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ABSTRACT. — Let a > 1 be irrational. Several authors studied the numbers

€™ (a) =inf{|y| : y € Am, y # 0},
where m is a positive integer and A,, denotes the set of all real numbers of the form
y = eoa”™ + e1a™” 1 4+ ...+ e, 10 + €, with restricted integer coefficients |¢;| < m.
The value of ¢!(«) was determined for many particular Pisot numbers and ¢™(a)
for the golden number. In this paper the value of £ () is determined for irrational
numbers «, satisfying a? = aa £ 1 with a positive integer a.

RESUME (Une approzimation des irrationnels quadratiques). — Soit & > 1 un
irrationnel. Plusieurs auteurs ont étudié les nombres

ol m est un entier positif et A,, est ’ensemble de tous les réels de la forme y =
€ + e1a™ L+ 4 ep_1a + €, avec des le;] < m entiers. La valeur de Ve (a) a
été précisée pour beaucoup de nombres de Pisot et £™(«) pour le nombre d’or. Dans

cet article, on détermine £ («) lorsque a est un irrationnel qui satisfait o? =aat1
avec a entier positif.
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36 KOMATSU (T.)

1. Introduction

Let a be a positive real number and an integer m > 1. Denote by A = A,
the set of all real numbers y having at least one representation of the form

y=eo" +ea" "+ +ep1a+ 6y
with some positive integer n and |e;| <m, ¢; € Z (1 =0,1,...,n). Set
() =inf{ly| 1y € Am, y #0}.

Several authors studied the numbers ¢ (a). The value of £! () was determined
for many particular Pisot numbers (see [1], [3], [4], [5], [6], [7], [8]) and £™(«)
for the golden number (see [8]). In this paper the value of £™(«) is determined
for two kinds of irrational numbers:

1
O[:§(CL+ a2+4):[a;a7aa"'] (CLZl) and

1
a= §(a—|—\/a2 —4) =la—-11,a—-21,a—2,...] (a>3).
We shall prove the following two theorems.
THEOREM 1.1. — Let o = L(a+Va?> +4) (a>1). If
aFla—1)<m <o (a—-1)
for some integer k > —1, then
0" (@) = |ara — prl-
THEOREM 1.2. — Leta = i(a+Va®—4) (a>3).
o If for some non-negative integer i,
da—a+1)<m<al(a—2)
then
(o) = |Q2i71a —P2i71|~
o If for some non-negative integer i,
ada—2)<m<a(a—a+1)
then
" (a) = |gaic — pail.

In addition to prove these two theorems, we shall show how to find a rep-
resentation form y = ega™ + ;a1 + -+ + €, _1a + €, which gives {™(a) =
lgkc — prl-
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APPROXIMATION OF QUADRATIC IRRATIONALS 37

2. General sketch
If « is a root of the quadratic equation, then any of the form
o™+ e o™ Mt e, ja+e, (n>2)

can be reduced to the form ga — p for some integers g and p. We can set a > 1.
For, ™(a) =01 0 < o < 1; £™(a) = 1 if &« = 1. Concerning the linear form
ga — p, the following approximation theorem is well-known (see Thm. 5E (ii)
in [10], e.g.).

THEOREM A. — Ifk > 1,0 < ¢ < qx and p/q # pr/ak, /4 # Pk—1/qk—1,
then

lgk—10 — pr—1| < |gov — pl.

Here, pi/qr = [ao; a1, ..., ar] denotes the k-th convergent of the continued
fraction expansion of o, a = [ag; a1, az,...]. Namely,
= —|— — = N
a = agp o ap = o
= ap, + ) an = |lan| (n>1)
Qp41
and
Pk = QkPk—1 + Pk—2 (k>0), p-1=1, p—2 =0,
qk = Okqr—1 + qr—2 (k>0), q-1=0, g2 =1

Therefore, this kind of problems is equivalent to how to find the least m with
lei] <m, e € Z (0 <1i<n),satisfying
ca” + e+ e+ €n = qor — p = E(qra — )
for a fixed integer k. In other words, ™ («) is equal a priori to some |gra — py|
for every m. Namely, for any positive integer m there exists an integer k£ such
that for some y = y_1,¥0,...,Yyx We have
Yy—1=lg1a—p-1l, yo=|gpa—pol, .., Yk =g — prl,

but y # |qr+10 — pr+1| for any y. From the result of van Ravenstein [9], the
integer ¢ satisfying £™(a) = gae — p should be one of the first values

{(_l)n.an/Qn—i-l}Qn—i-l (j=1,2,...),

and the integer p be its counterpart. Notice that larger m becomes, more
choices each ¢; can have. So, always £ (a) < f™+1(a) for every m. If ¢ > g1
then from our decision of m (see (7) below) we could choose some y so that
Y = |qr+10 — pr+1] because

lg|sn—1 + [P|Sn > Qr415n—1 + Prt15n-
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38 KOMATSU (T.)

