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BANACH SPACES

L. GRUSON and M. van der PUT

Introduction.

Although this paper is meant as a survey on Banach spao-es it co.iteains some 'new'
results and many new proofs of old results. An example of the latter is ( 3 . 6 ) and
( 3 . 1 0 ) where one proves that every closed subspace of a free Banach space is itself
free.

Most of section 7» Differential equations, is new. In this section one cons-
tructs primitive functions for continuous functions and rediscovers a formula of D.
Treiber. Subsequently differential equations are solved. A more detailed study of
primitive functions shows that any function "which is the pointwise limit of a se"-
quence of continuous functions and whose image is relatively compact has a primitive
fur -tion.

Section 5 makes the well known connection betwenn Banach -space and modules over
a valuation ring explicit. Some problems and results of earlier sections are phrased
in terms of modules. The first five sections contain standard material enriched
with a set of open problems.

This survey together with A . F . Monna's contribution to the proceedings of this
conference gives a fairly complete summary of the theory of ultrametric Banach
spaces.
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§.1. Examples of Banach spaces and notations.

The field K we are working with is supposed to be complete with respect to a

non-trivial, non-archimedian valuation. Its valuation ring Li € K ||̂ l| ^ 1 J is

denoted by V, the maximal ideal o f V by m = \X C K | |;U < 1 ) its residue field

/ by k. The value group of K will be denoted by |K^| . For constructions etc.

we often choose ^ & K with 0 < (Tr|^ 1 . if the valuation of K is discrete we suppose

that ln| generates |K*( i.e. \K*I = ^JIT | n } n 6 2^.

( 1 . 1 ) Let I be a set and ^ : I -> ^r € (R | r > 0} . Then I00 (l,^i ,K) = l°°(l,p.)

will denote the Banach space of all functions f : I -»• K satisfying sup |f(i)| k{i.)<o^ .

The norm is given by ||fj| = supjf(i) ) ^ (i). For any iC I, e. stands for the

element of l°°(l, ̂  ) given by e^( j ) = 0 if j ^ i, e^(i) = 1 .

The closed subspace .c^(l, p/ ,K) = c^( l , (^) of l^d,^) is defined by :

f : I -> K belongs to c^(l, ^) if lim | f(i) I ^ (i) = 0. It is clear that l̂ I, ̂  ) is

isomorphic to l^I,^*) if ^ (i) ^ ' (i )"1 C | K-*! for all i. The same holds for

c (l,|<.). So we can normalize u, such that 0 < inf |A,(i) x<- sup p,(i)< oo . For

normalized ^ one defines the subspace c(l,|^ ,K) = c(l, |-v) by : f : I -i- K belongs

to c(l,^,) if lim f(i) exists. So c^(l, |̂  ) C c(l, |A ) C l̂ I, ̂ ). If (-1 has the

property pid) = [ij then we abbreviate 1^(1 ,^ ) (resp. c(l, ^) and c (I, p.)) by

1^(1) (resp. c (I) and c (i)).
o

( 1 . 2 ) Let E be a Banach space (or just a topological space) and X a topological

space then C(X -^ E) denotes the set of all continuous functions of X -^E. If E

is a Banach space and X is compact then C ( X ->E) is a Banach space under the norm

lit I/ = sup i l | f ( x ) ( ) | x £ X i .

For the space C(X -» K) we sometines use the abbrevation C ( X ) .

( 1 .3 ) Let E and F be Banach spaces then <£ (E,F) = I 1 : E -^ F | 1 is K-linear

and continuous I is a Banach space under the norm (jl H = s u p j j l l ( x ) ! / ( I x i f ^ x e E .

x ^ 0 I . The dual < ^ ( E , K ) of E is denoted by E ' .

( 3 . 4 ) Let JE.^ . - be a family of Banach spaces. The Banach spaces TE. andZE.

are defined as follows :

ffE^ = l^id6 .x ^ sup.((e^<Mi

î = [^i^ei € .x ^ lim«eill = o j
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Both vector spaces are normed by l l^i^ci^ = sup ^i^ '

( 1 * 5 ) Let E be 'a Banach space and F a closed subspace of E. Then the vector space
•n

/- is again a Banach space under the quotient-norm given by

l|tl( = inf {(|e|/ | e € E , p (e ) = tj , where a denotes the canonical map p: E. -> E/ .

Let E -> G be a continuous map between Banach spaces. We will say that o< induces the
•p

norm on G if the induced map / / v -> G is bijective and isometric.

( 1 . 6 ) For a Banach space E we denote the sphere ( x € E | ||x-a||^ ^ by B(a,p).

§.2. Injective Banach spaces.

( 2 . 1 ) Definition. A Banach space E (over K) is called injective if for every

diagram 0 -^ A -> B, with 0( isometric and {) bounded, there exists (() : B -^ E such

4
that ||(()|| = II ^H and ̂  = ̂  .

(2.2) Theorem. The following conditions are equivalent :

( 1 ) E is injective,

(2) Every (L : c ((N, y. ) •> E has an extension ^ : c((N, ^,) -> E with )/(()!( = (()) |) .

(3) E is maximally complete (i.e. every set |B.i of spheres in E, with the

property B^ 0 B. ^ 0 for all i and j, has a non-empty intersection).

Proof. ( 1 ) =» (2) is clear ; (2)=^ (3) . Let \B>.\ be a set of spheres such that

B n B. ^ 0 for every i ̂  j. The strong triangle inequality yields that B. 0:B. or
- J 1 J

B. C B. . Hence we can find a countable subset of spheres B(a , p ) with : a = 0 ,
u -L n / n o

B(a^,^) ^ B(a^,^) for all n, ^ > ̂  > ̂  > ... such that

HB^ HB(a^).

Define ^ : N ^ K ^ Q by ^(i) = |j a^ - a^ |( (i ^> 1 ) and define

^0 : C0^9 ̂ ^ E by fV0!^ = ^ ~ ^-l ^ >/ 1 ^ - There is a ^P

(̂  : c(lN, p.) -» E extending ̂  such that ||(()|| = |l (|> !( = 1 . The element
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a = ( ( ) ( 1 , 1 ,1, . . .) belongs to every B(a , p ) since
\ n ' n

|la-aj| = |( ( ) ) ( 0 . . . . 0 , 1 , 1 . 1 . . . ) | l ^ / | ( 0 , . . . 0 . 1 , 1 , . . . ) ( j =

= sup ^ (i ) ^ ft
i > n

(3) =? (1 ). Using Zorn's lemma one sees that it suffices to consider the situation

i A <^.B, where B = A+Kx for some x C B.ro i
Every extension ()) of (L is determined by e = 0(x) . The condition ||())|| = |l<p^/| is

equivalent to : for all a 6 A, ) (()(x-a)| = |e-(J)Q(a)| ^ |(())^( (|x-a/( , and also to

e € ^ B((( )Q(a ) , I t ^ H ||x-a||) = Y.

For any a,a* C A we h^ve B^a), || (̂  |(((x-a||) 0 B^a* ). 1( ̂  |( [Ix-a'l]) ^ 0

since || ^(a) - (^(a' )H|| ̂ || ||a-a'|| ^ max( 1| ^i) || x-a i( , || ^H Hx-a'll). Since E is

supposed to be maximally complete it follows that Y ^ 0 and e and d) can be chosen

such that || ()) || = 1| (b || .

(2.3) Corollary, The field K is an injective Banach space if and only if K i s

maximally complete in the sense of Krull ( [31 ) .

(2.4) Proposition. Every quotient of an injective Banach space is injective. Every

product of injective Banach spaces is injective.

Proof. Let E be. injective and F a quotient of E,, 'n' : E —>¥ the canonical map.

Consider a sequence of spheres B(a , p ) = B in F with the property B 0 B

for all n. By induction one constructs a sequence ^b I in F such that

B(b , p ,) D B(b - , / ? ) and ^ (b ) = a for all n. (Induction step: a , - a ='n'(c)n i n~ i n' i i n n n n+1 n

for some c € E, since |a , - a | .< p one can suppose |c \<p , . Put b , = b +c)n+1 n i i n • ' n"~ 1 n+1 n

Any e € riB(b , n _ ) has the property Tr (e) € (\ B . The second statement of (2 .4)

has analogous proof. '

( 2 .5 ) Proposition. Let $E \ be a sequence of Banach spaces. The Banach space

^n/^- is injective.
— .n
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Proof. Analogous to ( 2 . U ) . See f^J .

Notation. If E = E for all n, we write 1 ^ ( E ) for TR > c (E) for ^E and c(E) for—'—~~—" n v\ o n
the subspace of -^(E) of all sequences having a limit in E. The map E -^ 1 co ( E )
given by e ^ ( e , e , . . . ) induces an isometry A- : E ^ I00 ( E ) / / _ ^ . And we find forE c^ (E}
every E a canonical injective resolution

°"^1•'%„-1°1%«-.
(2 .6 ) Theorem. E is injective if and only if the map 'lim' : c ( E ) -> E has an

extension with norm 1 to_ 1 ( E ) -> E.

I00 ( E )Proof. E is injective if and only if 4 has a left-inverse P : / / ^ -> E ofE c^-E)
norm 1 ; this follows from ( 2 . 2 ) , ( 2 . 4 ) and ( 2 . 5 ) . The existence of P means the
existence of a map (b : I00 (E) -> E with (|) = 1 , (b [ c (E) = "lim" .

U^oa

(2.7) Definition. E is called weakly injective if for every diagram 0 -^ A ->• B
°^

with o( isometry, |( (JU| < oo a there exists a. ^ : B -> E such that (|) d = (j) and |j(|)l|«»

(2 .8) Corollary. I_f E is weakly injective there exists a constant C > 1 and for
every diagram 0 -> A -^ B with o< isometry and || (fL ||< ro a map (t> : B -^ E satisfying

M ——
^ = ^o8^ mi ^ c n^n.
Proof. A -p has a left inverse P with |lp|| = C < 00 . The map P induces a norm

on E which makes E injective and has the property II l( ^ |l (j ^ C l| l|^ .

(2.9) Definitions. A K-linear isometry E < .̂ F is called essential (or F an essential
extension of E) if for all f £' F there exists e € E with (lf-e|| < l)f|/ . A K-linear
isometry E C F is a maximal completion if F is injective and E < ,̂ F is essential.

(2 .10) Proposition. Every Banach space E has a maximal completion (denoted by E)

which is unique up to (non-canonical) isomorphism.

Proof. Take for E a maximal essential extension of 4 - (E) in the Banach space
l^E) V 1 °° f F)/ / v . By definition /^ : E C E is essential and since ' ) / . . is
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maximally complete also E is maximally complete. The unicity follows easily from
, ( 2 . 2 ) .

( 2 . 1 1 ) In the last proof there was a choice of a maximal essential extension of a
subspace F inside an injective space G. The next lemma clarifies this situation.

Lemma. Let F be a closed subspace of an injective space G and let F. = ( i = 1 , 2 )
denote maximal essential extensions of F inside G. Then

( i ) F and F are injective and there exists a K-linear bijective isometric

cr : G -> G such 0-|F = id and cr(F ) = F .

( i i ) If F C^ G is not essential and F is not injective then F has many different
maximal extensions in G.

Proof.(i) If F. is not injective then there exists a set of spheres ^B(a , p n in

G with a C F. for all n and such that 0 B(a , 0 ) ^ 0 and D B(a , ? ) Q F. = 0.n i n ' n n / n i
Choose e C/lB(a , p ) . Then,as one easily sees,F. + Ke is an essential extension,
contrary to the assumption that F. is maximal. Hence F. is injective. Let H be a
subspace of G -which is maximal with respect to the property |1 f+h II = max(Uf ( f , | | h l | )
for all f € F, h C H. (We express this sometimes by H I F ) . Then it is easily seen
that H is injective, H ̂  F - H 3 F = E. By ( 2 . 1 0 ) there is a bijective isometric
map f : F, -> F- with t|E = id» Then 0' = id -- ($ 't has the required properties.\ d H

( i i ) Let a maximal extension F. of F inside G be given. Choose x € F./F and an
element y C G with Ky 1 F , y ̂  0. (I yfl < inf p|x-f|( j f C F } . Then F C F + Kz, where

z = x+y, is an essential extension contained in a maximal extension F . Clearly

F^ i- F̂  since y ̂  F^ .

( 2 . 1 2 ) Remark. Let the complete field L D K be an essential field extension in the
sense of Kapiansky ( [ $ ] ) .

Then L as K-Banach space is an essential extension of K and by ( 2 . 1 0 ) isomorphic
to a subspace of K. Hence card(L) ^ card(K) and the class of all essential field
extensions of K is in fact a set. The lemma of Zorn applied to this set yields the
existence of a maximal complete field L ,3 K which is an essential extension of K.
Again ( 2 . 1 0 ) yields L is isomorphic to K as a Banach space. Kapiansky has shown that
K might have non isomorphic maximal complete field extensions L, » L . As Banach
spaces L. and L^ are isomorphic.
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Examples.

