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Abstract. — We prove that any Lattès map can be approximated by strictly post-
critically finite rational maps which are not Lattès maps.

Résumé (Perturbations des exemples de Lattès flexibles). — Nous montrons que tout
exemple de Lattès peut être approché par des fractions rationnelles strictement post-
critiquement finies qui ne sont pas des exemples de Lattès.

Introduction

A rational map of degree D ≥ 2 is strictly postcritically finite if the orbit
of each critical point intersects a repelling cycle. Among those, flexible Lattès
maps (the definition is given below) play a special role. The following result
answers a question raised in [4].
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604 X. BUFF & T. GAUTHIER

Theorem. — Every flexible Lattès map can be approximated by strictly postcrit-
ically finite rational maps which are not Lattès maps.

Given D ≥ 2, denote by RatD the space of rational maps of degree D. A
rational map f ∈ RatD has a Julia set Jf which may be defined as the closure
of the set of repelling cycles of f . The Julia set is the support of a measure µf
which may be defined as the unique invariant measure of (maximal) entropy
logD.

The bifurcation locus in RatD is the closure of the set of discontinuity of
the map f 7→ Jf . Laura DeMarco [5] proved that the bifurcation locus is the
support of a positive closed (1, 1)-current Tbif :=dd

cL, where L is the plurisub-
harmonic function which sends a rational map f to its Lyapunov exponent with
respect to µf .

Möbius transformations act by conjugacy on RatD and the quotient space
is an orbifold known as the moduli space MD of rational maps of degree D.
Giovanni Bassanelli and François Berteloot [1] introduced a measure µbif on
this moduli space, which may be obtained by pushing forward T∧(2D−2)

bif .
In [4], the first author and Adam Epstein, using a transversality result in

RatD, proved that the conjugacy class of a strictly postcritically finite map
which is not a flexible Lattès map is in the support of µbif . Since the support
of µbif is closed and since the conjugacy class of a strictly postcritically finite
rational maps which is not a Lattès maps is in this support, our result has the
following consequence.

Corollary 1. — The classes of flexible Lattès maps in MD lie in the support of
the bifurcation measure µbif .

In [7], the second author proved that the support of the bifurcation measure
has maximal Hausdorff dimension, i.e. has dimension 2(2D− 2), and that it is
homogeneous (the support of µbif has maximal dimension in any neighborhood
of its points). Corollary 1 thus yields the following result.

Corollary 2. — Let f ∈ RatD be a flexible Lattès map and let V ⊂ MD be an
open neighborhood of the conjugacy class of f . Then, dimH(supp(µbif) ∩ V ) =

2(2D − 2).

Bassanelli and Berteloot [2] proved that every point in the support of µbif can
be approximated by rational maps having 2D−2 distinct neutral cycles. Their
argument can be adapted to prove that the support of µbif can be approximated
by hyperbolic maps having 2D − 2 distinct attracting cycles (see [3] Section
6.2). By Corollary 1, we have the following result.

Corollary 3. — Any flexible Lattès map f ∈ RatD can be approximated by hy-
perbolic rational maps having 2D − 2 distinct attracting cycles.
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PERTURBATIONS OF FLEXIBLE LATTÈS MAPS 605

The approach for solving this problem was suggested by John Milnor. We
wish to express our gratitude. We also wish to thank the Banff International
Research Station for hosting the workshop “Frontiers in Complex Dynamics
(Celebrating John Milnor’s 80th birthday)” during which we developed our
proof.

1. Flexible Lattès maps

Following Milnor [8], we define a flexible Lattès map of degree D ≥ 2 to be
a rational map f : Ĉ→ Ĉ for which there is a commutative diagram :

C/Λ L //

Θ
��

C/Λ

Θ
��

Ĉ
f

// Ĉ

where

– Λ ⊂ C is a lattice of rank 2;
– T :=C/Λ is the quotient torus;
– L : T 3 τ 7→ aτ+b ∈ T with a ∈ Z, a2 = D, and 2b ∈ Λ/

(
2Λ+(a−1)Λ

)
;

– Θ : T → Ĉ is a 2-to-1 holomorphic map ramifying at points in Λ/2.

Conjugating L with an affine map if necessary, we may assume Λ = Z⊕ γZ
where γ is a complex number in the upper half-plane H and that we are in one
of the following three cases.

– Case 1 : a is even. In that case L(τ) = aτ .
– Case 2 : a is odd and 2b = 0 ∈ Λ/(2Λ). In that case L(τ) = aτ .
– Case 3 : a is odd and 2b 6= 0 ∈ Λ/(2Λ). In that case we may choose γ so

that L(τ) = aτ + γ+1
2 .

