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Abstract. — Using original ideas from J.-B. Bost and S. David, we provide an explicit
comparison between the Theta height and the stable Faltings height of a principally
polarized Abelian variety. We also give as an application an explicit upper bound on
the number of K-rational points of a curve of genus g ≥ 2 under a conjecture of S.
Lang and J. Silverman. We complete the study with a comparison between differential
lattice structures.
Résumé (Hauteur Thêta et hauteur de Faltings.)— On propose dans cet article les
détails d’une preuve de comparaison explicite entre la hauteur Thêta et la hauteur
de Faltings stable d’une variété abélienne principalement polarisée et définie sur un
corps de nombres K. Cette preuve est basée sur les idées de J.-B. Bost et S. David. On
trouvera de plus le calcul d’une borne explicite sur le nombre de points K-rationnels
d’une courbe de genre g ≥ 2 en supposant une conjecture de S. Lang et J. Silverman.
Ce travail est complété par une comparaison entre plusieurs structures de réseaux sur
l’espace tangent en 0.

1. Introduction

Let (A, L) be a principally polarized Abelian variety defined over a number
field K. The aim of the article is to compare the Theta height hΘ(A, L) of
Definition 2.6, and the (stable) Faltings height hF (A) of Definition 2.1. These
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20 F. PAZUKI

two ways of defining the height of an Abelian variety are both of interest, and
the fact that they can be precisely compared can be very helpful. For instance,
several conjectures are formulated with the Faltings height because it does not
depend on the projective embedding of A that you may choose, but one may
fix an ample and symmetric line bundle on A and study the Theta height
associated when one seeks more effectivity (see for example [9] or [28], and
also [27]); let us stress that these ways of defining the height of an Abelian
variety are very natural: the Theta height is a height on the moduli space of
principally polarized Abelian variety and the Faltings height is a height on the
moduli space (stack) of Abelian varieties (without polarization), but with a
metric with logarithmic singularities (see the definitions below and refer to [22]
for the Theta height, [19] and [13] for the Faltings height).

The ideas needed to explicitly compute the constants of comparison between
these heights were given by Bost and David in a letter to Masser and Wüstholz
[5]. Here is the strategy: using the theory of Moret-Bailly-models we express
the Néron-Tate height of a point P ∈ A(K) in terms of the Theta height of P ,
the Faltings height of A and some base point contributions (see Lemma 5.2).
Then we take P = O and we estimate the base point contributions via vector
bundles inclusions and theta functions analysis. We give here the arguments, the
constants and several complements, concerning the Lang-Silverman conjecture
for instance. We also complete this work by giving in Section 6 an explicit
comparison between several differential lattice structures associated to A, see
the end of this introduction.

One should underline that this explicit comparison gives also a direct proof of
the fact that the Faltings height is actually a height (i.e. verifies the Northcott
property), see the Remark 1.4 below for a lower bound. Arguments for proving
that hF is a height can be found in the original article [12] and in [13]. See also
the Theorem 1.1 page 115 of [19] (seminar [32]); the idea is to compactify some
moduli schemes and to compare the stable Faltings height of an Abelian variety
to the projective height (with logarithmic singularities) of the corresponding
point in the moduli space. There is another proof given by Moret-Bailly in
Theorem 3.2 page 233 of [20] using the “formule clef” 1.2 page 190. See also the
Theorem 2.1 given in [4] page 795-04, where the proof relies on some estimates
of the “rayon d’injectivité”.

The author thanks J.-B. Bost and S. David for sharing their ideas, for their
support and helpful comments, A. Chambert-Loir and G. Rémond for their
interest.

We use the notations Sg for the Siegel space and Fg for the fondamental
domain, both defined in §2.1. We add a Theta structure of level r (see §2.3),
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THETA HEIGHT AND FALTINGS HEIGHT 21

where r > 0 is an even integer. With these notations, we get the following
theorem.

Theorem 1.1. — Let A be an Abelian variety of dimension g, defined over

Q, equipped with a principal polarization defined by a symmetric ample line

bundle L on A. Let K be a number field such that A and L may be defined

over K. For any embedding σ : K �→ C, let τσ ∈ Fg such that there exists an

isomorphism between principally polarized complex Abelian varieties Aσ(C) �
Cg/(Zg

+ τσZg
). Then, the following inequalities hold:

m(r, g) ≤ hΘ(A, L)− 1

2
hF (A)− 1

4[K : Q]

�

σ:K�→C
log(det(Im τσ)) ≤ M(r, g) .

Above, m(r, g) and M(r, g) denote constants depending only on the level r and

the dimension g. More precisely, if we take:

m(r, g) = g

ï
1

4
log(4π)− 1

2
r2g

log(r)

ò
,

M(r, g) =
g

4
log(4π) + g log(r) +

g

2
log

Å
2 +

2

3
1
4

2
g3

4

ã
,

then the result holds.

Remark 1.2. — According to the so called Matrix Lemma of Masser (see [17]
page 115 or [18] page 436) there exists a constant C(g) such that under the
hypothesis of the above theorem:

1

[K : Q]

�

σ:K�→C

��� log

�
det(Im τσ)

���� ≤ C(g) log

�
max{hΘ(A, L), 1} + 2

�
.

Using the article [9] page 697 and a few calculations it is possible to prove such
a bound with the explicit constant C(g) =

8g
π (1 + 2g2

log(4g)). See also [14]
Lemma 2.12 page 99 for a similar statement involving the Faltings height.

Thus, we shall establish in § 5.2.1 the following versions of Faltings’ estimate
(see [12]):

Corollary 1.3. — For every integer g ≥ 1 and even integer r ≥ 2, there ex-

ists effectively computable constants C1(g, r), C2(g, r), C3(g, r) depending only

on g and r such that the following holds. Let A be an Abelian variety of di-

mension g defined over Q, equipped with a principal polarisation defined by

some symmetric ample line bundle L on A. Let hΘ = max{hΘ(A, L), 1} and

hF = max{hF (A), 1}. Then, one has:

1.
���hΘ(A, L)− 1

2
hF (A)

��� ≤ C1(g, r) log

�
hΘ + 2

�
,
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22 F. PAZUKI

2.
���hΘ −

1

2
hF

��� ≤ C2(g, r) log

�
min

�
hΘ, hF

�
+ 2

�
,

3.
���hΘ(A, L)− 1

2
h�F (A)

��� ≤ C3(g, r),

where h�F (A) is a modified Faltings height of A, defined in 2.2. More precisely,

the above relations hold with:

C1(g, r) = C3(g, r) = 6r2g
log(r2g

) and C2(g, r) = 1000r2g
(log(r2g

))
5.

Remark 1.4. — For an Abelian variety A of dimension g and level structure r,
the inequality of Theorem 1.1 and the Remark 1.2 give after a short calculation:

hF (A) ≥ −C(g) log C(g) − M(r, g) ,

where M(r, g) =
g
4 log(4π) + g log(r) +

g
2 log

�
2 +

2

3
1
4
2

g3

4

�
and C(g) =

8g
π

�
1 + 2g2

log(4g)
�
. One could expect a better constant, see Bost in [2] page

6 who gives: hF (A) ≥ −g log(2π)/2.

Remark 1.5. — The inequalities (1) and (3) both hold if one replaces
hΘ(A, L), hF (A) and h�F (A) respectively by hΘ = max{hΘ(A, L), 1},
hF = max{hF (A), 1} and h�F = max{h�F (A), 1} in the left hand sides.

Remark 1.6. — One can notice that the bounds are sharper for small r, so
in practice one will often take r = 2 or r = 4.

We now give the example of a difficult conjecture by Lang and Silverman
stated with the Faltings height. It was originally a question by Lang concerning
elliptic curves, and was generalised by Silverman afterwards. As a matter of
fact, if we combine the inequality of this conjecture with the work of David
and Philippon [9] and the work of Rémond [28], we get a new explicit bound
on the number of rational points on curves of genus g ≥ 2, provided that we
can explicitely compare the Faltings height that appears in the conjecture and
the Theta height that appears in the calculations of [9] and [28]. To be concise,
one can say that an explicit Lang-Silverman inequality would give an explicit
upper bound on the number of rational points on a curve of genus g ≥ 2

independant of the height of the Jacobian of the curve (but still depending on
the Mordell-Weil rank of the Jacobian).

