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THE UORM OF UNIFORM CONVERGENCE ON THE K-ALGEBRAIC MAXIMAL SPECTRUM
OF AN ALGEBRA OVER A NON-ARCHIMEDEAN VALUATION FIELD K.

U. GUNTZER

In n en-archimedean function theory, i . e . the theory of several variables over
a field k with a non-archimedean valuation, the concept of the norm of uniform con-
vergence on a k-affinoid set ( i . e . the analogue of a (C-analytic set in the theory
of several complex variables) is an important tool. It can be computed intrinsical-
ly in terms of the spectrum of maximal ideals of the corresponding k-affinoid alge-
bra ( i . e . the analogue of a (C-analytic algebra). The aim of this lecture, which is
based on joint work with R. Remmert (Mmister), is to define a semi-norm of uniform
convergence on a large class of k-algebras A without any norm or analytic structure
thereby reducing this concept to a purely algebraic one depending only on the alge-
braic structure of A and of course on the valuation of k.

The point of departure for our considerations is the valuation theoretic no-
tion "spectral norm" introduced in Q23 and studied in detail in [.53 in order to han-
dle extension problems from a field to algebraic extension fields (always with ap-
plications to k-affinoid algebras in mind). Here this notion is generalized in such
a way that also integral extensions A of a k-algebra B may be treated. We study the
behaviour of the norm of uniform convergence under "going up and down" from A to B
and vice versa. Due to the Noether normalization lemma many problems in the theory
of k-affinoid algebras may be reformulated as extension problems, where the smaller
algebra is a "free" k-affinoid algebra T̂  enjoying many "nice" properties. Therefo-
re we can apply the general theory in order to algebraize and thereby simplify the
proofs for some of the fundamental results for k-affinoid algebras. This program
had been started for k-Banach algebras instead of general k-algebras inC^D? but
there some arguments taking advantage of the special structure of k-affinoid alge-
bras had to be used.

1 . 1 . Supremum-semi-norm on k-algebras.- Let k be a field with a non-archimedean non
trivial valuation. (We do not suppose k to be complete). Let A be a (commutative)
k-algebra. We want to derive a semi-norm on A from the given valuation on k. In or-
der to do so, we use the following

Def. 1 . 1 : (Spectrum of k-algebraic maximal ideals of A)
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Max A : = )x ; x maximal ideal in A and. A/x algebraic over k1

Of course Max, A may be empty, e . g . if A is a transcendant field extension of
k. But in many cases the k-algebraic maximal spectrum of A contains substantial in-
formation about A.

For x € Max, A and f € A denote by f ( x ) the image of funder the canonical resi-
due epimorphism K : A -3^A/x. Because A/x is an algebraic extension of k it can be
provided with the spectral norm belonging to the given valuation on k. (For the con-
cept «spectral norm » see pj ; we just mention here, that it coincides with the
uniquely determined valuation extension, in case k is complete). The spectral norm
is invariant under k-Galois automorphisms and therefore it does not matter how A/x
is embedded into the algebraic closure k of k. Thus we may speak of lf(x)( , where
f e A and x € Max, A , and are able to introduce

Def. 1 . 2 : (Semi-norm of uniform convergence on Max, A or supremum-semi-norm)

( 0 if Max, A = 0,

lf| : = sup^|f(x)( ; x e Max^ A^ if Max^ A ̂  0 and f(Max, A ) bounded,

00 .LT- •otherwise.

This definition generalizes the concept ̂ spectral normj> . Namely if A is
contained in k , then this definition obviously yields the spectral norm on A. As
we shall see later on (cor. to prop. 1 . 5 ) under suitable circonstances I | may
be interpreted again as a spectral norm, then of course over some bigger ground
field. - We have already seen that Max, A may be empty ; also the third case occu-
ring in def. 2 is possible, e . g . take A = kQX3. Then Max, A3 HX - c ) k(lXJ; c €- k2 .
If one takes f : = X 6 A , then f(Max, A ) 3 k, which is clearly not bounded. We shall
say, that the supremum-semi-norm on A is not degenerated a if Max, A ̂  0 and f(Max A)
is bounded for all f € A. For the applications we have in mind, it is easy to veri-
fy, that f I is not degenerated.

First let us collect some rather obvious properties of I I :- ' -sup
Lemma 1 . 1 : J^ \ \ is not degenerated, it is a power-multiplicative non-archime-

dian k-algebra semi-norm on A , i . e . one has for all f,g 6 A , c €. k , n e (N :
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(a) |f| € (R, |f| ^ 0, |o| = 0,I sup ' I I sup * I ' sup *j sup I 'sup l ' sup

(b) |f+g|^.<max ||f|^, |g|^.

^ l^'sup- H Msup-

(d) Msup^ Msup Hsup9

(e) Msup- 1 '

(f) [ f 1 1 1 = H" .' 'sup I 'sup

All these formulas - with the exception of (e)-remain true also in the degene-
rated case, if one extends the usual operations on IR to tR U ^oo^ in an obvious way.

The supremum semi-norm is compatible with k-algebra homomorphisms in the follo-

wing sense.

Lemma 1 . 2 : Let ^ : B -^ A be a k-algebra homomorphism between two k-algebras A
and B. Then ^ is a contraction with respect to ( | , i.e. ^(f)) ^ (f | for

all f € B.

Proof : If Max, A = 0, there is nothing to show. If x € Max, A, then Y induces

a k-algebra monomorphism B/^f (x) -»A/x. Because A/x is an algebraic field exten-

sion ofk, also its subring B/<f (x) must be an algebraic field extension of k.
_ •<

Hence ^ (x) 6. Max, B. Then one has

(*) I^^Lu^ ^P l ^ ( f ) ( x ) |= sup - J f^ '^x)) !^ sup | f ( y ) [ = j f |
p xcMax A x&Max A y£Max B '

Q.E.D.

We apply this lemma to show that the supremun-semi-norm of A can easily be deri-
ved from the supremum-semi-norm of its prime components.