In addition, conjugating f with a Möbius transformation, we may assume that
Θ(0) = 0, Θ

(
γ+1

2

)
=∞ and Θ

(
1
2

)
= 1.

In the rest of the article, the lattice Λ will be of the form Λγ := Z⊕γZ, where
γ is a complex number which is allowed to vary in the upper half-plane H of
complex numbers with positive imaginary part. We shall denote by Θγ : T γ →
Ĉ the degree 2 covering map which ramifies at the points in Λ/2, normalized
by the conditions:

Θγ(0) = 0, Θγ

Å
γ + 1

2

ã
=∞, Θγ

Å
1

2

ã
= 1 and Θγ

(γ
2

)
= w(γ).
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606 X. BUFF & T. GAUTHIER

The function w : H → C − {0} is holomorphic. In order to have a more sym-
metric presentation, we let v : H→ C− {0} be the constant function equal to
1 and note that for all γ ∈ H, v(γ) 6= w(γ).

The derivative of the torus endomorphism Lγ : T γ → T γ will be a fixed
integer a which does not depend on γ. When a = ±2, the critical value set of the
Lattès map fγ : Ĉ→ Ĉ is

{
∞, v(γ), w(γ)

}
and if |a| ≥ 3, the critical value set is{

0,∞, v(γ), w(γ)
}
. In all cases, the postcritical set of fγ is

{
0,∞, v(γ), w(γ)

}
.

More precisely, we will have the following dynamics on the postcritical set :
– Case 1 : all the critical values are mapped to 0 which is a fixed point of
f .

– Case 2 : all the critical values are fixed with multiplier a2.
– Case 3 : the Lattès map permutes the critical value at 0 with that at

infinity. It also permutes the critical value at v(γ) with the critical value
at w(γ). The multiplier of each cycle is a4.

From now on, we assume that we are in one of those three cases, and we consider
the analytic family of Lattès maps

H 3 γ 7→ fγ ∈ RatD,

where RatD is the space of rational maps of degree D. We shall use the notation
f , v, w, . . . in place of fγ , v(γ), w(γ), . . . when γ is assumed to be fixed and
there is no confusion.

2. Estimates for Θ

Lemma 1. — As τ → 0, we have the following expansion

Θ(1/2 + τ) = v + λτ2 + o(τ2) and Θ(γ/2 + τ) = w + µτ2 + o(τ2)

with
λ

v
= − µ

w
6= 0.

Proof. — Since Θ has simple critical points at 1/2 and γ/2, we have an expan-
sion as in the statement with λ 6= 0 and µ 6= 0. Our work consists in proving the
relation between λ/v and µ/w. Let q be the meromorphic quadratic differential
on Ĉ defined by :

q:=
dz2

z(z − v)(z − w)
.

Since q has simple poles and since Θ is totally ramified above the polar set of
q, the quadratic differential Θ∗q is holomorphic on T , whence

Θ∗q = κ · dτ2 with κ ∈ C− {0}.
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PERTURBATIONS OF FLEXIBLE LATTÈS MAPS 607

Let τ tend to 0 and set z = Θ(1/2+τ). Then, z−v ∼ λτ2 and dz2 ∼ 4λ2τ2dτ2.
It follows that,

z ∼ v, z − w ∼ v − w and
dz2

z(z − v)(z − w)
∼ 4λdτ2

v(v − w)
.

This shows that

κ =
4λ

v(v − w)
.

Using the expansion of Θ at γ/2 yields similarly

κ =
4µ

w(w − v)
.

The result now follows easily.

3. Hyperbolic sets

From now on, we let α, α′, β and β′ be rational numbers. We assume that
the denominators of α and β are coprime with a and 2. We let σ and τ be the
points in the torus T defined by

σ:=α+ α′γ and τ :=β + β′γ.

Remark that, as σ and τ have rational coordinates, they are (pre)periodic
under multiplication by a and that σ, τ , aσ and aτ are (pre)periodic under
multiplication by a2. For each integer k ≥ 1, let τk and σk be the points in T
defined by

σk:=
1

2
+

σ

ak
and τk:=

γ

2
+

τ

ak

and let xk and yk be the points in Ĉ defined by

xk:=Θ(σk) and yk:=Θ(τk).

We shall denote by X, Y , and Z the following subsets of Ĉ :

X:=
⋃
k≥1

⋃
n≥0

f◦n(xk), Y :=
⋃
k≥1

⋃
n≥0

f◦n(yk) and Z:=X ∪ Y ∪ {0,∞, v, w}.

Note that Z is an invariant set.