First recall the original conjecture of Silverman ([30] page 396):

Conjecture 1.7 (Lang-Silverman version 1). — Let g ≥ 1 be an integer. For

any number field K, there exists a positive constante c(K, g) such that for any

Abelian variety A/K of dimension g, for any ample and symmetric line bundle

L on A and for any point P ∈ A(K) such that Z·P is Zariski-dense, one has:

�hA,L(P ) ≥ c(K, g) max

�
hF (A/K), 1

�
,
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THETA HEIGHT AND FALTINGS HEIGHT 23

where �hA,L(.) is the Néron-Tate height associated to the line bundle L and

hF (A/K) is the (relative) Faltings height of the Abelian variety A/K.

One could read [25] for further remarks. Let us give a slightly different version
of this conjecture. The definition of the modified Faltings height is given in 2.2:

Conjecture 1.8 (Lang-Silverman version 2). — Let g ≥ 1 be an integer. For

any number field K of degree d, there exists two positive constants c1 = c1(d, g)

and c2 = c2(d, g) such that for any Abelian variety A/K of dimension g and

any ample symmetric line bundle L on A, for any point P ∈ A(K), one has:

• either there exists a sub-Abelian variety B ⊂ A, B �= A, of degree

deg(B) ≤ c2 and such that the point P is of order bounded by c2 modulo

B,

• or one has Z·P is Zariski-dense and:

�hA,L(P ) ≥ c1 max

�
h�F (A), 1

�
,

where �hA,L(.) is the Néron-Tate height associated to the line bundle L and

h�F (A) is the (stable) modified Faltings height of the Abelian variety A.

This second version of the conjecture is suggested by different results found
in [8] and [24]. Note that one could also state it with a relative modified Faltings
height (that would be a stronger statement). Now this second version and the
point (3) in Corollary 1.3 give, if we use them in the work of David-Philippon
[9] and Rémond [28] (see infra §5.2.1 for some details):

Proposition 1.9. — Assume Conjecture 1.8. Then for any number field K,

for any curve C/K of genus g ≥ 2 with Jacobian J = Jac(C), one can ex-

plicitely bound the number of K-rational points on C in the way:

Card(C(k)) ≤
�
c̆(d, g)

�1+rk(J/K)
,

where one can take c̆(d, g) = max

�
2c2 , 1 + (12

4
+ g)

212
4
2g+3g

�
g4

+ 2
2g+2g +

1
c1

��
, with c1 and c2 given in Conjecture 1.8.

One can also read [11] for another way of deriving this type of bounds.
Finally, this work also includes in Section 6 a comparison between different
lattice structures on the tangent space at 0 of an Abelian variety. Let A/K be
an Abelian variety, L an ample symmetric line bundle associated to a principal
polarisation. Let r be an even positive integer. By enlarging K, one can assume
that the r2-torsion points are all rational over K. We let π : A → S = Spec( OK)

be a semi-stable model of A, and ε its neutral section. We define the Néron
lattice by N = ε∗Ω1

A/S . The big Shimura lattice is defined as follows: let
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24 F. PAZUKI

θ ∈ Γ(A, L)\{0} and Γ, ϕx, etc. be as in Paragraph 2.3. Let θx = ϕx(0). The
family (θx)x∈Γ is a base over K of Γ(A, L⊗r2

). Then the big Shimura lattice is:

Sh =

�

(x,x�)∈Γ2

θx(0) �=0

OKd
�θx�

θx

�
(0) .

The comparison between these two structures is of interest in transcendence
theory, see for example [29], [7] page 134 or [18] from page 120. We use δ(., .)
for the distance on lattices defined in 6.2.1. Then we find in Section 6, among
other results, the following theorem:

Theorem 1.10. — Let g ≥ 1 and r > 0 an even integer. There exists a con-

stant c(g, r) > 0 such that for any triple (A, L, r) with A of dimension g, for

any associated MB(1) number field K, one has:

δ(N , Sh) ≤
�
1 + 2c(g, r)

�
min{hΘ, hF } ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr2
g4

) + 4r2g
, where C2 is

given in Corollary 1.3.

2. Definitions

2.1. Basic notations. — Let us first introduce the following notations. If A is an
Abelian variety defined over a number field K, or, more generally an Abelian
scheme over a base scheme S, we shall denote for any n in Z by [n]:

[n] : A −→ A ,

the group scheme morphism defined by the multiplication by n, and when
n > 0, by An its kernel; for any x ∈ A(K) (respectively A(S)), we shall denote
by tx the morphism of K-variety (respectively of scheme):

tx : A −→ A ,

defined by the translation by x.
Since we shall also make an extensive use of the classical theory of theta

functions (essentially to evaluate various analytic invariants), we also recall a
few basic definitions here involving the standard Riemann theta function. Let
g be an integer g ≥ 1. We shall denote by Sg the Siegel upper half space, i. e.

the space of g× g symmetric matrices with entries in C, whose imaginary part
are positive definite. Let z = x + iy ∈ Cg and τ = X + iY ∈ Sg (in all this
paper, it will be implicitly assumed that such an expansion implies that x, y,
X, Y all have real entries). Also, unless otherwise specified, it will be assumed

(1) See Definition 3.2.
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that vectors in Cg have column entries. The classical Riemann theta function
is then:

θ(τ, z) =

�

n∈Zg

exp
�
iπtn.τ.n + 2iπtn.z

�
.

For m1, m2 ∈ Rg we shall also introduce after Riemann, Jacobi, Igusa, the
theta functions with characteristics defined by:

θ(m1,m2)(τ, z) =

�

n∈Zg

exp
�
iπt

(n + m1).τ.(n + m1) + 2iπt
(n + m1).(z + m2)

�
.

These functions will be equipped with the following norm (made invariant
with respect to the action of the symplectic group):

�θ�(τ, z) = det(Y )
1
4 exp

�
−πty.Y −1.y

�
|θ(τ, z)| ,

and:
�θ(m1,m2)�(τ, 0) = det(Y )

1
4

��θ(m1,m2)(τ, 0)
�� .

The above norm can similarly be defined for any z ∈ Cg, but we shall only
need it for z = 0. It should be also noted that θ(0,0)(τ, z) = θ(τ, z).

Let us denote by Fg the usual fundamental domain of Sg (cf. [16], V. 4.).
Recall that it is characterized by the following properties:
S. 1. If τ ∈ Fg, then for every γ ∈ Sp2g(Z), one has det(Im(γ.τ)) ≤ det(Im τ),

where if γ =

�
α β

λ µ

�
, γ.τ = (ατ + β)(λτ + µ)

−1.

S. 2. If τ = (τi,j)1≤i,j≤g ∈ Fg, then:

∀(i, j) ∈ {1, . . . , g}2 , |Re(τi,j)| ≤
1

2
.

S. 3. If τ ∈ Fg,
• ∀k ∈ {1, . . . , g} and ∀ξ ∈ Zg, (ξk, . . . , ξg) = 1, one has tξ. Im(τ).ξ ≥

Im(τk,k).
• ∀k ∈ {1, . . . , g − 1}, one has Im(τk,k+1) ≥ 0.

Finally, we shall also make use of the following notations for projec-
tive spaces. Assume that E is a vector bundle over some Noetherian
scheme S, we shall denote by P(E) the scheme Proj(Sym(Ě)) (where(2)

Sym(Ě) =
�

d>0 Sd
(Ě) is the symmetric algebra of Ě). This is nothing but

P( E), where E is the sheaf of sections of the dual bundle of E, in Grothendieck’s
notations (see e.g. [15], page 162). The canonical quotient line bundle will be
denoted by OE(1).

