 1^ L 3 K be any

complete valued field. Then for ;L C L, |x I < 1 , we have | f( X ) | = IclTTlP.Wl.

For ^y p, 0 < p ^ 1 , we have ||flL = IclTTllP^l l /) .

n
^r^. Take ^ . 0 < f> < 1 . Then f = c JT P^.u, where n is such that for i > n one

has ^ > ^ . Since u has no zero's witfe'ibsolute value ^ /o , u is an invertible

element of K[x,p} with constant absolute value 1 . Hence for X € L, | ;L|< a , we

have |f(x)| = ( c | JT ;P (^)| and (|f|(. = (c| ^ (IP j| . We note further that for
i=1 - ' 1=1 1 r

i > n. (P^(^) | = 1 and ||P |̂L = 1 .

Definition. 1-ur a positive divisor D = TIP. defined over K'and 0 < P ^ 1 we put

l!1^!^ = T|P^|1/) (which is finite if P < 1 and can be ooif p= 1 ) .

(4 .2) Corollary. An element f Q A(K) belongs to K < X >. if and only if | | ( f ) M < o o .

In particular if f is normalized by "f = X^, g<-0) = 1 " , then l f U = H ( f ) | (

(4.3) Theorem. Let D be a positive divisor which is rational over K. For every ^ > 0

there exists an element^ C ^t(K) such that (f) » D and f is normalized by

"f = X g, g(0) = 1 " and such that for every ft , 0 < p ^ 1 :

llDty?^ Hfll^ (IDII/, ( 1 + & ) .

^ L 3 K is a maximally complete extension of K then there exists g € X'(L)
vith (§) = D and hence if g is normalized. \\g\\p = ( lD(|n for all ff . 0 < P < 1 .

o0
Pî f. Leaving out trivial cases, we may assume D = ( I P . , P.(0) = 1 for all i.

put h ̂  ° 't • • • 'n and ^ ̂ ^ - ̂  ••1-1^ - ̂  • ̂  any^,
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0 < f>< 1 . we have I a^ I ̂  i ̂  1[P^ ... Pjl. ^ llD». and la^l^ ,$: «Dl|^

Let A resp. A.̂  C b(N ^K) denote the bounded sequences (a . )00 resp.
- - n>1 n^l

/ - \ ^^
^n,i^n=1 ' Let E be +>he closed subspace of b((N ^ K) generated by cQN -^K) ,

all A^ and all A^ (We use here the notations of the proof of (3.5)}. Then E

is a Banach space of countable type over K and hence for every & >0 there exists

a K-linear^map (|) : E -^ K with I (|) I ̂  1+ b , which extends "lim" : c(IN -^ K) -»• K.

Let f = J. ()(A )X1 and f ( j ) = ^ ^(A^^X1. Clearly f(0) » 1 and f C^ (K) since
i=0 - ffi)

for all p . 0 < ^ > < 1 we have ||fl|.= max((t)(A^)l ^ i <. ( 1 + & ) maxllA^llp i ,<

^ ( 1 + & ) ||D|ln . Analogous f^ 6 ^(K) for all j1.

Let P _ = (b^ + b X + . . .+ b X1'); Then P.f^ = ^ ())( ^b.A,'3.)^.
J k=0 i=0 1 k~l

£

/ • \ • °9 . t
But. using P_ a.^ X1 = 21 a . X1 for all n. one finds F b.A^? = A

J i=0 n'1 i=0 ntl i=0 1 k"1 k

for all k. Consequently. P.f^ = f and (f) » D.
J •

Finally ( 4 . 1 ) shows that |(fl|.= ^(f)l/p^|(Dl(/) for all./?.

Now assume that L 3 K is given and L is maximally complete. We follow the

construction above. Since L is maximally complete there exists an L-linear

(|) : E&^L ->L with /((Ml = 1 , which extends "lim" : cQN -^ L) = c(lN -^ K)»JL -+L.