Hence, it is sufficient to consider the integers g with g, < |g| < qx+1. But, by
Theorem A always |ga — p| > |qra — pg| holds for such ¢’s.
Suppose that « is the larger root of the quadratic equation x? = ax + b.

Here, a,b € Z because both ¢ and p are integers. Notice that z? — ax — b =
(z — a)(xz — ), where

a+ Va2 +4b a—+Va?+4b
a=——— and f=——"—-—,
2 2
satisfying o« + 8 = a, a8 = —b. By a > 1, we have a + b > 1, satisfying
a® + 4b > 0. Put

a" =s,a+t, for n>0.

LEMMA 2.1. — One has
o — ﬂ’ﬂ Cvnfl _ 67171
1 n=——- t,=b—--"—" = bs,_1.
. e ampg
(2) Sn—15; — SnSi—1 = (=b) 'sp_y (i=1,2,...,n).
Proof. — (1) Since the recurrence relation r,, = ar,,—1 + br,_o has the general
solution
(@ = 5" s — e = ")y
Tn = 9
a—03
by using ss = a, s1 =1, to = b and t; = 0 we have
n __ gn n—1 _ an—1
Sp = u and t, = b% = bsy_1.
a—f a—p

(2) Fori=1,2,....,n
Sp—18i — S$nSi—1 = Sn—1(asi—1 + bsi—2) — (asp—1 + bsn_2)si—1
= —b(Spn—25i—1 — Sn—15i—2)
= (_b)Q(Sn—33¢—2 — Sp—28i—-3) = -
= (=b)"""(sp—is1 — Sn—it150)
= (=b)""sp_;.

By using s,, y can be written as a linear form:
="+ 60" M+ et en
= (€0Sp + €18n—1+ +** + €n_2S2 + €n_181)x

+ b(€0Sn—1 + €18n—2 + -+ + €n—281) + €n-
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APPROXIMATION OF QUADRATIC IRRATIONALS 39

Suppose that

(3) €0Sn + €18p—1 + ** + €n—282 + €n—151 = Gk,

(4) beoSn—1 +€18n—2+ -+ € 281) +€n = —pp

for some integer k. Otherwise, we interchange each sign of ¢; (i =0,1,...,n).
We shall find the least integer m (say, m’) which satisfies |e;| < m for all
1=0,1,...,n. By eliminating ¢y we have

b(s2_1 — spsn—2)€1 + b(Sn—15n—2 — SnSn—3)€2

+ o+ b(Sp_152 — 5,51)€n—2 + bSp_1€6n—1 — Sn€n = qEbSH_1 + PrSn-

By Lemma 2.1(2), we obtain

(5) —(=b)" 'sier — (=b)" Psaer — -+ — (=b) sp_2en o

+bsp_1€n—1 — Sp€p = qkan—l + DkSn.-
If ged(a, b) = 1, then we have ged(s;41,bs;) =1 (i > 1), yielding
ged(d" sy, b 2s0, ..., bsp_1, 8,) = 1.

In fact, ged(sa,bs1) = ged(a,b) = 1. Assume that ged(sy,bs,—1) = 1 for
some n. Suppose that, however,

ged(Spn41, bsn) = ged(asy, + bsp—1,bs,) = ¢

with ¢ > 2. Since ¢ | bs,, we have for some divisor of ¢, say ¢; > 1, ¢1 | b
or ¢i | sp. If ¢; | b then by ¢ | sp41 and ¢; 1 @ we have ¢; | s,, yielding
ged(sp,bsp—1) = c1. If ¢1 | s, then by ¢1 | $p41 we have ¢; | bs,—1, yielding
ged(sp, bsp—1) = ¢1, which is the contradiction again.