(2) The symbol Ě stands for the dual of E.
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26 F. PAZUKI

2.2. The Faltings height. — Let A be an Abelian variety defined over Q, of
dimension g (g ≥ 1), and K a number field over which A is rational and
semi-stable. Put S = Spec( OK), where OK is the ring of integers of K. Let
π : A −→ S be a semi-stable model of A over S. We shall denote by ε the zero
section of π, so ε : S −→ A and by ω A/S the sheaf of maximal exterior powers
of the sheaf of relative differentials:

ω A/S := ε�
Ω

g
A/S � π�Ω

g
A/S .

For any embedding σ of K in C, the corresponding line bundle:

ω A/S,σ = ω A/S ⊗ OK ,σ C � H0
(Aσ(C),Ωg

Aσ
(C))

can be equipped with a natural L2-metric �.�σ defined by:

�α�2σ =
ig

2

(2π)g

�

Aσ(C)
α ∧ α

(note that we follow here the normalization chosen by Deligne, in [10] or [4]
page 795-04).

The OK-module of rank one ω A/S , together with the Hermitian norms �.�σ

at infinity defines an Hermitian line bundle ω A/S over S, which has a well
defined Arakelov degree �deg(ω A/S). Recall that for any Hermitian line bundle
E over S, the Arakelov degree of E is defined as:

�deg( E) = log Card ( E/ OKs)−
�

σ : K�→C
log �s�σ ,

where s is any non zero section of E (which does not depend on the choice of s
in view of the product formula). More generally, when E is an Hermitian vector
bundle over S, one defines its Arakelov degree as:

�deg( E) = �deg(det( E))

(where the metrics on det( E) at the archimedean places are those induced by
the metrics of E).

We now give the definition of the Faltings height that one finds in [12] page
354.

Definition 2.1. — The normalized stable Faltings height of A is defined as:

hF (A) :=
1

[K : Q]

�deg(ω A/S) .

This height only depends on the Q-isomorphism class of A. It is also called
the differential height in [20]. To see that it is really a height, see for instance
[12] Satz 1, page 356 and 357. We will also define a modified Faltings height
for polarized Abelian varieties, very useful in some applications.

tome 140 – 2012 – no 1



THETA HEIGHT AND FALTINGS HEIGHT 27

Definition 2.2. — Let A be an Abelian variety. If A is principally polarized,
then for every embedding σ : K �→ C, choose τσ ∈ Fg associated with Aσ(C).
The normalized stable modified Faltings height of A is defined as follows:

h�F (A) := hF (A) +
1

2[K : Q]

�

σ:K�→C
log(det(Im τσ)) .

If A is equipped with an ample symmetric line bundle L, choose an isogeny
of minimal degree ϕ : A → A0 where A0 is principally polarized. For any
σ : K �→ C let τσ,A0 ∈ Fg denote the period matrix associated with A0,σ(C).
Then take:

h�F (A) := hF (A) +
1

2[K : Q]

�

σ:K�→C
log(det(Im τσ,A0)) +

1

2
log(deg ϕ) .

Remark 2.3. — In the situation of isogeneous Abelian varieties ϕ : A → A0,
the Corollary 2.1.4 of Raynaud [26] gives hF (A0) ≤ hF (A) +

1
2 log(deg ϕ), see

also [12], Lemma 5 page 358. Hence h�F (A0) ≤ h�F (A).

2.3. Theta structures and Theta height

2.3.1. Isomorphisms of line bundles. — Let us assume we are given the fol-
lowing data.

– Let K be any field of characteristic zero;
– Let A be an Abelian variety of dimension g defined over K;
– Let L be a symmetric ample line bundle on A, rigidified at the origin,

which defines a principal polarisation on A;
– Let r > 0 be an even integer.

We shall furthermore assume (by enlarging the base field K if needed) that
all the torsion points of order r2 of A are rational over K. For any positive
integer n, let us define An(K) the set of K-rational torsion points of order n.

Recall that there is a unique isomorphism j (since L is symmetric, see e.g.

[1], Corollary 3. 6, page 34):

j : [r]�L →∼ L⊗r2

,

compatible with the rigidification of L. This implies that for any x ∈ Ar(K),
there is a canonical isomorphism:

ix : t�xL⊗r2

→∼ L⊗r2

.

Indeed, we have:

t�xL⊗r2 j−1

� t�x([r]�L) � ([r] ◦ tx)
�L � [r]�L

j
� L⊗r2

.
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28 F. PAZUKI

These isomorphisms (ix)x∈Ar(K) are compatible, namely, for any (x, y) ∈
Ar(K)

2, the composite map:

(1) t�x+yL⊗r2

� t�x
Ä
t�yL⊗r2ä t�

xiy� t�xL⊗r2 ix� L⊗r2

coincides with ix+y.
As a matter of fact, for any x ∈ Ar2(K), there is still an isomorphism:

ix : t�xL⊗r2

→∼ L⊗r2

,

see for example [1], Lemma 4. 7 (c), page 38.
Moreover, these ix with x ∈ Ar2(K) may be chosen in such a way that for

any (x, y) ∈ Ar2(K)
2, the map (1) coincides with ix+y up to a multiplication by

some r2-th roots of unity. Any such choice of the ix’s will be called a good choice.
If (i�x)x∈Ar2 (K) is another good choice, there exists a system (λx)x∈Ar2 (K) of
r4-th roots of unity in K (the r4-th roots of unity are K-rational by the Weil-
pairing properties, see for example Corollary 8.1.1 page 98 of [31]) such that
for any x ∈ Ar2(K), we have i�x = λxix.

All these remarks easily follow from the theorem of the cube and are im-
mediate consequences of Mumford’s theory of theta structures (note that any
theta structure on L⊗r2

induces a good choice of the ix’s). See for instance [22]
and [23].

2.3.2. Bases for Γ(A, L⊗r2
). — Let us suppose from now on that a good choice

for the (ix) has been made. For any x ∈ Ar2(K) let:

ϕx : Γ(A, L) −→ Γ(A, L⊗r2

)

s �−→ (ix ◦ t�x ◦ j ◦ [r]�)s .

It is an injective morphism from the K-line Γ(A, L) into the K-vector space
Γ(A, L⊗r2

) of dimension r2g. We have the following lemma:

Lemma 2.4. — For any x, x� ∈ Ar2(K), such that y = x − x� ∈ Ar(K) there

exists a r4
-th root of unity µ = µy in K such that ϕx� = µϕx.

Proof. — One just need to notice that (i�x) := (ix�) is also a good choice, then
apply the remarks of §2.3.1.

Let now Γ be any set of representatives in Ar2(K) of Ar2(K)/Ar(K). We
have the following:

Proposition 2.5. — The map:

ϕ : Γ(A, L)
Γ −→ Γ(A, L⊗r2

)

(sx)x∈Γ �−→
�

x∈Γ

ϕx(sx) ,
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THETA HEIGHT AND FALTINGS HEIGHT 29

is an isomorphism of K-vector spaces.

Proof. — This follows for instance from Mumford’s theory of theta structures
(see [22] or [9]). Indeed, the image of ϕ is non zero and invariant under the
irreducible projective representation of the group K(L⊗r2

) = Ar2(K).
Finally, any bijection Γ �

�
1, . . . , r2g

�
provides an isomorphism:

Γ(A, L)
⊕r2g ∼−→ Γ(A, L⊗r2

) ,

and therefore, an isomorphism:

(2) P(Γ(A, L⊗r2

)) � Pr2g−1
K .

The various isomorphisms (2) obtained by this construction for various
choices of the rigidification of L at the origin, of the coordinate system
(ix)x∈Ar2 (K), of Γ and of the bijection Γ � {1, . . . , r2g} coincide up to the
action of an element of the finite group:

G = Sr2g � µr4(K) ⊂ GLr2g (K)

(note that above the S denotes the group of permutations and not Siegel’s
upper half space). See [1] page 168 and [9] page 654 for more details.

2.3.3. Theta embeddings. — The line bundle L⊗r2
is very ample on A (since

r2 ≥ 4 > 3). Therefore, it defines an embedding:

A −→ P(Γ(A, L⊗r2

)) ,

hence, by composition, with the map (2), an embedding of K-varieties:

(3) Θ : A −→ Pr2g−1
K .

All these constructions are clearly compatible with extensions of the base
field K (and in particular with automorphisms of K).