Lemma 1.3 ; Define ^ := ^1P ; *p minimal jprime ideal of Al and let X : A -> A/p

denote the canonical residue map for all ^> e f(^ . Then

'"SUP'^S, 'V^sup-
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Proof : According to lemma 2 we know sup Ix (f) | ^ ( f [ . in order to
peltl ' sllP ^P

show the opposite inequality, take x 6 Max, A. Then one can find p&lt such that

x 3'p. From A/x = (A/T^x/p) we get T . ( x ) = x/'p fe Max A/^ and ( f ( x ) ( =

| (^ ( f ) ) (^(x) ) ( , whence |f(x)k lit ( f ) j ^ sup ITT^)^ • since this holds for

all xe Max A, we have found |f | ^ sup |^ ( f ) | , Q.E.D.K sup •p6.7» -p sup

For the case of integral monomorphisms Lemma 1.2 can be improved considerably.

Lemma 1. U : Let ^ : B —> A be an integral k-algebra monomorphism.

Then one has :

(a) ^ is an isometry vith respect to | |• ——————————^———————f-———— I | sup

(b) l^lsup ^ max l^lsu^) for a11 f e At vhere fn + ^ ^ i ) fn~1 + . . . + v f ( ^ ) = 0 j^

an equation of integral dependence of f over ^ ( B ) ,

( c ) [ |g is not degenerated on A if and only if if is not degenerated on B.

Proof : Ad(a) : If Max, B = 0 then due to lemma 1.2 we have ( ^ ( f ) ! ^ |fl
———— k sup sup

= 0 for all f € B. Therefore we may assume Max B ^ 0. Take y ^ Max B. Because ^•K. k
is integral and injective, there is a maximal ideal x of A lying over y, i.e.

^ (x) = y. Again 4' induces an integral monomorphism from B/y into A/x. B/y is an

algebraic field extension of k according to our assumption and A/x is integral over

B/y is an algebraic field extension of k. In other words : the map x -> ^ ~ (x)

from Max A to Max, B is surjective. Therefore one has equality in the formula {^)

occuring in the proof of lemma 1.2 and^f is an isometry.

Ad(b) : For,all x fe Max, A one has 0 = ftx)11 + f t ( b , ) ) ( x ) ^x^"1 + . . . + ^ ( b ) ( x ) =K 1 n

f(x)11 + b^^'^x)) ftx^"1 +...+ b^'^x)). This equation in k implies

I I n I -1 1/i n l 1 ^ 1
| f ( x ) | ^ max |b.(^ ( x ) ) | ^ max |b. l . Since this holds for all x e Max, A

i=1 -L 1=1 1 sw^ K

1 i n i I1 7 1
we get |f|^,< max |bJ^ .

Ad(c) : If b(Max^ B) is bounded for all b € B, then due to (b) also f(Max, A) is

bounded for all f 6 A. The converse is true due to (a ) . Furthermore from the proof

(a) we see that Max, B = 0 if and only if Max A = 0 , Q.E.D.
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In order to be able to transform the inequality (b) into an equality, which

then allows to compute I | on A in terms of ] | on the smaller algebra B, we

must impose some additional assumptions on A and B.

Prop. 1.5 : Let tf : B -> A be an integral torsionfree k-algebra monomorphism

between two k-algebras A and B, where A is reduced and B is an integrally closed
domain. Then one has :

(a) l^sup = max ^Jsup. for a11 ̂ ^ vhere f11 + ^ (b^ ) f11"1 +...-Kf(b^) = 0 j_s.

an equation of integral dependence for f over ^(B) of minimal degree.

(b) The maximum modulus principle holds for A (i.e. for all f € A there is an

x fc Max^ A such that t f (x ) | = |f|g^ ) , if an only if it holds for B.

( c ) I L r> ls a norm on A , if and only if it is a norm on B.

(d) J is a faithfull B-module norm on A (i.e. |^(b) . f | = [b | | f | for'sup ——————————— ——————————— —— n v / 1sup ' sup ' sup ——
all b € B and f & A ) , if and only if | | is_a valuation on B.

Proof : Ad(a) : According to assertion (b) of the proceeding lemma we only ha-

l i n f l 1 7 1
ve to show |f | ^ max (bj . Choose m 6 JN with 1 ,$. m ̂  n such that

i=1 sup

MsS = ^i'^up • put P := xn + \ xn-1 ^-^ V ^3. ^ \\\^ is finite.

for all ^k R with ^ < 1 we can find y 6 Max^ B such that |b ( y ) I ^ ^ [b | . If

IbJ g is infinite one has to modify the following lines slightly in a obvious man-

ner. (if the maximum modulus principle holds for B, one can find such an y e. Max B

even for ^ = 1. ) Put p[yj := X11 + b., (y) X11"1 + . . .+ b^(y) e k^(x]. Choose o<e k^
n ,.

such that pCy1(o<) = 0 and such that H = max | b^ (y ) l /1. This is possible, because
1=1 n n 1 / 'p[y] has all its roots c*^ ,..., o( in k and because one has max IK. | = max )b. (y)| •

i=1 1 i=1 1

according to the first proposition in § 3 of J5J, which may be applied even if the
spectral norm on k is not a valuation. Now it suffices to construct a k-algebraic
maximal x € Max^ A such that |f(x)| = |<i | . Namely, then we have

^) ^ISUT) = sup l^2^ ^ l^^l = |o(l = max ^(y)!1 7 1

zfeMax^A i=1 '

I^'I'^^IM^^M^ .
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n 1 / 'Since this holds for all ^ < 1 , we find. |f( ^ max [ b . j . (And if H could

b e chosen equal to 1, then we even get [f L ^ | f(x) |^ max |b.| ^ | f ( . The-' sup ' •_.. i 11 sup sup

refore the maximum modulus principle holds for A, if it holds for B . ) It remains to

construct x € Max, A such that | f (x) | = |« (. Replacing B by ^ f ( B ) we may assume

B ^ A and ^ = id. Furthermore we may assume A = B|fJ. Namely, if we can show the

assertion for the special case A = B^f] and the given element f , then we also get

the general case, because A is integral over B |fJ and therefore according to lemma

1.4 it does not matter,-whether one computes the supremum-semi-norm of f in the al-
gebra A or in the possibly smaller algebra B J f J . Therefore we 'assume A = BCfJ. Choo-
se a fixed embedding of B/y into k . The mapping b -^b(y) yields a k-algebra homo-

morphism onto some subfield k' of k . Extend this homomorphism to a k-algebra epimor-

phism

CT-: B&c] —^k'(o<>) by defining o- (^ b. X1) := Z. b . (y )oC 1 . Obviously one gets
i=0 z i=0 1

<3"(p) = p|]y] (0<) = ° and therefore cr induces a k-algebra epimorphism

cr : B[x^/p.B[x] ^k^oC) . Clearly ^•W = ^ where ? denotes the residue class

X + p.afx]. Assume that we know already

(^) p.B[x] = i q e B[x] ; q ( f ) = 0^ .

