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PROFILE DECOMPOSITION FOR SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS

BY ISABELLE GALLAGHER

ABSTRACT. — We consider sequences of solutions of the Navier-Stokes equations in R3,
associated with sequences of initial data bounded in H/2 We prove, in the spirit of
the work of H. Bahouri and P. Gérard (in the case of the wave equation), that they can
be decomposed into a sum of orthogonal profiles, bounded in H/?, up to a remainder
term small in L3; the method is based on the proof of a similar result for the heat
equation, followed by a perturbation—type argument. If A is an “admissible” space (in
particular L3, B;,ij;:g/p for p < 400 or VBMO), and if B}G‘s is the largest ball in A
centered at zero such that the elements of H'/2 N Bzés generate global solutions, then
we obtain as a corollary an a priori estimate for those solutions. We also prove that
the mapping from data in HY2n B]’\fs to the associate solution is Lipschitz.
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286 GALLACHER (I.)

RESUME (Décomposition en profils pour les solutions des équations de Navier-Stokes)

On considére des suites de solutions des équations de Navier-Stokes dans R3, as-
sociées & des suites de données initiales bornées dans H/2. On montre, dans Iesprit
du travail de H. Bahouri et P. Gérard (dans le cas de I’équation des ondes), qu’elles
peuvent étre décomposées en une somme de profils orthogonaux, bornés dans H1/2,
4 un terme de reste pres, petit dans L3 ; la méthode s’appuie sur la démonstration

d’un résultat analogue pour ’équation de la chaleur, suivi d’un argument de pertur-
bation. Si A est un espace « admissible » (en particulier L3, B;,ij;d/p pour p < +00
ou VBMO), et si B;,“S est la plus grande boule de de A centrée en zéro, telle que les

éléments de H1/2 N B]’\fs générent des solutions globales, alors on obtient en corollaire
une estimation a priori pour ces solutions. On montre aussi que I’application associant
une donnée dans H/2 N B]’\fs a sa solution est lipschitzienne.

1. Introduction

We are interested in the incompressible Navier-Stokes equations in three
space dimensions

O +v-Vu—vAv=—-Vp inR} xR
(NS) divo =0 in R x R3,
U|t:0 = Yo,

where v is a divergence free vector field, v(¢,x) and p(t,z) are respectively
the velocity and the pressure fields of the fluid, and v > 0 is the viscosity.
The velocity is a three-component vector field, and the pressure is a scalar
field. The divergence free condition on v represents the incompressibility of
the fluid. Here t and = are respectively the time and the space variables,
with t € Rt and € R3. All the results stated here hold in the more general
case of x € R? d > 3, with obvious adaptations, namely in the orders of the
functional spaces considered.

In order to motivate our study, let us recall a few well-known facts concerning
the system (NS). The most important results about the Cauchy problem were
obtained by J.Leray in [21], who proved that for divergence free data vy €
L?(R3), there is a global, weak solution v of (NS) with

ve L®(RT, L*(R?)) N L*(RT, H' (RY)),

where LP(R?) denotes the usual Lebesgue space of order p, and where we have
noted H*(R3) the homogeneous Sobolev space of order s, defined by

3 .
Vs< 3 H'(RHE {u € S'(R%); [lull g ggey < +oo},

where

sy 2 ([l ) ag) "
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 287

and u is the Fourier transform of u. We will note (-|-) . gs) the scalar product

2
semi-norm. Note that the inhomogeneous Sobolev space H*(R?) is of course
defined in the same way, where || is replaced by (1+ |¢]?)®. In the following,
we will call H3/2(R3) the space of vector fields whose components have first
derivatives in H'/2(R3).

The solutions constructed by J. Leray satisfy moreover the energy inequality

in H*(R®). The restriction s < 2 is for l[ull 72 (r#) to be a norm and not a

t
(11 Vi, Hv(t)”iz(RB)+2y/0HVU(S)Hiz(Rg)dSS||UOH%Q(R3).

Those solutions are not known to be unique (except in two space dimensions);
many studies exist on that problem of uniqueness, and the starting point of
our study will be the result of H. Fujita and T.Kato [8]. It can be stated in
the following way (see [4] for instance): if vg is in H'/?(R?), then there exists
a unique maximal time 7, > 0 and a unique solution v associated with vg
such that
ve CO([0, T, HY*(R?)) n L*([0, T], H¥*(R?)) for all T < T..

Moreover, if T, < 400, then we have

(1.2) A0Vl L2 0,7y, 072 ey = Fo0-

Furthermore, there exists a universal constant ¢ such that
(1'3) HUOHHI/Z(RS) <cw = T,=+o0,

and we have in that case, for any ¢ > 0,

t
(14) o) G1/2gay + ¥ / 00 /2 gy 45 < 10001212 gy

Finally it is well known (see for instance [21] or [7], Remark 10.3 (a)) that we
have the following weak-strong uniqueness result:

(1.5) Vug € L2N HY2(R®), NS(vg) satisfies (1.1),

where, as in the whole of this text, we have noted NS(vp) the unique solution
of (NS) associated with the initial data vy € H'/2(R?).

One important aspect to keep in mind in the study of (NS) is the scaling of
the equation. It is easy to check the following property: for any real number A,
(1.6) v=NS(vg) <= wvx=NS(vox),
with

def

oa(t,2) == (X%, z) and  wo () 2 o (Az).

Note that the H'/ 2(R?) norm is clearly conserved under the transformation
vp — vp,x- Many existence and uniqueness results have been obtained for data
in such function spaces, invariant under that transformation; it is impossible to
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288 GALLACHER (I.)

present here all the function spaces in which such results have been obtained,
so let us simply recall the chain of spaces

HY2(R?) C L3(R3) C B, L3P (R®) <400 € VBMO(R®) C C7H(R?).

In that chain of spaces, Bp Lr8/p (R3) stands for a homogeneous Besov space.
We shall not be using those spaces explicitly in this paper, so we will merely
recall the following definition, using Littlewood Paley theory, and we refer for
instance to [5] for a detailed presentation of the theory, and to [22] or [25] for
the analysis of Besov spaces: elements of Bs - (R3) satisfy

def
lullgs _re) = Sup?J 1A ullLe(gs) < 400,
Jje

where A; is a Littlewood-Paley operator, defined by

Aju(€) Z o277 [¢]) a(8)
and ¢ € C°([3,2]) satisfies > jez (27 it) =1, for all t > 0.

Furthermore, VBMO(R3) stands for the space of functions which are first
derivatives of functions in BMO(R?). We recall below the definition of the
norm ||u|| pao(rsy, and refer to [24] for a detailed presentation of that space:

def 1

HUHBMO(RB) = Sup

T [u — Up(z,r)|de,
z0.R | B(%0; R)| J Bz, R) (20, R)

where
def ]-

BB T B o, B Sy ny
In all those spaces except for the last, analogous existence and uniqueness
theorems to the case H'/2(R?) have been proved. We refer respectively to
T. Kato [18] and G. Furioli, P.-G. Lemarié and E. Terraneo [10] for the proof of
the L3(IR?) case, to the book of M. Cannone [3] and the work of F. Planchon [23]
for Bp_,;rg/p(RS),p < 400, and ﬁnally to H. Koch and D. Tataru [20] for the
space VBMO. In the space C”l( = L B ! (R?), uniqueness was proved by
J.-Y. Chemin in [6], supposing the data is also in the energy space L?(R3?).

u(x)dx.