Therefore, the linear equation (5) is solvable in integers. We shall show the
concrete step to obtain one of solutions in (5) in the following sections. |ey|,
l€n—1], - -, |€1] can be chosen as lexicographically minimal among those giving
() = |qea — pl-

After choosing the integers from €, to €1, €g can be naturally determined as
an integer if ged(a,b) = 1. For, by (3) and (4)

_ Q= (€18p—1+ -+ €n_151) _ TPk — blersn—2+ -+ en281) —€n
Sn bsp—1

€0

Since both of two fractions are integral and ged(sy,, bs,—1) = 1, both of fractions
cannot be the same unless ¢y becomes integral.

We assume that b = £1 in stating two theorems. This assumption guarantees
that €; becomes integral after deciding €, €,—1, ..., €2. Otherwise, €; may not
become integral by the method in this paper.
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40 KOMATSU (T.)

3. Proof of Theorem 1.1

Let b = 1. Since the continued fraction expansion of « is @ = [a;a,a,...],
the sequence (gn,), also satisfies the recurrence relation v, = ar,—1 +1-7,_2,
which appeared in the proof of Lemma 2.1(1), with ¢; = a and ¢o = 1. Hence,
Sn = gn—1 (n >0). Thus, we obtain

qkSn—1 +pk3n = qkqn—2 + dk+19n—1
= Qun—2 + Qt+1(0Gn—2 + Gn—3)
= (aqr+1 + qr)qn—2 + Qrs1Gn—3
= Qk+19n—3 + Qk+2qn-2 = -+~
= Qn+k—290 + Gnt+k—191 = Qqn+k—1 + Qn+k—2 = Gn+k

and

S1+82+ -+ S 1+ Sy =q +q+ -+ Gn-1

1 fa—1  pB"—1
_a—ﬂ<aa—1 _ﬁ6—1>
_la"+1—ﬂ"+1—|—a"—ﬁ"—(a—ﬂ)
T a a—0

1 1
= —(Sn n—1)=—(qn n—1—1).
Snt1r 80 —1) = —(¢n + gn-1-1)
Therefore, the equation (5) can be written as

—(—1)"_13161 — (—1)"_23262 — 4 Sp_1€n-1 — Sn€n = Qntk-

Since we would like to choose €, €,—1, ..., €1 so that max; |¢;| is as small as
) ) )
possible, it is sufficient to consider the equation

(6) siler] + s2lea] + - 4 Sn—1lén—1| + Snlén| = @tk

We shall choose m’ so that

" dkSn—1 +pk:3n —‘ — inf ’7 aqn+k —‘

(7)  m>m'=inf

nlsg+s2+--+8Sp—1+5n Gn + qn—1 —1
and take |e,| = m’. This m’ is the lower bound of m because if we take
len] < m/ — 1, then at least one of |e1], ..., |€,—1]| must exceed m/'.

We need the following lemma to complete the proof of Theorem 1.1.

LEMMA 3.1. — The sequence

adn+k
dn + qn—1 — 1

is a monotone decreasing function in n, tending to ak(a —1).
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APPROXIMATION OF QUADRATIC IRRATIONALS 41

REMARK 3.2. — In general, if a+b>1and a+ 1> b > 0 then

qrbsn—1 + Prsn | bar + o
(n — 0).

Snt1 + 8 — b L ala+1)

Proof of Lemma 3.1. — Since |8] < 1 < |a|, we have

Ank a(a® — (B/a)"+'B%)
Gn+qn-1—1 1= (B/a)"! +1/a—B/amtt — (a — B)/ant!
aa®
%mzak(a—l) (n — ).

Putting
_ qk:bsnfl +pk3n
fn) = Snt1 + 8p — b (n
show f(n) > f(n+ 1), which is equivalent to

(8) (Gn+kGnt+1 — Gntk+1Gn) + (Gnikln — Gnikt1Gn—1) — Gnik + Gnikr1 > 0.
By Lemma 2.1(2) with ¢,—1 = s, for k =0,1,2,...

(Gn+k@ns1 — Gntk1dn) + (Gnskln — Gntkt1Gn—1) = (=1)" g1 + (—=1)"qp.