Applying this 0 we find a g € (A(D with (g) ^ D, g normalized and MglL= ||DHp
for- all p , 0 < p^ 1 . '

If (g) ^ D then g = Pg* . P G L [XJ , P(0) = 1. (^) ^ D. For p< 1 , close

to 1 one has (IP(( > 1 . This gives the contradiction llgll.= |tPU Ug l̂ > \\f\\ > )\D\\
So '(g) = D. y ^ f /^ /°

Remarks. ( 1 ) In the first part of (U.3) we found an element (() C E' with |ld II .̂ 1 + 6

and (|) extends "lim". In general it is not possible to find an extension ^ with

\\^\\ = 1 . The follo.wing example (due to Lazard) illustrates this :

If K is not maximally complete one can find a sequence of spheres B(X , p )

in K such that ̂ , ̂ ) ^ B(X^ . p^); ^ > ̂  ;|x^ X^( = ̂  .n n

lim ^n = 1 ' ^ ^^n* A^ = 0 and ^^n < 00 • The laErt condition can always be
n=1

obtained by deleting out of a given sequence sufficiently many elements.
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Put y^ = (X^ - X^r1, then fyj = ^1 and the divisor D = T(l-y~1 X)

satisfies ||D||^ = TT^ < oo . Suppose that there exists f€*/t-(K) with (f) s D.

Then f € K < X > and write f = 1 + ^ a.X1. For any n :> 1 we can write :
n-1 i=1

-1 J&
f « N (l-y[ X)(l+h^) where h^ « ^ h^X1 and 1+h^ C K < X>has no zero*s

of absolute value < | y^ | » p^1. If follows that lll+hj|. ^ = -1 and in particular

"•..."„„« p.-
n-1 n-1

Further a^ = - S: — + h and ̂  ^- = x - x . So we obtain
i^1 -i ' 1=1 •'i n '

|(x^-a^)-x^| = l^^l^ f^ ^r all n and x^ - a^ C Q B(X^, 0 ̂ ) = 0. Contradiction.
n31

(2) Let a positive divisor D£o^ be given. A criterium for the existence of
f € A(K) with (f) = D is the following;

There exists a closed subspace F of E such that F ^c (W -> K) and F 5 Ke = E• o
where e = ( 1 » 1 , •. .) and ^ denotes the direct orthogonal sum.

(3) If the valuation of K is discrete then the divisor of any f € K ^ X > is

finite. This follows at once from Rj (2.5) . But it follows also from f = 1TP. *

IhenTTIIP Î = | l( f) l l^<oa. For i > 1 , f tP^H > 1 . Hence the divisor must be finite.

00
(4.U) Theorem. (Interpolation). Let (P^)^ai 1De a sequence of relatively prime po-
lynomials in K < X> , normalized by (| P^H = 1 and P^ has only. roots with absolute

value < 1 . For any i and n, 1 4 i < n we denote by Q. the unique polynomial of

degree deg(P.) satisfying Q. P, . . . ? . . . . P = 1 mod(P.) .
i i »n i i n i

Associated with this sequence we have a canonical map

r: K < x^ - ^K < x^ /,p v .

(1 ) f is surjective if and only if A = sup { H Q . l ( | n > 1 , 1 ^ i < n l < o 0 .

(ii) J^ X is surjective then the inverse of t̂ : K < X ^ / ^ -^ 'lTK<K>/p \
has norm A. 1 1

(iii) In particular. j_f^ D is a positive divisor, .rational over K. which is

decomposed as D = T^P., then |(D|I ^ A ^ ||D||2 and

t^ : K /. X>. -^ TfK < X ^ /,p ^ is sur.iective if and only if II Dll <oo .

The kernel of T^ is equal to 1 = [f € K < X '> | (f) ^ rf. So ker r ^ 0
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if and only if ||D|< < 00 .