( 2 . 1 3 ) c^d,^) is not injeetive if y. (l) contains a sequence a - > a > a > .. .

with a. '> 0.~^~~~~~~ i.

Proof. Let N sr J C I be the subset corresponding to the given sequence. Since

^^'M^ is a direct summand of c (l,^. ) an application of (2.U) shows that it is

enough to consider the case c^dN,?.) and ^ ( t ) ^ ^ (2)>.., ,lim ̂  (n) > 0. If C.ON,^)

were injeetive then there exists a map ^ : c(lN, ^ ) -^ GO^* ̂ ) vith |1 ^ 1| = 1 and
(J) ,| c^dN, (A.) = id.

Then x = ( X ^ , X ^ , . . . ) = < ) ) ( 1 ,1 ,1 , . . . ) C c^N, ^ ) has the property

|(x - (1,. . . ,1.0,0.0,. . .) | | = l | <p (0 , . . . , 0 ,1 ,1 ,1 . . . . ) ( | ^

^ 1 ( 0 , . . . , 0 , 1 , 1 , 1 , . . . ) [ ) = ^(n+1). Hence (X—•I ( < 1 for all n ; this contra-

dicts lim X = 0.n

( 2 . 1 4 ) Let E be a Banach space, such that every strictly decreasing sequence in E'

has limit zero. Then E is injeetive.

(Note that the existence of such E i- 0 implies that the valuation of K i,s discrete).

Proof. Let [B \ be a sequence of spheres in E such that B 3 B for all n. Wen 1 n n+1
may suppose that all radii ? lie in ' E and that p > P -\ for a11 n- Then

lim p = 0 and the completeness of E implies OB ^ 0.
I n n

( 2 . 1 6 ) Let I be an infinite set and u. a map : I -^ (R. . The Banach space c (N |i )

is injeetive if and only if the valuation of K is discrete and every strictly

decreasing sequence in k(l) has limit zero.

Proof. If the valuation of K is dense then c ((N,pt) ^ cr^^9 ^ ' ) > vhere ^ ' can be

chosen such that ^'(l). contains a strictly decreasing sequence with positive limit.

Hence the condition is necessary. Also sufficient because (K*| discrete and every

strictly decreasing sequence in ^(l) has limit 0 implies that every strictly

decreasing sequence in || c (I, [4: ) || has limit zero. Apply now ( 2 . 1 4 ) .

( 2 . 1 6 ) J f̂ K is maximally complete then I00 (I, ̂  ) is injeetive for every I and U

Proof. (2.4)
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( 2 . 1 7 ) Suppose that the valuation of K is discrete and. (̂  : K -^ IR ^ satisfies

^ . ( 1 ) > ^ ( 2 ) > . . . lim ^(i) > 0. Then I00(N, ̂ ) is the maximal completion of

CQ(N,^ ) .

Proof. By ( 2 . 1 5 ) all we have to show is that for any f = (f ,f . . . ) € 1°^ (|N, (4)

there exists e€ c^IW,^) with |j f-e || < ( j f | t . The discreteness of | K |̂ and the

properties of ^ imply that the set [ n 6 (N | ||f|| = |f | |^(n)l is non-empty and

finite, ^t n^ be the last integer with |lf|| =|f j |t(n ). Then

e = (f,,...,f ,0,0,...) has the required property.
' 0

( 2 . 1 8 ) An extension of ( 2 . 1 7 ) is the following :

Suppose that the valuation of K is discrete and consider E = c ( ! , (<), where î

is normalized by |TT| < p. (i) ^ 1 for all i. A subset J of_ I will be called

decreasing if every seouence .1^.1^.... in J such that

^ ( J ^ ) ^ ^ (J^ ) ^ HJ^) ^ ... is finite.

Then E is the subspace of I00 (I, (̂  ) given by

E = [f e î d, ̂  for every £ > 0 the set |j £ I ( | f ( j ) |>^£.^ is decreasing .

Proof. We note that a finite union of decreasing sets is again decreasing. It

follows that the subspace I00 (i, ^ ) given in the statement is equal to

F = U ^l^J, ̂  | J) | J C I decreasing | . As in ( 2 . 1 7 ) , for any

decreasing set J the inclusion c^J. ^/J) C I00 (J,|^|j) -is essential. Hence F is an

essential extension of c^I, |i/). Consider an extension F C F +' Ke with e t F. In

order to show that F is injective, we have to show that this extension is not es-

sential. Put d(e,F) = inf^||e-f|( | f € FJ > 0. Choose a sequence o( >(̂  ... in »R

with lim d^ = d(e,F). For any n ̂  1 the set J^ = [i C I ( (e(i) | ^ (i)^ jis

decreasing and one easily sees that also J = U j is decreasing. Let f C F be the

element given by f(i) = 0 if i ^ J and f(i) if i C J. Then d(e,F) = lle-flf and

for any f ' C F we have ||(e-f)-f'|| ^ ||e-f|| . Hence F C F + Ke is not essential.

(^"^ Suppose that the valuation of K is discrete. Let n be a positive integer.

For any Eanach space E over K there exists a norm (( |j^ on E such that, , ——— ———————————-—— n — ——————

M l̂ I I ^H l^ l i Hand |(E(|^r= ̂ l m n | m 6 TL\ U [o|.

Proof. Take \lx\\^ = sup [t € T|t ^ [| x ||l .
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(2.20) Suppose that the valuation of K is discrete. Then any Banach space E over K

is veakly in.iective and moreover inf ^C € R / A g has a left-inverse of norm <-c }=1 .

Proof, ( 2 . 1 9 ) and ( 2 . 1 4 ) .

( 2 . 2 1 ) Problems.

(i) Do there exist weakly injective Banach spaces E such that inf(c € <R IA
i E

has a left-inverse of norm ->. C! >1 ?

(ii) Let K be a maximally complete field, with dense valuation* Can one give

an explicit description of a maximal completion of c (N,K) inside I*6 ((N,K)?

(iii) Suppose that K is not maximally complete ; can one describe K explicitly

as a subspace of 1 ^'^/c (lN,K) ?

§3* Projective Banach spaces.

( 3 . 1 ) Definitions. A (bounded linear) map (() ; E -> F is called a strict surjection

if for any f C F we have ||f |( = min ( || e|| | e G E, (()(e) = fL (i.e. the surjective
C ———————— "•

map (|) induces the norm on F and for every f C F there exists e € 4 (^) v^-^1

He( | = llf||).

A Banach space E is called projective (resp. veakly-pro.iective) if for every
of

diagram B ->• C -̂  0 with o< a strict surjection and |l(t) |j < bfl , there exists a $ : E -^B
I (hE 'o

such taht ||(()|( = (f())^|| (resp. ||())|| < b0).

A Banach space E is called free (or is s-aid to have an orthogonal base) if

E = c (I,p. ) (isometric) for some I and k : I -^ B >o I ' o

Remarks.

(3.2) If the condition " Q( is a strict surjection" in the definition of projective

is replaced by " o( is surjective and induces the norm on F" then the field K is not
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projective.

(3.3) Every free Banach space is projective.

(3 .^) Let E be a Banach space. Put I = E/ [0^ and define ^ : I -^ R . by

Kx) = ||x|| . Then the map T^ : c^I, ̂  ) -» E, given by ^ (f) = 7 f(x)x, is
x€-1

a strict surjection.

(3 .5 ) Proposition. A Banach space E is projective if and only if E is a direct
summand of a free Banach space,

Proof' E C F is called a direct summand if there exists a projection P : F ->• E
with IIP (( = 1 .

4 " Since E is projective TT-p : c (I, |i ) •> E has a right-inverse p of norm 1 .

Hence E is isomorphic to the direct summand P (E ) of c (I, IA).

" <= " Let E be a direct summand of the free space F ; P: F -> E a projection of
c^ i

norm 1 ; B -> C a strict surjection ; (p- : E -> C a bounded map. Then (p-P : F -> C can

be lifted ^ : F -> B with l l ^ l l = || ((^P || = ||(()(| and (() = ^/E : E -> B has the

required property.

(3.6) Proposition. Every closed subspace of a projective space is projective.

Proof. Let a diagram B -> C - ^0 , o< strict, |) (L || < 0» be given.
t (b u ,
r°

We complete this diagram to a commutative one ,in the following way :

</
A = ker o< » B is a maximal completion of B with canonical map

^ K /
y ; B - ^ B ; & = \ ^ o ^ ; D = / with canonical projection ^ : B •> D ;
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the map ^ o ^ : B -^ D has kernel A and induces an isometry $ ; C -)>.D.

By (2.4), D is injective. Let D^ C D be a maximal essential extension of € ^ (E). ;

Then D^ is maximally complete, (since D is maximally complete) and there exists a

map ^ - - F ^ Do with |^| |=|1^|| and ^ = î.

We claim that for any d^ C D^ there exists ^ 6 ^ with )(,(^) = d and (|^lj = |ld || .

Indeed, there exists c € C with || 5' (c)-d | |<ttd l| and b € B, with

^(b) = c, |(b|| = |lcl|. = /(dQl| . Hence |l^(b) - d^^ IJd^H and there exists

b« € ^ with llb'll < [Id^l and X ( b ' ) = d^ - XV^) .

Now b = b+b' has the required properties.

By (3 .5) F may be supposed to be free, and the existence of a map ^: F •> ^ with

| 1 ^ II = 1 1 ^ oil , X^ =^ now follows.

The map -^ maps E in .fact into T(B). Indeed, for any e C E and b C B with

0((b) = ^(e) we have X^i (e) = ^i(e) = ^^(e) = ?a(b) = XUb;.

So ^( f i(e)-V.(b)) = 0 and ^ i(e) - ^(b) 6 ker ?C = A C (B).

So there exists a map ()) : E -> B with || (|))( = ||̂ i|| = |J() [| and V(() = ^i. Also

o( ( ( ) = ( ( ) and the proof is finished.

(3.7) Before giving the proof that every projective Banach space is in fact free, we
turn to Banach spaces of countable type.

Definition. A Banachspace E is of countable type if it has a countable subset which

generates a dense linear subspace of E.

Remarks.

The definition above is the analogous of"separable Banach space over (R or 0".

The condition E is separable would be too restrictive since the base field K need•
not be separable. Further we note that subspaces and quotient spaces of an E of

countable type are also of countable type.
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Definition. Let E be a Banach space over K, A a subset of E and c<6<R» 0 < °< ^ 1 .

The set, A is called o( -orthogonal if for every finite (or convergent) linear

combination ^ \, a the inequality l|Z.. X a || ̂ , oc max j X j l lal j holds./- . a a aa & A

A is said to be an 0( -orthogonal base of E if moreover every x C E can be written

as a convergent sum x = S-^ a.

Remark.
E has an o( -orthogonal base if and only if there exists a bijective linear

map () : E -> c (I, (^) (.for some I and^vith II (j) || < 1 , || <|)~1 II ^ C<~ 1 . In particular,

E has an orthogonal base (i.e. an 1-orthogonal base) if and only if E is free.

(3.8) Theorem. (Existence of bases)

1 ) _^f E is a Banach space of countable type then E has for every oc , 0 ^ €x < 1 ,

an Ot -orthogonal base.

2) If E is a Banach space of countable type and K is maximally complete then E

has an orthogonal base.

3) I_ E is a subspace of c-(lN, (̂  ) then E has an orthogonal base.

4) If every strictly decreasing sequence in ItE j| has limit zero then E has an

orthogonal base.

h) If the valuation of K is discrete and E is a Banachspace over K then for every

0( , 0 < CX < 1 , E has an 0( -orthogonal base.

Proof. 1 ) Assume for notational convenience that dim E = W . Choose a sequence {E \———— l n)

of subspace of E such that E C E ,, UE = E, dim E = n. Choose further a- n n+1 ^TI n
sequence[^^\ C R, 0 < (X^ < 1 , with fT 0( ̂  >y c< .

Take an element y C E^\ E _ and z € E , with

"^J^n11^ Ulyn-21!!2- c Vl I •• put \ = ̂ n • ^ claim that ̂  is

an o< -orthogonal base of E.

(a) x has the property I ^ x^+y U ^ o<^ max( ||̂  X^ |S , II y l| ) for y C E^ .

Proof-of (a). We may suppose A = - 1 . If ||x -y |K 0< max(II x || , |l y l| ) then

(y^-z^-y||< 0 n II y^n^11^ hly^^ I z e ^-it • This is a oo^radiction.



Banach spaces 67

„ n ., n
(b) For every n > 1 , || 7"" X .x.ll ^ TT (y- "^(tl x .x.().

i=1 1 i=1 1 1

Proof of (b). The formula is correct for n = 1 . If n > 1 then by
n n-1

(a) we have || ^T X^xj| >/ Oi max(|| X x H , |( ^ X . x . || ) and., by induction hypo-

n
thesis again,^ fT °^ • max( K X .x. || ).