Then there is a canonical isomorphism f : BCf3 —>BQXJ/p.BJxJ, which maps f onto X.

Combining o1 and f we get a k-algebra epimorphism <r ot : B (fj -^k'(<) , such that f

is mapped onto ^ . The kernel x of this map is a k-algebraic maximal ideal of BCf3

and one sees | f(x) I = 1^ I . Thus equation (^") remains to be verified. In order to

do so, first, we assume that A is without zerodivisors. Then the quotient field Q(A)

of A is an algebraic extension of the quotient field Q(B) of B. Because B is inte-
grally closed, well-known results from Algebra (cf.|8] , chap. V.§3) assert, that
p e B|xJ is also the minimal ireducible polynomial of f over Q(B) and that p divi-
des in B|jc] all polynomials q € B[x] annihilating f. Thus we have verified(**) for
the special case, that A is an integral domain. Thus it remains to reduce the gen-
eral case "A is reduced" to this special case. Define ^ to be the set of all mini-
mal prime ideals of A. Then we know (0) = .0 y and -p (\ B = (0) for all -p & ^

according to the theorem of Cohen-Seidenberg (cf. C 8 J , chap. V, §3, th. 6). For

^p € ^ denote by K^ : A --^A/y the canonical residue map. IT induces then an

integral embedding of B into A/p for all *p fe X . Put f := ^ .p ( f ) . Let qe B[XJ
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such that q ( f ) = 0. Then a fortiori q(f^) = 0. Let p., "be the minimal irreductible

polynomial of f^ over Q(B'). According to what we have already proved for the spe-

cial case, -where A has no zero divisors, p e BCXJ and q(f.p) = 0 implies that p

divides q in BtX3. In particular p divides p in BCXO for all p e ̂  . Q(B) CX3 is
factorial, p 6 Q(B)CXD admits only a finite number of non-associated prime divisors.

Because all p are monic polynomials, two of them are associated only if they are

equal. Therefore the set ^p ; -p e ̂  must be finite. Define m e BOX] to be the

product of these finitely many polynomials e BCXD. Because the factors of m are

non-associated primes all of which divide q, also m divides q in Q(B)CX3 and then

even in BCX3. In particular m divides p in BCX3. If we can show m = p, then we have

verified ( * ^ ) . Because p divides m, we get m(f^) = 0, or equivalently m ( f ) e. ^> .

This holds for all *p<<m and therefore we get m ( f ) € 0 <? = ( 0 ) . Hence m ( f ) = 0

is an equation dependence for f over B, whence (degree of m) » (degree of p) . On the

other hand we know already that p and m are monic polynomials and that m divides p.

Therefore m = p and hence (^ is verified. And that equation was all we needed to
finish the proof of (a) also for the general (i.e. the reduced) case.

Ad(b) : While proving assertion (a) we also proved that the maximum mo-
dulus principle for B implies the maximum modulus principle for A. The converse is
true due to lemma 1.4.

Ad(c) : Assume that ) I is a norm on B» i.e. \ \ is not degenera-

ted and l ^ l g = 0 implies b = 0 for all b « B. We have to show that then also

Usup on A is a norm. Take f e A with f i- 0 and let f11 + ^ (b . ) f^1 + . . . + <f(b ) = 0

be an equation of integral dependence for f over ^(B) of minimal degree. Because A

is reduced, there exists an index m with 1 ^ m ^ n such that b ^ 0. According to

assumption also Ib^l ̂  ^ 0 . Hence also |fl^ = max lb^^> \\\^ > 0. Using

assertion ( c ) of lemma 1.4 we conclude, that \\ is a norm on A. - The converse issup
clear, due to (a) and (c) of lemma 1 . 4 .

Ad(d) : Assume that l ( _ _ is a valuation on B. We have to show |(f(b) .f! :

""•P sup
j b | . |f^ for all b € B and all f € A. If b = 0 or f = 0 there is nothing to show.

Therefore let b i- 0 and f ^ 0 and let p ( f ) = f11 + ^(b.) fn~^+...+ ty(b ) = 0 be an

equation of integral dependence for f over ^ (B) of minimal degree. Then (^(^f^ +

^(bb.jXtf^f)11"^...^1^) = 0 is an equation of integral dependence o f < f ( b ) f
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over<f(B) and. there is no other equation q(<f(b).f) = 0 with (3.6 B(.X], q monic and.

(degree of q) <n , because then one would, get an equation q^(f) = 0 with some

q* 6 Q(B)pCj and. (degree of q^) = (degree of q) < n = (degree of p) in contradic-

tion to the fact that p must divide q^ in Q(B)|^X.] (cf. the proof of assertion (a)) .

Thus we have found an equation of integral dependence of minimal degree for ^("b^f

and may compute |^(b)f| according to (a);

n . .1 / i n 1/i
k(b) f| = max Ib1^. = (b max b. = b | |f . Again the con-"" 'sup . , 1 i sup • 'sup . 1 I'sup I 'sup ' sup 0

verse follows immediately from assertion (a) of lemma'1.4. Thus we have finished

the proof of (d) and thereby completed the proof for prop. 1 . 5 .

Remark : Assume that I I is a valuation on B. Then it can be extended to a————— sup

valuation on the quotient field Q(B). If we assume furthermore that A is an inte-

gral domain, the quotient field Q(A) exists and is an algebraic extension field

of Q(B) . Q(A) can also be described as the quotient ring of A with respect to the

mulitplicative system ^(B)\^0^. According to assertion (d) I I is a faithfull

B-module norm, hence it can be extended to a Q(B)-algebra norm on Q(A) = A. / s . „

According to statement (a) this norm is nothing else than the spectral norm of

the field extension Q(A) over Q(B). To put it in some other way : The supremum-

norm on Q(A) considered as a Q(B)-algebra yields, if restricted to A, the supre-

mum-norm on A considered as a k-algebra.