(4.5) Lemma. Let PC K < X ^ be a polynomial, normalized by jl Pl| = 1 and P has

only roots of absolute value < 1 . Let V : K ^ X > -^ K < X ^ /,px be >the cano-

nical map, o( ; K < X>-»-c ((N ->• K) ' the bijective isometric map given byo ' o

00 00 QA
o( (^ a X^b .b ,b ....) = J>. a.b.. where ^ a X 6 K ^ X>and

n=0 n o -l ^ ^Q i i ^Q n

(b^,...)€ c^N^K).

Let A : K < X ^ / / x -+• (K< X > / /? ) " denote the canonical bijective iso-

metry. Then there exists a unique K-linear map. | ^ : ( K < X ^ ' / f p \ ) 1 ~'^co^ ~^K)

such that the following diagram is commutative

K < X > ———————^ K < X > /^

^
t*-

c^(W^ - ^ K ) * ———————^ (K ^ X "> / ( p ) ) '

Moreover Li is an isometry.
s-1 ^

proof. Any FC K < X ^ can uniquely be written as F s qP + .̂ a.(F)X where
'——— i=0
s = deg(P), qC K < X>and a.(F) € K. Moreover max |a.(F)| $ |lFl| . It follows

1 .0^i<s 1

that the images T,^,... .y"1 of 1,X.. . . .Xs"1 in K < X ^ /, x form there an ortho-
s-1 . ' /

normal base and that ^(F) = ̂  a^(F)X1. Let A ; K < X > /^ -^K < X > /^

denote the K-linear map given by A( f ) = if for all f C K < X ^ / / p x . Then HA8!) < 1

and for all n ̂  0 we have

A^T) = £. a^X")?.
, i=0s—1 • • (0

Hence lim || 7' a. (X11)?1!! = 0 and for F = ^L b X" and all i=0....,s-1 we have
a n-»<° i=0 1 n=0 n

a.(F) SB / b a^X11). The map L^ is now defined by : if 16 (K < X ^ / /pJ* theni ^ n i r (P)
S-1 • 00

k(l) = (KV a.Cx11)?1)) - e c (IN -^K). It is clear now that this k is ther" ' /^_ i n3^) o o

unique map which makes the diagram commutative and that k is isometric.
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Proof of (4.4) . Part (i). Let ^ . denote the canonical map K < X > - ^ K < X ^-//p ) »

p. the canonical map K < X. -> /,p x -» (K < X ^ /,p ))" and

11,. : (K ^ X > / / - J* ->• c (IT ->K) the .map obtained with the help of (4.$).
r'1 (P . ) 0 0

Then t = TK. . - Put ^ = £ ( « ' . : S(K < X > / / p J' -^ c^(K -^K) and

/3= ̂  : TTK < X > Ap ) ^ T(K < X ^ /^p^" = ( S ( K < X ^ / ( p j ) 1 ) ' -

Then again /3 o f = n* o 0( and fl , <x are bijective'and isometric. So we may

consider H' instead of f . Using the weak from of Hahn-Banach which is avai-

lable for the spaces c ((N^ -^K) and S(K < X > /,p J' since they are both of

countable type over K, one sees that (<.' is surjective if and only if

c = inf{ ̂ ^"lie £(K < X > /,- J' , 1 ^ 0) > 0. Moereover if
I ̂  ,( I ^ ^

c > 0 then ll^"1!! = c~ 1 .

Further H KI)I| = g^C'^(F) (f^l) )l | F e K < X \ . F ^ o } . After writing
IFII ^

1 = ^1., 1. C (K < X -> / /p J* one-has (y(F)(^( l ) ) = ^l^(r^F). It suffices in
1 N . . 1=1

the computation of c to consider finite sums ^~~ 1. = 1.

1=1 ^-l
Assume now A < oO . Choose b + b 5 +. . .+ bg _ _ ^ X 1 6 K < X "> / ,p ^

(with s. = deg P^) satisfying |i^(^o + ̂  -»-.. .) I = Ill̂ ll 11^ + ^^ -'••••II • The

element F € K < X ^ given by F = Q^ ^(b^ + b^? +... + bg^^ 1 ) satisfies :

|0<(F)(^ (1) ) | = |l^(b^ + b^C +...)| * Ill̂ llb^ + b ^ X + . . . H >

^ A"1 llF|( Hl-H. Consequently H^(l)ll >/ A""1 || ll| and c ^ A"1 > 0. Hence T

is surjective.