Also observe that if L� is another symmetric ample line bundle on A which
defines the same (principal) polarisation as L, then the Θ-embeddings of A into
Pr2g−1

K associated to L and L� respectively coincide up to the projective action
of the finite group G defined above. See for example [9] page 654.

In fact the point Θ(0) ∈ Pr2g−1
(K) determines up to some finite ambiguity

the K-isomorphism class of the Abelian variety A equipped with the polarisa-
tion defined by L. Indeed, Θ(A) can be defined by quadratic equations whose
coefficients are functions of the projective coordinates of Θ(0), which gives the
Q-isomorphism class of A but one could have two Abelian varieties isomorphic
over Q that are not isomorphic over K. See [22] and [23].
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2.3.4. Theta height. — For a projective point P ∈ PN
(Q), we denote by h(P )

the l2-logarithmic Weil height defined by means of the usual euclidean (or
Hermitian l2) norms at the infinite places. It is the height with respect to O(1)

equipped with the Fubini-Study metric, i.e. (as in our situation N = r2g − 1)
for P ∈ Pr2g−1

(Q) it is given by the Arakelov degree h(P ) = �degP ∗ O(1)F.S. of
the projective point P .

Definition 2.6. — Let (A, L) be a principally polarized Abelian variety de-
fined over Q, of dimension g, with L ample and symmetric. Let Θ be the
projective embedding described in (3). The Theta height of A with respect to
L is then defined as:

hΘ(A, L) := h(Θ(0)).

By the preceeding discussion, hΘ(A, L) depends only on the Q-isomorphism
class of A polarized by L, and defines a height on the set of such isomorphism
classes; namely, it is bounded below (by 0) and there is only a finite set, up
to Q-isomorphism of pairs (A, L), with bounded height which may be defined
over a number field of bounded degree.

Consider then K = C. Let us fix an homology basis. Let us also fix any
embedding of Q in C. Then (see for example [1] page 213), there exists an
element τ in Sg and a point z0 ∈ Cg such that A(C) and LC may be identified
with the complex torus Cg/(Zg

+ τZg
) and O(Θτ + [z0]) respectively, where:

Θτ = {[z] ∈ Cg/(Zg
+ τZg

), θ(τ, z) = 0}

is the divisor defined by the Riemann theta function.
The line bundle L⊗r2

is very ample and the classical Theta Nullwerte of the
associated embedding can be chosen as the r2g complex numbers:

θ(m1,m2)(τ, 0), m1, m2 ∈
ß

0,
1

r
, . . . ,

r − 1

r

™g

.

Note that certain authors (for instance Mumford) rather consider the
θ(m,0)(r

2τ, 0) where m ∈ 1
r2 Zg/Zg. We shall also make use of this latter

coordinate system, but generally select the former. They do not all vanish
(see e.g. [16], page 168), and their quotients all belong to Q since A is defined
over Q (see e.g. [16], page 170). Hence, they define some point in Pr2g−1

(Q).
The normalized logarithmic Weil height of this point is by definition the theta
height hΘ(A, L) of the pair (A, L). Indeed, this height does not depend neither
on the choice of the embedding Q �→ C, nor on the choices of τ , z0. It only
depends on the Q-isomorphism class of the Abelian variety (principally) polar-
ized by L (see infra § 2.3). The point Θ(0) is easily seen to have as projective
coordinates the family of Theta Nullwerte

�
θ(m1,m2)(τ, 0)

�
(m1,m2)∈{0, 1

r ,..., r−1
r }2g

(use the description of the sections of O(Θτ ) and of O(r2
Θτ ) in terms of theta
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functions). This implies that when A is defined over Q, the theta height is also
given by the height of these Nullwerte.

3. Arakelov geometry of Abelian varieties

In this section, we recall a few basic facts concerning the Arakelov geometry
of Abelian varieties, due essentially to Moret-Bailly (see [20] and [21]). They
already appear in the present form in [3], § 4. 2, to which we shall refer for
proofs and references.

3.1. Definitions. — Let K be a number field, OK its ring of integers, and
π : A −→ Spec( OK) a semi-stable group scheme, i. e. a smooth commuta-
tive group scheme of finite type and separated over Spec( OK), such that the
components of its fibers are extensions of Abelian varieties by tori (observe that
these fibers are not necessarily connected). We shall say that an Hermitian line
bundle L on A is cubist if there exists a cubist structure, in the sense of [20],
I. 2. 4. 5, on the Gm-torsor over A defined by L which, with the notations of
loc. cit., is defined by a section τ of D3( L) of norm 1, when D3( L) is equipped
with the Hermitian structure deduced from the one on L. In other words, if we
denote by:

pi : L3
:= L × OK

L × OK
L −→ L , i = 1, 2, 3

the projections on the three factors, by:

pI : A3 −→ A

the morphism which sends a geometric point (x1, x2, x3) to
�

i∈I xi, for any
non empty subset I of {1, 2, 3}, and by O A3 the trivial Hermitian line bundle
( O A3 , �.�) defined by �1� = 1, then, an Hermitian line bundle L over A is
cubist if and only if there exists an isometric isomorphism:

(4) D3( L) :=

�

I⊂{1,2,3},I �=∅

Ä
p�

I L
ä⊗(−1)#I

∼−→ O A3

of Hermitian line bundles over A3 which satisfies suitable symmetry and cocycle
conditions (cf. [20], I. 2. 4. 5., (i) and (iii)). The relation (4) implies that, if
ε : Spec( OK) −→ A denotes the zero section,

ε� L � OSpec( OK) ,

and also that if AK is an Abelian variety, the (1, 1) form c1( L) is translation
invariant on each of the complex tori Aσ(C), for σ : K �→ C. Conversely, when
A is an Abelian scheme over OK , one easily checks that these last two properties
characterize cubist Hermitian line bundles over A.
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Let π : A −→ Spec( OK) be a semi-stable group scheme whose generic fiber
AK is an Abelian variety. For any line bundle M on A, the direct image π� M
is coherent (see [20], Lemma VI, I. 4. 2) and torsion free, hence locally free. If
LK is a cubist Hermitian line bundle on A and if LK is ample on AK , then
L is ample on A (see [26], Theorem VIII. 2, and [20], Proposition VI. 2. 1)
and c1( L) is strictly positive on A(C) (indeed, it is tranlation invariant on
each component of A(C) and cohomologous to a strictly positive (1, 1) form.
Therefore, we may define π�( L) as the Hermitian vector bundle whose rank is:

ρ( LQ) :=
1

g!
c1( LQ)

g

on Spec( OK) consisting of π�( L) endowed with the Hermitian structure defined
by the L2-metric �.� associated to the metric on L and the normalized Haar
measures on the complex tori Aσ(C). In other words, for any section s ∈ π� L⊗σ

C � H
2
(Aσ, Lσ), we let:

�s�2σ =

�

Aσ(C)
�s(x)�2

L
dµ(x) ,

where dµ denotes the normalized Haar measure on Aσ(C). It corresponds to
the norm given in 2.2, because the measure is normalized.

Definition 3.1. — Let A be an Abelian variety over Q, L an ample symmetric
line bundle over A and F a finite subset of A(Q). We define a MB-model of
(A, L, F ) over a number field K in Q as the data consisting of:

– a semi-stable group scheme π : A −→ Spec( OK),
– an isomorphism i : A →∼ AQ of Abelian varieties over Q,
– a cubist Hermitian line bundle L on A,
– an isomorphism ϕ as in 2.5.
– for any P ∈ F , a section εP : Spec( OK) −→ A of the map π, such that the

attached geometric point namely εP,Q ∈ A(Q) coincides with the point
i(P ),

which satisfy the following condition: there exists a subscheme K of A, flat and
finite over Spec( OK), such that i−1

(KQ) coincides with the Mumford group
K(L⊗2

), namely the finite algebraic subgroup of A whose rational points x
over Q are characterized by the existence of an isomorphism of line bundles on
A:

t�xL⊗2 � L⊗2 .