Hence we did prove that Sx ^ is a -orthogonal. It is an ^ -orthogonal base

of the closed subspace F generated by the set (x \ . But F contains every E and(- n j n

must be equal to E.

2) and 3). One has to show that the construction in part 1 ) can be carried out

with o( = 1 for all n. For this it suffices to show that for subspaces

F C F C E with dim F = dim F +1 < oo there exists a projection p : F- -> F

with norm 1 .

Case 2) We prove a more general result : "Every finite-dimensional F over a maxi-

mally complete K is free (and hence injective by 2..U))"

If dim F = 1 this is clear. If dim F > 1 , F has a subspace F with

0 < dim F C dim F. By induction F is free and hence by (2.4) a direct summand of

F. Write F = F ffi F . Again by induction F is free and so F is free.

Case 3) Suppose F C F C C(-)(N» p-)» dim F = dim F + 1 < o ^ .

Take x C-F , x ^ 0 and let n^ 6 IN be such that ^(n ) | x | = (( xl(.

We may assume that x = 1 . The map A : c (K, ^) -^ c (lN,tt ) given by A ( e . ) = e.

if i ̂  n.. and A(e ) = x is bijective and isometric. So after applying A we may
M /V ^

assume e fc F . Then F. = Ke ® F.( i=1,2), F C F whereHQ i i HQ i l ^

F. = F. 0 |y C cn^9 K') I y = î* ^v induction on the dimension there exists a

projection p : F- -^ F with ||p|| = 1 given by p(e ) = e
Z. 1 HQ YlQ

4) Take a maximal orthogonal subset A of E and let F C E be the closed subspace

spanned by it. Then F is free and F is injective according to ( 2 . 1 3 ) . There exists

a projection p : E -> F with ||p|| = 1 . If E ^ F then (l-p)E ^ 0 and for any

b ^ 0, b €. ( l-p)(E) the set j b ? U A is also orthogonal. This contradicts the

maximality of A.
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5) For every o( . 0 < o( < 1 , E has a norm (| ||̂  with o( (I l| < U U *' < \\ U

such that (E, |( \\*) is free. (Apply ( 2 . 1 7 ) and ( 2 . 1 3 ) ) .

The property familiar for complex Hi Ibert-spaces : "Every maximal orthogonal

subset is an orthogonal base" is in general not true for free Banach spaces over K

as will be shown in the next proposition. Criteria for maximal orthogonal subsets

to be an orthogonal base are provided in

(3.9) Proposition. Let E be a Banach'space over K. The following conditions are

equivalent. <•

( 1 ) Every maximal orthogonal subset of E is an orthogonal base

(2) E satisfies one of the following two conditions

a) dim E < JDO and E has an orthogonal base.

b) every strictly decreasing sequence in {) E \\ has limit zero.

Proof. (2) ^ (T ) Case a). Let F be the linear subspace of E = c (l,(^)(card 1^/V^)

spanned by a maximal orthogonal subset A of E. If F. ^ E then there there exists

F with F. C F C E, dim F? = dim F..+1. According to case 3) of (3.8) a projection

p : F -^ F with norm 1 exists. For any b ^ 0, b 6(l-p)F the set A U ^b) is

orthogonal. Contradiction.

Case b). This is in fact proved in part 4) of (3.8).

( 1 ) ^ (2). E ^ C^19 h^ for some I and h- • If E does not satisfy (2) then I is
infinite and we can choose ^ such that the set (l) contains a strictly decrea-

sing sequence with positive limit.

So it suffices to give a maximal orthogonal subset of c ((N, L), where

(̂  ( 1 ) > |^(2) > ... and lim )-*/(!) > 0, which is not an orthogonal base. Put
{n=en+en^ (n > / 1 ) .

Since ( f -e (( < l| f II = lie I) for all n, the set )f i is a maximal orthogonaln n n n c n)
subset of c (K, It). It is not an orthogonal base since e cannot be expanded as a

o0convergent sum •7— \ f .
n=T n n

00
Indeed e, = T~ ^ f with lim .̂ k ( n ) = 0 would imply1 '— n n . n in=1

e, = ^ e + Y~ ( Z + ^ Je . Hence 2 = (-1 )11 contradicting lim X ^(n) = 0.
1 1 1 t—^- n n-1 n n n '
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(3 .10) Theorem. Every projective Banach space is free.

Proof. Let E be a projective Banach space. By (3.5) E can be represented by a

direct summand of some c,.(l, U,) • Choose a projection p : C-(I,L( ) -> E with norm 1 .

A subset J of I is called stable if the subspace c^^' P/^) of ̂ ^ ̂  ls lnvarlant

under p. Consider the collection X of all pairs (J,B) where J is a stable subset

of I and B is an orthogonal base of E(J) = E H c^(J,^/J) = p(c (J,^/J)). The

set X is ordered by (J,B) < (J'.B') if J Q J' and B C. B'. We will show that this

order is inductive ; indeed, let ^(J.,B.)j be a totally ordered subset of X.

Then J = Uj. , is again stable and it suffices to prove that B* = U B. is an or-

thogonal base of E(J ). Clearly B^ is orthogonal. Let F be the closed subspace of

E(J^) generated by B ¥r , clearly F 3 E(J. ) for all i. Let x C E(J*) and ^ > 0. -

There is y e c (J.,^/J.) for some i such that Hx-yll ^ £- . Then>also

|ix-p(y)l( = Up(x-y)Kg and p(y) 6 E(J^) C F. So F = E(J^) and B* is an ortho-

gonal base of E(J*).

Zorn's lemma asserts the existence of a maximal element (J,B) C X. If J ^ I, choose

i 6 I\J. The smallest stable set J1 containing ^i I is at most countable. Then

also J^ = J (J J' is stable. The natural projection -If : c {J^^/J^) -•>- c (J,1^/J)

induces a projection p o IT , with the norm 1, of E(J^) onto E(<7) . Hence
jy ^

E(J ) = E(J) ^ F, where F is isomorphic to a subspace of c,.(J"» J^/J^J" = J \J.

By (3.8) part 3) it follows that F has an orthogonal base B* and that B^ = B U B'

is an orthogonal base of E(J ). Contradiction with the maximality of (J,B).

( 3 . 1 1 ) Theorem. (Change of base). Let B be a maximal orthogonal subset of c-(l»^).

There exists a map P : B -> c (I,^) such that I p (b) j| < II b |l for all b and

^+ P(b) | b 6 B? is an orthogonal base of c (I, [̂  ).

Proof. A subset J of I is called stable if B 0 c^(J,l>i/J) is a maximal orthogonal

subset of c (J,/J). Consider the set X of all pairs (J,/? ) with J stable and

o' . B f} CQ(J , | ^ / J ) -^ C Q ( J , ( A / J ) such that [b+^(b) | b € CQ(J . |A/J ) J is an

orthogonal base. of c (J^l^/J). By Zorn's lemma there is a maximal pair (J ' , /o ) (in

the obvious ordering of X) . Suppose J' ^ I.

Since B is maximal every e. can be written as e. = Z— ^ .,b + R. with JR. jj < M e . H

It follows that every i 6 I is contained in a stable countable subset of I. By the
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same trick, there exists a stable J^with J'C J^C I and J*\J"' is at most

countable.

But B^ = B U c^(J\^/J*) and B' = B f} c (J',jVJ ). It suffices to find a map

y :̂ B^\B' -^ c^(J^» k//J^) such that the image of |b+/^(b))b C B^NB'^ under the

canonical projection T.: c^J^^/J^ ) -^ c^(J* \J', [^/J^ \J') is an orthogonal

base of the latter. So we are reduced to the countable case of ( 3 . 1 1 ) : I = IN.

Proof : Since B is a maximal orthogonal set in c (N, Liz) every x ^ 0 can be written

as x = 21^(x,b)b + R(x) where ||X(x,b)bl| is either ||x|| or 0 and (R(x)|| < |(x|| .

With this notation we proceed as follows : e =Z_^(e.,b)b + R(e, ) ; number the set

of b*s such that Ux,b) ^ 0 as b ,..., b and change them into

b^ = b + X ( e ,b )"1 R(e ), bT = b. for i i 2,... ,n,. Write B. = B\ S b ,.. . ,b ? .
i t i l i l l 1 i L 1 n- j

Then e C Kb^+ . . .+ Kb^ = E . One easily concludes form (3.8) that there exists
i i n j i

a projection p with norm 1 of c (iN» IA/) onto E .

Now if x = e - p (e ) is non-zero then it equals / Ux,b)b + R ( x ) .
" 1 2 b ' C B ^

Number |b 6 B^ | ^ (x ,b ) ^ 0[ as b^ ^^ ,.... b ; change them into

^1 = ̂ l^^^"1 R(x) and î =1 ^ for i s\+^'-^•

Then e € Kb +...+10)^ . With induction one easily completes this proof.

Definitions. An orthogonal set (resp. -base) is called an ortho normal set (resp.

-base) if all its elements have norm 1 . A subring R (containing 1 ) of

V = ^ X € . K | \X\ ^ 1 ^ is called discrete if sup ? [ r | |r C R, ( r | < 1 ^ < 1 .

(3.12) Theorem. Let B be a maximal orthonormal subset of c ( I ) .

Put b = /__ ^ .e. for every b C B. If there exists for every countable subset; b y i i • " • — "

B' C B a discrete ring R such that -R->U . [ b C B ' ( then B is an orthonormal

base of c (i).

Proof. The method of ( 3 . 1 0 ) and ( 3 . 1 1 ) yields that it suffices to show ( 3 . 1 2 ) in

the case I = IN. We will use the following notations : F = the closed subspace of

E =.c (/N) generated by B ; m is the maximal ideal of V; k = / in the residue

field of V. R is a discrete ring containing all the coefficients

\^ . ; R = S~1 R with S = Sa C R | |a| = 1 ? is also discrete ;'Tr6V satisfiesb f i o (, o j
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1 > | Tf| ^ 3UP $|r | (r C R, (r| < l|. The image of R in ^^y is a field I

V Vwhich can be identified with a subfield of k by means of the map / - -^ / =5 k.
«T V m

y
Consider the A, -module *

., [x € E | ||xl| ^ 1; / , ,,
^ ' / [ x c E l i ixj i<mt andthe

— — — — — — — — — — . ^ ^ " ^ " ' ^ C E l l . x . K i p

V —The image of elements t in M or / will be denoted by t and images in M or

\^-
M is a free /._ ---module with base ( e . ? and b = Z _ ^ , .e. with ~\. . € 1 for1 1T V l i.) b,ii b,i

all b and i. And M is a vector space over k with base (e.( . The maximality of B

implies that ^b | b C Bl is also a base. Hence there are u. . C 1 with

T "s = =!: ••]_ |̂ . b = e. for all i. Choose P . 6 R with P . . = |̂ . . Then

i! = î b^ holds in M 1• so in E one has 11 e- "^ P ' •b13^ I11) for a11 i and that

easily implies that F = E. It follows that B is an orthonormal base.

( 3 . 1 3 ) Problem. Can ( 3 . 1 2 ) be extended to the case c (I,|A.) where JA (i) ^(K^| ?

Examples, corollaries and problems.

( 3 . 1 ^ ) For every field K there are non-free..Banach spaces;--and there are non-injec-

tive Banach-spaces.
'' —... ^.-i ."-'t.••' • " ..,

( 3 . 1 5 ) The following conditions are equivalent : .

(a) The valuation of K is discrete. > .

(b) Every Banach space over K is weakly injective.

(c) Every Banach space over K is weakly projective.

Proof. Of course (b) and (c) are equivalent ; (a) «=4 (c ) is proved in ( 2 . 1 7 ) . Now

(b) ===̂  (a). First of all weakly injective and injective are the same for the

Banach space K. So K is maximally complete. Consider c (W) «= E. For some norm IJ M^
o

on E(equivalent with the usual norm),E is injective. By (3.8) (E» \\ l| . )^c ( jN»(v)
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for some IA/ . By ( 2 . 1 5 ) K is discrete.

( 3 . 1 6 ) Let XI denote the completion of the algebraic closure of ̂  , the field- Pof p-adic integers. Then -XI is not maximally complete.

Proof. .0. is a Banach space of countable type over ̂  , hence by ( 3 . 8 ) is isomor-
phic to c ^ ( ( N , ^ , € L ) and by ( 2 . 1 5 ) not maximally complete.

V
( 3 . 1 7 ) Description of XI :

Let K denote the complete subfield of £i which has the properties :

|K | = [|p I n | n € 2^ and k=algebrai.c closure of F . Let i9" denote a sequence

of elements in 0 satisfying ^n+1 = ^ and 1> = p. Then jQ = UK(]> ) and the
P •"' i n 1 p n n

set [^ o(. C T \ is an orthogonal base of -0. over K where
3 P

T = [oc £ 0(0 ,< a < 1 J . ^w = ^n! with n such that n! oc 6 iN.