Cor .1 .6 : Under the assumptions of prop. 1 . 5 assume furthermore that the

maximum modulus principle holds for B. Then for every f € A with |f ( ^ 0 there

are c e k and m € IN such that |cf111 • = 1 .——— —— ——————— ' sup

Proof : For all b € B there is some y£ Max, B such that (b| = |b(y)|.

Hence IB I c (k |. The set |k [ is invariant under taking roots. Therefore

i|b| ; b fc B\(OJ and i € ]NJC |k I. According to assertion (a) of the procee-

ding prop. also |f | € |k ( for all f € A. Then there is an element d € k and

m € 3N such that |d I '1 1 1 = | f ( . Define c := d""1 € k. Then 1 = |cf m) ,sup sup

Q.E.D.
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1 . 2 . Application to k-affinoid algebras. - Let k be a field, complete under a
non-archimedean non-trivial valuation. We want to apply the results of the procee-
ding section to a special class of k-algebras : to the category of k-affinoid alge-
bras (for the definition and properties of k-affinoid algebras see (j?J and [j]).
Denote by T , d £ W U [ 0 ^ , the "free" k-affinoid algebras, i . e .

T -^ Z- a X 1 t . . . X ( i ; a , fe k andd ^ ^..... ^>,0 ^... ^ 1 d ' ^... ̂

a, -? 0 for \>. + . . .+ i; —> a)(.^...^ 1 d )

For t =Z1 a^, X fc T put |t | := max |a, | . This is the so-called Gauss-norm on T .-

and one knows j t | = sup ^ t (x ) l for all t € 1 - . Applying the rather general
xeMax T

considerations of section 1 . 1 we get a new proof for the following result of non-

archimedean function theory saying that some of the facts which are more or less

easy to verify for T remain valid also for general reduced k-affinoid algebras.

Prop. 1 . 7 (cf. (_2j) : Let A be a reduced k-affinoid algebra. Defining

j f ( := sup ( f ( x ) j , f 6 A, one gets a power-multiplicative k-algebra norm on A
x<=Max. A

fullfilling the maximum modulus principle. If ^f : T -^A is an integral torsion-

free k-algebra monomorphism for some d € 3N U [0 \, and if ^ + 1 ^ ( 1 ) f11 '+...+

^(t ) is an equation of integral dependence for f over ^(l1.,) of minimal degree,

then

n
|f|= max |t

i=1

l1 / i
i •

and I |is a faithfull T,-algebra norm.—— i i——————————— ^ —a———————

Proof : Because all maximal ideals of an k-affinoid algebra have finite co-di-

mension over k, we see that |f| = |f | for all f6 A and of course |t | =|t I

for all 1 6 T.. Because T, is integrally closed and the Gauss norm is even a valua-

tion, assertions (b) and (d) of prop. 1 . 5 yield the validity of the second state-

ment in this proposition. According to the Noether normalization lemma, for all

k-affinoid algebras one can find d^ IN U^Q\ and a finite k-algebra monomorphism

^ : T, ->A. In general we do not know, whether^ is torsionfree. Therefore take

"p v- ^i where '1^ is the set of minimal prime ideals of A ; then any
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normalization map T ^ , ^ ->-A/^ is a torsionfree finite k-algebra monomorphism. Ap-

plying prop. 1 . 5 to A/-p we see, that I ( on A/<p is a power-multiplicative k-al-

gebra norm fullfilling the maximum modulus principle, because for \ \ on T / \
sup d('p)

the maximum modulus principle holds. X is finite and A can be embedded into ® A/D
^ ^

Now it is easy to deduce the first statement of the proposition from lemma 1 . 3 .

Remark : The condition, that A has to be reduced, cannot be omitted because

I (g^p being power-multiplicative is a norm only on reduced k-affinoid algebras.

2 - 1 - k-Banach algebras. - So far our study object had been the k-algebra A as

an purely algebraic object. The norm o.r semi-norm we constructed on A was only so-

me other way of paraphrasing the structure of the set of all k-algebraic maximal

ideals of A. From now on we assume that we are given a norm || || on A and ask, how

are [| | and | [^^ interrelated. For simplicity we restrict ourselves to the case,

where the ground field k is complete and A is a k-Banach algebra. Then one has the

following preliminary result.

Lemma 2 .1 : 1^_ A is a k-Banach algebra with norm || [I and if x e. Max A, then

A/x provided with the residue class norm (| |[̂ ^ is a k-Banach algebra and one has :

|f(x)| ^nflHx)1!!^^ ||f(x)||^. ||f|| .

Proof : Because A is a Banach algebra and x is maximal, x is closed. Then

II lines' defined ̂  ll^^lres := inf IIs II for f 6. A is a norm on A/x. It is
f(x)=g(x)

easy to see that H ll̂ g is actually a complete .k-algebra norm on A/x with

^WKres ^ ^ f l j • Define a Further norm || H1 on A/x by i | f(x)| | ' := inf || f (x) ̂ l171.
„ ,. . ifcB res

Then. || ||' is a power-multiplicative k-algebra semi-norm on A/x (see e.g. j^l, sec-

tion 1 . 2 ) and obviously ||f(x)|| ' ^ i|f(x)|| for all f & A. Because A/x is a field,res -

II [I' is even a norm. k is complete and A/x can be embedded into k . Then the spec-

tral norm is the only power-multiplicative k-algebra norm on A/x and therefore it

coincides with || ( I* . Thus we found |f(x)| = inf H^x)1!!1^1 , Q.E.D.
ifc ]N u^

•Apply^g this lemma to all x € Max A we get :

Cor. -2.2 : If A is a k-Banach algebra with norm || | [ , then for all f 6. A one
has :

l^sup^ "f"-
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If A is not complete, this statement may fail to be true. E.g. take A = k[xj

provided with the Gauss norm and f := X, then |(xN= 1 , whereas |f( == co , as we

have seen already in section 1 . 1 . But on a k-Banach algebra I f f <ao for all

f C. A and hence | | degenerates only if there are no k-algebraic maximal ideals

on A. If we exclude this case by imposing on A the stronger condition, that I |
sup

is a norm or equivalently that ^ x = (0) , then this purely algebraic condi-
xfeMax A

tion has topological consequences for A, namely one gets the following result,

which is a slight generalization of theorem ( 1 . 1 ) of [6] :

Prop. 2.3 : Let A be a k-Banach algebra. Assume that I i is a norm on A.—— —— ——— ———————v————————————— s^p —————————
Then every k-algebra homomorphism ^ from an arbitrary k-Banach algebra B into A is

continuous.