Definition 3.2. — Given a triple (A, L, r) with A an Abelian variety over
Q and L a symmetric ample line bundle, r > 0 an even integer, we say that
a number field K is MB if there exists a MB-model of the type (π : A −→
Spec( OK), i, L, ϕ, (εP )P∈Ar2 ) rational over K.
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Remark 3.3. — One can find MB number fields using for example the semi-
stable reduction theorem (confer Moret-Bailly in [20] Theorem 3.5 page 58).

3.2. Properties of MB-models. — The main properties of MB-models we shall
use in the proof of Theorem 1.1 are essentially due to Moret-Bailly [20] and
[21]. See also Breen [6] and Mumford [22]. They may be summarized as follows:

Theorem 3.4. — Let A be an Abelian variety of dimension g over Q, L a

symmetric ample line bundle on A, and F a finite subset of A(Q). We have the

following properties:

(i) Existence. For any number field K0, there exist a number field K con-

taining K0 and a MB-model (π : A −→ Spec( OK), i, L, ϕ, (εP )P∈F ) for

the data (A, L, F ).

(ii) Néron-Tate heights. For any MB-model as in (i) and for any P ∈ F , the

normalized height [K : Q]
−1�deg(ε�

P L) coincides with the value at P of

the normalized logarithmic Néron-Tate height attached to the line bundle

L and denoted �hL(P ).

(iii) Independence of MB-models. For any two MB-models

(π : A −→ Spec( OK), i, L, ϕ, (εP )P∈F )

and

(π� : A −→ Spec( OK), i�, L �, ϕ�, (ε�P )P∈F )

of (A, L, F ) over a number field K, the canonical isomorphisms defined

by i, ϕ, i� and ϕ�:

(π� L)Q � H
0
(A, L) � (π�� L)

�
Q

and

(ε�
P L)Q � L|P � (ε�P

� L �)Q (∀P ∈ F )

extend to isometric isomorphisms of Hermitian line bundles over the base

Spec( OK):

π�( L) � π��( L �)
and

εP
�
( L) � ε�P

�
( L �) .

(iv) Compatibility with extensions of scalars. Let

(π : A −→ Spec( OK), i, L, ϕ, (εP )P∈F )

be a MB-model over some number field K, and let K �
be some other

number field such that K ⊂ K � ⊂ Q. From this model, through extension

of scalars from OK to OK� , we get a semi-stable group scheme:

π̃ : Ã := A × OK
OK� −→ Spec( OK�) ,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



34 F. PAZUKI

an Hermitian line bundle L̃ on Ã (take the pull-back of L by the first

projection A × OK
OK� −→ A), and sections:

ε̃P := εP ⊗ OK
OK� : Spec( OK�) −→ Ã ,

and the isomorphisms i and ϕ determine isomorphisms:

ĩ : A →∼ ÃQ and ϕ̃ : L →∼ ĩ� LQ .

The 5-tuple (π̃ : Ã −→ Spec( OK�), ĩ, L̃, ϕ̃, (ε̃P )P∈F ) is a MB-model of

(A, L, F ) over K �
. Moreover, if j : Spec( OK�) −→ Spec( OK) denotes the

map defined by the inclusion OK �→ OK� , then the canonical isomorphism:

j�π� L −→ π̃� L̃

defines an isometric isomorphism of Hermitian vector bundles over

Spec( OK�):

j�π� L −→ π̃� L̃ .

(v) Arakelov slope of π� L. For any MB-model as in (i) one has π� L semi-

stable and:

�degπ� L
[K : Q]ρ(L)

= −1

2
hF (A) +

1

4
log

Å
ρ(L)

(2π)g

ã
.

(vi) Base points. For any MB-model as in (i), and any n ∈ N�
, let A[n]

be the

smallest open subgroup scheme of A containing K( L⊗n
Q ). If n is even and

if the closure of K( L⊗n
Q ) in A is finite over Spec( OK), then the global

sections H
0
(A, L⊗n

) generate L⊗n
over A[n]

.

Proof. — For details or references concerning the proof of (i)-(v) see [3],
§ 4. 3. 2. Assertion (vi) follows from [20], VI. 3.4 and VI. 2. 2.

Remark 3.5. — One can observe that if (π : A −→ Spec( OK), i, L, ϕ, (εP )P∈F )

is a MB-model, then (π : A −→ Spec( OK), i, L
⊗r2

, ϕ, (εP )P∈F ) is also a
MB-model.

4. Comparisons of heights

4.1. Intrinsicheightsandprojectiveheightsofintegralpoints. — Let K be a number
field, π : X −→ S := Spec( OK) a flat quasi-projective integral scheme such that
XK is smooth, and L an Hermitian line bundle on X .

For any section P of π, we let as usual:

h L(P ) :=
1

[K : Q]

�degP � L .
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Let F be some Hermitian vector bundle on S such that F ⊂ π� L and such
that LK is generated over XK by its global sections in F K ⊂ H

0
( XK , LK).

The subscheme BF of base points of the linear system F of sections of L is
defined as the closed subscheme of X whose ideal sheaf IB F

is such that the
image of the canonical map:

π� F −→ L
is IB F

. L.
As BF does not meet the generic fiber XK , for any section P of π, the

subscheme P � BF of Spec( OK) is a divisor. We shall denote it:

(5) P � BF =

�

p prime of OK

p�∞

βp( L, F , P )p .

The βp( L, F , P ) are non negative integers; almost all of them vanish. They
have archimedian counterparts, defined as follows; for any embedding σ : K �→
C, we let:

(6) βσ( L, F , P ) := −1

2
log

�
n�

i=1

�ui�2Lσ
(Pσ)

�
,

where (ui)1≤i≤n is any orthonormal basis of F σ, a subspace of H
0
( Xσ, Lσ).

We shall denote by h ˇF
the height on P( F̌ K) attached to the Hermitian line

bundle O ˇF
(1) on the integral model P( F̌ ) of P( F̌ K). More precisely, O ˇF

(1) is
O F̌ (1) equipped with the metric defined by the metric on F and the canonical
epimorphism π�

P( F̌ )
F −→ O F̌ (1). Let ν : ‹X −→ X be the blowing up of BF ,

and let E := ν�
(BF ). It is an effective vertical Cartier divisor on the integral

scheme ‹X . Let us consider the map iK : ‹XK −→ P( F )K .

Proposition 4.1. — For any section P of π : X −→ S, the following equality

holds:

h L(P ) = h F (iK(PK)) +
1

[K : Q]

Ñ
�

p�∞
βp( L, F , P ) log(Np) +

�

σ : K�→C
βσ( L, F , P )

é
.

Proof. — The map iK : ‹XK −→ P( F )K extends uniquely to a morphism
i : ‹X −→ P( F ), by the very definition of a blowing up. Moreover, the canonical
isomorphism of line bundles over XK :

LK � i�K O F̌ (1)

extends to an isometric isomorphism of Hermitian line bundles over X :

(7) ν� L � i� O F̌ (1)⊗ ( O(E), �.�)
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if �.� denotes the Hermitian metric on O(E) defined by:

�u�2σ =

n�

i=1

�ui�2L,σ

on Xσ, for any orthonormal basis (ui)1≤i≤n of F σ (cf. [3], 2. 4 and 2. 5). Let
‹P : S −→ ‹X the section of �π := π◦ν : ‹X −→ S which lifts P : S −→ X (it exists
by the properness of the map ν : ‹X −→ X). We have:

(8) [K : Q]h L(P ) = �degP � L = �deg‹P �ν� L,

and

(9) [K : Q]h ˇF
(PK) = �deg(i ◦ ‹P )

� O F̌ K
(1) = �deg‹P �i� O F̌ K

(1)

(this follows from the definitions of h L and h ˇF
).

On the other hand, the arithmetic line bundle ‹P �
( O(E), �.�) on S is defined

by the arithmetic cycle (
�
p�∞ βp( L, F , P )p,

�
σ|∞ βσ( L, F , P )�.�σ). Indeed,

the multiplicity βp( L, F , P ) defined as the length at p of P � BK , coincides
with the length at p of ‹P �E. This implies:

(10) �deg‹P �
( O(E), �.�) =

�

p�∞
βp( L, F , P ) log(Np) +

�

σ|∞

βσ( L, F , P ).