Following ( 2 . 1 8 ) A consists of all formal expressions f = Z. a °̂̂  satis-
fying.

(i) a . ^ K ; sup| a^ I < oo

(ii) for every ^ > 0 the set { o ( ^ T ( |a^|> £,] is decreasing.

This describes ^ as a Banach space. Now the multiplication on

A : tor f = F a^ V- ^) . g 'Zb-^ we define fg »ZL ( 21 a^ b. +
^ ^ ^+/3=Y /3

P ^~ ao(b /3^ ^ • Then condition (ii) on f and g implies that the sums
o( +^ =f+l '

converge. Further, this mulfiplleaf ion clearly extends the multiplication on .0 .

Showing that fl is in fact a field presents no difficulties.

\/
( 3 . 1 8 ) A is not of countable type over R .

^
Proof* Indeed, £i is not of countable type over K (or % ) according to (3.8) and

( 2 . 1 5 ) . Since XI is a Banach space of countable type over % , the assertion
follows.
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i( 3 . 1 9 ) Suppose that E is not injective and. /- is of countable type, then

a) K is maximally complete.
ib ) If K is not discrete then dim / < oO .— i — g

^
•HI

( 3 . 2 0 ) Proof. Since / is of countable type it has a continuous linear map 1 :
j E j"F1 h1/ -> K, 1 ^ 0 . Hence K is (weakly) injective and. /- is isomorphic to c ( l , k , K )JLJ 1L 0 I
with card I $. )f . By ( 2 . 1 5 ) the set I is finite if K is not discrete.

( 3 . 2 0 ) Suppose that E is an injective Banach space over K and let K be a valued
field which is a maximal completion of K. Then E has a structure of Banach space
over K compatible with its structure as K-Banach space.

Proof. Let E be the closed subspace of E generated by a maximal orthogonal subset.
Then E = c ( l , k , K ) . The K-space E, = c ( l , k , K ) is an essential extension of E .o o I 1 o f • o
The maximal completion E of the K-Banach space E. is again a essential extension
of E .o

So E- and E are both maximal completions of E , hence K-isomorphic by ( 2 . 1 0 ) .
2 . . . ° ^The isomorphism with the K-Banach space E induces a K-Banach space structure on E.

( 3 . 2 1 ) Proposition. Let X be a compact set. Then C(X -> K) has an orthonormal base
consisting of characteristic functions.

Proof. Let P denote a discrete complete subfield of K. By ( 3 . 8 ) part 4 and ( 3 . 9 ) it
follows that C(X ->• P) has an orthonormal base consisting of characteristic functions
(of necessarily open and closed subsets of X ) . One easily checks that it remains
an orthonormal base of C(X -̂  K ) .

( 3 . 2 2 ) Problems.

( i ) Suppose that E has an o<-orthogonal base for some /X -̂  1 . Does it
follow that E has a fi -orthogonal base for every /3 < 1 ?

( i i ) Let A. ( i = 1 , 2 ) be subsets of E and 0 < 0< < <3( ^ 1 such that A.

is maximal o(.-orthogonal. Is card A = card A ?

( i i i ) Let the valuation of K be dense and E a Banach space on K. Does E have
an equivalent norm || || for which ( E || = | K | ? As a testcase one could try
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E = ; 1 . ( I N . K ) .

(iv) Suppose that E has the property : every e 6 E lies in an injective

subspace of E. Does E have the structure of a K-Banach space ? If E itself is in-

jective the answer is "yes" to (3.20).

(v) Let E be a Banach space over K. " Is the center of (^(E^) equal to Kid. ?

§.U. Duality.

In this section we study the duals of Banach spaces E and the canonical

map (|) = ([) : E —^E". A Banach space E is called reflexive if ()) is bijective and

isometric.

(^. 1 ) Proposition. Suppose that K is maximally complete, then for any E, (|) is
E

isometric. Further (̂  is bijective if and only if dim E <' oo .

o< /3
Proof. If the sequence 0 -^ E -> E? -^ E- -^ 0 (i.e. o( isometric (I /3 l| = 1 and fi

induces the norm on E ) then by (2 .2 ) and (2 .3) the induced sequence

0 -^ E' -> E' -> E' -^0 is also exact. So (|) is isometric for all E. Further if E

is reflexive then also E. is reflexive since we have a commutative diagram, with
exact rows :

Since (p is bijective and ^ is injective it follows that ^ is surjective and
hence E. is reflexive.

Suppose that there exists a reflexive Banach space E with dim E = oo .

According to (3.8) E has a closed subspace isomorphic to c ((N,1^). Hence c ((N,^) = F
0 ' 0 I

would be reflexive. But F' = i00 (IN,(</) and there exists a bounded K-linear

<(),(() ^ 0, (J) : ^'^/c (N,^) -i- K, contradicting the reflexivity of F.
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In the sequel of this section we suppose that K is not maximally complete.

(^ •2) Proposition. If E is a Banach space over K such that every e C E lies in

an injective subspace of E (in particular if E itself is injective) then E * = 0.

Proof. If 1 : E ~> K with 1 ^ 0 exists then for some injective F C E we have

(F) = K. So K is weakly injective and hence injective, contrary to our assumption.

(U.3) Theorem, c (jN) is reflexive.————— o —————————

Proof. 1 (U) is the dual of c (IN). Let a bounded linear P : l°°(iN) -> K "be given.
———— ^((N) °
Since (1 ' /c ((N)) ' = 0 by (U.2) and (2.5) it -follows that p is determined by

^(e.) | i 6lNl. It suffices to show lim ^(e.) = 0 because then

P€ im(c (tN) -^ c ON)"). Suppose the contrary, then there is a bounded linear

t^; l^W -i l((N) such that /^(e.) = 1 for all i 6 ^. Let T : ^°W - l^?) denote

the translation over 1 , then /?^= f^ on 1 (2Q since this holds on c (ZQ.

Consider the element f fc 1°°(2) given by f. = 0 if i < 0, f. = 1 if i ^ 0.

Then e^ = f - T f and p^ (e^) = ^^(f) - ^f(f) = 0 . This contradicts

^(e^) = 1 .

(^.^) Corollary. Let I be a set with non-measurable cardinal number. Then c (I, \^ )

is reflexive.

Proof. The map (b : c (l,k) -> c ( l ,k)" is clearly isometric. The method of (4 .3)
0 1 l ^ f l L A . )

can be applied in this case if one shows ( ' 'l /c ( l ,^)) ' = O.For this (and

further information on reflexivity) we refer to \,6 J .

(4.5) Example. Consider on IN the Frechet filter J = JA C IN | 1 N \ A is finite? .__-_^—^— ^^, o \. ' j
For any filter j ;) Y we consider the subspace E(^) of l̂ N) consisting of all

x 6 1 (iN) with lyn x = 0. For notational purposes we allow a filter to contain the

empty set. The filter containing (p will be called jk .

Or equivalently E(^) = U [l^(A) | (N \ A C ^\ : It. follows from (U.3) that

E(^)» = E(^) where ^+ is the filter

IAC (N |A U B fe^ for all B 6 ^ f . One checks that ^+ = ^+++, hence E(^)' is
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reflexive for all f . In general (y ^ 1 ++ e.g. let- ^ be a free ultraf liter on W

then ^+ = ^ and ^/ ++ = ,̂ .
o

(4.6) Problems.

(i) Is the dual E' of any Banach space E (with card E non-measurable)
reflexive ? •

(ii) Suppose that ^ : E -^ E" is bijective. Does it follow that (() is

isometric ?

(iii) Suppose that E* = 0 and let 1 € ^ (E,K), 1 ^ 0 . Is l(E) = K ?

In particular let E be a closed subspace of K, with E ^ 0 and E' = 0. Does it
follow that E = & ?

iv) A weaker version of (iii) is the question : Does K have non-trivial

topological direct summands ?

§.5. Tensor products.

Let E and F be Banach spaces over K. On E \X> F we introduce the semi-norm (I U

given by (1 &\\ = inf i max ||e. || ||f.|j | a = ^_ e. ® f. i . Put T = (E ̂  F, II 1| ).
1^s 1 1 i=1 1 1 )

( 5 . 1 ) Lemma. T has the following universal property :

For every Banach space G over K and every bounded bilinear map t : E / F -^ G

the corresponding linear map t* : E ® F ~> G has the property ||tl( = (It'll .

Proof. First we note that |t|] is defined to be the supremum of

p e ( j ~1 |lf|| ^ U t(e,f) | | e £ E. f C F? . Let a =<T e^ ® f^ € E ® F.

Then lit'(a) II = llZlt(e^.f^ ) l( $ max l| t(e^.f^)^ || t || max H e^|( \ f. |( .

Consequently I f (a) II ^ ll t |i ||a||. and so It' |j ^ ||t (j . On the other hand

|t(e . f)lj = H t ' ( e 8 f)|| <; Hf|| |je8f|jCllfniel| jjf IJ . So l|t||^hfl|.

(5 .2) Lemma.

1 ) Take o ^ C l R , 0 < ^ ^ 1 . I f ^ e ^ | l 4 i ^ s ? C E_IS.<?< -orthogonal then

for all f,....,fg ^ F, || J_ e^ ® f^oC max( H e^l Uf^)|).

2) The semi-norm on E 8 F is a norm and satisfies \\ e ® f II = t ell ll f(( .
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(3) For any sub space E of E and F, of F the map (E ® F , / / |() -^ (E® F,(( j l ) is
isometric.

(4 ) If every finite dimensional subspace of E has an orthogonal base then

every a C E ^ F can be written as a = 1^ e. ® f. where \\ a.\\ = max( || e.ll llf.li ?

Proof.(1) Let G be a spherically complete field containing K. Define

t^ : Ke^ +...+ Ke -^G by t /e^ ) = 1 and t (e.) = 0 if j ^ i.

Define t : Kf. -^ G by t (f.) = 1 (we suppose here, as we may, that f. i- 0).

Extend both mappings to the whole of E,resp. F»with values in G and without in-

creasing their norms.

Consider t : E K F -> G» t(e,f) = t.(e)t (f) and let f : E Q) F -> G be the cor-

responding K-linear map. Then t ' (a) = 1 and

llt'll = A t | | = llt^l (It^ or1 H e^~1 llf^l ~ 1 . So U a U ^o< ||e^U llf^ll .

a
Alternative proof, (after T.A. Springer). Let x = J" e. ® f. and let

b i=1 ' '
x = V e! ® f be another representation of x. We have to show

j=1 J J

max ||e'(I ((fil ^ (X max || e.ll llf.ll.
J J 1 1

Take /S € R, 0 < ft< 1 , and let g. » . . . » g be an /^-orthogonal base of the

vector space Kf +...+ Kf. (For every ft , 0 < /3 <^ 1 , such a -base exists!).

Then f^ = ̂  Xj^ with

l l f j l |^^max(iX^| II g^ll). Further x = ̂  ej <& fj = ^" (1".^^ ^ ) ̂  ^ •
K. J -k J

Since the ^g » . . . » g ^ are linearly independent we have

2;^k ^ = ^T ̂ i'i andc "i = ̂  ̂ ki ̂  • for some ^ki e K-

Now max 1| e' || |1 f || =? /?> max |1 el II ) ^. | ll g Jl >, fi maxl| .7̂  A. e; 1| (| g 1|
j J J ' j.k •3 ' Jk k / k j Jk J k

^(y/^max (|A^ | llejl |ig^||.>^max |(eJI ||f||.
•/ ^-.^ i
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Since ft> C R, 0 < ft> < 1 , was arbitrary, it follows that

"rnaxll el /I li f fl ^ <X max ||e. l| llf. II ".
j J ± 1

(2) Take a C E g) F, a ^ 0. Write a =Zle. ^ f. where [e ,.. . ,e^, | is

linearly independent over K. Then for some o( ,0 < 0( < 1 , \ e , . . . ,e I is

Oc-orthogonal. According to ( 1 ) , || x l| ^ 0. Hence l| 1 is a norm. The equality

1| e ̂  f|| = li e f| II f || follows directly from ( 1 ) .

(3) The norm on E (̂  F will be denoted by || K . Clearly II x II >.||xl| for all

x in E \$ F . On the other hand : for x C E ^> F for x e E-^F. and (<CR, 0< o« 1 ,

there are e ,..., e in E and f ,..., f in F such that e. ,..., e is o{ -ortho-

a;onal and x = ZL e. ® f..

Hence ( 1 ) yields (|x||^,^max( || e.ll II f. I) ) ̂  ^ ll x | | . Since o< €lR, 0 < ^ < 1 ,

was arbitrary we may conclude | / x | j , ^ jl x (| .

s
(4) Take x C E ® F. Then x = J~ e.^ f.. Choose an orthogonal base

i=1 1 1

^ e ? j of Ke. +...+ Ke . Then x can also be expressed as JC e.' ® f! (f! C F).