Assume now that T is surjective, then (It?" l( < oo according to the closed

graph theorem. Hence the inverse 0 : K ^ X > /,- p \ "̂  TT K ^ X > /,- \ has
' 1 * ' n i»1 i

norm < II'C1"''"1!). The element ^1(0,. . . ,0,1,0.. .0) can be written as Q^ ^l'"13!*'^'

Hence ([Q. U ^H^1"'1!! tor all i and n. So A ^ ll-^"1!^ W .
i »n
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(ii) A = llr^ "''H since A ^ »1^"''»1 and II X " ^li ~1 = c >/ A"1 are both derived

in the proof of (i).

(iii) For convenience we suppose that D(0) = 0. In the decomposition
o0

D = IT p- ve make the normalisation : P. is a monic polynomial of degree s(i), such
i=1 1

that all roots of P. have absolute value (x. .. Further U\ < u < . . . . It
00 i 1

follows that |ID||. = FT | P . ( 0 ) | .

The polynomial Q. is defined by Q. P. ... P. ... P s 1 mod (P ) andi »n i »n i i n 1

deg Q. < s.. Equivalently Q. P, . . . ? . . . . ? + R . p. = 1
i?11 i lan 1 i n i,n i '

deg Q^ ^ < s^ , deg ^ n ^ ^ ^ s _ ) - s . . According to (2.5) and the definitions

of C<(I) and' &(l) for the ideal I = (P. , P, . . . ^. . .. P ) we find
i l i n

max( |l Q 1( , HR |( ) = II Q \\ = o^l)"1 and
-L » U -1—?-" 1 » ii

^ (I) = mm min^max}) P^( z) | , | P^ . .. ^ . .. P^(z) | \ \ z zero of P. I . An easy

calculation yields | P ^ ( 0 ) | ... ( P (0) | 4 ^ (i) ^ |P.^.< (0) ( ... | P (0) | .
j L r i . - • i i n' "J ' - - - - - -^ -

calculation yields | P ^ ( 0 ) | ... ( P (0) | 4 S' (i) ^ |P.^.< (0) ( ... | P (0) | .

?r, using (2.U) :

^(I)2 ^ OC(I) ^ ^ ( 1 ) one finds ||Dll^ A ^ |lD||2 . The rest of (iii) follows

Further, using (2.U) :

ni)2 ^ ocd)
at once from ( 4 . 2 ) .

(U.6) Corollary. A sepuence j^^|^^ C \^ € K ( ( X | < 1J is called an interpolation

sequence if the map T : K < X ^ -^b(N -^K), given by T ( f) = (f(^ ))°° , , is
—————— n n^ 1 —

00

surjective. One has t is surjective if and only if inf FT [^ - \.{ = c > 0.
i n=1 n 1

Further -if ^ is surjective then the inverse of the induced ma-p t^:

K < X ^ /^^ ^ -> b((N -^ K) has norm c~ 1 . .

Proof. Apply (U.U) part(i) and (ii) with P. = X- \. .

(4 .7) Corollary. Let ^ ) ^ be an interpolation sequence and let I C K < X>be the

ideal ^ f € K < X > | f ( ^ l . ) = 0 for all i^ . Then the maximal ideals M 3 I

pond 1-1 with ultrafilters ^ ^n IN, where the correspondance is given by

U ̂  [-f € K < X >|lim| f ( X .) | = C > 1 = M C K < X > .
IL 1 '
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Moreover for every maximal ideal M 3 I the residue field K < X > /„ provided————————————————K—————-———i——— ———————————————— y[ ^———————

with the quotient norm is a valued field* If V. is. non-trivial then K < X > / is

a '"big" field extension of K.