Lemma 2. — There is a neighborhood G of f in RatD and a dynamical holo-
morphic motion φ : G × Z → Ĉ such that for all g ∈ G and all z ∈ Z, we
have

g
(
φ(g, z)

)
= φ

(
g, g(z)

)
.
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608 X. BUFF & T. GAUTHIER

Proof. — Case 1 : a is even. In that case, f◦k maps xk to Θ(σ) and yk to Θ(τ).
Since σ and τ are (pre)periodic under the action of L, the points xk and yk are
(pre)periodic.

Case 2 : a is odd and b = 0. In that case, f◦k maps xk to Θ( 1
2 + σ) and yk

to Θ(γ2 + τ). As L( 1
2 + σ) = 1

2 + aσ and L(γ2 + τ) = γ
2 + aτ and as σ and τ

are (pre)periodic under multiplication by a, the points 1
2 + σ and γ

2 + τ are
(pre)periodic under the action of L, which means that the points xk and yk are
(pre)periodic.

Case 3 : a is odd and b = (γ + 1)/2. In that case, we use that

L◦2
(1

2
+ z
)

=
1

2
+ a2z and L◦2

(γ
2

+ z
)

=
γ

2
+ a2z

for any z ∈ T . If k is even, f◦k maps xk to Θ( 1
2 + σ) and yk to Θ(γ2 + τ).

Since σ and τ are (pre)periodic under multiplication by a2, 1
2 +σ and γ

2 +τ are
(pre)periodic under iteration of L◦2 and the points xk and yk are (pre)periodic.

Now, if k is odd, f◦k maps xk to Θ(γ2 + σ) and yk to Θ( 1
2 + τ). Since

L(γ2 +σ) = 1
2 +aσ and L( 1

2 +τ) = γ
2 +aτ and since aσ and aτ are (pre)periodic

under multiplication by a2, 1
2 +aσ and γ

2 +aτ are (pre)periodic under the action
of L◦2, which implies that the points xk and yk are (pre)periodic.

In all cases, the set Z is closed and each point in Z is (pre)periodic to a
repelling cycle of f . Since the denominators of α and β are coprime with a and
2, the cycles capturing points in X and Y are disjoint from the postcritical set
of f . In particular, Z does not contain critical points. As a consequence, Z is
a hyperbolic invariant compact set (see [10] Theorem 1.2 page 266) and the
result follows (see [9] (1.2) section 2 for a sketch of the proof, or [6] section 2.1
for a proof).

For all g ∈ G, the map φg : z 7→ φ(g, z) is a homeomorphism from Z to
Zg:=φg(Z) which conjugates f : Z → Z to g : Zg → Zg. Every point z ∈ Zg is
(pre)periodic under iteration of g to a repelling cycle of g. For k ≥ 1, we shall
use the notation xk(g):=φg(xk) and yk(g):=φg(yk). As k → +∞, the sequence
xk tends to x∞:=v. We set x∞(g):=φg(v). Similarly, as k → +∞, the sequence
yk tends to y∞:=w. We set y∞(g):=φg(w).
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PERTURBATIONS OF FLEXIBLE LATTÈS MAPS 609

4. A family of perturbations

Let us now restrict to the family t 7→ ft of rational maps of degree D which
is defined for t ∈ C− {−1} by

ft:=ht ◦ f with ht(z) = (1 + t) · z.

Note that f0 = f . This family of perturbations was suggested by Milnor. It
presents the advantage of breaking a minimum number of critical orbit rela-
tions. Indeed, the number of critical values remains unchanged and the points
0 and ∞ remain in the postcritical set, with finite orbit.

More precisely, the critical values of the rational map ft are contained in the
set
{

0,∞, ht(v), ht(w)
}
and for t sufficiently close to 0, the point 0 is either a

repelling fixed point or a repelling periodic point of period 2, and ∞ is either
mapped to a repelling fixed point at 0, or a repelling fixed point, or a repelling
periodic point of period 2. In order to determine for which t the rational map
ft is postcritically finite, it is enough to control the orbit of ht(v) and ht(w).

We will now study the relative motion of the critical values v(ft):=ht(v)

and w(ft):=ht(w) with respect to the points x∞(ft) and y∞(ft). We will use
the notations

v̇:=
dv(ft)

dt

∣∣∣
t=0
∈ TvĈ, ẇ:=

dw(ft)

dt

∣∣∣
t=0
∈ TwĈ,

ẋ∞:=
dx∞(ft)

dt

∣∣∣
t=0
∈ TvĈ, and ẏ∞:=

dy∞(ft)

dt

∣∣∣
t=0
∈ TwĈ.