According to ( 1 ) we have ((xl| = max l| e!|| llf'll .

Definition. The completion of E (̂ ) F with respect to the norm on the tensor product

is denoted by E ® F.

(5.3) Proposition. ^F is an exact functor for every Banach s-pace F.

o^ ft
Proof. Let 0 -> E -^ E -^ E -> 0 be an exact sequence of Banach spaces (i.e the
sequence is exact as a sequence of vector spaces over K, .̂  is isometricJI./^H = 1

and /3 induces the norm on E^). We have to show the derived sequence

0 -> E ^ ® F OL^ E^ ^ F ^4 E ®F -> 0 is exact. The most difficult part, "^c ' , is

isometric", follows firectly from (5.2) part (3). The rest is left to the rearder.

Remarks and examples.

(5 .4) The tensorproduct-norm as defined above corresponds with the "classical"

"T-tensorproduct topology. The classical ^-topology on E ®F is given by the

(semi-) norm
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|lz|^ = sup[ | I® m(z) | // 1 1 1 "1 || m|l ~ 1 | 0 ^ 1 C E', 0 ^ m C F^ where

z C E ® F. Of course this is not very meaningful if E' = F' = 0. However we will

show :

If E -> E" and F -> F" are isometric then II <L = li U .

Proof, (i) For finite dimensional E and F this follows from the existence of an

c<-orthogonal base for every c^ ,0 < ex < 1 .

(ii) If E is a finite-dimensional subspace of E and p > 1 then

there exists a projection p : E ^E. with II p II < P .

Indeed; since E ->• E" is isometric we have E C E d'(l) for some index set I.

So it suffices to make a projection on p : ^(l) ->• E with /(p || < p . For dim E = 1

such a p exists and easy induction proves the general case.

(iii) For finite-dimensional E C E and F <- F the

map(E^ ® F , ii l| ) -^ (E (£» F, li ll ^ ) is isometric.

This follows tram (ii) since 1, C E' , m. € F* with 1 1 1 ll < 1 , (/ m |j < 1

can be extended to 1 C E', m € E' with II lj| < 1 and ll m t| < 1

(iv) The assertion now follows since also (E, ^ F,, (| | ) -> (E )̂ F,^ \\ ) is
1 1 TT 'H

isometric.

Corollary. For locally convex spaces E and F over a maximally complete field the

£ -topology and r̂r -topology on E (ĵ  F coincide. Every locally convex space over

a maximally complete fields is nuclear.

( 5 . 5 ) For compact sets X,Y and complete locally convex E over K we have

C ( X - ^ E ) ^ ( ^ ( X - ^ K ) ^ E a n d C ( X x Y ^ K ) . - C ( X - > K ) ^ C ( Y - ^ K ) .

And for sets I and J we have c ( l ) S » c ( J ) ^ c ( l ^ J ) .
o o o

(5 .6 ) Problem.

Does there exist another complete tensor product, say (s 9 of Banach spaces

which has the property l^l)^- 1°°(J) '=. I" (I X J) ?

(5 .7 ) Related with tensor products is the theory of nuclear maps and the Fredholm -

theory. We will only sketch this and refer to [^1j for more details.
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Let E be a locally convex space over K and A C E a V-submodule.

(V = [ X € K I I X | , s 1 " f ) . Then A is called precompact if there exists for every
E Aopen V-module B of E a finite V-submodule of /- which contains / B O A .

B

Let E and F be Banach spaces, then the canonical map

E* ($ F "̂  ,-̂  (E»F) = \ 1 : E -*• F I 1 is K-linear and continuous^ is isometric as one

easily deduces from (5.2) and (5 .3) . The image C (E,fJ is called the space of

nuclear maps.

For any t Co^f(E,F) the following conditions are equivalent :

(i) t C ^ (E,F)

(ii) t is the uniform limit of elements in ^'(E,F) of finite rank.

(iii) t([x 6 E J l|x|| ^ ^h is a precompact subset of F.

Proof, See [l] ; We will call elements of ^ (E ,F ) completely continuous maps.

(5.8) The notion of a precompact set seems to be an useful one. For Banach

spaces E we will show the connection with ordinary compactness :

Let E be a Banach space and A a V-submodule of E. Then A is precompact if

and only if there exists a compact set T C E such that A C conv(T) = the closed

convex hull,

Proof. "<=" is trivial "••>". For every n ^ 1 there exists a finite set say

b^ ,...,^n) such that A C Vb^ +...+ Vb^ + [x € E ( II x l( < ^ | .
n n

Hence A lies in the closed subspace of countable type generated by

w. ( n '>/ 1 ; 1 < i ^ s I . So we may suppose that E = c ( |N). We choose a sequence

0 ^ 1 » <-)<o 9 . • • in K such that, in case the valuation is dense 0 <' l^ . | < 1 and

T r ( o < . i ^ l ^ l ^ O for some Tr € K and, in case the valuation is discrete we take

-Y< = 1 for all i. Choose a. C A with (/a. || >, |.< | sup )| A l| and let

a = i_ a .e. with }| ajl = |a |. Then o( A C Va + A wherel 1 , 1 1 i 1 , 1 ' l i l

A, = A n ̂  ec^)| x=^x^ .
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We proceed in the same way with A. » then o(_ A C Va + A whereoo ) 2 1 — d 2
A - A C\ [x C c ( tN) | x = ^ x.e. ( and a C A . By induction one finds a

sequence |a,l C A which is orthogonal by construction. Since ^.Va. C A is also

precompact it follows that lim \\a..\{ = 0, lim sup | | A . l j = 0 and

A C conv^TT^a. \ U [dp.

Problem. Let E be a locally convex space and A precompact subset. Does there exist

a compact set T with A C conv(T) ? (For locally convex spaces with a countable base

for the neighbourhoods of 0 the proof given above works).

Remark. Suppose that V C K is compact and let A be a V-submodule of a complete

locally convex space. Then A is precompact if and only if A is compact.

( 5 . 9 ) Another property of precompact sets is given in (jj :

Suppose that K is maximally complete and let A be a V-submodule of a separated

locally convex space. Then A is precompact if and only if A is bounded and linearly

compact in its induced topology. The module A is called linearly compact if every

filter y generated by translates of open submodules of A has the property

r\ J^ ¥ 0. This property is also called c-compact by some authors.

( 5 . 1 0 ) A curious result of J. Hily is the following :

Let K be a maximally complete field with dense valuation. Then any K-linear

bounded ^> : 1 ( I ) -^ c ( N ) is completely continuous.

Proof. (See [2] section 3 for more general results). As in the proof of ( ^ • 8 )

one can show that A = , J ( J ) ( x ) | x € l^l), || x || ^ l l has the property :.

There is an orthogonal sequence a , o. i... in A with

TTA C [Z ^.a. l ^ . C V , lim \ . = 0 1 C A.

If lim fl a. || = 0 then ^ is completely continuous. If for some £, > 0 the set

p £ N I (I a. 1| >y (£ ( is infinite then one can find a map p : c ( N ) -> c ' (N)

such that p (J) : 1 ( l ) --*• c (IN) is surjective.

But this would imply that c ( ( N ) is weakly injective which is false according

to (3 .8 ) part2) and ( 2 . 1 5 ) .
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§.6. Categorical aspects of Banach spaces.

( 6 . 1 ) There are two natural categories,of Banach spaces over K namely

(i) A =f^/K; the objects are the Banach spaces over K and.

Hom(E,F) = ^ (E,F) = [. 1 : E -^ F | 1 is K-linear and )1 ll| < c^.

(ii) J2) = )̂ /K ; the objects are the Banach spaces over K and.

Homl(E,F) = j 1 : E -^F | 1 is K-linear and ||ill < 1 ^ .

Neither category is abelian. Using a method of A. Heller [8j one gives the

categories a structure of exact category by a choice of a suitable set of short

exact sequences. Natural choices are :

^ .3
The set of all sequences 0 -> A —>B —>C -^ o satisfying

(A) 0^, fi C J3 and the sequence is exact as a sequence of linear spaces over K.

(B) :< ,/3 6 '̂ > ; o< isometric ; /^ induces the norm on C and the sequence is exact

as a sequence of linear spaces over K.

(C) ^»/3C^ » ^ isometric ; fi induces the norm on C ; for all c £ C there is

a b £ B with /5(b) = c > and |l b II = II c II ; and the sequence

is exact as a sequence of linear spaces over K.

An objet E is called projective (resp. injective) if the functor

Hom(E».) (resp* Hom(.»E)) is exact on the given class of exact sequences. In

sections 2 and 3 "we found :

category projective
objets -

injective
objets

A with (A)

^5 with (B)

weakly projective veakly injective

injective

has injective and
projective resolutions

has only injective
resolut-ions

^>vith (C) projective has only projective
resolutions

The resolutions are of course those considered in ( 2 . 5 ) and ( 3 . ^ ) .
We will denote them by 0 -> E -» q E -̂  q E -> 0 and 0 -> p-E -> p E -̂  E -» 0.
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For left- (or right-) exact, co- (or contra-) variant functors T of fi, or ^ ,
^into any abelian category one defines left- or right derived functors L T or

R^, n ̂  0 as usual. It follows of course that Î T = R^ = 0 for n > 1 .

Examples of derived functors.

(6 .2 ) The functor H o m ( E , . ) : J3 with ( A ) -> (Vector spaces over K ) . i s covariant ard

left-exact. Its derived functor is denoted "by Ext.,( , . ) and we have for .every FC^3

the exact sequence 0 ->-Hom(E,F) -^Hom(E,q F) -> Hom(E,q F) ->• Ext . ( E , F ) -» 0. As

usual Ex't ( E , F ) can be interpreted as the set .of isomorphy classes of extensions of

E with F..

(6.3) The functor Hom(.,F) : (Q -with (A) — (Vector spaces over K) is contravariant

and right-exact, its derived functor applied to E C ^3 is equal to Ext (E,F) as

defined in (6.2) . So we are justified in denoting the left-derived functor of

Hom(.,F) by Ext (.,F). Further one has the exact sequence

0 -> Hom(E,F) -^Hom(p E , F ) — » H o m ( p E , F ) -^Ext(E,F) -> 0.

(6.U) The right-derivate of Horn (E,.) : ^3 with (B) -^(Modules over V) is denoted

by Ext^(E,.). The left-derivate of Hom1(.,F) : ^1 with (C) -^Modules over V) is
denoted by Ext ( . , F ) .C'

( 6 . 5 ) Lemma. There exists for any E,F £ ^ a canonical injective map

0< : Ext ( E , F ) ->Ext (E ,F ) vith coker o< is a vectorspace over k.

Further Ext^(E,F) ® ^K « Ext (E ,F ) ® ^K ^Ext ( E , F ) .

Proof. The sequence 0 ->• p E - ^ p E - ^ E - ^ 0 (in class ( C ) hence also-in class ( B )

and ( A ) ) induces exact sequences ;
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(a ) -»Hom(p^E,F) - ^ H o m ( p ^ E , F ) -^Ext ( E , F ) -»• 0

( b ) -^Hom^p E , F ) -^ Horn1 ( p , E , F ) - -Ext_(E,F) -> E x t f p E ,F) -^ ...
o I B B o

( c ) -^Hom^p E ,F) -^Hom^p E ,F) -> Ext (E ,F ) -^0.

This implies the existence of a canonical injective map

o< : Ext^.(E,F) -^ Ext (E,F). After applying \j) K to the sequence (c ) and comparing

with (a) one finds Ext (E,F) '^^K^ Ext (E,F). So the proof will be finished as

•we have shown that Ex.t^(p E,F) is a vector-space over k,. Let P be a projective
1 ° (3 1

Banach space then -> Horn (p ,q F) —^ Horn (P,q F) -^ Ext (P ,F) -> 0 is exact. Using the

ortohonormal base of P one finds i m / ^ 3 ^ I s P - ^ q F / ; ! l(x)|| < || xfl for all x f .
1 • • ~ ^ 1 j

Hence im^/3 ^^m Horn (P,q F) and Ext (P,F) is a vector-space over k.

( 6 . 6 ) For every Banach space E we form gr (E) = ^~ [x c E! } i x ^ / , . , )
^ € R , , ^ 0 ^£ E l l l x l k J j

This is a graded module over gr(K).

The graded ring gr(K) can be described as follows : Let G be the value group

of K written as an additive group and let (() : G -^ K^ be a map satisfying

|(()(g) l = e for all g C G. The map 0 induces a symmetric 2-cocycle

J : G X G ->K^ (where G acts trivially on k^ ) by the formula ^(g,h) = the

residue class of (|)(g) (()(h) (()(g+h) in k ̂ . Then gr(K) is isomorphic to k [G,^l= the

group algebra of G over k-twisted by ^ . In particular if the valuation of K is

discrete then gr(K) = k [z] ^ k [t,!"1,] .