Proof. Since K. < X > / Sb(K - K), everything follows from [U] ( 4 . 1 ) and (4.4L

Problems. It is not clear and probably not true that every maximal ideal M of

K < X > , even if K is algebraically closed and maximally complete, is obtained

as in (4.7) from an interpolation sequence. However, one has a weaker result;

Let f 6 M» f ^ 0 and let (f) = IT P. be the canonical decomposition of the

divisor of f. Then according to (4.4-) :

K ^ X > I i^\ ^TiK < X > / / \ and M corresponds to a maximal ideal of

00

IT K < X > / A study o-f algebras R of the type R = ^ R . » where dim R. ^ 0°
"i7 . i=1 z

for each i,.is needed to obtain further results on maximal ideals of K < X > .

We remark that the special case sup dim R. < <o reduces easily to the case

b(lN ->K) (i.e. dim R. = 1 for all i) which is treated in fh} . The case

sup dim R. = °<» seems far more complicated. Interesting questions about those

algebras are (i) Is R/M, provided with the quotient' norm,, a valued field for

every maximal ideal M?

(ii) Does R contain closed prime ideals which are non-zero and non-

maximal ?

(iii) Is the set of "trivial" maximal ideals a dense subset of the set

of all maximal ideals of R ?

(iv) Can o,ne give a filter-description for the maximal ideals of R ?

r i o»
(4.8) Corollary. Let f € K < X> satisfy : the set of all zero's j A J Ql f

. ,o> i i=1
belongs to K and every zero is a simple zero of f. Then (A..| . is an interpo-

lation sequence if and only if (f,^) = ( 1 ) .

Proof. Suppose (f,^) = ( 1 ) . Then S'(f,f) > 0 and consequently infjf*(-l ) I > 0.

Write f = (X- ^ )g with g C K < X > then it follows that |f'(^ )| = |g(X ) [=

00

= TT I yl . - ^ I . Hence according to (4.7) the sequence is an interpolation sequence.

^n
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Suppose that the sequence is an interpolation sequence. Then as before

inf ) f ' ( X )|>0. For e'very maximal ideal M "> fK < X '> there exists, according toiv » n -"
(4.7), an ultrafilter U on ^ such that M = jg C K < X .̂ |lim -| g( X . ) I = O? .

Clearly f * does not "belong to any of those maximal ideals and hence (f,f) = ( 1 ) .

Problems. (i) Does there exist a maximal ideal M of K < X > with the property :

Fo every f C M, also f ' C M ?

(ii) Suppose that K is algebraically closed and maximally complete ; let

M C K - < . X ^ b e a maximal ideal, f 6 M such that f ' ^ M . Is M obtainable from an

interpolation sequence as in (4.7) ?

(4.9) Corollary. Let V be a non-discrete (rank 1 ) valuation ring. Then the Krull-

dimension of V^ Xjj is infinite.

Proof. If Krulldim V [Hxj] < o0 then also Krulldim K < X "> < oo and
Krulldim b((N -^K)<co since for a suitable interpolation sequence one obtains b(N -> K)

as a residue ring of K ^ X ^ . The proof of (.4.9) will be completed by using the

next lemma, which shows that b(lN -> K) contains infinite chains of prime ideals.

( 4 . 1 0 ) Lemma. (i) Let U be a fixed non-trivial ultrafilter on IN and let

c = ( c , c , c . ~ » . . . ) be a sequence of real numbers satisfying 0 < c. < 1 for all i

and lim c. = 0 . Then the ideal I of b(lN ->K) given byi c ———— 1

f C I if for some k 6 N and D G R the set (n £ K I |f(n) ^ c^" Dl belongs

toUfis a prime ideal.

(ii) Let d denote the sequence d. = (c. ,c » c ~ c , ,... ) then I C I

Proof, (i) (a) I is an ideal since for f ,f C I , g C b((N -> K) we have

V^ = [n € K II f^(n)|^ c^ D. ? € II ( i=1»2) and with D = max(D ,D ), k = max(k^,k )

we have . 1

( nC N II f ^ (n ) + g(n)f^(:-M ^ c^D ||g UJ3 V U V and belongs to U .