Proof : For all x fe Max- A consider the commutative diagram

^
B ————————>A

^ - ^• — 1 ^P '
BAf ' ( x ) -——^A/x

where oi and ^ are the canonical residue epimorphisms. Because A/x is algebraic

over k, so is B/4? (x). Hence lf» ~ (x) e. Max, B. Provide A/x and B/^^x) with the
K.

spectral norm. ^ is then an isometry. ok and p are contractions according to lem-

ma 2 . 1 . Thus we know already that ^ op is continuous. In order to show that also

4' is. continuous, we take advantage of the closed-graph-theorem : Let b , n <- 3N,

be a sequence in B such that b^ -> 0 and ^ (b ) -> f € A. If we can show f = 0, then

we know,.that ^ must be continuous.

Then we get f(x) =o( ( f ) = a(iim ^ (b^)) = lim (o(^)(b ) = lim (̂  • f> ) (b ) =

(^cp)dim b ) = (^p)(0) = 0. This is true for all x e Max, A , hence |f| = 0n • k ' ' sup '
which implies f = 0 , Q.E.D.

Cor. 2.4 : If A is a k-Banach algebra such that | | is a norm on A, then

all complete k-algebra norms on A are equivalent.

In Cor. 2.2 we only have an estimation for I | . Now we want to compute

^sup in terms of II II- This can be done if ve a(M topological conditions to the
assumptions of prop. 1 . 5 .

Pro'P. 2.2 : Let ^ : B -^A be an integral torsionfree k-algebra monomorphism

between two k-algebra A and B, where A. is reduced and B is an integrally closed
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domain. Assume furthermore that A is a k-Banach algebra with norm || | and that^f is
continuous, if B is provided with the topology induced "by ( / . Then one has for
all f fe A :

^^/i-^-^^

vhere f11 + ^ (b ) ^ +. . .+ ^(b ) = 0 is an equation of integral dependence for f

over ^ ( B ) of minimal degree.

Proof : We only have to show ||f (| = | f l , where ||f|| := inf If1!!'1 .
———— r sup r i fcM

From Lemma 2.2 one deduces immediately |f| ^ ||f|[ . In order to show the oppo-

site inequality we shall use prop. 1 .5* Because | |j is a power-multiplicative k-al-

gebra semi-norm on A, (actually it is not hard to show, that j| || is even a norm)

one gets ||f|| 4 max ^(h.)!! ^ max | l ^ ( b . ) ( l . Because^ is continuous, there
i=1 1 r i=1

is a real constant C > 1 such that l|^ (b) H is C |b I for all b fe B and a fortiori
. / . , 1 / i sup n 1/i

|K(b)l| ^ C |bl for all i fc IN . Thus we have shown ||f|| ^ C max |b.| =sup r _ i sup

C |f | according to prop. 1.5. Because "both |||( and | ( are power-multiplica-

tive, this implies II fB ^ |fl , Q.E.D.

Remark 1. : In spite of the fact that | f depends only on the algebraic

structure of the k-algebra A (and, of course, on the valuation of k ) , | | never-sup

theless coincides with |( || , which is derived from the given Banach norm on A.

This is a result similar to prop. 2.3 asserting that, (roughly speaking) the topo-
logical or normtheoretic structure of A is already determined by the underlying
algebraic structure.

Remark 2 : The assumption "^ is continuous" can be omitted, if j | is a

complete norm on B. Namely then B provided with | | is a k-Banach algebra and

| j on A is a norm according to prop. 1 . 5 ( d ) . Hence we may apply prop. 2.3.

For normed algebras A the subsets A := [ f e A ; [Iff1 I I ; i6 UN! is bounded^ of

power-bounded elements and A := \f € A ; f11 -? 0 for i->oo} of topologically nil-po-
tent elements play an important r6le. It is rather easy to see without any parti-

cular assumptions on A, that f t A if and only if inf H f 1 ! ' 1 ' 4 1 and that fe.1
ie IN
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implies inf |f /( ^ 1 . In the special situation described in prop. 2 . 5 » the
. i eB . ; . . . . .latter implication is even an equivalence and one gets a simple description of A

and A in terms of ( ( , namely :

Cor. 2 . 6 : Under the hypothesis of prop. 2 . 5 , for all f e A the following sta-
tements are equivalent :

( a ) f is topologically nilpotent,

( t ) inf (f1!!171 < 1 .
is3N

( c ) '^sup^-

In the maximum modulus principle holds for B, then also the following statement is
equivalent to ( a ) , ( b ) and ( c ) :

( d ) | f ( x ) l < 1 for all x fe Max A.

Furthermore> for all f € A also the following statements are equivalent

( a ' ) f is power-bounded a

( b » ) inf (If 1!) 1 7 1^ 1 ,
i€]N( c t ) i^sup^-

'Proof : As already mentioned ( a ) and ( b ) are equivalent. The proceeding prop.
yields the equivalence of ( b ) and ( c ) . Under the additional assumption, also ( d )
and ( c ) are equivalent according to prop. 1 . 5 ( b ) . - ( b ' ) follows from ( a 1 ) as al-
ready indicated and the equivalence of ( c * ) and ( b 1 ) is contained in prop. 2 . 5 .
Hence it suffices to show, that ( c * ) implies ( a ' ) . Use the notations of prop. 2 . 5 .
Then from ( c ' ) we get : | b . | $; 1 for i = 1 , , . . , n and therefore ( b | ^ 1 for1 sup sup
all b € p[b^ , . . . , b^"] , where P is the prime ring of B; i . e . the smallest subring

of B containing 1 . Because 4' is continuous, also R : = ^ ( P ) ( ^ ( b . . ) , . . . , ^(b )J is

bounded under || | . From the equation of integral dependence for f one easily deri-
ves (by induction on j 6 B) : f̂  ̂  Rf1. Hence f is power-bounded with respect

i=0
to | 1 ) , Q . E . D .