Together with relation (10), the relations (7), (8) and (9) imply the assertion
of Proposition 4.1, which is thus proved.

We shall also need bounds on the numbers βp( L, F , P ); the following propo-
sition is useful do derive them:

Proposition 4.2. — Let F � be another vector bundle over S such that:

F ⊂ F � ⊂ π� L ,

and let P be any section of π. Then, for any finite prime p, we have:

(11) 0 ≤ βp( L, F �, P ) ≤ βp( L, F , P ).

Moreover, if we further assume that F �K = F K , then we have:

(12)
�

p�∞
mp( F , L, P ) log(Np)−

�

p�∞
mp( F �, L, P ) log(Np) ≤ deg( F �/ F ),

where deg( F �/ F ) := log(# F �/ F ).
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Proof. — If F ⊂ F �, then, obviously, BF � ⊂ BF . This implies the second
inequality of (11). The first comes from the fact that the βp’s are lengths.

Let us now prove (12) when there exists a finite ideal p0 of OK such that
F �/ F � Fp0 . Then, we have:

(13) BF � ∩ π−1
(S − |p0|) = BF ∩ π−1

(S − |p0|),

hence, for every prime p �= p0,

mp( L, F , P ) = mp( L, F �, P ) ,

and the relation (12) amounts to the bound:

βp0( L, F , P ) ≤ βp0( L, F �, P ) + 1 .

Indeed, we are going to show the following inclusion of ideal sheaves:

(14) IB F �
.I Xp0 ⊂ IB F

,

where Xp0 denotes the scheme theoretic fiber of p0 in X (i. e. a vertical Cartier
divisor on X). Let s ∈ F � whose class in F �/ F � Pp0 does not vanish, and let
σ ∈ H

0
( X , L) the corresponding global section of L on X . Choose α ∈ p0\p20.

According to the definition of both BF and BF � , we have the following equality
of subsheaves of L:

IB F
L + O Xσ = IB F �

L .

Moreover, αs ∈ F , therefore, ασ is a section of IB F
. L and:

(15) αIB F �
L ⊂ IB F

L.

This proves that the inclusion (14) holds in a neighbourhood of Xp0 , hence on
X itself by the relation (13).

The general case of the inequality (12) follows from the special case we have
just proven, by considering a maximal strictly increasing chain ( F i)0≤i≤n of
submodules:

F = F 0 � F 1 � · · · � F n = F � ,

and applying the inequality (12) to F = F i−1, F � = F i, for i varying between
1 and n, and adding the inequalities thus obtained. Such a chain exists by the
Jordan-Hölder theorem applied to F �/ F , each quotient F i/ F i−1 is isomorphic
to Fpi for some prime pi of OK by maximality of the chain, and finally, one has
just to remark that:

n�

i=1

log(Npi) = log(# F �/ F ) .

Proposition 4.2 is thus completely established.
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5. Theta embeddings and Arakelov geometry

5.1. Height of points. — As in § 3.2, consider an Abelian variety A of dimension
g defined over Q and L a symmetric ample line bundle over A defining a
principal polarisation of A, together with a strictly positive even integer r.

According to Theorem 3.4, (i), there exists some MB number field K and
some MB-model (π : A −→ Spec( OK), i, L, ϕ, (εx)x∈Ar2 (Q)) of (A, L,Ar2(Q))

such that any point x ∈ Ar2(Q) is rational over K, and extends to some section
of π, which we will still denote by the same letter x.

Let:
j : [r]� LK →∼ L⊗r2

K

be the isomorphism of line bundle over AK defined in Subsection 2.3.1 (since
LK is cubist, it is automatically rigidified), and let:

ix : t�x L⊗r2

K →∼ L⊗r2

K , x ∈ AK,r2(K)

be a good choice of isomorphisms, as in § 2.3.1. Then, we have:

Proposition 5.1. — We have the following properties:

(i) The isomorphisms j and ix extend to isometric isomorphisms of Hermi-

tian line bundles, which we will still denote by the same letters:

j : [r]� L →∼ L
⊗r2

,

and:

ix : t�x L
⊗r2

→∼ L
⊗r2

.

(ii) The maps ϕx and ϕ (see Proposition 2.5) extend to isometric maps of

Hermitian line bundles:

ϕx : π� L −→ π� L
⊗r2

,

and:

ϕ = (ϕx)x∈Γ : (π� L)
Γ −→ π� L

⊗r2

(where (π� L)
Γ

is the direct sum of r2g
-copies of the Hermitian line bundle

π� L).

Proof. — The existence of a cubist structure on L implies (copy the usual
arguments) that j extends as an Hermitian isometric isomorphism between

[r]� L � L
⊗r2

and that there exist isometric Hermitian isomorphisms:

‹ix : t�x L
⊗r2

→∼ L
⊗r2

, x ∈ Ar2( OK) .

For any two points x and y in Ar2( OK), fiix+y ◦ (‹ix ◦ t�x ◦‹iy)
−1 is an isometric

Hermitian automorphism of L
⊗r2

, therefore, the multiplication by some root of
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unity. This implies that each ‹ix coincides with ix up to some root of unity (sim-
ply define λx ∈ K� by ix = λx

‹ix and observe that the map x �−→ [λx] defines
a morphism from the finite Abelian group Ar2(K) to the torsion free group
K�/µ∞(K)). Therefore, ix extends to an isometric Hermitian isomorphism as
claimed. This proves part (i).

Let us now prove part (ii). The fact that the ϕx’s and ϕ extend to maps of
OK-modules follows from the fact that j and ix extend to morphisms of schemes
over A. The fact that these extensions are isometric in turn implies that ϕx

is isometric. Finally, ϕ is isometric since, for any pair (x, x�) ∈ Γ
2, x �= x�,

and any embedding σ : K �→ C, the images of ϕx,σ and ϕx�,σ are orthogonal in

π� L
⊗r2

σ ; this follows for instance (see [9] page 656) from the orthogonality of
the classical theta functions with characteristics θ(m1,m2)(τ, rz), for (m1, m2)

varying in {0, 1
r , . . . , r−1

r }2. This completes the proof of part (ii) and thus of
the Proposition 5.1.

Let now F := (π� L)
Γ. By means of the map ϕ, F may be identified with a

submodule of π� L⊗r2

. Any bijection:

Γ � {1, . . . , r2g} ,

determines an isomorphism:

P( F̌ ) � Pr2g−1
OK

.

Moreover, as O F̌ (1) � π�π� L ⊗ O(1), the usual Weil (logarithmic and abso-
lute) height h and h F verify, for any point P ∈ P( F̌ )(Q) � Pr2g−1

(Q):

h(P ) = h F (P )− 1

[K : Q]

�degπ� L .

Therefore, by Theorem 3.4, (v), we get:

(16) h(P ) = h F (P ) +
1

2
hF (A) +

g

4
log(2π).

Finally, if we apply Proposition 4.1 to the data (A, L
⊗r2

, F ), in place of
( X , L, F ), and if we use (16) and Theorem 3.4, part (ii), and if we observe
that the morphism iK : AK −→ P( F K) coincide with the theta embedding
Θ : AK −→ Pr2g−1

K of Subsection 2.3.3, we get:

Lemma 5.2. — Let (A, L) be a principally polarized Abelian variety over a

number field K, of dimension g and level r, with L symmetric and ample. For
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any section P of π : A −→ Spec( OK), we have:

�hL(P ) = h(Θ(PK))− 1

2
hF (A)− g

4
log(2π)

+
1

[K : Q]

Ñ
�

p�∞
βp( L⊗r2

, F , P ) log(Np) +

�

σ : k�→C
βσ( L, F , P )

é
.

where βp and βσ are defined by the equations (5) and (6).