Hence f + gf C I .

(b) I is a prime ideal. Indeed let f-»tp €> 1^' then for all
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Ĵ
k € IN, D € (R the complements W. of jn 6 N I | f . ( n ) ( ^ Dc^ J ( i = 1 , 2 ) belong to If .

Hence for all k C IN, D € R , the set { n C IN ( | f ( n ) f ( n ) ( > D2^ ( belongs to U, .

Consequently f f ̂  I .1 2 c

( i i ) Take f G I with \ c ^ | f ( n ) ] <s c for all n. If f would belongc d n n
to I then for some k € N , D ̂  IR one has

^ j^
jn GIN I f f ( n ) l ̂  c^ DJ € U/ . But | f ( n ) | ^ - c ^ c1^ D for all but finitely many

integers n. Hence f ̂  I, .

Remark, The question whether Krulldim R = 1 ( R non-noetherean) implies
Krulldim R [EX]] < oo is recently, for more general rings than valuationrings as
in ( U . 1 0 ) , answered in the negative by J . T . Arnold (On Krulldimensions in power
series rings ; to appear).

Problem, Although we proved that b(ffJ -̂  K) contains infinite chains of prime ideals
one can easily see that every non-zero closed prime ideal is maximal. Does the same
hold for K < X > ?

§5. Application to invariant subspaces.

The Banach space E = c (N -> K) is given the orthonormal base {s-i •_p, where

e. denotes (0, . . . ,0,1,0, . . . ) . We consider on E the antishift operator T : E -> E

defined by T (e . ) = e._. (i >/ 1 ) and Te = 0. As shown in [6] , (3 .^ ) , the algebra

of all bounded operators on E which commute with T is isomorphic to K < X '> ; the

isomorphism p : K < X ' S - > o ^ ( E ) is given by

r'l,-/"'- Jo"'1"'" £ •••I°(•''•
Let TT € E' (n >/ 0) denote the map given by tr ( e . ) = 0 if i ^ n and 1 ifn n i

i = n. The composed map TT o p s K ^ X ^ - ^ E ' has obviously the property
oo «

7r ° P^^L a ^(T^ ^ . i?*") = JE. a " 1 D ' • Hence TT o p = o< where (/ is

the map considered in lemma (4 .5 ) .
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In this section -we investigate the set of all closed, subspaces of E which are

invariant under T.

( 5 . 1 ) Lemma. Let F C E be a closed subspace which is invariant under T. Then :

(i) For all f C K < X ^ , / ^ ( f ) F C F .

(ii) Let id(F) = [f e K < X V I P ( f)F = 0 } . Then id(F) is a closed

ideal of K < X ^ .
'"'0° P rThe kernel of the map K < X>- '———^ E1 —> F,' , where r denotes the obvious

restriction map, is also equal to id(F). Further K < X > /. / v ^F'.

(iii) Let F^ ^ F d-enote closed invariant subs-paces of E. Then

id(F ) 3id(F^).

(iv) For any ideal I C K < X > one defines n(l) = -0 [ker p ( f) | f C I?.

Then n(l) is a closed invariant subspace of E. Further n(id(F)) = F.

oo
Proof, (i) Let f = V a X11 C K < X ^ and x C F C c (ff? -> K} = E. Then
———— _\ ^ o o

N n^
p( f ) ( x ) = lim ^_ a T^x). Since F is closed and invariant under T, we find

N^oo n=0 n

^ ( f ) ( x ) C F. Hence ^( f )F C F for all f € K < X > .

(ii) It is clear that id(F) is a closed ideal of K <' X ^ . Further let

f C K < X > . Then TT^ o p ( f ) (F) = 0 if and only if -T o ^(X^KF) = 0 for all

n >/ 0. But TT^ o ^(X^) = ^ o ^( f ) . Hence -n- o <o(t)F = 0 if and only

if p (f)F = 0. So id(F) is, the kernel of r <? -rr o r> . The map r : E1 -»F'

is surjective since a weak form of Hahn-Banach is available for the Banach spaces

F and E which are of countable type over K. Hence F* -—• K ^ X > / . , y

(iii) The map Fg -> Y\ is surjective and has a nontrivial kernel. So

using (ii) one finds id(F ) ^ id(E ).