In relation with the result of H. Fujita and T.Kato mentionned above, let
us give the following definitions: we define the function spaces
def

) { Er = C°([0,7], HY2(R%)) n L2([0,T], H¥/*(R%)),
' Eo £ CY(RT, HY2(R?)) N L*(RT, H3?(R?)),
where Cp denotes the set of bounded, continuous functions; we also define the

sets of initial data yielding solutions of (NS) in Er and E., respectively,
def

Dr = {Uo € Hl/Q(R?’) | NS(’UQ) S ET},
def

Do == {vo € HY?(R?) | NS(v9) € B}
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 289

Finally we define, for any vector field v,

def 1/2
{ ”’UHE% - SuptST(”v( )HH1/2(R3 +2v HU”Lz( [0,4], H3/2(R3))) )
def 1/2
HU”Ego - (||UHi(>o(R+’Hl/2(R3)) + 2v HU”L2(R+,H3/2(R3))) :
REMARK. — Note that nothing prevents a priori the life span T, associated

with some data vg to satisfy T, = 400 with vg ¢ Dso: in that case,

hm ”NS (vo ”L2(0T] fs/2(sy) — 100

DEFINITION 1. — Let A C S'(R3) be a Banach space such that the embed-
ding H'2(R®) C A is continuous. Then A is admissible if and only if the
following properties hold:

(i) The norm || || 4 is invariant under the transformations
©r— dp(\) VAER and ¢ p(-—2x0) Vao e R
(ii) There exists a constant c;* depending only on v and A such that if ¢ is

an element of H'/?(R3) and ||¢|| 4 is smaller than ¢, then o is in Duo

EXAMPLE 1. — An obvious example is of course H'/2(R3); point (i) is clear,
and point (ii) is due to H. Fujita and T. Kato’s theorem recalled above.

EXAMPLE 2. — Similarly L?(R3) satisfies point (i), and a proof of (ii) can be
found in Proposition A.1 in the Appendix.

EXAMPLE 3. — The Besov space B;ij3/p(R3) satisfies point (i), and point (ii)
is proved for instance in Theorem 3.4.2 of [3] for p < +o0.

EXAMPLE 4. — The space VBMO(R?) is a Banach space satisfying points (i)
and (ii), as proved in [9].

In the following, for any admissible space A in the sense of Definition 1, we
shall define the constant CA € Rt U {+oo} by
(1.9) CA 4 sup {p>0; BA HY?(R®) C Do },
where
def
B = {peA; |ella<p}
and we will note

(1.10) BA=BE

In other words, the set B;f‘s is the largest ball in A whose intersection with

H'/2(R3) is a subset of Dy,. Note that we obviously have CA > ¢!, where ¢}t
was defined in Property (ii) of Definition 1. The following result will be proved
in the Appendix.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



290 GALLACHER (I.)

PROPOSITION 1.1. — Let vy € HY/?(R?) be a divergence free vector field, and
let T, be the life span of NS(vg). If vg ¢ Do, then
1
T, < ———||vo |4 231
gl

Now let us come to the point of this study: it is well known that the embed-
ding of HY 2(R3) into L3(IR3) is continuous, but not compact. Let us suppose
for a moment that the embedding were in fact compact. If (p,) is a bounded
sequence of functions in H/?(R?), converging weakly to zero in H'Y/?(R?),
then it would converge strongly to zero in L?(R?); as a consequence, for n large
enough, the function ¢,, would be small enough for us to obtain a global, unique
solution of (NS) in E., according to point (ii) of Definition 1, since L3(R?) is
an admissible space according to Example2. In other words, if the embed-
ding of H'/2(R3) into L3(R3) was compact, then one could associate with
any bounded sequence of divergence free vector fields in H'/2(R3), converg-
ing weakly to zero in H'/2(R3), a unique sequence of global solutions of (NS)
in F. That remark leads us naturally to the problem of the defect of com-
pactness of the embedding of H/2(R?3) into L3(R?), which was very precisely
studied by P. Gérard in [16]. Let us recall the result of [16]. The Theorem
holds of course more generally for the embedding of H*(R?)into LP(R?) with
s=d(i-1)

THEOREM 1 (P. Gérard, [16]). — Let (vy) be a bounded sequence of functions
mn Hl/Q(R?’). Then up to the extraction of a subsequence, it can be decomposed
in the following way:

¢ j
(11D VEENV{O) pn(o) = $'(0) + 3 - () + vl o)

where the functions @’ are in H'/2(R3) for all j € N, where (4%) is a bounded
sequence in H'Y/2(R?) uniformly in £ € N\ {0}, and satisfies

(1.12) Jim (lim sup ||y | Lo es ) = 0,
and where for any j € N\ {0}, (h,x)) is a sequence in (R \ {0} x R*)N with

the following orthogonality property: for every integers (j,k) such that j # k,
we have

hi  hE
either  lim (—" + —") = +o0
n—oo \ hk h’
(1.13) { , R |zd — 2|
or hi =hF and lim % = +00.
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 291
Finally we have for every £ € N\ {0},

4
(1'14) ||QDTLH§'{1/2(R3) = Z H(p]”%[l/Z(RB) + waLH%{I/Z(RS) + 0(1)7
j=0

as n goes to infinity.
REMARK. — (a) As we shall see in Section 3, if ¢, is divergence free for all
integers n, then the same goes for o, ¢’ and 9, for all integers 7, ¢ and n.

(b) The sequences h?, are called the scales of ,,, the points x7, are the cores
of concentration, and the functions

; det 1 (L — l‘%
(1.15) Phla) o <T>
are the associate profiles.
(c) Note that, up to rescaling the functipns 7, one can suppose that for
every j € N\ {0}, either hY =1 and lim |2),| = +o00, or lim A/ isin {0, 00}.
(d) To simplify the notation, we shall note in the following
(1.16) h%gl, x%gO, and w%(x)ggpo(x).

(e) Finally we remark that the function (7, for every j € N, is a weak limit
point of the sequence h?, ¢y, (2, + hi-) (see for instance [16], formula (4.3)).

Our aim in this study is to see how decomposition (1.11) is propagated by
the Navier-Stokes equation. By analogy with the work [1]-[2] on the critical
semilinear wave equation, we shall also consider the linear equation associated
with (NS), that is to say the heat equation

(1) {8tu—uAu=0 in RS x R3,
’U,‘t:() = Ug-
NoTATION. — In the following, we shall denote H (ug) the solution of the heat

equation (H) associated with the data ug.

Note that if ug € H'/?(R3), then H(up) € Fa, and the norm EY, is con-
served by the application H. Note that (H) has also the scale-invariance (1.6).

The following theorem gives a decomposition of the family of solutions of the
system (NS) in the case of data bounded in H'/2(R3). The last statement of
that theorem (result (iii)) concerns the case of data bounded in BZ., where A
is any admissible space in the sense of Definition 1, and we will start with that
case in the proof of the result: as we shall see, that case enables one to avoid
life span problems. The general case will then be treated using (iii).
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292 GALLACHER (I.)

THEOREM 2. — Let (p,,) be a family of divergence free vector fields, bounded
in HY2(R3), and let ¢° € H'/?(R?) be any weak limit point of (¢,). Then up to
the extraction of a subsequence and with the notation of Theorem 1 and (1.16),
the following results hold, where we define

def

Un L NS(pn) and VI L NS(p)
for every integer j € N.
(i) There exists a family (T7)jen of elements of RT U {+oo} and a finite
subset J C N such that
(1.17) VieN, Vi€ Ep and VjeEN\J, TV = +oc.

Moreover, if
def . 1 1
T, == min(h? )17,
jed

then |[vn| gy is bounded and we have for every integer n € N, for all
times t < 1, for every £ € N and every x € R3,
‘

1 _ . t x—al
1.18 v (t, o) = — V7 — L —i—wfl t,x +7"fL t,x),
(1.18) (t,7) E:jh (G ) ek +ritea)

where w! 2= (¥f) and where

n

n—oo

( 19) {th <limsup||wfl||Loo(R+,La(Ra))> =0,
1. — 00

lim <limsup||rfl||Eu ) =0.
{—o0 n—oo ™

(ii) If there exists a time T € R* U {+oo} such that (vn) is bounded in
L%([0,T], H3/?(R3)), then we have

(1.20) ¥neN, T <min (hd)2T9.
J
In particular, the results above are valid with 7, = T and the small
scales of concentration generate global solutions of (NS): if lim h! =0,
then T = +o0.