If n is even, then the left-hand side of (8) = qx — qx—1 + gn+k+1 — gn+k > 0.
If n is odd, then the left-hand side of (8) > gx+2—qr+1 —qr+3qr—1 > qx—1 > 0.
When k = —1, the left-hand side of (8) = ¢, — gn—1 + (=1)""1 > 0. The
equality sign holds only when a =b=1 and n = 2. O

We can find the sequence €,,_1, ..., €1 and €y one after another, as follows.
Concerning the equation (5) or (6) we choose n’ as the least integer satisfying

=l = [ ]y ([ O T
" " S1+ 824+ Sy nQn+Qn—1_1

We can take any integer n with n > n’. It is, however, simple and easy to take
n = n’ in the practical applications (see examples in section 5). Concerning
the new equation

—(=1)" sy — (=1)" %5960 — -+ — Sp_9€n—2 + Sp_1€n-1 = Gnik + Snen
or
ler] + alea] + -+ 4 Sn—1lén—1| = @ntk — Snlénl,

we take

" dn+k — 5n|6n| —‘

€En—1 = .

S1+ 82+ +sp1

We repeat the similar step. For i =n—1,n—2,...,2 we take

(1) iHe, = ey = [Tk tnlenl sy,
S1+ 824+ 5
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42 KOMATSU (T.)

Since |[(—1)""1s1| = 1, €; is also chosen as an integer with |e1] < |ea] < --- <

len| < m. Notice that if gnyx, the right-hand side of (6), is small, |e;| may
become negative in this algorithm (see [2], p. 21). But since ¢4 > dy,, where

7 7 di— i
Zj:l Sj

such a troublesome case does never happen and this algorithm works properly
(see [2], Theorem 1). We omit this proof because it is clear if k is large; it is
manually checked if k is small.

Finally, by substituting these €1, €2, ..., €, into one of the equations (3)
and (4) one finds €g, which is an integer because ged(sy,, $p—1) = ged(a, 1) = 1.
Note that |eg] < m’ because from (3) and (5)

—‘Si-"-&i,l (i=27...,n)7

€0Sn = i, — |en—1]81 + |en—2[s2 — - + (=1)"Her[sp—1.

Thus, when n is odd,

€ < i(% + #(_31 +82— - —Sp—2+ 8n71)>
1 AGn+k Sp — Sp—1 — 1
S )
dn—1 In +qn-1—1 a
_ otk — dntk—1 + Gk — k-1 < afnk _
qn+aqn-1—1 T ntgn-1—1
When n is even,
€ = %(% qn_fg:%(—sl + 82—+ Sp—2 — 3n—1)>
_ 1 ( I S e e 1 e 1)
In—1 In+Gn-1—-1 a
_ Zntk t dndk—1 Gk — Gkt > _ AGn+k )
In +qn-1—1 T gt g1
Theorem 1.1 includes the case for the golden number oo = [151,1,...] =

(14 V/5) (see [8], Theorem 3). Put a = 1. Since gz_1 = F}, and o*(a — 1) =
k=1 where (Fy) is the Fibonacci sequence defined by
Fo=0, Fi=1 Fo=F_1+F_ (k=2,3,...),

we have

(@) = |gg—10 — qi| = |Froo — Fiqa]
if af 2 <m<abl.

Notice that o*(a — 1) = 1 and
aqn+k —‘
_ Ytk |9 (p=1,2,...
’an +gn-1—1 ( )
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APPROXIMATION OF QUADRATIC IRRATIONALS 43

when a = %(1 + \/’5_)) and k = 1. Therefore, the equality sign on the right-hand
side is necessary in Theorem 1.1.

4. Proof of Theorem 1.2

Let b < 0. Put ¥ = —b > 0 for convenience. By a8 =0 and o + 3 = a we
have

V" s " sy e b Sy Sy =

1 a™ — " g —b"
a—ﬂ(a a—b -8 g-=v )
1 an+l_ﬂn+l_an+ﬂn_b/’ﬂ(a_ﬂ)
a—"b —1 a—pf
1 n
:m(sn_‘_l—sn_(—b) )

Hence, the equation (5) becomes

/n—l /n—2 / /
—b" Ts1e1 — b Tsgeg — - —b'Sp_16p—1 — Sp€n = —qib Spn_1 + prsn
or
/n—l /TL—2 / /
b ler] + b alea| + -+ V'sp_1len—1| + snlen]| = —qxb’ $n—1 + prSn-

We shall choose m’ so that

. bsp—1 + prs
mzm/=|€n|=1nf[ qrk0Sn—1 PESn —‘
n

V" sy + 0" sy e+ Sy + s

bsy— n
:inf[(a+b—1) Qk25n—1 + PkS ]

Spa1 — Sp — (=b)n I
We need Lemma 4.1 and Lemma 4.3 to complete the proof of Theorem 1.2.
LEMMA 4.1. — Ifa >3 and b= —1, then

—qkSn—1 +pk3n
Sp+1 — Sp — 1

is a monotone decreasing function in n, tending to (—qi + apr)/(a(a —1)).