(iv) Apply (iii) with F = F and F = n(id(F)).

(5.2) Lemma. Let P C K < X > be a polynomial of degrees, normalized by the

condition : all the roots of P have absolute value ^ 1 . As in (U.5) there exists

a commutative diagram
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K < X > ———————— K ^ X > / / p .

^. /3

>/ ^
c^-.K) ———————— (I^X^/^)"

The map (</ is an isomorphism of (K < X ^ / / . n \ ) ( into n(PK < X ^ ). Further——————————————— ^ j ——— —————

(a ) id(n(PK < X >. ) ) = PK <- X ^ .

("b) For every closed invariant subspace F of E with dim F = s < oo

there exists a polynomial P C K < X ^ of degree s which has-only roots of absolute

value < 1 such that F = n(PK < X > ).

Proof. We show first dim n(PK < X ^ ) = s. Write P = Xs + o< X5"^..^^ , all
s-1 °

jo/. I < 1 by assumption and -write x : 21 x.e. € c (N -> K).
-L i "' o o

The equation ^ (P) (x ) = 0 then reads :

^s + ^s-l^s-l ^-^^i = ° for a11 i = 0 > 1 > 2 . - • •

So with given x ,..., x there exists a unique solution (x . ) . „ of this set ofo s — I ' r 1=0
equations and moreover lim jx. | = 0 since all | <\. [ < 1 . Hence dim n(PK < X > ) = s .

In shoving im ^ = n(PK < X ^ ) it suffices to prove im (̂  Cn(PK < X S ) since

^ is already known to be isometric and dim(K < X >/ )' = s = dim n(PK<X '>•).

Take 1 £ (K < X ^ / (p ) ) ' . ^hen for all n ^0, o( (X"?) (|<(l)) = h to6((XnP)(l) =

= /S oT(XnP)(l) = 0. Hence, since ^(X^) = \ o ^(P) for all n >, 0, we find

P (P)( ^ ( 1 ) ) = 0.. This means im ^ C ker p (P) = n(PK < X '> ).

a) id(n(PK < X S ) ) = Q K < X > where Q is. a polynomial dividing P.

Applying "n" again and ( 5 . 1 ) part (iv) one finds n(PK <' X > } = n(QK < X >). Since

dim n(QK < X > ) = degree Q,one obtains P = Q.

b) Let T denote the restriction of T to F. The characteristic polyno-

mial P G K [X] of T^ satisfies P(T^) = 0 or P(T) 6 id(F). Hence for some poly-

nomial Q 6 K [x] which divides P we have id(F) = QK < X > * After applying "n" one

obtains F = n(id(F)) = n(QK < X > ). So deg Q = dim F = s and Q = P. Clearly all

the roots of P have absolute value < 1 , otherwise P = uP^ where u is a .unit in

K < X > and degree P^ < s which is impossible.
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( 5 * 3 ) Lemma. Let D be a positive divisor over K and such that ||D|l ^ o0 • Let1
D = TVP^ denote its canonical decomposition. As in the -proof of (U.U) one has a

commutative diagram

K < x > ———————— K < X ^ / ,p .

o/
ft

^ "
c ^ - ^ K ) ' — — — - — — — ( F ( K < X > / ( p j ) ' ) ' .

Let I denote the closed ideal ^f € K < X > |( f) ^ D) . Then I is the kernel

o_f T and im (̂  = n (I ). Further the sub spaces ^ ( ( K < X > / / ^ ) =

—? 1

n(P.K < X > ) ( i=1 ,2 , . , . ) are (I D|| -orthogonal and their (closed) sum ^n(P.;K-<X>>

is equal to im ^ . Moreover id(im y. ) = I .