(iii) Let A be an admissible space in the sense of Definition1. Let p be any
real number in ]0,CA [ If [|onlla < p, then T = +oo for every j € N
and the results above hold with 1, = +o0.

REMARK. — Case (i) shows that the life span of v, is bounded from below by
the smallest of the life spans of each profile in the decomposition (1.18). In
particular, there is no phenomenon such as two initial profiles ¢ interacting
and generating a solution for a smaller time than that generated by each profile
separately. Case (ii) is a converse statement: if v,, has a uniform life span, then
each profile generates a solution at least on that life span. Finally, note that
case (iii) is by no means a consequence of case (ii) because we do not suppose
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 293

in case (iii) that the sequence of solutions (NS(py)) is bounded in Eo: each
term of the sequence is an element of E,, since the initial data is bounded
in B, but no assumption is made on the boundedness of (NS(¢,)). Such a
bound can in fact be deduced from Corollary 1 below.

Theorem 2 will enable us to infer the following corollaries. The method of
proof of those results follows closely the arguments of [2] and [14], as we shall
see in Section 4.

The following result shows that there is an a priori estimate for the EY
norm of all solutions of (NS) associated with data in B, with notation (1.9)-
(1.10); that result is obvious in the case of small initial data in H/2(R?), as
can be seen in estimate (1.4). A similar result was proved in [2] in the case of
the critical semilinear wave equation for Strichartz norms.

COROLLARY 1. — Let A be any admissible space, in the sense of Definition 1.
Then there exists a nondecreasing function A from R x [0,CA[ to RT such
that for any divergence free vector field ¢ in Bl“ég, we have

INS@) 5y, < Al 120y I0ll2)-

REMARK. — Global existence theorems are often proved by exhibiting some
a priori estimate. Corollary 1 shows that whatever the method used to prove
global existence in a ball B;jfg, there is an a priori estimate for the solutions.

The next corollary is a consequence of Corollary 1. Note that as above, that
result is not difficult to prove in the case of small initial data in, say, HY/ 2(R3);
its interest is that it extends to any ball B]’V‘}g. It is proved using methods similar
to [14] in the case of the wave equation.

COROLLARY 2. — For any admissible space A in the sense of Definition 1, the
application NS mapping elements of Blfs nHY? (R3) to the associate solution

of (NS) is Lipschitz on bounded subsets of the space By N HY2(R3).

In the next theorem, we consider the case when the data is additionnally
bounded in L?(R3): according to (1.1) and (1.5), it is natural to consider data
which is also bounded in energy.

THEOREM 3 (Bounded energy solutions). — Under the assumptions of Theo-
rem 2, if additionnally the sequence (@y,) is bounded in L*(R®), then the re-
sult of Theorem 2 (i) holds, where the large scales have disappeared: for ev-

ery j € N\ {0},

(1.21) either hJ, = 1 and lim |2)| = 400, or lim hJ =0.

n—oo

Moreover, if the sequence (vy,) is bounded in L*([0,T], H*?(R3)) for some T
in RY U {400}, then there exists a finite subset J C N satisfying (1.17), such
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that

Vj € J, hi =1 and either liminf Ty (v,) > min(T7)
(1.22) , n—00 jed

or T? = +o0o Vj € N and (vy,) is bounded in Ex,

where we have noted Ty (vy,) and T? the life spans respectively of v, and V7.

REMARK. — One can wonder what remains of those results when the setting
is periodic instead of the whole space R3. Some remarks on that case are given
at the end of Section 3.

FINAL REMARK. — The idea of decomposing solutions of non linear equations
in such a way stems from the work of H.Bahouri and P.Gérard in [1], [2]
concerning the critical semilinear wave equation in R? (see [14] for the case of an
exterior domain). There are two main differences between those studies and this
one. First, the smoothing effect of the heat equation implies that for the Navier-
Stokes equations (as well as for the heat equation, see Section 3.2), there are no
concentrations at times other than ¢ = 0, contrary to hyperbolic equations like
the wave equation; so the extraction of cores and times of concentration is much
easier here (it comes directly from the decomposition of the data). Second, we
do not have at our disposal a global solution associated with arbitrary data,
so the control of life spans is a problem here; that is not the case for the wave
equation. Note that a similar result to Theorem 2 (in the case (iii)) was proved
by S. Keraani in [19] in the context of the Schrodinger equations.

The structure of the paper is as follows.

In Section 2, we prove a few orthogonality results concerning the Navier-
Stokes equations with profiles as initial data, which will be used in the proof
of Theorem 2.

Section 3 is devoted to the proofs of Theorems 2 and 3, whereas Corollaries 1
and 2 are proved in Section 4.

In the Appendix are proved a few classical results on the Navier-Stokes
equations used in the course of the study. We also prove Proposition 1.1 stated
above.

Some of the results proved in this paper were presented in [13].

Acknowledgments. — The author is grateful to P. Gérard for many helpful
discussions.

2. The Navier-Stokes equations with profiles as initial data

In this section, we are going to prove some orthogonality results for solutions
of (NS) with initial data of the form

def 1 (x—acn>
@n—hnw hn ’
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with (hp,z,) € (R \ {0} x R*)N. Those results will be used in the proof of
Theorem 2.

Note that those orthogonality results are closely linked to the notion of h,,-
oscillatory sequences (see [2], [15]-[17] for details, as well as Section 3.3); similar
results could be proved in the more general setting of h,,-oscillation, but we shall
not go into those considerations here.

PROPOSITION 2.1. — Let T € RT U {+oo} be given, and let ¢ and ¢* be
two divergence free vector fields, elements of Dr. Let us consider two orthog-

N
onal sequences of <R+ \ {0} x R3) in the sense of (1.13), called (hl,xl)

n’ n

and (h%,x2). Suppose for instance that hl < h2. Then with notation (1.15),
we have the following orthogonality results:

2.1 lim sup  (NS(eh)(t,-) | NS(p2)(t,)) ; =0,
(2.1) im te[O,(h}l)2T]( (@)t ) | NS(7,)( ))Hl/z(Ra)

as well as
2.2 li NS(oL) | NS(p? =
(22) Jim (NS(L) INS(E)) o o, = O
and

. 1 2 _
(23) nll_{IOlOHNS(@n)NS(QOn)||L4([07(h}l)2 T),L2(R3)) — 0.

Proof of Proposition 2.1. — We know, by the scale-invariance of (NS) recalled
in (1.6), that the solution of (NS) associated with the data ¢? is given by

] J g J = L j( t ’Jf _1‘%>
Vi€ {1,2}, v (t, ) NS(o})(t, ) h%v (h%)z hi )
where V7 25 NS(p9).
Note that V7 € Er, so vl € E ;527 , with notation (1.7).
The results have nothing to do with the fact that V7 are solutions of (NS),
all we shall need is V7 € Ep; so we can suppose that the functions V7 are, say,
smooth and compactly supported, and we have

(NS(eh)E) | NS(2)(E0))

H1/2(R3)

t -zl
_ 1\=3/2(2,2\—=3/2/ A 1/27/1 , n
[ 2wy (i )
1/27,2 t x—ap
(A/V)<(h%)2»—h% )dz,

where A <X \/=A. Let us start by supposing that lim,_. hl/h2 = 0. Then
the change of variables

(2.4) r=al +hly, t=(h})%s
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yields after an easy computation
3/2

which gives the result. The sequences (hl,xl) and (h2,22) are orthog-
onal, in the sense of (1.13), and we have supposed that hl < h2. So if
lim hl/h2 #0, then hl = h2. In that case, the change of variables (2.4)
gives, for any ¢ > 0, the following estimate:
1 . 2 .
(NS0 ) INS@RE) 4
1_ 2

— / (A1/2V1)(s,y)(A1/2V2)<5,y+ Ty — $n>dx
RS ha,

The result (2.1) is then proved by the orthogonality property (1.13), since we
have supposed that V? is compactly supported. The arguments are identical
for (2.2) and left to the reader. Now let us prove (2.3). We start by supposing
that lim,, o hL/h2 = 0. Then for any t € [0, (h1)? T], we have