2 . 2 . Application to k-affinoid algebras. - If we specialize the results of
the preceeding section to k-affinoid, we get :
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Prop. 2.7 : Let A be a reduced k-affinoid algebra. Then every k-algebra homo-

nprphism from an arbitrary k-Banach algebra into A is continuous. In particular :

there is no other (up to topological equivalence) Banach algebra structure on a re-

duced k-affinoid algebra A.

Proof : According to prop. 1 . 7 I I is a norm on A and hence we may apply

prop. 2.3, which gives the derived result.

If B is an integrally closed k-affinoid algebra such that I | is a comple-sup

te norm on B (this is the case e.g. for B = T , d € B U [0\, or for B = L , where

L- is the algebra of strictly convergent Laurent series ind-indeterminates over k),

then due to remark 2 following prop. 2.5 we may apply prop. 2 . 5 9 whenever ^ : B ->A

is a finite k-algebra monomorphism into a k-affinoid algebra A without zero-divi-

sors. Due to the Noether normalization lemma and prop. 2.5 this means, that at

least for the special case, where A has no zero-divisors we have already proved

the following.

Prop. 2.8 : Let A be a reduced k-affinoid algebra. Then for every complete

k-algebra.norm | ( ^n A and all f e A one has

i^-^r/1.
f .̂ A is power-bounded, if and only if ) f ( ^ 1 . f fe A is topologically nilpo-

tent, if and only if |f(x)| < 1 for all x fe Max A.

Proof : We have to reduce the general case, i.e. A is only a reduced algebra,

to the special case, that A does not admit zero divisors ^ 0. Because A is noethe-
M_

rian, the set '̂  of minimal prime ideals is finite, hence A " := ® A/f> is a
M „ i.-^ T^

noetherian A-module. Provide A with the norm I (dp )p€'1f' := max l|o^<pll » "where

||cU| denotes the residue class norm of A 6 A/p . Then K^ is a noetherian k-Ba-r res „ p
nach algebra and K(A) is closed in A » where 7r(f) := (^(f)).,,^ and

^^:A -^A/T) are the canonical residue class epimorphisms. Apply prop. 2.7 to the

reduced k-affinoid algebras A and T C ( A ) . Then one sees that Tt : A -^(A) is topo-

logscal, in particular there is some constant C 6. B such that (f || ^ C||7t(f)|r . In

order to verify the first assertion of the lemma it suffices to show :

inf Iff1!!171^ |f I . Due to ||f||^ C H^f)^ it is enough to prove inf | |n( f) ̂  / i

ife]N sup ' i€E
< ( f l for all f 6 A. Because A/y has no zero divisors ^ 0» prop. 2.5 tells ussup . . i . i i
that inf ll^f)1!^ = l^(f)l for all^e^. Because 7»| is finite and A" is

the ring theoretic sum of the A/p we get inf Jlxtf)1^ 1 / 1 = inf max kit)1!]171 =
ifc3N ieB ̂  r res
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max inf (btCf) 1!! 1 = max IX ( f ) ( . . Now the first assertion follows fromp*x leu ^ res ^n T sup
lemma 1 . . 3 . - To verify the last two assertions of this proposition we consider the
following sequence of equivalent statements : For f€ A one has | f ( x ) | < 1 for all
x € Max^ A if and only if I ( K _ ( f ) ) ( ^ ( x ) ) | < 1 for all x € Max A and all -p & ̂

with -y 6 x. This is equivalent to " T C ( f ) is topologically nilpot-ent for all-ycl^"
' according to cor. 2 . 6 . As one can see easily from the proof of the first assertion,
this is the same as "f is topologically nilpotent". The verification of the charac-
terization for power bounded elements is carried out in the same way.

3 . 1 . Banach function algebras. - The main result of § 2, i . e . prop. 2.5 allows

to compute I | on A in terms of the given complete norm on A , but it does not

answer the question, wether I f induces also the Banach topology on A. Banach.
algebras having this property shall be distinguished by the following definition ;

Def. 3 . 1 : ;A k-algebra A is called a "Banach function algebra", if [ ( is
a complete norm on A.

This condition means, that not only I I is not degenerated on A but also
that A provided with I | is a k-Banach algebra. Then A may be interpreted as an
algebra of functions on Max, A (which is not empty) provided with the norm of uni-
form convergence on Max, A. The question wether A is a Banach function .algebra de-
pends only on the algebraic structure of A. If A is a k-Banach algebra with some
given norm, we may ask : . Does the fact, that A is also a Banach function algebra,
influence the given norm ?

Lemma 3 . 1 : A_ k-Banach algebra A is a Banach function algebra, if and only if
j | is equivalent to the given norm on A.

Proof : The if-part is obvious. The only-if-part follows from cor. 2 . 4 .
Lemma 3.2 : If A is a Banach function algebra, then I I is the only power' — — —— ^ ' sup

multiplicative complete k-algebra norm on A.
Proof : It is not hard to verify, that two power multiplicative k-algebra

norms inducing the same topology must coincide (ses §2 of [ 5 ] ) . Therefore there is
at most one power multiplicative complete k-algebra norm on A due to cor. 2 . U . On
the other hand | | is power multiplicative and complete, if A is a Banach func-
tion algebra, Q . E . D .

Given two k-algebras A and B, such that A is an integral extension of B , as
in the previous sections we are interested in deriving information about I I on
A from properties of | | on B and vice versa. Here, where we are concerned with



1 1 6 TL GUHTZHI

Banach function algebras, it is natural to ask : If B is a Banach function algebra,

is this property inherited "by A and. vice versa ? As one would expect, "going down"

is easier than "going up". Thus we treat the easy case first.

Lemma 3.3 : Let ^ : B -> A be an integral k-algebra monomor-phism bet-ween two

k-algebras A and B. Assume that A is a Banach function algebra. Then B is a Banach

function algebra if and only if ^ ( B ) is closed in A.