5.2. Bounds for the contribution of the base points. — Thanks to Theorem 3.4
and to Proposition 4.2, it is easy to bound the contribution of the base points
over finite places. More precisely, we get the:

Proposition 5.3. — For any P ∈ A( OK), the following inequalities hold:

(i) for any prime ideal p (�= 0) of OK one has:

0 ≤ βp( L⊗r2

, π� L⊗r2

, P ) ≤ βp( L⊗r2

, F , P ) ;

(ii) the difference of multiplicities is also bounded as follows:

1

[K : Q]

�

p�∞

�
βp( L⊗r2

, F , P )− βp( L⊗r2

, π� L⊗r2

, P )

�
log(Np) ≤ g

2
r2g

log(r) ;

(iii) Moreover, for any p, if the component (over Fp) of AFp containing PFp
meets(3) the closure in A of AK,r2(K), then:

(17) βp( L⊗r2

, π� L⊗r2

, P ) = 0.

In particular, the relation (17) holds if P is the zero section ε of A.

Proof. — the point (i) follows from relation (11), and the point (ii) from the
relation (12) and from Theorem 3.4 part (v), which shows that:

�deg

�
π� L⊗r2

/ F
�

= �degπ� L
⊗r2

−�deg F = �degπ� L⊗r2

− r2g�degπ� L

= r2g

Å
1

4
log(ρ( L⊗r2

))− 1

4
log(ρ( L))

ã
= r2g 1

4
log(r2g

)

Finally, equation (17) follows from Theorem 3.4, part (vi). Proposition 5.3 is
thus proved.

We now turn to the archimedean counterparts of the βp. They are easily
expressed in terms of the classical theta functions (also compare with [4], Ap-
pendix C). We summarize the estimates we need in:

(3) I.e., if some element x of A( OK)r2 is such that xFp and PFp lie in the same component
of AFp .
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Lemma 5.4. — Let (A, L) be a principally polarized Abelian variety over a

number field K, of dimension g and level r, with L symmetric and ample. Let

P be a point of A( OK) and σ : K �→ C a complex embedding. Let τσ be a point

in Sg (the Siegel space) such that:

(18) Aσ(C) � Cg/(Zg
+ τσZg

)

as principally polarized Abelian varieties, and let z ∈ Cg
be such that [z] ∈

Cg/(Zg
+ τσZg

) is the image of Pσ by the map (18). Then, we have:

(19) βσ( L
⊗r2

, F , P ) = −1

2
log

Ñ
2

g
2

�

e∈ Zr(τσ)

�θ�2(τσ, rz + e)

é
,

where we denote by Zr(τσ) the set
1
r (Zg

+ τσZg
)/(Zg

+ τσZg
).

The right hand side of the equation (19) may be bounded by using the
following estimates which are also of independent interest:

Proposition 5.5. — We use the notations Sg for the Siegel space of princi-

pally polarized Abelian varieties and Fg for the fondamental domain. We have

the following inequalities:

(i) For any τ ∈ Sg,

max
e∈ Zr(τ)

{�θ�2(τ, e)} ≥ (det(Im τ))
1
2 .

(ii) For any τ ∈ Fg, and any z ∈ Cg
, we have:

�θ�2(τ, z) ≤ c(g) (det(Im τ))
1
2 ,

where c(g) denotes a constant which depends only on g. We can take for

instance:

c(g) =

Å
2 +

2

3
1
4

2
g3

4

ãg

.

In particular, for any τ ∈ Fg, one has:

g

4
log(2) ≤ 1

2
log

�
2

g
2

�

e∈ Zr(τ)

�θ�2(τ, e)
�
− 1

4
log(det(Im τ))

≤ 1

2
log c(g) +

g

4
log(2) + g log(r) .

Proof. — The point (i) is equivalent to the assertion:

∀τ ∈ Sg, F (τ) = max
(m1,m1)∈{0, 1

2}2g

���θ(m1,m2)(τ, 0)
��� ≥ 1 .
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This follows from the duplication formula which shows that F (τ) ≥ F (2τ), and
from the observation:

lim
n→∞

θ(2nτ, 0) = 1 ,

compare with [7], § 3. 3 to § 3. 5.
The point (ii) is Lemma 3. 4 of [7], with the explicit constant found in the

work of Graftieaux by combining equation (14) page 101 and equation (17)
page 103 of [14].

5.2.1. Proof of Theorem 1.1. — To complete the proof of Theorem 1.1, it is
now enough to apply Lemma 5.2 and the results of the former section to the
point P = ε, the zero section of π : A −→ Spec( OK). In that way we get the
inequalities with

M(r, g) =
g

4
log(4π) + g log(r) +

1

2
log c(g) ,

and:
m(r, g) =

g

4
log(4π)− g

2
r2g

log(r) .

Applied to an arbitrary section P ∈ A( OK), the above estimates also give
the following comparison between the Weil height h(P ) and the Néron-Tate
height �hL(P ) of the point P :

Theorem 5.6. — Let (A, L) be a principally polarized Abelian variety over a

number field K, of dimension g and level r, with L symmetric and ample. We

denote by τσ the period matrix in the fundamental domain Fg for the archime-

dian place σ. For any point P ∈ A(Q), we have:

�hL(P ) ≥ h(Θ(P ))− 1

2
hF (A)− 1

4[K : Q]

�

σ : K�→C
log(det(Im τσ))− C(r, g) ,

where one can take C(r, g) =
g
4 log(4π) + g log(r) +

g
2 log

Ä
2 +

2
31/4 2

g3/4
ä
.

It should be observed that any point P ∈ A(Q) is integral and extends
to a suitable MB-model; the machinery can then be used, since the degree of
the number field on which the MB-model is defined does not interfere in the
estimates.

To obtain Corollary 1.3 it then suffices to apply Theorem 1.1 for part (1)

and (3) (using Definition 2.2). For part (2), it suffices to use part (1) with
max{hΘ(A, L), 1} and max{hF (A), 1} in the left hand side of the inequality,
plus the following easy lemma:
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Lemma 5.7. — Let a ≥ 1 and b ≥ 1 be real numbers. Suppose that there exists

a number c ≥ 2 such that |a− b| ≤ c log(2 + a) (we will refer to this inequality

by (∗) along the proof). Then we have |a− b| ≤ c̃ log(2 + min{a, b}), where one

can choose c̃ = c log(6 + 2c log(2c)− 2c)/ log(3).

Proof. — Let g(x) = c log(2 + x) − x/2. Then for all x ≥ 1 one has g(x) ≤
g(2c− 2). Thus:

c log(2 + a) ≤ a

2
+ c log(2c)− c + 1 ,

hence using (∗):

a ≤ b + c log(2 + a) ≤ b +
a

2
+ c log(2c)− c + 1 ,

then: a ≤ 2b + 2c log(2c)− 2c + 2. We get in (∗):

|a− b| ≤ c log(2 + a) ≤ c log

�
4 + 2b + 2c log(2c)− 2c

�
.

One can show the inequality, valid for all y ≥ 3 and d ≥ 0:

log(2y + d) ≤ log(6 + d)

log(3)
log(y) .

One gets with y = 2 + b and d = 2c log(2c)− 2c:

|a− b| ≤ c
log(6 + 2c log(2c)− 2c)

log(3)
log(2 + b) .

As log(6 + 2c log(2c)− 2c)/ log(3) ≥ 1, it gives the lemma.

Finally, to get a proof of Proposition 1.9, use Proposition 3.7 page 527 of
Rémond [28] and the explicit bounds of [9] of pages 662 and 665 to complete
the estimate. A similar computation has been done in [24] pages 116-117 in the
case of Jacobians of genus 2 curves.

6. Comparison of differential lattices

We will study in the following several differential lattice structures associated
to an Abelian variety.
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6.1. Integral forms. — We consider Lie(A)
ˇ

= Ω
1
A,0. Given a triple (A, L, r)

with A an Abelian variety, L a symmetric ample line bundle associated to a
principal polarisation and r > 0 an even integer, and given a MB field K for
this triple (see Definition 3.2), we will study the following OK-integral forms of
Ω

1
A,0. We denote by “d” the differential operator, which we normalize such that

for any non-zero sections s1 and s2 we have s⊗2
2 d(s1/s2) integral over OK . See

for instance [14] page 107.