4 _
HNS«O;)NS(()O%)HL4([0,,§],L2(R3)) = (h&zhi) ?
¢ t x—axl\2 t xz—x;\|? 2
1 n 2 n
X/O {/R v ((h;)?’ BT ) = |v ((hg)f n2 )|} ae
Then the change of variables (2.4) yields

2

[onvillaqo,g,22(re)) = O(hy /%),
which gives the result.
In the case when h) = hZ, the change of variables (2.4) implies that

||Uivi||%4([o,(h}1)2 T],L2(R3))

= /OT{/RJVl(s,y)}2 X ‘VQ (s,y—|— %)‘2 dy}st,

and as V2 is compactly supported, the result follows. That proves Proposi-
tion 2.1. ]

3. Profile decompositions: proof of Theorems 2 and 3

This section is devoted to the proof of Theorems 2 and 3. We start by writing,
in Section 3.1, the decomposition of the family of initial data; the following
section is devoted to the proof of Theorem 2. In the first paragraph of that
section, we deal with the heat equation (H), and prove a similar decomposition
to Theorem 2 for that equation; the arguments are straighforward, due to the
fact that the equation is linear and to the presence of the diffusion operator.
Theorem 2 is proved in the following paragraphs. Finally Theorem 3 is proved
in Section 3.3, and Section 3.4 consists in a remark on the periodic case.
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In order to make the discussion simpler, we shall neglect in the following to
extract subsequences; all the arguments below are valid up to the extraction of
a subsequence.

3.1. Introduction: decomposition of the data. — Let us consider a
bounded family of divergence free vector fields (¢,) in H'/2(R3), and let ¢°
be any weak limit point of (¢,) in H'/2(R3). Then we can apply Theorem 1
to (pn — ¢%), and we have, with notation (1.16),

¢

(3.1) Ve €N, wn@0==§:é%¢j(x_x%)+¢€@0

7
=0 hin

where ¢/ is in H'Y/2(R3) for j € N, where (/%) is a bounded sequence
in H'/2(R?) uniformly in £ € N, and satisfies the limit (1.12). The se-
quences (hj,zl) are orthogonal in the sense of (1.13), and finally for ev-
ery £ € N, we have orthogonality of the H'/?(R?) norms written in (1.14).

Note that the remark (e) after the statement of Theorem 1, in the introduc-
tion, implies in particular that the functions J defined in (1.15) are divergence
free.

LEMMA 3.1. — The functions @’ of decomposition (3.1) satisfy
Jlggo ||80jHH1/2(R3) =0.

Proof of Lemma 3.1. — Equation (1.14) implies that the series of general

term ||’ Hip /2 (89 is convergent, which proves the result. O
3.2. Proof of Theorem 2. — The goal of this section is to prove Theo-

rem 2: we consider a sequence (p,), bounded in H'/2(R?3), converging weakly
towards ¢° € /2 (R3). We start by proving a similar result to Theorem 2 in
the case of the heat equation: the proof of that result is quite straightforward.
Then, in the next paragraph, we deal with the Navier-Stokes equations. We
first consider the case when the norm of ¢, in some admissible space A, in
the sense of Definition 1, is smaller than the constant C2%, with notation (1.9);
that enables us to avoid life span problems, and to prove Theorem 2 (iii). The
general H'/ 2(R3) case is treated in the following paragraph, using (iii).

3.2.1. A profile decomposition for the heat equation. — Let us prove the fol-
lowing result.

PROPOSITION 3.2. — Let (p,) be a family of divergence free vector fields,
bounded in H'/2(R3), and let o° € HY/2(R3) be any weak limit point of (¢n).
Then up to the extraction of a subsequence, the following result holds, where
with the notation of Theorem 1 and (1.16) we define

ungH(gon) € F and Ung(goj) € By
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for every integer j € N.
For every £ € N, for every t > 0 and every x € R3, we can write

Y4

1. . t x—al )
un(t,2) :Z%ﬁw((hj 2 )+w”(t’x)’
j= n n n

¢ def
t=

where w (¥f) is bounded in Es uniformly in £ € N, with

(3.2) Jim (Tim sup [|uwp | o e, 23 (r3))) = 0-

Moreover, the sequences (hJ,xJ) are orthogonal in the sense of (1.13) and

n’ n

finally we have for every ¢ € N,

¢
(3.3) lunly, = > 107 By, + llwplEy, +o(1),  when n — occ.
§=0
Proof of Proposition 3.2. — We consider decomposition (3.1), and we define
VieN, UL H(o') and V(6,n)e N2 w! S H(@L).
By the scale-invariance (1.6) of (H), we have
t x—al
(hh)? W

so we can write for every (£,n) € N2,

1 def 1 1
(3.4) wh(t,0) £ U (

) = H(#}),

¢
; def
unzg ul +w’, where wu,==H(p,).
=0

So all we need to check are properties (3.2) and (3.3).

The limit (3.2) is an immediate consequence of (1.12), since it is a well-
known fact (see for instance [3], Lemma 3.2.2 and formula (3.15)) that for
any ug € L3(R?),

(3~5) ||H(U0)||Loo(R+,L3(R3)) < HUOHL3(R3)-

Finally the orthog_onality result (3.3) is simply due to the fact that for any
vector field ug in H/?(R3), we have

||H(UO)HE50 = ||U0HH1/2(R3)-
Then (1.14), associated with the scale-invariance
V(j,n) € N?, gy, = 107,
yields (3.3). That proves Proposition 3.2. O
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REMARK. — As noted in the introduction, the presence of the diffusion op-
erator —A prevents concentrations from occuring at another time than ¢t = 0;
that can be seen in estimate (3.5). In the case of the wave equation [1]-]2],
concentrations can occur at any time.

Now let us deal with the Navier-Stokes equations. Note that contrary to
the case of the critical semilinear wave equation [1], [2] where the solutions are
global in time, we are going to have to pay a careful attention to life spans. In
the next paragraph, result (iii) of Theorem 2 is proved, in which there are no
life span problems. That result will then help us prove the theorem.

3.2.2. Proof of Theorem 2 (iii). — Let A be an admissible space, in the sense
of Definition 1, and let p €]0, CZ [ be given, with notation (1.9), such that

(3.6) VneN, [lgnlla<p

Recall that for every j € N, with the notation of Theorem 1, the function o
is a weak limit point in H'/2(R3) of the sequence ®J <L hd o, (3 + hi.). By
property (i) of Definition 1, we have
(3.7) V(G,n) €N lonlla = (|97 ]|
Moreover, since Hl/Q(R?’) is embedded in A, we have ¢/ € A, and since A is a
Banach space, the results (3.6) and (3.7) imply that

VieN, [¢]la<p.

So in particular, by definition of p, we have ¢/ € Dy, for all integers j, and as
a consequence one can associate with ¢’ a global solution of the Navier-Stokes
equations, namely

(3.8) VieN, VIZENS() € B,

where recall that E., = CQ(RT,H'/?(R%)) N L3(R*, H3/?(R3)). By the
scale invariance of the Navier-Stokes equations explained in the introduction
(see (1.6)), we know that

. o 1 . t — g
v%(t,x)g—.vj< - x")
bl N(hh)2 B,
is the unique, global solution of (NS) associated with the data . Now for
every integer £ € N, let us define

(3.9) rh v, = ) vl —wh,

i<t

where w!, = H(!) as in Proposition 3.2, and v, gNS(gon). To prove the
result, it is enough to prove that

(3.10) elim (limsuprfl) =0 in Fu.

oo n— 00

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



300 GALLACHER (I.)

The function r¢ satisfies the following system:

311 8t7‘fL+P(Tflvrfl)_VArfL+Q(szaf£) :gfl in R+ XR3’
(3.11) -
where
(3.12) L 0l 4wl
d j<e
an
(3.13) gf;%——zcz vh,vl) = > Qv P(w}, - Vur,),
Jj#k J<t
. (j,k)€{0,..,£}>
where
(3.14) Q(a,0) L P(a-Vb+b-Va),

and finally where P is the orthogonal projector onto divergence-free vector
fields.