Let Gr(K) = Gr denote the category of all graded gr(K)-modules whose morphisms

are the homogeneous gr(K)-linear maps of degree 0. Then Gr is an abelian category.

We remark that <.\ t. .̂  is isometric (resp. essential) if and only if gr(^) is.in-

jective (resp. bijective). The functor gr : (J2) with (B) -^ Gr is left-exact and

covariant and its derived functor will be denoted by R' (gr) .

(6.7) Let E be a Banach space over K. A hole in E is free filter (f on E generated

by spheres. The diameter of 9 is the infimum over all radii of spheres belonging

to Cr . Two holes f and Y a.re said to be equivalent if there exists e 6 E with

e +^= .̂
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Proposition. There is a bijective correspondence between the homogeneous elements

(^ 0) ^f R (gr) E of degree / ^ ( / ^ C R , p > 0) and the equivalence classes of holes

of diameter n ^n E.

Proof. The injective resolution 0 -^ E -4-^ 1 ̂  / -^ 100^/ , . -» 0

of E induces the exact sequence 0 -> gr(E) -^gr(1 ̂  / -> gr^ ^/ , J -»
c^(E; c ( E )

-^(grHE) -^0.

Let ^ be a homogeneous element (^0) of degree p in R^g^E. Then ^ has a

representative x 6 1 (E)/^) with |)x)| = ? . Choose x^ 6 10B(E)/ , , such
o

that TT(x^) = x. The collection of spheres ^y C E | |i A (y) - x ,'| ̂  ^ 'h ̂  > /? )

generates a hole J' of diameter p . Another choice of x does not affect \3^ and

another choice of x translates ^ . So we have assigned to ^ a class of holes
of diameter p .

For a hole ^ in E of diameter p generated by } B(a ,/> )i . one choose
c^ ' ( n / n •' n> 1

^C 0 B(A (a^) ,^^) . The element x = "n- (x ) has norm f> and gives rise to a

homogeneous ^ (^0) of degree ^> in R (gr)E. It is easily seen that the two maps

described above are each other's inverses.

Relations with the category Mod(V) of all V-modules.

(6.8) First we shall recall some properties of modules over a valuation ring.

Lemma. (Fleischer) A module M over V is injective if and only if M is divisible

and every filter ^ on M generated by sets of the type m + J m C M | 7 r m = 0 ^ ( T r a n

element of V) has a non-empty intersection,

Proof. 4= M is injective if Hom(V,M -^Hom(l,M) is surjective for every ideal I of V.

Let <() : I -^M be given, I is generated by a sequence of elements

^> \^ .... with J A j ^ l-^+i I ^r all i.

The map 0 can be extended to V -^ M if there exists x £ M with ,1 .x = ())(x . )

for all i. Since M is divisible there are elements x. satisfying ~\.x. = ())(/1 .).

Hence x must be an element in U (x. + ^m € M I -I .m = 0?. By assumption this inter-

section is non-empty.

^ Analogous.
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( 6 . 9 ) Corollary. If̂  M is an injective V-module and N a divisible submodule of M
then M/N is infective*

Proof. It is clear that M/N is also divisible and inherits the filter property
from M.

( 6 . 1 0 ) Corollary. Every module M has inj. dim M ̂  2. It M is divisible then inf.
dim M ̂  1 . The global homological dimension of Mod(V) j_s ^ 2 and = 1 if and only
if the valuation ring V is discrete. Further inj. dim V = 1 if and only if K ŝ
maximally complete.

Proof. For any module N let < £ ( N ) denote the injective envelope of N . For N we
make the exact sequence 0 •> M -̂  ^ ( M ) ->M. -> 0 and 0 -̂  M , -> i ( M . ) ->M ->0.
The module M is divisible and by ( 6 . 8 ) this yields that M is injective. So inj.
dim M $• 2. If M is already divisible then M, is injective and inj. dim $• 1 .
For discrete V it is veil known that global dim(Mod(V)) = 1 . If V is non-discrete
then inj. dim V = 2 . (A means the direct sum of I copies of A ) . Indeed,
0 -)>V ->K -^K/V -> 0 is exact, K^ is not injective, and we have to show
that K/V = M is not injective. Choose a sequence . 1 . , A ^ , . . . in K with

I ̂  | > | " X - | '> - • - ^ 1 and consider the subsets

( I ̂ . X ^ * ' • » ̂ -1 ̂ i 0-.- ) + ^m C M l^M = 0\ of M. (here ̂  means the image of
>f in K/V). The filter generated by them has an empty intersection. According to

( 6 . 8 ) we see that K/V^ is not injective.
Further, inj. dim V = 1 if and only if K/V has the "filter property". This

filter property is easily seen to be equivalent with maximally completeness.
( 6 . 1 1 ) The counterpart for projective dimensions is :
Proposition. Every module has projective dimension < 2. If M is flat (equivalent to
torsion free) then proj. dim M <; 1 . Every projective module is free.

Proof. The last statement is a special case of Kaplansky's "big projectives are
free". The proposition will be proved is we can show : any full submodule M of a
free module P ( i . e . P/M has no torsion) is itself projective. For this one can imi-
tate the proof of 3 . 6 ) .

We will exclude in the sequel of this section the trivial case of a discrete
valuation ring.
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( 6 . 1 2 ) The relation between Banach spaces over K and modules over V can be expressed
by various -functors e.g.

B : & ^Mod(V) given by B(e) = { j c C E [ /| x || < \\

Q : fy 1 -^Mod(V) given by Q(E) = E /B(E) .

Proposition..(i) B and Q are exact w.r.t. both (B) and (C) ;

(ii) Hom^E.F) M Hon^(BE,BF) ^ HonL,(QE.QF) ;

(iii) E is injective if and only if QE is infective ;

(iv) Ext^(E,F) ^ Ext^(BE.BF) ^ Ext^(QE,QF).

Proof, (i) is obvious and (iii) follows from (6.8). To prove (ii) we use a

lemma : Let M be a torsion-free V-module. Then M is complete (i.e.

M = ^a_m M/ TT "M for some n € V, 0 < j -n- I < 1 ) if and only if M is a cotorsion-

module (i.e. Hom(K,M) = Ext^K.M) = 0).

Proof : "=*" If M is complete then H^PM = 0 and so Hom(K»M) = 0.

For K we have a free resolution 0 -^V^ ^* V^^ -^ K -'•0;

given by fi ( A. ^ , X^, X .. ) = •[__ \. -rr -1 and

^ ( A ^ . \^ ^,...) =i ( \^ \^ -^\^ ̂  -T(^^. . . . ) .

Ext^(K,M) is the cokernel of the induced map Hom(V^), M^Hom(V^ ,M) .

Let d) : V -> M be given by (()( ..̂  ^ , X^, \,...) = Z \ .m.- then the map Y

given by ^ ( v ^ . , A ^ » . . . ) ^^^^(^ -n-^.^ ) satisfies ^<*(^ ) = ( ) ) .

Hence Ext^(K,M) = 0. tt^" Analogous.

Proof of (ii). Hom^E^F) =^ Honiy(BE,BF) and the injectivity of

Horn (E,F) -^Hom^(QE,QF) are obvious. Take t ^ Hom^(QE,QF) and let s be the map

E -^ QE -^'QF. We have to show that s can be lifted to a map E -> F or that

Hom^(E,F) -»Hom^(E,QF) is surjective. The cokernel of the latter is Ext^E^F).

Since E is a direct sum of copies of K and BF is complete the lemma yields

Ext-(E,BF) = 0.

Proof 6 :f (iv). The injective resolution 0 -> F -^ q F -> q F -^0 yields exact sequences:

-^Hom^E^F) -^Hom^E^ F) -^Ext (E,F) -> 0
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-^Hom(BE,Bq^F) -> Hom(BE,Bq F) ^ Ext»(BE,BF) -^Ext-^BE.Bq F) -»• ...

-> Hom(QE,Qq^F) -> Hom( QE, Qp F) -^ Ext^QE.QF) -^ Ext1(QE,Qq F) -> ...

By ( i i) it suffices to show that Ext1(BE»Bq F) = 0 = Ext^QE.Qq F).

The last statement follows from (iii) and the first one from the exact
sequence 0 = Ext^(E,Bq^F) -> Ext^ (BE, Bq^F) -> Ext^(QE,Bq^F) ^ Ext-'(QE,Qq F) = 0.

(6.13) Proposition. Let M be a V-module.

( i ) M ^ B(E) for some Banach space E if and only if M is a torsion-free,
cotorsion module and mM = M.

( i i ) M -^ Q(E) for some Banach space E if and only if M is a divisible

torsion module such that Ann(x) = [/I c V ( Z x = O 1 is non-principal for any x ^ M.

Proof.

( i ) '̂ " follows from the lemma in (6 .12) . "$=". Choose for E = M(g) K 3 M with
norm given by \\ x (( = inf \\\\\ f c K and x f e ^ M ] .

(i i) "=>" clear. "^" Take TT 6 K, 0 < | TT |< 1, and let m € M, m ^ 0 be given.
There are elements m = m^, m^ , m^ ,... in M such that TTm. = m . ( i ^,0).

Hence there is a V-linear map ()) : K -4 M satisfying ^(Tr^11) = m for all n >/ 0.
As a consequence there exists a surjective 0< : L — M where L is a vector space
over K. The kernel L^ of o< may be supposed to have no divisible submodule.

On L we introduce a norm by (/ x U = inf j | \ \ \\ 6K and x C \ L \ . Let L denote

the completion of L with respect to this norm and iT the closure of L in L.
^ o o

Then M ^ L/L^. The extra condition Ann(x) is non-principal for every x C M implies
that L = BL. Hence M -^QL.

- ( 6 . 1 4 ) Consequences. Using (6.12) and (6.13) one can translate properties, cons-
tructions etc. of Banach spaces into properties etc. of V-modules. Examples.

( i ) Let 0 -> E^ -»E^ -> E -^ 0 be an exact sequence of Banach spaces of type (B)
and let E and F denote Banach spaces. Then 0 -^ BE -> BE -^ BE -^ 0 is exact and
since BF^ is flat also 0 -^ BE^ ® y BF -»• BE^ <& ^ BF -^ BE ® F -f 0 is exact.

Further as^one easily sees ^x C E ^ F [ (( xl | < 1^ » BE ® BF. This yields
(5.3.) : 0 -^ E ^ ® F -^ ® F -^E^ ® F -^0 is an exact sequence of type (B) .

( i i ) (6 .12) part(iii) combined with (6.9) proves that the quotient of an in-
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jective Banach space is again injective.

(iii) ( 6 . 1 1 ) is the counterpart of (3.6) : every closed subspace of a protective

Banach space is projective. Further Kaplansky's theorem "Projective modules over

a local ring are free" is the counterpart of ( 3 . 1 0 ) : every projective Banach

space is free.

(iv) Let E be a Banach space and 6/(QE) the injective envelope of QE. By

( 6 . 1 3 ) part (ii), &(QE) ^ QF for some F and as one easily sees F is a maximal

completion (see ( 2 . 1 0 ) ) of E.

(v) The problem on reflexive Banach spaces (U.6) part (i) is equivalent.to the

following problem : Let K be a non-maximally complete field. Is the dual

M ^ ( = Hom(M,V)) of any V-module reflexive (i.e. M^ ->• M^ bijective)?

Or, using the functor Q instead of B the problem is equivalent with : Let M*

denote H6m..(M,K/V) for any V-module M. Is M* -> M'" bijective for any divisible

torsion module M?

Remark. In comparing JB * with Mod(V) as we did, one often has the disregard

modules over k. So it seems more appropriate to compare ^ ' with Mod(V)/Mod(k) =

the quotient of Mod(V) the Serre-subcategory of Mod(k) , all modules over k.

§•7. 'Differential Equations.

The first step in solving differential equations is the construction of a

primitive function for every continuous function. This is done by approximating

a continuous function, say f : K -^K, by locally constant functions. Any locally

constant has a primitive function. A good choice for a primitive function of the

characteristic function $ of a sphere B(a,/Q C K is F(t) = ( t -a )^ ( t ) . The function

F has the additional property ) F(t+h) - F(t) - h^ ( t ) |^ lh| for all t and h.

To show this process in detail we consider first a simple case :

( 7 . 1 ) Proposition. Let X be a compact subset of K which has no isolated points and

let E be a Banach space over K. There exists (for every ^ > 0) a bounded linear

P : C ( X -^E) -^(X -^E) (with W P ( | ^ & ) satisfying :

(a) P(f) ' = f and lim (y-x)"1(P(f)(y) - P( f ) (x ) ) = f(x) uniformly on X.