Proof : Provide ^(B) with the restriction of I | on A to <f(B). According

to lemma 1 . U ^(B) is then isometrically isomorphic to B provided with I I on B.

Hence B is a Banach function algebra if and only if the restriction of | | on A
' ' sup

to «^(B) is complete. Because I I -on A is complete, the latter condition issup
equivalent to the closedness of (^ ( B ) , Q.E.D.

We want to replace the condition "<f(B) is closed" by other assumptions, vhich

are easier to handle :

Cor. 3.4 : Let y : B -> A be a finite k-algebra monomorphism where B is a noe-

therian k-Banach algebra. Then B is a Banach function algebra if A is a Banach func-

tion algebra.

Proof : Provide A with its I | . According to prop. 2.3 then <p is continuous

This means, that A can be considered as a finite topological B-module. Because B is

a noetherian k-Banach algebra, all B-submodules of A are closed, in particular ^(B)

is closed in A.. Now lemma 3.3 gives the assertion.

In order to be able to "go up", i.e. to show that A is a Banach function alge-

bra, if the smaller algebra B has this property, we have to treat the cases
char k = p > 0 and char k = 0 differently.

Lemma 3.5 '- Let A be a k-Banach algebra vith norm jj ||. Assume that

char k = p > 0. Then the folio-wing statements are equivalent :

(a) -f -> inf || f1!1! , f£ A , is a norm inducing the same topology as J (J,
ife(N

(b) there is a power multiplicative k-algebra norm on A inducing the same topology

^ II!!- ~
(e) A^ is closed in A.

Proof : We give a cyclic proof. Obviously (a) implies (b). In order to show

that (c) follows from (b) we have to verify that for every sequence (f.). ^ A,

such that lim f^ =: g 6 A exists, one has g 6 A^ Denote byllthe power multiplica-
i^oo 1

five norm, whose existence is assumed in (b). Then we know, that (f. - f.P =

l^i+l - f^) I == It?.̂  - f? I is a zero sequence for i -><v . Hence also (f.) is a
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Cauchy sequence in A. Because A is complete, there if f. <e. A such that f. -^ t^ for

i -^ao, whence f?->f^ . Because A is Hausdorff, we may conclude g = rf 6 A33. Thus

we have shown, that (b) implies (c). That (a) follows^from (c) shall be shown in

two steps. For i fe U and f € A define || f|. := |fpt(p . Then ||J. as a k-algebra

.norm on A. First we claim, that || ||. is equivalent to (| |[ . Indeed : Let (f.). — be

a Cauchy sequence with respect to 1| JL. Then |f-,i - f-l i "~>0 for i -^a& » i.e.

|(f.^ - f.)? JP -) 0 or equivalently llf1.., - f^ l^O . Because AP is closed, we

can find f,. € A such that II f? - f^ll—X) and therefore |f. - fJL -> 0 for i -><b.

Hence A is complete also with respect to || L. From the obvious inequality

(ft ^ If II for all f ^ A and Banach^ open mapping theorem, we conclude that I | and

|| |[. induce the same topology. Thus our claim is justified. Then there must be a

positive real constant C such that |f |$ ' C |f L for all f 6 A. Next, we claim that

-s •'||f|. ^ C |f || . For i = 1 we have just verified this assertion. Now we pro-

ceed by induction on i . One has
i-1

. _. _ -^ p-<3

.̂  , ̂ 1 ^{i+^ - ( Kf33)^"1)1^ (C .j=o IfPH)^1

' "i+1 " "

-^
according to induction hypothesis. Because the last expression equals C l^l-i*

we may continue this chain of inequalities by

-z p~5 -rp--" -Zp~3

lifll̂ i > c •)=1 |f ̂  c -)=1 . c-1 |f ( = c 3=0 ||f || .

as claimed. Accordingly we know : |f(.^ C ^ ^ ||f I for all i6 (N. Because

inf Jf13!!17 '3 = limllf13!!1^ = limllf^fP"'1 = lim |f|. .
jeu j->ao î A) i^w :L

we get inf If1!!171 > c"^^"^ ||'f (( . Because obviously inf llf1!17^ (f| . we fi-
i£(N (̂N

nally got (a), Q.E.D.

We shall use this lemma, to show that for char k > 0 under suitable algebraic

conditions the property of being a Banach function algebra is preserved by finite

extensions, more precisely we have :
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Prop. 3.6 : Let chair k = p > 0 and let ^ : B -> A be a finite torsionfree k-

algebra monomorphism, where B is noetherian and. integrally closed and where A is

reduced and. finite over A^. Then A is a Banach function algebra, if B is a Banach

function algebra.

Proof : Our goal is to provide A with a complete k-algebra norm 1 1 such that

A- is closed.. Assume that we have constructed such a norm on A. Then, applying

lemma 3.5, we get that f -> inf |f1! , f6 A, is a complete k-algebra norm on A.

^ 1 1From prop. 2.5 and remark 2 following it we derive, that | I is complete on A

hence A is a Banach function algebra. Therefore it remains to find a complete k-al-

gebra norm || |on A such that A^ is closed. Let a. = 1,ap,...,a be a generator

system for A over (? (B) , i.e. A = H ^f(B) a^. Define $ : rB->A by $(b^,...,br)
r i=1

= > <^(b. ) a.. Then $ is a B-module epimorphism. rB is a noetherian module over
i=1

the Banach algebra B. Hence Ker $ is closed. Provide rB with the norm |(b.,...,b )(
i

;= max |b.l and provide A with the residue norm |L induced by i , i.e.
i=1 1 sw^ '

(|a(. := inf ( |x| ; x ^ $ (a)( . Then A becomes a k-Banach vector-space. In general

I 1. is not a k-algebra norm, one only has a real constant C such that If.gl..