PROPOSITION 3.3. — With notation (3.12) and (3.13), we have the following
results: the sequence (f%) is bounded in the space En., uniformly in ¢, and

Jm lim sup lgnll 22+ 1723y = 0.
—X n—oo

Let us postpone the proof of Proposition 3.3 and finish the proof of The-
orem 2 (iii). By interpolation between the spaces L°°(R*, H'/2(R?)) and
L2(R*, H3/2(R?)), we know from Proposition 3.3 that (f¢) is bounded in the
space L*(Rt, H'(R?)), uniformly in £. Proposition A.2 proved in the Appendix,

applied to the sequence r!, implies that for ¢ large enough, uniformly in n, we

have according to Proposition 3.3

SUP Hgn”L2(R+ H-12®s)) S Cexp ( -2C (251)113 Hf ||L4 R+ H1(R3)))
n)€EN

hence we get
‘ ¢ ¢
||7“nHEgo < CHgn”L2(R+,H—1/2(R3)) (1 + exp (C”f"”i4(R+,H1(R3)))'
So (3.10) is proved, and with it, Theorem 2 (iii). O
Proof of Proposition 3.5. — Let us start by noticing that the sequence (vy)) is
bounded in E., for every j € N since
v lles = V7]l

Note however that we do not have at our disposal an a priori estimate
for ||v}||gy (such an a priori estimate is available for small initial data

in HY/2(R%) for instance (see (1.4)), but in the more general BA case, it is a
consequence of Corollary 1 proved later in this paper).
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The following proposition will be proved later. Note that it is written in a
general setting, and not only for sequences (p,,) in 81(1457 because it will also be
used in the proof of the general case of Theorem 2, in the next section.

PROPOSITION 3.4. — Let (p,) be a bounded sequence of divergence free vector
fields in H'2(R3), and let ¢° be a weak limit point of (p,). There exists
an integer jo such that the following holds. Let (¢7)jen be the profiles of the
decomposition of p,, with the notation of Theorem 1, and let VI == ot NS(¢7).
Then we have

Vj>jo, V7€ Ew and Y |VI|E, < +oo.
J=Jjo

From that result we can deduce the bound on f£. We have indeed, from (2.1)
and (2.2) proved in Proposition 2.1,

V¢ e N, H Zv%
Jj<e
By a change of scale, we get

2
J
H Zv" E
J<e i

hence Proposition 3.4, associated with the fact that V7 € E, for every integer j
according to (3.8), implies that

va 1%, +o0(1), whenn— .

= Z “Vj||2Ego +o(1), when n — oo,
j<et

(3.15) Z v)  is bounded in E.,, uniformly in £.
Jj<tL
So the result on f£ is proved.

Now let us prove the limit on ¢%: it is enough to prove the three following
results:

(3.16) Vj# bk, lim Qi vf)=0 in L*R', H'(RY),

(3.17) hm hmsupQ(Zv ) =0 in I/4(1R+,H*l(R?’))7

(3.18) Jim (limsupQ(wn,wn)):O in L*(RT, H'(R?)).

Indeed, one can notice that the sequences (vi) and (wf) are bounded in
L3/3(R*, H5/4(R?)) uniformly in j and ¢, by interpolation between the space
L®°(Rt, H'/2(R3)) and L2(Rt, H3/2(R3)). Now let us recall the product rules
in Sobolev spaces: if a and b are two tempered distributions, then

3
(3.19) Vs, t< 3 +t>0, HabHHS“_%(RS) < Cstllall s sy N0l e rs)-
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Those rules enable us to infer that g’ is bounded in L*/3(R*, L?(R?)). Then
by interpolation with the results (3.16) to (3.18), the proposition is proved.

So let us prove those three limits: the product rules imply that the se-
quences Q(vJ, v%), Q(vi,wt) and Q(w’,w!) are bounded in L*(Rt, H~(R?))
for every (j,k,¢) € N3 since by interpolation between L*®(R*, H'/2(R?))
and L2(R*, H3/2(R3)), the functions v/ and w’ are also bounded in the space
LAR, HY(R?)).

Now let us prove that for j # k, the function Q(vl,v¥) goes to zero in
LA(R*T, H~1(R3)) as n goes to infinity. The divergence free condition on vJ,
implies that

P(vl - Vuk) = Pdiv(v! @ oF),
so since P is a Fourier multiplier of order 0, it is enough to prove that
(3.20) Vj# bk, lim 20k || La et L2 Ray) = 0.

That result is simply due to (2.3) proved in Proposition 2.1 of the previous
section, so we have obtained (3.16).

To obtain (3.17) and (3.18), the method is different since w?, is not oscilla-
tory, so we cannot use Proposition 2.1; that is compensated by the fact that,
according to Proposition 3.2,

(3.21) zhm (limsup ||wfz||L°°(R+,L3(]R3))) =0.

As in (3.20), it is enough to prove that

hm hmsup”(Zvj + w )

£—00 n—oo

LR+, L2(R3))

But Holder’s inequality ylelds

(3.22) ’ <Z vl + wﬁ)wﬁ
<t
<[ 2w
Jj<L
Since H'(R?) is embedded into LG(R?’) we have for all n € N,

J J
(3.23) HZU tw "l Law+,Lo(®3)) T ”ZU tw

j 4
<q| szHEﬁ Clhwt |z,
Jj<e =

LA(R+,L2(R?))

g, || oo @+, 3 (R3)) -

"l La(r+, L6 (R3))

L4(R+ H1(R3))

by interpolation between L°(R*, H'/2(R?)) and L?(R*, H*%(R?)). Propo-
sition 3.4 and Proposition 3.2 enable us to infer that (3_,, v) +wt) is bounded
in L*(R*, L5(R?)), uniformly in ¢, so (3.21) and (3.22) yield the limits (3.17)
and (3.18), and Proposition 3.3 is proved. |
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Proof of Proposition 3.4. — Lemma 3.1 implies that for j large enough, the
norm of ¢’ in H'/2(R3) is smaller than cv, with notation (1.3). Then (1.4)
enables us to infer that for j large enough,

Vi€ B and VIl < 2000 s g,

2
Hl/Z(RB)
therefore Proposition 3.4 follows. |

5.2.3. Proof of Theorem 2 (i)-(ii): the general case. — Let us consider a
sequence (g, ) of divergence free vector fields, bounded in H'/2(R3), and let us
define, with the notation of Theorem 1,

0 ENS(p,) and V7L NS(p).
We start by defining a sequence (¢,) € (R* U {+00})N such that
(.29 NS (o)

But (1.14) implies that the series of general term ||| is convergent,

is bounded.

EY
The existence of (¢,) is due to the fact that the application
2 2
t— ||NS(§0n)(t7 ')HHl/z(RS) + 2VHNS(SON)HL2([0¢],H3/2(R3))

is continuous on the time interval [0, T (v,,)[, where Ty (v,) € RT U {+o0} is
the life span of vy, and uniformly bounded at ¢ = 0 by sup [|¢n|| 71/2(gs)- So
neN

for any real number A > sup[|¢n| f1/2gs) and any n € N, one can find a
neN
time t,,(A) < Ty (v, ) such that

|NS(en)|| 5 < A

tn (A)

Note that nothing prevents t,,(A4) from going to zero as n goes to infinity.

Now let us prove that decomposition (1.18) holds, as well as properties (1.17)
and (1.19). We start by writing the decomposition (1.11) of Theorem 1, which
reads

o~

(3.25) VEEN, VneN, ¢u(x)=> ¢l(@)+ ¢ (x),
j=0

with notation (1.15) and (1.16), and with properties (1.12), (1.13), and (1.14).
Then the limit (1.12) enables us to define an integer ¢y in such a way that
1
(326) lim sup ||¢flo HLS(RS) S 5(51/,

where 0 is the constant of Proposition A.1. Then in particular

(3.27) (NS(¥L)) is bounded in Eo,
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by estimate (A.1) of Proposition A.1, since ||1% | f1/2 (g3 18 bounded according
to (1.14).