REMARK 4.2. — In general, if a +b > 1 and b < 0 then

qrbsn—_1 + Prsn by + apy
(n — 0).
Snt1 — Sn — (=) L ala—1)
LEMMA 4.3. — When b= —1, fori=0,1,2,...
P2i—1 = Si+1, DP2i—2 = Si+1 — Si,
q2i—1 = Si, q2i—2 = S; — Si—1-
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44 KOMATSU (T.)

Moreover,

Q2n+k) if k is odd;

—qkSn—1 +pk3n = { . .
Q2n+k+1 — Q2nik—1, if k is even.

Proof of Lemma 4.1. — One has

—QkSn-1 + Prsn _ —gr(@" Tt — 7Y + pr(e” — )

Sl —sn— 1 antl— gl —an 4 gr — (a - fj)
—qr/a+pr  —qr + apy
— = (n — o).
a—1 ala—1)
Putting

—QqkSn—1 +pk5n
n) = —2kon=1 T Pkon n=12,...),
on) = LTI )

show g(n) > g(n + 1), which is equivalent to
(_qkSn—l +pk3n)(3n+2 — Sn+4+1 — 1) - (—kan +pk3n+1)(3n+1 — Sn — 1)
= pi(snt1 —sn — 1) — @i ((sn — s$n—1) — (a—1)) >0
by Lemma 2.1(2).

Since the continued fraction expansion of « is a = [a — 151, ...], we get
a—1=20 <Pk P _ (k=0,1,2,...).
q0 qk q1

Thus, we have

Pr(snt1 — sn — 1) — e ((sn — sn—1) — (@ — 1))
> qi((a—1)(snr1— s — 1) = (50 = 50-1) + (a — 1))
> gk ((sn+1 = 80) = (sn — sn-1))
= qr(a™ —a™) > 0.

When k = —1, it is clear that g(n) > g(n+ 1) by p-1 =1 and ¢_; = 0. O

Proof of Lemma 4.3. — Whenb=-1,a=[a—1;1,a—2,1,a—2,1,a—2,...].
Thus, s =0,s1=1,83=a,s3=a%>—1,s4 =a®—2a, ... and
po _a—1 p1 _a p a*—a—-1 p3 a®—1

= 3 = — 3

qo 1 a1 ¢  a-1 g a

)

Then, the first part is followed by the induction.
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APPROXIMATION OF QUADRATIC IRRATIONALS 45

By using the first part we obtain

—(@2i—1Sn—1 + P2i—1Sn = —SiSn—1 + Si+15n
= (as; — 8i—1)Sn — 8iSn—1 = 5i(ASy — Sp—1) — Si—15n
= SiSn4+1 — Si—15n = Si—15n42 — Si—2Sn+1 =
= S81Sn+i — S0Sn+i—1 = Sn+1 = Q2n+k
if k=2i — 1, and
—q2i5n—1 + P2iSn = (—Sit15n—1 + Si+25n) — (Si+15n — SiSn—1)

= Sn+it+l — Snt+i = Q2nt+k+1 — 2n+k—1

if k= 2. (|

Put b=—-1. If k = 2¢ — 1, then

m’ = inf [(a —2) Lotk —‘
n Q2n+1 — G2n—1 — 1
and
a+b-1 a—2
— (b = —— (=5 i
a(a_l)(CIk‘f'aPk) a(a—l)( 8+CKS+1)
(a — 2)att! ;
= — = — 1 ,L.
ala—1) (a—a+ 1)
If k = 24, then
m' — inf [(a _ 2)q2n+k+1 - q2n+kfl—‘
n Q2n+1 — Q2n—1 — 1
and
a+b—-1 a—2
— (b = —— i+2 = Sit1) — (asiy1 — 8
OZ(O( — 1) ( qr + apk?) OZ(O( — 1) ((as +2— 8 +1) (as +1 § ))
= (a —2)a’.
The process to determine |e,_1]|, |€n—2], - .., |€2], |e1] and € is similar to the

case where b = 1.

Notice that m’ = [a — 2] = a — 2 and

92n+1 — 42n—1
a—2 ]:a—1 n=1,2,...
[( )Q2n+1 —qon-1—1 ( )

when k = 0. Therefore, the equality sign is necessary in Theorem 1.2.
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46 KOMATSU (T.)