(b) For any f £ C(X -^ E) and any x,y C X the following inequality holds :

) lP(f ) (y) - P(f)(x) - (y-x) f(x)||$. |y-x| }[f\\ .
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( c ) Jf dim E ^ DO then P is completely continuous,

proc)f> since x is compact we have C(X -> E) ^ C(X -> K) $• E. It suffices to construct
P : C(X -> K) -^C(X -> K) with the required properties because

P ® 1g : C(X -*• E) -^ C{X -^ K) has an orthonormal base J 5 . | i^. O? consisting of

characteristic functions ^ . of spheres B(a.,/ '.)C X. Define P by

P(^)(t) = (t-a^) ^(t) and extend P by linearity-and continuity to

P : C(X -K) ^ C ( X -» K). Clearly || P 1| = sup 1| P(^)li = ,sup .̂ . | i ^ O ? . So for

given E,^ 0 the base {'^ can be chosen such that |/P|| ^ ̂  . Further P is com-

pletely continuous (i.e. the uniform limit of bounded linear maps with finite-

dimensional range) since lim |(Pe. || = lim p. = 0 .

Let f C C(X -^ K) have the expansion f =Z ^.5. , lim X. = 0. Then

| P ( f ) ( y ) - P ( f ) ( x ) - (y-x) f (x) | = iZl^ P(^ ^ ) ( y ) - P(^ . ) ( x ) -

- (y-x) ̂ (x)| ^ f y-x ( max ^ | X ^ | | ^ ^ < | x-y|! . Hence (a) and (b) follow.

(7.2) Example. Let X = Zp = |x C Q^| |x| ^ l}, K a field containing Q , the field

of p-adic numbers. The characteristic function of (t G Z I |t-n| < - 1 - } will be
- P ' n ^

denoted by (|)^(n >^ 1 ) and ̂  = 1 . The set [(pj n ^ 0 ^ is an orthonormal base of

C(2^ -»-K). Indeed, as one easily sees [(()jo ^ n < p^-^ is an orthonormal base of

^ C C(2^ -^ K)| f is constant on spheres of radii p"^ and further the space of

locally constant functions is dense in C(2 -^K). So every f t C(Z -^ K) has an

expansion f = L ^ < { ) . ( ^ C K , lim A = 0) .
n n n n

The coefficients \ can be calculated in the following way :

On IN U ^OJ we introduce a partial ordering n ^ m as follows

(i) 0 \^m for all m.

(ii) if n ^ 0, n = a^+a^p+...+ a^ ; 0 ^ a . < p ; a . ^ 0 then n ^m

if m = b^+b^p+.. .+ b^p1 with 1 ̂  k and a^ = b. for all i = 0, . . . ,k.

This ordering satisfies n \^ m if and only if ()) (m) = 1 . For

n ^ 0, n = a^+a^p+...+ a^ , 0 < a^ < p, a^ ^ 0 we put n_ = n-a^ or in other

words n^_ is the largest integer satisfying n f n and n ^ n.

0

Then for any continuous function f we have f « ^(f(n) - f(n )) ((> + f(0)<()
n3"!
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l•t is enough to check this formula for integral values 1 :

J_ ( f(n) - f (n_) )A (1) + f ( 0 )<b ( l ) = jl (f(n) - f(n )) + f(0) = f(l).
n=1 n ° O^n^loo

Further P( f ) ( t ) = y~(t-n)( f (n) - f(n ) )<b (t) + f(0)t. Let
n=-[ - rn

Qo . fl0 ^ .
t = L a p1 ; 0 ^ a < p ; then P( f ) ( t ) = Y_ a , p k + 1 f ( 2 _ a.p1).

i=0 1 1 k=0 k ' i=0 1

00
Another implication of the expansion f =^ (f(n) - f(n ))(b + f(O)d) = T A. (|) is- 'n 'o <— n ' n

f(y) - f (x) ^^
the following : lim "•" \^_^ = 0 uniformly on Z^(f' = 0 uniformly, for short)

y-»-x

is equivalent with lim n\\ | = 0. Of course a sequence a C K with lim a p~11 = 0

and lim | a p"211 | = oo ; define f : 2 -» K by f(x) = a if Ix-p11! < p"211 and
n p n

k 2k k
f(x) = 0 for all other values of x. Then f = 0 and | f^ +p—\ . " f^ ^ |=|a Jp"21^2k 1 '"k1

is unbounded. So f = 0 not uniformly.

(T .3) A more general case. Let X be a subset of K which has no isolated points

and let E be a Banach space over K (or if necessary a locally convex space over

K). We want to construct a (continuous) linear P : C(X ^ E) - ^ C ( X ~-> E) which

satisfies P( f ) ' = f for all f 6 C ( X - ^ E ) .

We will show that it suffices to give a primitive function of just one conti-

nuous map, namely the map : X -^ (M.W ' Here (^[(X) denotes the vectorspace over K

of all measures on W with compact support, (i.e. ^Ctti(x) if there exists a compact
• o ..

T C X and a bounded linear 1 : C(T -> K) -^ K with y : C ( X - > K ) - > - C ( T - ^ K ) -^K

and where P is the restriction map). The topology on j\(X) is the locally convex

topology generated by the sets |o(f ,... , f )| s ^ 1 ;

f^ ,..., f ^ C C(X -^K)}. in which 0( f^ ,..., fg) = {^e^((x)| L( f^)( < 1 for

all i\ . The continuous map&: X ->• ̂  (X) is given by S ( x ) ( f ) = f(x) for all

x C X, f C C(X -^K).

(T.^) Lemma. There exists A : X -^ (/( (X) with A ' = S .
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Proof. In order to approximate & by locally constant functions on X we introduce

some terminology. LetTT e K, 0 < ITT ( < 1 , and let ^ denote the equivalence

relation on X given by x ^ y if Ix-yl^ln')11. Choose x € X and for every n ^ 1

a map p : X/^ ̂  X such that XA. -A x ^ X/^ = id and P (x ) = x for all n.
' 11 li " n i n o o

p
Define p by n (x) = (x { and let R : X -> X/^ -S- X for all n ^ 0.« o | o L o) n n

Let 6^ : X -^J\W be given by 5' (x) = 6 (R x). Then 5 = lim 8 and each S

is locally constant. Hence $ = S + 7~ ( $ -^ ). Each g = S - 5 , is cons-
o n=T n n~i n n n-1

tant on spheres of radii \^\ and has an obvious primitive function G given

by G^(x) = (x-R^(x))g^(x).

Define A : X ^ J\W by A (x) = (x-x^)S^ + I_ G (x). Clearly 4 (x) CiM(x)and has

support in the compact set jx j Ufe x|n ^ 1 ^ . Further —1—(A(y)-A(x)- <S'<x) =
= 21 ('^'^Gn(y)-G^(x))~•6^(x)). In order to show that lim of this expression is zero

n= 1 '• y-^x
it suffices to prove for any f C C(X -A> K) that

1^ L (y^n^5 - ̂ ^ - (sn(x) ~ ̂ n-l^^^ = °-

Choose £ > 0 and n such that |f(x) - f(y) | ^ 6 whenever (x-yl^ljrl^"1 .

Then for n > n :

r 1 R (x) - R (y)
[^(^(y) - ^(x)) - (^(x) -8^/x))] ( f ) =-^—————^——(f(R^x) - f ( R ^ _ ^ ) ) +

y-R(y) _ ,
+ ——^—— WR^ ~ f(Rnx) '1' ^n-^ ~ f (Rn-1y) )• Hence if I Y^ N rr I no this

expression has absolute value $ 5 and "lim" is equal to zero.
y-^x

This completes the proof.

(7.5) Remarks. (i) A compact subset T of X is called full if R (T) C T for all

n ^ 0. Any compact set T lies in a full compact set. For a full compact set T

we have support (A ( x ) ) C T for all x C T. So we can restrict S and A to t ;

S = 8 /T : T -^(T -^K) ' and A = A /T : T ^ C(T -^ K) ' . With the usual norm on

C(T -»-K)' we have | ( A ( y ) - & (x) - (y-x) & (x)(( = 6(x,y) ( y-x | with £(x,y) < 1

for all x,y € T and lim &(x,y) = 0 for all x.
y-^x

(ii) The map A can be written in a slightly different form :
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A ( x ) = (x-x ) 6 (x ) + T (x-R ( x ) ) ( g (x) - K , (x) ) = J° (R .x-R x) S (R x).o o ^ n n n-1 ^ n+1 n n

(7.6) Proposition. (Treiber)Let X "be asubset of K which has no isolated points and

let E be a Banach space over K. Let & S. 0. There exists a linear

P ; C(X ->E) -> C(X -^ E) satisfying :

(i) (Pf) ' = f and on any compact set lim —1—(P(f) (y) - P( f (x ) ) = f(x)
v-^x ^"x

uniformly. "

(ii) For every full compact set T, the restriction of P to T has norm $. 6,

and II P( f ) (y ) - P( f ) (x ) - (y-x)f.(x)H^ tly-xU ||f(l for all x,y C T ; f C C ( X •> E).

(iii) 1^ dim E < 00 then P restricted to any compact full T is completely

continuous,

Proof. Every pL cj{W induces a map ^ : C(X -^E) ->E. Indeed ; let T C X be a

compact set such that ^ : C ( X -*• K) — C(T -^ K) —^K, then î  is defined by
Q ^ A I®'! E

C ( X -^E) --^C(T -^E) •= C(T -^K) ® E ————> K ® E = E. Define P by the formula

P( f ) (x ) = A ( x ) ( f ) . A change of A into A^(x) = Y (R ,,x-R x) S (R x) changes P
n=k n+1 n n

into P^ with ||̂ l| ^ [^{^ . The other properties of P (or P^ ) follow directly

from the corresponding properties of A (or A )•

(7.7) Proposition. (Treiber). Let X be a subset of a Banach space E such that for

every x C X and h € E the element 0 is non-isolated in (t C K ( x+th C X . Let F

be another Banach space and CJ: X - + o Z ' ( E , F ) = \ 1'. E-^-F is K-liriear and con-

tinuous} a_c^n^bj_nuous_map. Then there exists -0 : X -*• F with dO = CiX

Proof. First we solve the "universal problem" ? : X - ^ ̂  (E,(^| (X) ^ E).

Here J{ (X) ^ E is the completion of</1(X) ^ E which has the topology derived from

the semi-norms on (A ( (X ) , the norm on E and the tensor product (semi)-norm cons-

truction of §.5. As in (7.^) one defines maps R : X -^ X (n ^ 0) with the properties:

(i) R (x) = (x I and R (x ) = x for all n ^ 1 ;o C o \ n o o
00

(ii) R (x) = R (y) if and only if |1 x-y||^ •Tfl11. Then 8 =^R + Y (^R - R ,).n n o ^—, n n—1n=1

One defines A : X -> v \ ( X ) ® E by "term by term integration" of this infinite sum :
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oo
A (x) = 8 (R x) ® (x-x ) + 7 ( S R x- S R ,x) ® (x-R x) .o o —- n n—l nn^

It is easily seen that d A = S and A ( x ) = T S(R (x ) ) ® (R ,(x)-R ( x ) ) .
n=^ n n+1 n

Further, to return to CJ , any T C(/((X) ® E induces a map ^c- ,
<</
f'.C^XHo^E.F)) -^F in an obvious way. Then a solution A of dD, = <x) is

.U(x) = A^M.

Remarks.

(i) The solution .A in (T .T ) can also be written in the form

-O-(x) = J_ (J(R^x)(R^x-R^x). The case X = [x C E | ( |x( j ^ 1 J (or X = E) is

considered by D. Treiber [7] . The choice of the R 's is done as follows : Let A

be a set of representations (containing 0) of X/ {x C E | ||xl| ^ \TS\\ . Then every

element x in X has a unique expansion x = y TT a with a 6 A for all n. Put
n=D n n

n_l ^
R (x) = ^_ a (n ^ 1 ) and R (x) = 0. Then our formula for .Q reduces to the

one given by Treiber [7] section 10.

(ii) As a corollary of (7.7) one finds that every continuous k-form (closed

or not) is exact. In particular there is a function

f=^-^ with Of » yax. So ̂  -„ ^ =0ana^^.

An explicit formula for f is given by the following :

f( T s'-P1 » Zl ^-P'3) = ZL a.b.p1'4'13 , where O^a . < p ; O ^ b . <p.
i==0 j=0 J i^ j^ 0 1 J 1 J

(iii) The example (7.2) gives a primitive function for which one has derived

the formula P(f)(^° a^) = ^- a^.p^^t j^ a.p1).
n=C> K ^ K ' i=0 1

This operator P could also be obtained from (7 *6 ) where R : Z -^ S? is
n ^ P P

defined by (i) R (Z ) = ^ ; -R (0) = 0 for all n ; (ii) R (Y_a.p1) = T^a.p1 with
1=0

0 ^ a . < p for all p. '
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( i v ) Solving differential equations is an exerciee after ( 7 . 6 ) . . T o be
complete we will solve the exercise.