Now recall that L3(R?) is an admissible space in the sense of Definition 1,
according to Example 2 given in the introduction; but Proposition A.1 implies
that any function in H'/2(R3) whose L? norm is smaller than dv is in fact
contained in Dy, so it follows that

1 P
50V < oL’

NS’

with notation (1.9). So we can apply the result of Theorem 2 (iii) which yields

14
(3.28) NS@WL)(ta)= 5.

Jj=Lo+1

1 _ . t x—ad
1/ R vn Y2 ~{

with the orthQ%o_nality property (1.13), the limit (3.2) for w’, and where we
have noted VJ <= NS (¢7) for j > o+ 1. Furthermore, V7 is an element of E,
and
(3.29) lim limsup7 =0 in E.
Note that in particular (1.17) is proved, choosing J=t {0,..,4}.

So defining VI <L NS(¢7) for j < £y, we can write for any n € N and

any ¢ < min(7,, t,), where recall that 7, <= mi?(h%)sz7
JjE

(3.30) NS(pn)(t,x)

e .
1. t z—al
=3 _.VJ< S .")+wﬁt7x + 7 (t ) + (L, ).
(ht)? I () 4 ull ) ()
The restriction ¢ < min(7,,t,) is of course for the terms NS(p,) and

j def ivj((hii)fx ;gng)

v ,
in (3.30) to be defined. Then all we have to prove is that in (3.24), one can
take

(3.31) ty, = Tn,

as well as the fact that (1.13) holds with the additional couples (ki xJ) for
j < 4y, and that

(3.32) limsup [|71°[| gz = 0.

Then the theorem will be proved with 7, " 7 4+ 7lo,

The orthogonality of the couples (h/,xJ) for all integers j is an obvious

consequence of the orthogonality of the decomposition of the initial data due
to Theorem 1, so let us check the two other points, (3.31) and (3.32). In fact
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the result (3.31) is a consequence of (3.32) due to (3.30): if (3.32) is proved,
then in particular all the terms in the right-hand side have a bounded EY
norm, which implies that the same goes for (vy,).

For convenience, let us re-order the functions v, for j < £y, in such a way
that, for n large enough,

(3.33) Vi <k<fly, (h)°T! < (hy)°TY.

We decide that if T? = +oo, then (hi)2T! = +oc for every integer n. Recall
that 7¢ = 400 does not imply ¢/ € Dy, so if TY = 400 for all j, and if there
exists jo such that ¢ ¢ D, then we choose the first index 0 in such a way
that ¥ is not in Du,. Note that (h7)2TY is the life span of vJ.

Now let us define the following scaling operator: for any vector field f, we
define

def

(3.34) VieN, S;f(s,y)=hlf((hl,)?s,z, +hly).
Note that

Y(j,n) € N?,  Sjvl =V,
We then define, for every integer ¢,

—{y ,0 def

Vi<t VIPEESgwl, RS Syrl,

no

def = def ~ def
WEO = Swt,  RYCE= St and VO E= Sy,

Then the function Rio’o satisfies the following system, similarly to (3.11):

(3.35) 0.8, + P(RY" - VRY") — AR + QR FL0) = G5,
. Rfﬂ,sozo =Y
where
(3.36) FOS N V04 Wi 4 REC,
i<t
and
e 1 j i 53
(337)  GR¥ 5= =0 D QU = 3 QU Wt + RY)
j#k <t

(G.k)€{0,.., 63 1
= QWL 2R 4+ W),

Now let Ty be any real number smaller than 7. Then V7"* = V? is bounded
in E7o, and according to (3.33) we have

(3.38) Vj €N, IIUiQ\\E(h%)zTo is bounded,
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since (h0)2T° < (hd)2T! for j € {0,..,4}, and v} is bounded in E,, for
j > Lo+ 1. Moreover (3.38) can also be written

(3.39) VjeN, (V79 isbounded in Eqo.
We have the following proposition.

PROPOSITION 3.5. — With notation (3.36) and (3.37), we have the following
results: the sequence (F%?) is bounded in the space Epo uniformly in ¢, and

hm limsup || G% HLZ([O,TO},H*I/Z(RS)) =0.

—0 n—oo
Let us postpone the proof of Proposition 3.5 and finish the proof of the
theorem. As in the previous section, Propositions 3.5 and A.2 imply that

(3.40) lim sup ||]§io’0

n—oo

E;O = Oa

and that proves (3.32) after a rescaling. Then as noticed above, the result (3.31)
is simply due to the fact that all the terms in the decomposition of v, written
in (3.30) are bounded in E(0)270. That proves Theorem 2 (i). O

Finally let us prove Theorem 2 (ii): suppose that there exists a time T in
RT U {+00} such that (v,) is bounded in L2([0,T], H3/2(R?)). If for every
integer j, the function ¢/ is in Dy, then the result is proved. If not, then in
particular we have ©° ¢ Do, with the re-ordering (3.33). In the computations
above, we were free of our choice of the time T° provided T° < T?, so let us
choose T in the following way. We have, according to (3.30),

Lo
val + 7l =y, — NS(pf0),
§=0
and since the sequence (NS(1%)) is bounded in E., by (3.27) and (v,) is
bounded in the space L2([0,T], H3/?(R3)), it follows that
Lo
Z vl + 70 is bounded in  L*([0, 77, H3/2(R3)).
§=0
Then (1.2), and the remark after (1.8) if T? = +o0, enable us to choose TV < T
such that

IVOl oo ooy = 2500 | Z“j e

neN L2([0,T),H3/2(R#))’

which in turn yields

et

(3.41) Z HVJ 0||L2([0 T0], F3/2(R3)) > 4sup

neN L2([0,T], H3/2(R3))
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But Proposition 2.1 implies, after a rescaling, that

HZ i,

when n goes to infinity. So (3.40) 1mp11es that for any € > 0 and for n large
enough we have

Z 1%

4,0
L2([0,T0),H3/2(R3)) Z Vi H112([‘3 T0),H3/2(R3)) +o(1),

L2 [0,70], HH3/2 (R3))

<e+2sup ”R +ZVJOHL2 [0,7°0], F13/2(R3))
neN

50
<e+ 2sup ||7"£O + ZU 0,(h0)2T0], F3/2(R3))"
7=0
The only way not to contradict (3.41) is to have T < (h2)2T°, which proves
Theorem 2 (ii). O

Proof of Proposition 3.5. — The proof is very similar to the proof of Proposi-
tion 3.3 in the previous section, so we shall not go into too much detail. Let
us start by noticing that the term R%° satisfies the same estimates as W50,
and in particular the limit (3.2), by Sobolev embeddings; so we shall forget it
in the following.

Let us start by considering the term F‘°: Proposition 3.4, along with
the orthogonality properties (2.1) and (2.2), implies in particular that the
sequence || ZEO 41 vfl||2E,(;o is bounded independently of ¢; moreover we know

from (3.38) that (v}) is bounded in Exo 270 for j < £y, so we get finally

is bounded uniformly in ¢,

(3.42) Ve €N, H 3wl
i<t

v
2
(h9)2T0

and the result is proved for F%9 since ||wf|/gy is bounded uniformly in ¢
according to Proposition 3.2.