We shall also use the notation

ḟ :=
dft
dt

∣∣∣
t=0

which is a section of the pullback bundle f?T Ĉ : for all z ∈ Ĉ, ḟ(z) ∈ Tf(z)Ĉ.

Lemma 3. — There is a complex number c 6= 0 such that

ẋ∞ − v̇ = c · v d
dz

and ẏ∞ − ẇ = c · w d

dz
.

Proof. — By construction,

v̇ = v
d

dz
and ẇ = w

d

dz
.

In addition, for all z ∈ Ĉ,

ḟ(z) = f(z)
d

dz
.

Case 1 : a is even. In that case, f maps x∞ = v to 0 which is a fixed point. As t
varies, ft still maps v to 0 and still fixes 0. Thus, x∞ ≡ v and ẋ∞ = 0, whence

ẋ∞ − v̇ = −v̇.
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610 X. BUFF & T. GAUTHIER

Similarly
ẏ∞ − ẇ = −ẇ.

Case 2 : a is odd and b = 0. In that case, f fixes x∞ = v. So, x∞(ft) is the fixed
point of ft which is close to v. Derivating ft

(
x∞(ft)

)
= x∞(ft) with respect

to t, and evaluating at t = 0, we get :

ḟ(v) +Dvf(ẋ∞) = ẋ∞.

Since ḟ(v) = v d
dz = v̇ and Dvf is multiplication by a2, we get

ẋ∞ =
v̇

1− a2

whence

ẋ∞ − v̇ =

Å
1

1− a2
− 1

ã
v̇ =

a2

1− a2
v̇.

Similarly

ẏ∞ − ẇ =
a2

1− a2
ẇ.

Case 3 : a is odd and b = (γ+1)/2. In that case f permutes x∞ = v and y∞ = w.
Derivating ft

(
x∞(ft)

)
= y∞(ft) and ft

(
y∞(ft)

)
= x∞(ft) with respect to t,

and evaluating at t = 0, we get :

(1) ḟ(v) +Dvf(ẋ∞) = ẏ∞ and ḟ(w) +Dwf(ẏ∞) = ẋ∞.

On the one hand ḟ(v) = w d
dz = ẇ and ḟ(w) = v d

dz = v̇. On the other hand,

L

Å
1

2
+ τ

ã
=
γ

2
+ aτ and L

(γ
2

+ τ
)

=
1

2
+ aτ.

Thus,

f
(
v + λτ2 + o(τ2)

)
= w + µa2τ2 + o(τ2) and f

(
w + µτ2 + o(τ2)

)
= v + λa2τ2 + o(τ2)

which implies
λf ′(v) = µa2 and µf ′(w) = λa2.

By Lemma 1, it follows that

Dvf(ẋ∞) =
µa2

λ
ẋ∞ = −a

2w

v
ẋ∞.

Similarly,

Dwf(ẏ∞) = −a
2v

w
ẋ∞.

So, equation (1) yields

ẇ − a2w

v
ẋ∞ = ẏ∞ and v̇ − a2v

w
ẏ∞ = ẋ∞
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which boils down to

ẋ∞ =
1− a2

1− a4
v̇ and ẏ∞ =

1− a2

1− a4
ẇ.

As a consequence

ẋ∞ − v̇ =

Å
1− a2

1− a4
− 1

ã
v̇ = − a2

1 + a2
v̇.

Similarly

ẏ∞ − ẇ = − a2

1 + a2
ẇ.

The Lemma is valid with c = −1 in Case 1, c = a2/(1 − a2) in Case 2 and
c = −a2/(1 + a2) in Case 3.

5. Proof of the Theorem

Let γ0:=x0 + iy0 ∈ H be a point with rational real part x0 and rational
imaginary part y0 which are coprime with a and 2. Set α:=−x0, α′:=1, β:=y0

and β′:=0. We will now allow γ to vary in H. So, σ, τ , v, w, λ, µ, σk, τk, xk,
yk, x∞, y∞ are functions of γ. For example,

σ : H 3 γ 7→ α+ α′γ ∈ H and τ : H 3 γ 7→ β + β′γ ∈ H.

Note that the Möbius transformation σ/τ sends γ0 to i.

We still consider the family of flexible Lattès maps H 3 γ 7→ fγ ∈ RatD and
we introduce the family of perturbed maps

H× (C− {−1}) 3 (γ, t) 7−→ fγ,t:=ht ◦ fγ ∈ RatD with ht(z) = (1 + t) · z.

As in the previous section, we will consider the critical value functions

v : fγ,t 7→ ht ◦ v(γ) and w : fγ,t 7→ ht ◦ w(γ).

The notation v̇, ẇ, ẋ∞, ẏ∞ refers to the derivative with respect to t evaluated
at t = 0. In particular, those are functions of γ ∈ H.