1. The Néron lattice N = ε∗Ω1
A/S .

2. The big Shimura lattice, defined as follows: let θ ∈ Γ(A, L)\{0} and Γ,
ϕx, etc. be as in Paragraph 2.3. Let θx = ϕx(0). The family (θx)x∈Γ is a
base over K of Γ(A, L⊗r2

). Then the big Shimura lattice is:

Sh =

�

(x,x�)∈Γ2

θx(0) �=0

OKd
�θx�

θx

�
(0) .

3. The small Shimura lattice: let x = (x0, ..., xg) ∈ Γ
g+1 such that θx0(0) �= 0

(hence θx0 is even) and such that the differentials
�
d(θxi/θx0)(0)

�

1≤i≤g

is a K-base of Ω
1
A,0. We let then:

Shx =

g�

i=1

OKd
� θxi

θx0

�
(0) .

4. Let K be a MB field for the triple (A, L, r) and

(π : A → Spec( OK), i, L, ϕ, (εx)x∈Ar2 ),

the associated model. We call “abstract Shimura differential” (see [4] page
795-28) the morphism of OK-modules:

Σ : (π∗ L⊗r2

)
⊗2 → ε∗Ω1

A/S .

Lemma 6.1. — Let N and Sh be the lattices defined previously. Then:

1. These lattices only depend on (A, L, r) and K.

2. Let K be a MB field for (A, L, r) and let K �/K be a finite extension. Then

K �
is also MB for (A, L, r). Moreover, if N �

and Sh� are respectively the

OK�-Néron lattice and the OK�-Shimura lattice associated to (A, L, r), we

have the canonical isomorphisms N � � N ⊗ OK
OK� and Sh � Sh ⊗ OK

OK� .

Proof. — Follows from the Definition 3.2. The canonical isomorphism is de-
duced by the commutativity of the following diagram:
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N � ⊗ OK� K � ∼ ��

��

N ⊗ OK
K �

��
Ω

1
A/K�(0)

∼ �� Ω1
A/K(0)⊗K K �.

6.2. Comparison of integral forms

6.2.1. A distance between the lattices on a K-vector space. — Let K be a
number field and V a K-vector space of dimension g. Let us consider the set:

R(V ) =

�
V ⊂ V

��� V sub- OK-module free of finite type generating V over K
�

.

For all ( V 1, V 2) ∈ R(V )
2 we set:

δ( V 1, V 2) =
1

[K : Q]
log Card

�
( V 1 + V 2)/ V 1 ∩ V 2

�
.

Proposition 6.2. — The function δ is a distance on R(V ).

Proof. — We have easily that for any V 1 and V 2 in R(V ), δ( V 1, V 2) =

δ( V 2, V 1). Moreover, if δ( V 1, V 2) = 0, then ( V 1 + V 2)/ V 1 ∩ V 2 = {0}, hence
any element of V 1 is in V 2 and vice versa. Let V 1, V 2 and V 3 be in R(V ),
and v1 ∈ V 1, v3 ∈ V 3. Pick any v2 ∈ V 2, then the equalities of the type
v1 + v3 = v1 + v2 − v2 + v3 give the inclusion:
�
( V 1 + V 3)/ V 1 ∩ V 3

�
⊂

�
( V 1 + V 2)/ V 1 ∩ V 2

�
+

�
( V 2 + V 3)/ V 2 ∩ V 3

�
.

One just needs to bound from above the cardinality of the right hand side to
get the triangular inequality for δ, which is easy.

Remark 6.3. — Suppose V 1 ⊂ V 2. Then [K : Q]δ( V 1, V 2) = log Card( V 2/ V 1)

is just the index of a sublattice.

If K �/K is a finite extension, let V � = V ⊗K K � and let R(V �) denote the
OK� -lattices. We get an injection:

i : R(V ) → R(V �)

V �→ V ⊗ OK
OK� .

Proposition 6.4. — Let δ� be the distance on R(V �) defined as above. Then:

∀( V 1, V 2) ∈ R(V )
2, δ�(i( V 1), i( V 2)) = δ( V 1, V 2) .

Proof. — One just needs to apply [K �
: Q] = [K �

: K][K : Q] in the definition
of δ�.

In this setting, we will now show the following statement:
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Theorem 6.5. — Let g ≥ 1 and r > 0 an even integer. There exists a constant

c(g, r) > 0 such that for any triple (A, L, r) with A of dimension g, for any

associated MB number field K, for any x ∈ Γ defining a small Shimura lattice,

one has:

max

�
δ(N , Sh), δ(N , Shx), δ(N , imΣ)

�
≤ c(g, r) max{1, hΘ(A)} ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr2
g4

) + 4r2g
, where C2 is

given in Corollary 1.3.

Proof. — As we have δ(N , Sh) ≤ δ(N , imΣ) + δ(imΣ, Sh) and δ(N , Shx) ≤
δ(N , Sh) + δ( Shx, Sh), it suffices to upper bound the three quantities
δ(N , imΣ), δ(imΣ, Sh) and δ( Shx, Sh).

We begin by δ(N , imΣ). By definition, one has imΣ ⊂ N , so we are in fact
trying to bound the index of a sublattice. We use the notation N and imΣ

for the lattices considered with the Hermitian structure given by the Riemann
form associated to L. Then we have:

δ(N , imΣ) = �deg(N )−�deg(imΣ) .

We then use the point (v) in Theorem 3.4 to estimate the slope of π∗ L and
the slope inequality of [4] Proposition 4.3 page 795-15 to get:

δ(N , imΣ) ≤ 2hF (A)− 1

2
log

Å
r2g

(2π)g

ã
+

1

[K : Q]

�

σ:K�→C
log �Σ�σ .

Use then the inequality of [4] page 795-29. One can precise the constant denoted
C27 by using Lemma 5.8 page 795-25 combined with the estimate on the “rayon
d’injectivité” of [9], Lemma 6.8 page 698, to get:

1

[K : Q]

�

σ:K�→C
log �Σ�σ ≤

�g

2
log(π−gg!eπr2

g4
)

�
log(2 + hΘ) .

Note that a similar estimate has been obtained in [14] equation (24) page
108, with the Faltings height instead of the Theta height.

We now estimate δ(N , Sh). As explained in [4] page 795-28, one has:

Σ : π∗ L⊗r2

× π∗ L⊗r2

→ π∗ L⊗2r2

⊗ Ω
1
A/K → Ω

1
A/K,0

s1 ⊗ s2 �→ s⊗2
2 d(s1/s2) �→ s⊗2

2 d(s1/s2)|0
Thus we need to clear out the denominators of Sh in exactly the same way
as done in this definition of Σ ; it suffices to multiply by

�
θx(0)

2, where the
product is taken over all x ∈ Γ(A, L⊗r2

) such that θx(0) �= 0. We then roughly
upper bound:

δ(N , Sh) ≤ 2r2ghΘ(A) .
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We finally give the estimation of δ( Shx, Sh). We have Shx ⊂ Sh, so, clearing
out the denominators as above:

δ( Shx, Sh) =
1

[K : Q]
log Card

�
Sh/ Shx

�
≤ 2r2ghΘ(A) .

We can conclude by using Corollary 1.3 to explicitely compare hF (A) and
hΘ(A).

We give the following easy lemma to get the last corollary of Theorem 6.5:

Lemma 6.6. — Let a ≥ 1, b ≥ 1, c > 0 and d ∈ R. If |a − b| ≤ c log(2 +

min{a, b}) and d ≤ a, then:

d ≤ (1 + 2c) min{a, b} .

Proof. — Just write d ≤ a ≤ b + c log(2 + min{a, b}) ≤ b + c log(2 + b) ≤
b + 2cb.

Corollary 6.7. — Let g ≥ 1 and r > 0 an even integer. There exists a

constant c(g, r) > 0 such that for any triple (A, L, r) with A of dimension g,
for any associated MB number field K, for any x ∈ Γ defining a small Shimura

lattice, one has:

max

�
δ(N , Sh), δ(N , Shx), δ(N , imΣ)

�
≤

�
1 + 2c(g, r)

�
min{hΘ, hF } ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr2
g4

) + 4r2g
, where C2 is

given in Corollary 1.3.
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