For the limit of G%°, it is enough to prove the following results, after rescal-
ing: for all (j, k) € {0, ..,€}?, with j # k,

(3.43)  lim Qi,vE)y =0 in L*([0, (h%)?T°], H~(R?))
(3.44) Jim hmbupQ(Zv )—o in LA([0, (h)2T°), H'(R?)).
n—oee <t

Indeed, the limit of Q( w?,) was proved in Proposition 3.3, and similar argu-
ments to the case of g’ above imply that G%0 is bounded in LA/ 3([0,T°], L?(R3)).
Then the result follows by interpolation.
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The limit (3.43) follows from Proposition 2.1 exactly as (3.16), using (3.38).
To prove (3.44), we follow the proof of (3.17): we have

j e)
HQ(;%% LA([0,(h)>T0) H =1 (8%))

o5
J<t

waLHLW(R*',L3(R3))7

LA([0,(h%,)2T°], L6 (R?))

and
wes |5 e
sz; LA([0,(h$)2T°], LS (R3)) g Elu0y210
Then (3.42) yields the result, and the proposition is proved. a
3.3. Proof of Theorem 3. — We will keep the notation introduced in the

course of the proof of Theorem 2, and we shall suppose in this section that
additionnally to the assumptions of Theorem 2, the sequence () is bounded
in L2(R3).

The proof of the result (1.21) in Theorem 3 requires a more precise under-
standing of decomposition (1.11) given in Theorem 1. Let us therefore briefly
recall how the scales hJ, are determined in [16]: a preliminary result in [16]
states that any bounded sequence in H'/2(R?3) can be written, up to a subse-
quence, as

~

(3.45) Vo R, VLEN, ¢u(x)=> @(x)+P(a),
=0
where limy_ o limsup,, . [|[0| rsrsy = 0, and where each @/ is bounded

in H'/2(R?) and strictly hJ -oscillatory, in the following sense.

DEFINITION 2. — Let (hy) be a sequence in (RT\ {0PN, and let (¢n) be a
bounded sequence in HY?(R3). Then (¢,) is hy-oscillatory if

(3.46) lim limsup/ €] % |En(€)|?dE = 0.
oo n—oo Jhalel2R

The sequence (¢n,) is strictly hy-oscillatory if it also satisfies

(3.47) lim limsup/ €] % |2n (€)2d€ = 0.
e—=0 00 hn\f\ga

Note that the sequences (/) are of course also supposed not to converge
strongly to zero in H'/2(R3) as n goes to infinity, and the sequences (hi)) are
orthogonal in the sense of (1.13); the cores of concentration zJ in decompo-
sition (1.11) are then extracted from each @}, successively, and the profiles
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are determined at the same time. More precisely, one can write (see [16]) for
every (j,n) € N? and every x € R3, up to the extraction of a subsequence,

4

Jon 1 . x—ahP :
oh(z) = Z i ik(T> + 2t
k=0 """ n
with limy_ oo lim sup,, oo [|[¥%¢]| £3(rs) = 0.

Finally it is proved in [16] that if (¢,) is bounded in H/2(R3) N L?(R3),
then for every integer j, (#7) is also bounded in H/2(R3) N L2(R3) (see for
instance Remark 2.10, formula (2.20), of [16]). So the result (1.21) on the limit
of the sequence (h/,) will be obtained if we prove the following lemma.

LEMMA 3.6. — Let (hy) be a sequence in (RT \ {0})N, converging towards
infinity with n, and let (®,,) be a hy-oscillatory sequence of functions, in the
sense of Definition 2, bounded in HY/2(R3). Suppose that (®,) is bounded
in L*>(R3). Then ®,, converges strongly to zero in H'/?(R?).

Proof of Lemma 3.6. — Let us suppose that ®,, does not converge strongly to
zero in H'/2(R3), and let us prove that (®,,) is not bounded in L2(R?). In that
case, up to a subsequence, there exists Co > 0 such that ||| 71/2(gs) > Co for
any n large enough. Then (3.46) enables us to choose a real number Ry such
that

(3.48) lim sup /h LE 1&5(6)[ de <

n—oo

@
2
But we have

hn, —~ 2
@nlBeey = 3 [l [Ea(f e
0 h1L|€|§R0

h — 2
> n 2 _
= RO (H(I)n“Hl/z(RB) /hn|§|2R0 |§| X ‘q)n(f)| df),

o (3.48) implies that

Co
[l L2(r3) > hn2—.R0,
which yields the result, since (h,) is supposed to converge towards infinity
with n. ]

That lemma implies that under the assumptions of Theorem 3, there are no
large scales in the decomposition (3.45), and (1.21) is proved.

Finally let us prove (1.22): we suppose that (v;,) is bounded in the space
L2([0,T], H3/?(R?)), and we define

JE LG < ly| b =1},
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where (o was defined in (3.26). If j is in N\ J, then either j > fp + 1 and
then ¢/ € Dy, or lim h! = 0 in which case ¢/ € D4 according to Theo-
rem 2 (ii). So J satisfies (1.17). To prove (1.22), we recall that decomposi-
tion (3.30) implies that

0270 is bounded,

for all T° < TO, ||vn] &
(3.49) {

and if ¢° € D, then ||vy| gy is bounded

with notation (3.33). Then two cases can occur: in the first case, we have
lim,, oo h2 = 0 and ¢° € Dy according to Theorem 2 (ii). Then (3.49) im-
plies that (v,) is bounded in E.,, and since ¢/ € Dy, for all j, the result is
proved. In the second case, we have h? = 1 so in particular (v,) is bounded
in L2([0, T°), H3/2(R3)), which proves (1.22) according to (1.2). So Theorem 3
is proved. O

3.4. A remark in the case of periodic data. — If we suppose that the ini-
tial data is a sequence of periodic, mean free, divergence free vector fields (),
bounded in the space H/2(T3), where T3 <= (R/z)?, then it is also bounded
in L2(T3), since the H*(T?) norm is defined by

def s iy
11y oy 22 57 Il [Fm) 2,
nez

~

where f(n) is the (discrete) Fourier transform of f. So the results of Theorem 3
apply. In particular, there are no large scales, and the scales equal to 1 are
reduced to the weak limit only, since the cores xJ, are bounded when h/ = 1.
However, one must note that the profile decomposition of Theorem 1 must
be slightly modified, for instance by multiplying the profiles ¢’ by trunca-
tions x(x — 2J,) where x is supported in [0, 1]3. Similarly, one can decompose
the solution (vy,) also by multiplying the profiles in the decomposition of The-
orem 2 by such truncations; the remainder induced by those truncations can
be proved to be small in £, but that smallness is not uniform in 7" even in
the case of global solutions.

4. Proof of the corollaries

This section is devoted to the proof of the corollaries given in the introduc-
tion. We shall keep the notation of the previous sections.

4.1. Proof of Corollary 1. — As in [2] for the wave equation, Corollary 1
is proved by contradiction: let A be an admissible space, and suppose there
exists a sequence of global solutions of (NS) in E, associated with a family
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of initial data (¢, ), bounded in a closed ball of Bz as defined in (1.10), such
that

(4.1) lim [|[NS(pn)|| 5, = +oo.

We can apply Theorem 2 (iii) to (¢, ). That implies in particular that (NS(¢y,))
is bounded in L= (RT, H/2(R3)) N L3(R+, H3/2(R3)), since that holds for each
term of the decomposition. The contradiction is obvious, and Corollary 1 is
proved. O

4.2. Proof of Corollary 2. — Let us prove that the mapping from data
in D, to the associate solution is Lipschitz on bounded subsets of B;,“s7 where A
is an admissible space and B2 was defined in (1.10).

We start by proving the following .

LEMMA 4.1. — Let ug and vy be two divergence free elements of Do, and
define u 2= NS(up). Then we have

v,

dis (NS(ug + gvp))

where v is the unique solution in Eo of the following system:

{8tv+P(v-Vu+u-Vv)—VAv=O,

|le=0 =

V|t=0 = Vo,

where P is the Leray projector onto divergence free vector fields. Moreover we
have, for anyt >0,

t 1/2
(42)  Iollsy < Cllvoll g agan {1+ ( /0||u<s>||;3/2(R3>ds) }

k 2
X exp <C/0 H“(S)HHS/z(RS)dS)'

Proof of Lemma 4.1. — The fact that there is a unique solution to the lin-
earized equation, which satisfies (4.2), is simply due to Proposition A.3 stated
in the Appendix.