Lemma 4. — There are a neighborhood Γ of γ0 in H, an integer k0 and for
k ≥ k0, holomorphic functions sk : Γ→ C and tk : Γ→ C such that :

– the sequences (sk) and (tk) converge uniformly on Γ to 0,
– xk(fγ,sk(γ)) = v(fγ,sk(γ)), yk(fγ,tk(γ)) = w(fγ,tk(γ)) and
– the sequence (sk/tk) converges uniformly on Γ to −σ2/τ2.
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612 X. BUFF & T. GAUTHIER

Proof. — First, note that as k → +∞, the holomorphic functions xk : H→ Ĉ
and v : H→ Ĉ satisfy

xk − v ∼ λ ·
Å
σk −

1

2

ã2

=
λσ2

a2k
.

Second, let us consider the sequence of functions

Xk:=(γ, u) 7→ a2k ·
(
xk(fγ,u/a2k)− v(fγ,u/a2k)

)
.

Note that as k → +∞,

Xk(γ, u) = a2k ·
(
xk(γ) +

u

a2k
· ẋ∞(γ)− v(γ)− u

a2k
· v̇(γ) + o(1/a2k)

)
= λ(γ)σ2(γ) + u ·

(
ẋ∞(γ)− v̇(γ)

)
+ o(1).

So, as k → +∞, the sequence (Xk) converges uniformly on every compact
subset of H× C to the function

X∞ : (γ, u) 7→ λσ2 + u · (ẋ∞ − v̇).

According to Lemma 3, ẋ∞ − v̇ does not vanish on H. Thus, the function X∞
vanishes along the graph of a holomorphic function u∞ : H→ C which satisfies

u∞ · (ẋ∞ − v̇) = −λσ2.

Since (Xk) converges locally uniformly to X∞, given any neighborhood Γ of γ0

compactly contained in H, there are, for k large enough, holomorphic functions
uk : Γ→ C which satisfy

(∀γ ∈ Γ) Xk
(
γ, uk(γ)

)
= 0,

the sequence uk converging uniformly on Γ to u∞. Now, set

sk:=
uk
a2k

: Γ→ C.

Then the sequence (sk) obviously converges uniformly to 0 on Γ and

xk(fγ,sk(γ)) = v(fγ,sk(γ)) and a2k · sk · (ẋ∞ − v̇) −→
k→+∞

−λσ2.

Similarly, there are, for k large enough, holomorphic functions tk : Γ → C
which converge uniformly on Γ to 0 and satisfy

yk(fγ,tk(γ)) = w(fγ,tk(γ)) and a2k · tk · (ẏ∞ − ẇ) −→
k→+∞

−µτ2.

Those uniform convergences on Γ may be reformulated as

a2k · sk
σ2
−→
k→+∞

− ẋ∞ − v̇

λ
and a2k · tk

τ2
−→
k→+∞

− ẏ∞ − ẇ

µ
.

According to Lemma 1 and Lemma 3,
ẋ∞ − v̇

λ
= − ẏ∞ − ẇ

µ
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are non-vanishing functions. This shows that the sequence (sk/tk) converges
uniformly on Γ to −σ2/τ2.

For k large enough, let sk and tk be the functions provided by Lemma 4. They
are defined and holomorphic near γ0. As k → +∞, the sequence of functions
(1−sk/tk) converges to 1 +σ2/τ2 which has a simple zero at γ0. Therefore, for
k large enough, the function sk/tk takes the value 1 at a point γk close to γ0 :

sk(γk) = tk(γk) with γk −→
k→+∞

γ0.

Let gk ∈ RatD be the rational map

gk:=(1 + rk) · fγk
with rk:=sk(γk) = tk(γk).

Note that rk tends to 0 and that gk converges to fγ0 as k tends to +∞. The criti-
cal values of gk are contained in the set

{
0,∞, (1+rk)v, (1+rk)w

}
(if a = 2, then

0 is not a critical value). By construction, 0 and∞ are (pre)periodic to repelling
cycles. In addition, (1 + rk)v coincides with xk(rk) which is (pre)periodic to a
repelling cycle and (1 + rk)w coincides with yk(rk) which is also (pre)periodic
to a repelling cycle. Thus, gk is strictly postcritically finite but is not a Lattès
map.

We have just proved that fγ0 can be approximated by rational maps gk
which are strictly postcritically finite but which are not Lattès maps. Since
the set of allowable γ0 is dense in the upper-half plane, this shows that any
flexible Lattès map can be approximated by rational maps which are strictly
postcritically finite but which are not Lattès maps.
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