(7.8) Proposition. Let X be a subset of K which has. no isolated points, E a Banach

space over K and L a (not necessarily linear) map : C (X -^ E) -> C (X -^ E) which

satisfies the Lipschitz-condition : There exists a constant P such that for any

compact full T C X. any f,g C C(X ->• E) the inequality llL(f) - L(g)|( ^(|f-g j(

holds. Then there exists a bi.iective auditor every II \\ , with T full compact.

isometric map •€ : jh C C(X -> E) | h' = 6\-> |f C C(X -> E) I f * = L(f) i .

Proof* Let k be such that l ir l o< ^ * The maP p gi^n by the formula
oO

P ( f ) ( t ) = 7" (R , ( t ) - R ( t ) ) f ( R t) has the property ( P f ) ' = f and
n=k n+1 n n

||P(f)|| ^ IIT^ ||f|| for every full compact T C X. Take h C C ( X ->E) with h' = 0.

The map ft-^h+PL(f) of C(X -^E) into itself is a strict contraction with respect

to every |( |(- . Hence there exists a unique f = T (h) satisfying f = h+PL(f).

Clearly % is isometric with respect to || \{ and also surjective since

f = L(f) implies P( f ' ) = PL(f) and h = f-p(f') has derivate zero.

(7 .9) Corollary. (Linear equations) Let X be a subset of K which has no isola.tp'd

points, E a Banach space over K and A : X -> S^ (E ,E) a continuous and bounded map.

Then there exists a continuous B : X -> of, (E ,E ) such that B : i h C C ( X - ^ E ) | h ' = 0?->-

-> (f C C(X -+E) I f1 = Afl is linear bijective and isometric.

Proof. Consider L : C(X -> ̂  (E,E)) ->C(X -^(E.E)) given by L(B) = AB. Then as

in (7.8) there exists a solution B of B'( t ) = A( t )B( t ) with ||B(t) - H( ^ p<1 for

all t € X. Clearly if h C C(X - E) satisfies h* = 0 then (Bh)' = A(Bh). Further if

f satisfies f = Af then (B^f)' = 0.

(7 .10 ) Example. For any differential equation f (t) + a .(t)f (t) +...n" l .
,...+ a ( t ) f ( t ) = g ( t ) , g»a. : K ••> K continuous and bounded,there are functions

y,x. : K->• K (i=1,...,n) such that every solution of the differential equation has
n '

the unique form y + J~ h.x. , where h' =...= h' = 0. This is a special case of

(T.9).
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( 7 . 1 1 ) Remarks, (i) It is likely that a more detailed study of the "primitivation"

P will show that the Lipschitz-conditions in (7.8) and (7.9) can be weakened.

(ii) Another interesting question is : which functions f : X C K -> K are the

derivative of other functions. An obvious necessary condition is that f is the

pointwise limit of a sequence of continuous functions. In the last part of this

section we will show that this condition is also sufficient, provided that f (X)

is a compact subset of K.

We introduce the following notations : let X be any topological space? then

C (X -» K) is the Banach algebra of all continuous functions f : X -> K such that

f (X) is compact. Further X _ denotes the set X provided with the discrete topology.
d

( 7 . 1 2 ) Proposition. Let X be a subset of K which has no isolated points and let

f : X -> K be a function- such that f(X) is compact. The following conditions are

equivalent :

(i) There exists F : X ->• K with F' = f.

(ii) There exists a sequence JF (c C(X -> K) such that for every x C X,

lim F (x) = f (x).n

Proof. ( 1 ) ====4 (2) is trivial. The implication (2) =^ ( 1 ) will be proved using

some lemma.

( 7 . 1 3 ) Lemma. The algebra R = (f € C (X ->'K)|f is pointswise-limit of continuous

functions) is a closed subalgebra of C (X -^K).

Proof. It suffices to show that for any sequence jf \ CR with lim ||f || = 0 , the

sum F =7~ f belongs to R.

Write f = p-lim f , , where "p-lim" means point-wise-limit and alln n fK.

f , t C ( X - > K ) . We may assume that ||f |( ^ ||f l| for all k. Thenn }K n (.K n
«

F, = T~ f , £ C(X -4K) since the sum is uniformly convergent on X. We claim
k ^=T ^

F = p-lim F,. Indeed take x € X , & > 0 , N ( 6 ) € N such that (|f II ^ £ wheneverk n
n ^>N(£) and-take k (x,6) € N such that for all k >. k (x,&) the inequality
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|f (x) -f , ^ x ) | ^ & ; n = 1,... , N ( ^ ) holds. Then for k >/ k (x, &,) ,n n ).T • o
W , N(6 )

|F(x) - F (x ) | =|I: (f (x) - f (x) .̂ max(£, J_ (f (x) - f , ( x ) ) | ) = £. .
•K. ' j u n) A. __ ^ ii n ( .K.

( 7 . 1 U ) Lemma. Let Z be a topological space and A a closed subalgebra (containing 1 )

of C (Z -> K). Then there is a compact 0-dimensional Y such that A ^ C ( Y -^ K).

In particular A has an orthonormal "base consisting of characteristic functions.

Proof. Let (J) : A -^ K be a K-algebra-homomorphism. Then <()(f) £ f (Z) . Indeed

if (b(f) ^ f (z) then one can normalize f such that d)(f) = 1 and sup | f (z ) |= p < 1 .

Hence f-1 is invertible in R contradicting (^( f -1) = 0. We take for Y the set of all

K-algebra-homomorphisms (() : A -> K . The canonical map ; Y ^f '^o11^)* given by

(t (()))),, = 0 ( f ) » is injective and has a closed image. We identify Y with its

compact image T (Y) and regard R as a subalgebra of C(Y -»K). This subalgebra

closed, separates the points of Y and contains 1 .

According to the Stone-Weierstrass theorem (see [4J ) R -^ C(Y -*-K).

Remarks. Combining ( 7 . 1 3 ) and (T. lU) we see that -R" as defined in ( 7 . 1 3 ) has an

orthonormal base IX.^ • --consisting of characteristic functions. Our next step

will be to characterize sets T C X for which the characteristic function X^ belongs

.to R and to find a suitable primitive function for ^ .

( 7 . 1 5 ) Lemma. The characteristic function of a subset T _oJ X C K belongs to R ^_S_

and only if T is both the countable union of closed sets ans the countable inter-

section of open sets.

00 oO
Proof. "^". Write T = U F = / ^ 0 with all F closed and all 0 open. We may sup-
——— n=1 n n=1 n n n

pose 0 3 0 , and F C F , for all n. Let C be a closed and open subset such
n n+1 n n+1 n

that 0 0 C ^ F and let A be the characteristic function of C . Then X isn n n n n n

continuous and /[ = p-lim ^ belongs to R.

"=^". Suppose that X - p-lim f with { f I C C ( X - ^ K ) . Let \^ denote the.

characteristic function of ^t £ X | Jf (t) I = 1 \ = C then C is both closed and

open. Further ^ = p-lim Y . Put 0 = U C, and F = LJ C . Then
- n n ^ ^ < . » ^ - - — V > y» ~oo go k^n K- 7/ n

n 0^ = U F » T.
n=1 n=1
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(7 .16) Example. X = '2 ; T = N and K 3 Q . Then ^-, t R.———— p P tN r

c0
Proof. Suppose that IN = C\ 0 with 0 open for all n. We may assume that

n3"!
0 3 (j Bdn.r^) and r^ ^ r^^ for all n and m.n " m m m

t \ oo oo oo
Put s^ = r' '. Then /^) 0 ^ ^ ^J B(m,s ) = T. In order to establish a

n=1 n n=1 m=n ra

contradiction we will show that T is uncountable. We may assume that s ^ s . ,m m+i

and 1,.. . ,m-1 ^ B(m,s ) for all m. The map, which assigns to x 0 T the subset
(n C IN | x C B(n,s ) ( , is injective since this subset is infinite and lim s = 0.I ' n ' n

Further we note that every sphere B(m,s ) contains infinitely many spheres
B(n,s ) with n > m» For each m we choose a bijection (() of N onto fci € (Nfj n ^ m and
B(n,s ) C B(m,s ){ • Now we are ready to make an injective map T ; (N ——>-T. Givenn m J '

f : IN ->'(N we make a sequence of spheres B(m,,s ) as follows :
I\.

m^fd). m^^(f(2)),....^ =^(f(k))

Define T (f) = 0 B(m. ,s ). It follows easily that t is injective and hence T
^kis uncountable.

( T . 1 7 ) Lemma. Let T be a subset of X such that ^ C R. There exists

F : X -^ K with F* = ^ and | F(y) - F(x) - (y-x)^(x).| < | y-x | for all x.y C x

and | lF ( l ^ 1.

Proof.. As in ( 7 . 1 5 ) we put ^m = P-l1"! Xn where (c I is a collection of open and•——~•——"••" j. ^ i n»n
closed sets. Put 0 = U C, , F = 0 C, , X = 0 \ F open and ^ X denotes itsn , ^ . k n , . k n n n nk^ n k^ n
boundary. Further T = Q O = OF and F»X = 0.n n n

00 00

Then ^ = X - ^ L ^ C - tc ) ^C + S: (^ C \ C - X c \ C )
1 '1 n=1 n+1 "n 1 n=1 n+1 v n n' n+1

For each term in this infinite sum we construct a primitive function* Write C. as

a disjoint union of spheres B ( a . , / ? . ) and define a primitive function
F_ o f Y , , by F ( t ) = (t-a.) if t 6 B ( a . , r > . ) for some index i, and F ( t ) = 0

' - ' • i - ' i v* — i f i i

otherwise.
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Write C \C as a disjoint union of spheres B(b.,r.) such that for each j,
1 /? i

(r.) ^ min(- , distance of b. to 3x ). This is meaningful since the setJ n j n

C \C is contained in X . Define a primitive function F \ - of "y
n+1 n n + i ^ n

^y F v ^ (t) = 0 if t ^.C \ C and F . (t) = (t-b.) if t 6 B(b.,r.).
n+1 x n n+1 n J <] 3

We construct in the same way F \ ^ , here also C \ C ^X . W e claim that
^ ^"n+l n n+1 n

F = F + T~ (F \ - F \ ) has the required properties.
°1 n=1 ^l^n Wn+l

First of all this sum is uniformly convergent since

^C \C 1 1 ^ n2 and 1 1 ^ \ C 1 1 ^ ^ • The inequality
n+1 \ n n N n+1 n

JF(y) - F(x) - (y-x)^ (x)[^|y-x| follows directly from the inequality

f(y-a)^^(y) - (x-a)^^(x) - (y-x) ̂  p(x)| 4 |y-x| where B = B (a , ^ ) is any sphere.

We want to show F'( t) = ^ (t). Let t ^ X then this is equivalent to

G = [ ( F v - F \ ^ ) satisfies G'd) = 0. We consider two cases :
n^k n+1\ 'n n' n+1

^ —
(a) t ^ S X . Then t 0 X for some k and,for small h also,t+h ^ X .

n=1 n u k

Since G has support in X- one has G(t+h) = G(t) ^ 0.

00 «
(b) t G T_ X , then 1C f\ ^X and t € X for some k.

n^T n n ^ k n k

Choose h with t+h C X. Then - (G( t+h) - G ( t ) ) = -G(t+h)^since G has support

in X. . If for some n >/ k the term F., v - (t+h) i- 0 then t+h C C A C and so
K ^l^n n+1 n

t+h C B(b^,r.) with r2 ̂  d(b., 3x ) ^ I h | .

Hence IF \ (t+h)| .̂ |h| . The same reasoning holds for F_ v „ (t+h) and
-n+t^n ^^n+t

we find -G(t+h) | ^ |h | . Hence' lim -G(t+h) = 0.
h"^0

Conclusion of the proof of ( 7 . 1 2 ) . Let f C R then f = j"~ X. \.. with lim 'X. = 0
i € I 1 1

and j^ .|i G ij an orthonormal base of R consisting of characteristic functions.

For each \. there exists according to ( 7 . 1 6 ) a primitive function F. such that
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l^(y) - F^ (x ) - (y-x)^(x)|.^ |y-x| . Then F =Z^. F. satisfies F ' ( x ) = f ( x )

for all x C X. Indeed , take & > 0 and put 1(6) = [i C 1 1 | X . | > &] . Since l(^)
is finite there exists 6 ^ 0 such that for all I y-x | ̂  6 and i C l(£) the

inequality I 1. (—— (F. (y) - F . (x ) ) - ^.(x))k £ holds.j- jf A i i i

Then | ̂ (F(y) - F(x - f ( x ) | < ? 6 for | y-x | <. S .

Problem. Does (7 .12) remain valid if the condition f ( X ) is compact is omitted ?
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