^ cffl l^ |g| ^ for all f.g € A. Replacing (|^ by If (p , defined by Xflp :=

sup ll^gli/llglli » ve 6®^ a k-algebra norm on A inducing the same topology as
66A,g^O ,, p

HI . Hence A provided with 11 |^ is a k-Banach algebra and, of course also a k-Ba-

nach algebra. Applying lemma 3.5 to the k-Banach algebra B» we see that B is a

closed k^-subalgebra of B. Hence B^ is a k^-Banach algebra and due to lemma 1 . U

Bp is even a k-Banach function algebra, tf | Bp : Bp -> A30 is a finite kF-algebra

monomorphism. Thus we may carry out the same construction as before, where A,B,<^

are replaced by A? , B^ and ^{jf respectively. Thereby we find a k^-Banach alge-

bra norm U K * on A33. Now the natural injection i : A^ ->A is a k^-algebra homomor-
-D ''phism between two k-'-fianach algebras. We may apply prop. 2.3 and get, that i is

continuous. According to our assumptions i is finite and A^ is noetherian. Then A

is a finite complete ,-bopological A -̂module over the k^-Banach algebra A-. Hence

all A^-submodules of A are closed. In particular the subalgebra A^ of A itself is

closed in A, Q.E-.D.

If char k = 0, then the condition "A is finite over A^' is no longer meaning-

full. Removing it, one gets a true statement also for char k = 0.

Prop. 3.7 : Let char k = 0 and let ^ : B -^A be a finite torsionfree k-alge-

bra monomorphism, where B is noetherian and integrally closed and A is reduced.
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Then A is a Banach function algebra if B is a Banach function algebra.

Proof : Define 6 := ^b € B; |b| < 1 ^ . One verifies easily, that Q(B) = Q(B),

where Q(B), resp. Q(B),denotes the quotient field, of B, resp. B. We. want to show

that 6 is integrally closed also. Let f,g € B with g ^ 0 such that u:= f/g is in-

tegral over B, i.e. there are b- ,..., b € B with -a^ + b. û  +...+ b = 0 .i m 1 m
Because B is integrally closed, we know already that u € B. The integral equation
for u implies |u| ^ max |b.| /1 ^ 1. Hence u 6 S and therefore B is integrally

closed. Using prop. 1 . 5 ( a ) we see that A := |f € A; f t I $ 1^ equals the integral

closure of B in A. Applying a well known theorem of Algebra (e.g. foj, chap. V, §4,

theorem T, where it is stated only for the case that A has no zero divisors) there

is a basis f- ,..., f of A . / . over Q(B) such that AC x= S f.. Define a free' r •"n1'/ Y. 1=1 i
-̂— ' o r e

B-submodule F of A ^ ^ by F := / B f.. Obviously AC ^ B f. implies A C F.
' ' i=1 i=1 1

j. r r
Provide F with the nom II I" b^ fj| := max |bJ . B is complete according to the

i=1 i=1 u^
assumption and therefore F is a finite complete B-module. Because B is noetherian,
every B-submodule of F is closed, in particular A is closed in F and therefore is a

k-Banach space. Choose c e k with |c | > 1 . We claim If I < | c| |f I for all ft A.sup
In order to verify this, choose m € Z such that |c f^ < |f | ^ |c I"1. Thensup

|c m f ig^p ^ 1 and l^"1 < 1° (Hsup ' put g := c~m f € A - Then 8 € ^ and therefore

one can find b^ , . . . , b^. < B such that g = 5Z b^ f . . Then one has |f|| = [^ g | =
r ^ - - r ^ • - - . . . • •^•• : . : - - . . - i^—— z • : ,.•- - ———

I^l c b^ f^ | = max |c ^Is,,? < I0111.1 < I0 | (f I u ' vhence our claim is justified.lt£
Replacing | || by I |g defined by l|fl^; := sup | |fg(/((gjl we get a complete k-algebra

11 1 BJI 'g^AS^
iDrm on A such that |f|p ^ C |f) with some suitable real constant C. Then one has

|f)^ ^ ^Ill^sup for a11 f € A' ^S^her with cor. 2.2 this means, that | | and

| ^ are equivalent norms on A. fcence | | is complete, Q.E.D.

iff

If i® take the different assumptions of propositions 3.6, 3.7 and cor. 3.4 in
their strongest forms, we can combine them into the following.

Theorem 3.8 : Let ^ : B -^ A be a finite torsionfree k-algebra monomorphism,

where B is a noetherian integrally closed Banach algebra and where A is a reduced

algebra such that A is finite over A° ar , ̂ f char k > 0. Then A is a Banach

function algebra, if and only if B is a Banach function algebra.

Remark : We do not suppose that the norm on B is multiplicative. It would be

interesting to know how the condition "A finite over A0118'1' k , if char k > 0" can
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be weakened or even removed.

3 . 2 . Application to k-affinoid algebras. - As an easy corollary of the results
of section 3 . 1 we get the following result for k-affinoid algebras :

Prop. 3 . 9 : Reduced k-affinoid algebras are Banach function algebras, if char
k = 0 or if k is finite over kp , where p = char k > 0.

Remark : This result has been proved in [;2J. Subsequently it was shown in Ll3»
that the condition on k is superfluous.

Proof : Let p = char k > 0 . If and only if k is finite over kP also T isn
finite over T^. Then, of course, A is finite over ff for every k-affinoid algebra
A. Now let us. drop the assumption char k > 0 and let us consider the special case,
that A has no zero divisors,, first. Choose a Noether normalization map ̂  : T -> A
for some nfc (N U {0\. Then ̂  is a finite torsionfree k-algebra monomorphism. Be-
cause the "free" k-affinoid algebras T are noetherian integrally closed Banaeh
function algebras, all the assumption of prop. 3 . 6 or 3.7 are fullfilled and hence
A is a Banach function algebra. Now let us return to the general case, where A is
only a reduced algebra. Then one can embedd A into the ringtheoretic direct sum of
its prime components, i . e . there is a k-algebra monomorphism i : A -> 9 A/y. ,

i=1
where V^ , . . . , ̂  are the minimal primes of A. Define | ( « . , . . . , « )\ = ^""lot |

r i=1 1 sup
for all rf^ € A/̂  , i = 1 , . . . , r . According to what we have proved already I |
is complete on A^ and therefore I || is a complete power multiplicative k-algebra

r
norm on 0 A/y. . i is a finite continuous map. Because A is noetherean we may

i=1 r
conclude that then i ( A ) is closed in ^ A/y.. Hence | | is complete on i ( A ) .

i=1 1

Lemma 1 . 3 gives us. that | i ( f ) l = |f|^ and therefore | |^ is complete on A.
Q . E . D . .
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