5. Examples

EXAMPLE 5.1. — Take o = v/2+ 1 = [2;2,2,...]. Then by Theorem 1.1 we
obtain that

1 if m=1;

lgoa — po| = o — 2 if m=2,3;
lgra — p1] =5 — 2 if 4<m<8;
|gocx — po] =5 —12  if 9 <m < 19;
lgsar — ps| =29 — 12 if 20 < m < 48;
lgsce — pa| = 2900 — 70 if 49 < m < 115.

™ (a) =

We shall check £4?(a) = 29« — 70. Find the least integer n satisfying

[%—HW — 49.
Qo+ -+ qn-1

Since

%] =50 and [—L [,
o+ +gs Qo+t

we can take n = 5 (of course, it is possible to take n = 6,7,... too). Thus,
substituting g1 = 2, g2 = 5, g3 = 12, g4 = 29 and g9 = 2378 into —e; + g162 —
Q2€3 + q3€4 — qu€5 = q9, we get the equation

—€1 + 265 — Heg + 1264 — 29e5 = 2378.

Thus, —e5 = [2378/(1+ 2+ 5+ 12+ 29)] = [48.53...] = 49.
By —€1 + 2e2 — 5es + 12e4 = 957 we take

957
0 | —147.85] = 48.
€ [1+2+5+12W [47.85]

By —€1 + 2e5 — beg = 381 we take
381
—€3 = | ———— | = [47.625| = 48.
s {1 r2+ 5} ( W
By —€1 4+ 2e5 = 141 we take

[141
2:

— | =4T.
T2

Hence, —e; = 47. Now, substitute the known values into €yqs + €192 + €2q1 +
€3qo0 + €5 = —q5 (Or €0qa + €1q3 + €2g2 + €3q1 + €4 = qu) We get
12690 —47-5447-2—-48-1—49 = —70,
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APPROXIMATION OF QUADRATIC IRRATIONALS 47

yielding €y = 14. In fact,
y = 14a® — 47a* + 470> — 4802 + 48a — 49
= 14(29a + 12) — 47(12a + 5) + 47(ba + 2) — 48(2cv + 1) + 48a — 49
=29« — 70.

EXAMPLE 5.2. — Let a =3 and b= —1. Then a = £(3+V5) = [2;1,1,...],
satisfying o® = 3a — 1. Notice that

P1 3 P2 5 p3 8 P4 13 Ps 21

9 = —y = — = — = — = — e

a1 1 @ 2 ¢ 3 @ 5 g5 8

Po
qo

=N

and
So :0, S1 = ]., So :3, 83:8, 84:21, S5 :55, S = 144, 87:377,....
Then by Theorem 1.2 the least integer m giving |gaev — pg| = b — 13 is

3vVh+ 7
2

m=m' =[(3-2)e% = | |=T6854...7=17.

Find the least integer n satisfying
[(a _ 2) —qkSn—1 +pk5n—‘ _ 49
Sp41 — Sp — 1

though we can take an arbitrary large n. Since

—5-8+4+13-21
and

—5-214+13-55

[(3_2) 144 — 55 — 1

we can take n = 5. Thus, substituting the known quantities into —e; — gq1€2 —
Q2€3 — Q3€4 — q4€5 = —q4S4 + P4S5, We get the equation

—€1 — 362 - 863 - 2164 — 5565 = 610

Thus, —e5 = [610/(1+34+84+21+55)]=[6.9...]=T.
By —e1 — 3e3 — 8e3 — 21ey = 225 we take
225
B [1+3+8+21
By —e1 — 3e5 — 8e3 = 78 we take

—e3 = {%W =[6.5] =T.

]=(6.93...1=7 for n=5,

W: 6.8...7="1.

By —€1 — 3e2 = 22 we take

—ey = [11—23] = [5.5] = 6.
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Hence, —e; = 4. Now, substitute the known values into —(€egsy4 + €153 + €252 +
6381) + €5 = —p4 (OI‘ €085 + €184 + €253 + €352 + €4 = CI4) we get

—21leg+4-8+6-3+7-1-7=-13,

yielding €y = 3. In fact,

1]

(6]
[7]
(8]
[9]

[10]

y=3a" —4a* —6a® —T0® —Ta -7
=3(5ba—21) —4(2la—8) —6(8a—3) = 7(Ba—1) = Ta—7
=5a—13 (=0.09016...).
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