Proof. As in the proof of (U.U) part(iii) one finds !|Li(x)|| >/ llDll^lixll for all

x C ^_ (K < X ^ / / >, ) ' . It follows immediately that tne suospace

n(P.K < X ^ ) = ^ ( ( K < X > / / J') are llDll"2 -orthogonal and that their closed

sum is equal to im k .

Clearly I = ker T = ker /3o^ = ker ^' o c^ . Hence f C I if and only if

^(X^dm ^) = 0 for all n >^ 0. Again' ^{X^f} = 7T o ^o(f) yields f € I if

and only if / ° ( f ) ( i m k ) = 0 o r equivalently f C id(im ^ ). So I = id(im ^ ).

Also clearly n(l ) ^ im u^ , hence I C id(n(l ) C id(im u, ) = I . Using

( 5 . 1 ) part(iv) one sees that n(l ) = im l-o .

(5.h ) Theorem. Let fî "- denote the set of all positive divisors D vhich are rational

over K and satisfy BDIL < o0 * The map ^ : /3o^y- (the set of all closed invariant

subspaces of c (N ->K) ) given by 0(D) = n(lp.) is bijective. Further id((^(D)) = I .

Suppose in addition that K is maximally complete^then (̂  induces a bisection

betveen the set of principal ideals of K < X > and the set of all closed invariant

subspaces of c (N -^K).

Proof. In view of (5 .3 ) and (U.3) all we have to show is that 0 is surjective. Let F

be a closed invariant subspace of c (N -> K) and f 6 K < X > , f ^ O , f£id(F).
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Let ( f ) ' = TTp. be the canonical decomposition of the divisor of f. Then

n ( f K - < X > ) = Jn (P .K < X ^ )• 3 F and the set of subspaces { n ( P . K ^ X > )? . is

l|(f)l| "^-orthogonal.

Let x = ^x. C F with x^ € n(P.K < X > ) for all i. Then ||x l| ^M( f ) ( ( ̂ maxdlx. l|)

and l i m ( l x . ( ( = 0. Let Q. be the polynomial of degree < deg(P.) satisfyingi . i, n i,

Q^P, ... ̂  ... P^g 1 mod(P^).

Then (,(Q^^ ... ^ ... P^)(x) » x^,. Z: ^(Q^P, ... P, ... P,)(Xj).
A Jy11

Since sup H Q . P ... P. ... P (| ^ QQ according to ( 4 . U ) , we obtain after takingi, n i 3. n

the limit of n -> 00 , x. C F. So we have shown that F = Z.F 0 n(P.K ^ X "> ) and

this sum of subspaces is (l(f)l| < -orthogonal. Each F f\ n(P.K < X ^ ) is finite

dimensional and equals n(P.K < X > ) for some P. dividing P. , according to (5 .2) .

Let D be the divisor which has the decomposition D = TTp. . Then it is clear from

( 5 . 3 ) that F = n(l^).

Remarks. ( 1 ) This theorem resembles of course the following "theorem in the complex

case: |̂ 23 page 66, "every closed subspace S of the Hardy space H (A), invariant
2under multiplication by z, has the form S = FH , where F is an inner function".

p
However, the multiplication by z, defines a shift-operator in H (A) whereas

our concern has been the anti-shift operator T : c (N -^ K) -> c ((N - ^ K ) .
0 0 0 0

The non-archimedean case of a shift operator U : c (N -> K) ->• c (N -^ K) iso o o o
quite simple. Identify c ,(N -> K) with K \x} by means of the map

^: K \X\ -^(E^ ->K) given by ^(2a^X11) = Ja^e^) = (a^.a^.a^,...).

Close-d invariant subspaces of c ((N -> K) correspond then 1-1 with ideals of K ?x] .

As is well known every ideal in K [xl has the form PK {XJ where P is a polynomial

which has only roots of absolute value ^ 1 .

(2) If the valuation of K is discrete then the non-trivial, closed subspaces

of c (IN -^ K) which are invariant under the anti-shift operator T have finite

dimension. This follows from (5^) and the remark that every ideal in K < X > is

principal and generated by a polynomial.
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