Now let u€ be defined by u® <= N.S(ug + vp), and let us define
er® Ly —u—ev.

We are going to prove that lim._,or®* = 0 in F, which clearly will imply the
lemma. The function r¢ satisfies the following equation:

Ot + Q(r,u) — vAr® = f¢
{Ti_o = 07
with
FfE —eP(v-Vo+v- Ve +1° - Vo415 - Vo).
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As a consequence, we can write, using Proposition A.3,
Ve >0, [y < Ol s (L [l agizorey exp Cllull2s o/s)).
But the product rules in Sobolev spaces recalled in (3.19) imply that
£ 0 L2 =172y < Ce(llollEy + vl ey Irelley + €11y ),
so writing X°(t) 2= %]/ v, we have
Xe(t) < Ce([lvllEy + llvll ey X=(t) + (X°(1))?)
X (1 =+ ”u”Lf(HB/?) eXpC”u”i%(HB/z))'

Now let us recall that u € Fo, by assumption; then if C(u) denotes any constant
depending on |lu||gy_, estimate (4.2) enables us to write

Vi >0, Clu)e(X(t)” = X°(t)(1 = C(u)e) + C(u)e > 0.

But X°¢(t) is a continuous function and is equal to zero at time ¢t = 0;
since C'(u)e is the smallest root of the polynomial above, we conclude that

VE>0, X°(t) < Clu)e.

So the lemma is proved. |

Finally Corollary 1 implies that in estimate (4.2), [[ull ,2((o 1}, fras2(rs)) can
be replaced by a function of [[u|| g1/2(gs), so Corollary 2 is proved.

Appendix A
Some results on the Navier-Stokes equations
In this final section, we shall present some results on the Navier-Stokes

equations which have been used in the proofs. Those results are quite classical.
We are also going to prove Proposition 1.1 stated in the introduction.

The first result is of the propagation of regularity type. It can be seen as a
corollary of Theorem 3.4.2 of [3], but we present here a self-contained proof.

PROPOSITION A.1. — There exists a constant § such that the following is true.
Let vy € HY?(R®) be a divergence free vector field, such that |[vo| sy is

smaller than dv. Then vy € Do, and if vgNS(vo), then for any t > 0 we
have

t
(A1) Hv(t)H§'{1/2(R3) +V/O |‘VU(S)H§_'II/2(R3)dS < ”UOH?‘{l/z(R;s)-
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Proof of Proposition A.1. — Tt is known (see [10],[18]) that there exists a
constant ¢ > 0 such that if [Jvg|| 3 (rs) < cv, then NS(vp) is in CO(R*, L3(R?)),
and we have

(A'2) vt >0, ||NS(U0)(t7')||L3(R3) < CHUOHL3(R3)7
where C' is a universal constant. Moreover, recall that L3(R?) is an admissible
space in the sense of Definition 1, according to Example 2 of the introduction.

So property (ii) of Definition 1 enables us to choose a constant § < ¢ such that
if [lvo|lLsms) < Ov, then vy € Do. Now let us prove the estimate (A.1): an

energy estimate in H'/2(R3) for the function v(Z,-) reads

5&”1’(2&)‘&1/2@@3) + Vva(t)HiIl/?(Re') = |(U -Vo(t) | U(t))Hl/z(R3)|-
But writing A ot V—A, we have
(v -Vo(t) | v(t))H1/2(R3) = (v -Vo(t) | Av(t))L2(R3),
and Holder’s inequality yields
(v V()| AU(t))LZ(RB)‘ < Hv(t)HLe'(Re') x ”vv(t)”;(ﬂ@)'

The continuous embedding of H'/2(R3) into L3(R?) enables us to infer that

1d
5 7 10Oz sy + VIVOON 2 gs) < Clo@] ooy * V0O 1720

so finally choosing d small enough, we have according to (A.2),

d
&Hi’(t)uifl/z(n@) + V||VU(L‘)||21/2(R3) <0.
The proposition is proved. O

PROPOSITION A.2. — Let T € Rt U {+oco} and v > 0 be fized. There ex-
ists a constant C, depending on v but not on T, such that the following is
true. Let (fn) and (gn) be two families of vector fields, bounded in Er and
in L2([0, T], H='/2(R3)) respectively. If

(A3) b lgull oy -1/2gaay) < Coxp (- 2Csup AT

then there exists a unique solution in Ex to the following system:
{@rn + P(ry - Vry) — vAr, + Q(rn, frn) = gn,
Tn|t=0 = 0,
where P is the Leray projector onto divergence free vector fields, and where
Q(a,b) =L P(a-Vb+b-Va).
Moreover, we have, with notation (1.8), and writing

def

Ly (H™2(R®) = L2([0, T], H*(R?),
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HrnHE; < CHgn||L2T(H—1/2(R3)) (1 +exp (Can||4E;))

Proof of Proposition A.2. — Let us start by noticing that any function
in Er is in L*([0,T], H'(R®)), by interpolation between L>([0,T], H'/?(R?))
and L%([0,T], H3/?(R3)). Then the proposition is a direct consequence of
Lemma B.1 of [12]: formula (B.3) of [12] indeed states that

Hrn||L4T(H1(R3)) < C(||gn||L2T(H71/2(R3)) + ”T"HQL‘*T(HI(RS)))

4
X exp (C“fn“L%(Hl(RS)))~
Then assumption (A.3) enables us to write, by superlinear bootstrap (see for
instance [2], Lemma 2.2), that
HTHHL‘;(Hl(]W)) = C”gn”LzT(H*l/Z(RS)) exp (C”ani%(Hl(Re.)))'
But Lemma B.1 of [12] also implies that

||Tn||L;9(H1/2(R3)) + ||7"n||L2T(H3/2(R3)) < CHgn”L%(H*l/Z(Re'))

+ C”rn”L‘q{(Hl(R%)(HTHHL‘;(Hl(RB)) + an||L4T(H1(Ra))),
so the result follows. O

The following proposition is similar to the previous one, and is a direct
consequence of Lemma B.1 of [12].

PROPOSITION A.3. — Let T € RT U {+oo} be fized, and let f, and g, be two
vector fields, bounded respectively in the space LQ([O,T],H3/2(R3)), and in the
space L2([0,T), H='/2(R?)). Finally let 7, be a family of divergence free vector
fields, bounded in H'/2(R3). Then there exists a unique solution in Ep to the
following system:

{ Ogrn — VAT, + Q(Tm fn) = 9n,

Tn|t:0 = Tn,0,
def

where Q(a,b) = P(a-Vb+b- Va). Moreover, we have
Irallzy, < C(llrnoll e + llgnll 2 gr-1/2))
x (1 + ”anL%(HW?) exp (C||fn“i%(H3/2)))a
where C' is a constant which depends on v but not on T'.

Finally let us prove Proposition 1.1 stated in the introduction. We recall the
statement below.

PROPOSITION A.4. — Let vy € H'/2(R?) be a divergence free vector field, and
let T be the life span of NS(vo). If vy ¢ Do, then
4
T. < WHUOHLQ(R;S).
NS
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Proof of Proposition A.4. — The proof is also quite classical (see for in-
stance [11] in a different context); as it is quite short, we recall it here for
the convenience of the reader. So let us consider a divergence free vector
field vo € HY?(R?), and let us suppose that vy ¢ Du,. Let T, be the life
span of v<2 NS(vg). Then for all T < T,, writing A(X) for the Lebesgue
measure of X, we have

Meeo,T[; B <o,

NS

Mirrrzges)}

1 T .
< oy JRRECR [
NS

by the Bienaymé-Tchebytchev inequality. That yields

o2 poey X 100 e s € ——ee 0] 2.
- (0£1/2)4 Lo (RT,L2(R3)) L2(R+,H (R3)) = V(C£1/2)4 L2(R3)

So the result is proved. O
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