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ON THE (9-EQUATION IN A BANACH SPACE

BY IMRE PATYI (*)

ABSTRACT. — We define a separable Banach space X and prove the existence of a <9-closed
C^-smooth (0, l)-form / on the unit ball B of X, which is not c^-exact on any open subset.
Further, we show that the sheaf cohomology groups Hq{^l,0) = 0, q > 1, where 0 is the
sheaf of germs of holomorphic functions on X, and f2 is any pseudoconvex domain in X, e.g.,
^l = B. As the Dolbeault group H°-1 (B) ^ 0, the Dolbeault isomorphism theorem does not
generalize to arbitrary Banach spaces. Lastly, we construct a C^-smooth integrable almost
complex structure on M = B X C such that no open subset of M is biholomorphic to an open
subset of a Banach space. Hence the Newlander—Nirenberg theorem does not generalize to
arbitrary Banach manifolds.

RESUME. — SUR L'EQUATION Q DANS UN ESPACE DE BANACH. — On definit un espace
de Banach separable X et on montre P existence d'une forme Q fermee du type (0,1) de classe
C00 sur la boule unite B de X, qui n'est Q exacte dans aucun ouvert. On montre en outre que
Hq{^,0) = 0 pour q > 1 et f^ C X ouvert pseudo-convexe, par exemple, f2 = B. II s'ensuit
que risomorphisme de Dolbeault ne se generalise pas aux espaces de Banach quelconques.
On montre egalement que Ie theoreme de Newlander-Nirenberg ne se generalise pas aux varietes
de Banach quelconques.

Edesanydmnak, Edesapdmnak^

Introduction
This paper addresses three fundamental problems that arise in complex

analysis on Banach spaces and on Banach manifolds.
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392 I. PATYI

The first concerns vanishing of Dolbeault cohomology groups. Presently there
is one definitive result on this: the Dolbeault cohomology group H0-1^) = 0
for any pseudoconvex open ^ C ^i, see [L3, Cor. 0.2]. In no other infinite
dimensional Banach space is a similar result available. Here, we shall show that
such a vanishing theorem cannot be true in complete generality. In Section 1
we shall define a separable Banach space X and a C'°°-smooth 9-closed (0,1)-
form / on its unit ball such that on no open set G is the equation 9u = f\Q
solvable. This implies H0^^) ^ 0 for any bounded open set ^ C X. We note
that globally non-solvable 9-equations in Frechet spaces were constructed earlier
by Dineen [D] and Meise-Vogt [MV].

The second issue to be considered is that of an infinite dimensional version of
the Dolbeault isomorphism between the Dolbeault cohomology groups H0-1^)
and the sheaf cohomology groups Hq(^l,0), where 0 is the sheaf of germs of
holomorphic functions on X. Currently no instance of such an isomorphism
is known when ^ is open in an infinite dimensional Banach space. We shall
show that ^(^,(9) = 0, q > 1, for all pseudoconvex open subsets ^ of the
above space X. In particular, 0 = H1^^) ^ H0^^) ^ 0 for any bounded
pseudoconvex open set Q C X. The vanishing of sheaf cohomology follows from
a theorem of Lempert [L3, Thm. 0.3] plus a Runge-type approximation theorem
to be proved in Section 2.

The last issue to be addressed concerns the extension of the Newlander-
Nirenberg theorem on integrating almost complex structures to an infinite
dimensional setting. The question is whether a (C^-smooth) formally integrable
almost complex manifold is locally biholomorphic to a vector space. In finite
dimensions it is true, see [NN], while in some Frechet manifolds it is known to be
false, see [LB], [L5], This failure in itself is perhaps not surprising, as on Frechet
manifolds even real vector fields may not be integrable. However, in Section 3,
given any C^-smooth (9-closed but nowhere 9-exact (0, l)-form / on the unit
ball B of a Banach space X, we explicitly construct a C^-smooth integrable
almost complex structure on M = B x C such that no open subset of M is
biholomorphic to an open subset of a Banach space, giving a Banach manifold
to which the Newlander-Nirenberg theorem does not generalize. The manifold M
is a smoothly trivial principal (C, +) bundle over B and its almost complex struc-
ture will be determined by the form /, which we use as a deformation tensor.

Below we shall use freely basic notions of infinite dimensional complex ana-
lysis, see [LI], [L2] for the definition and basic properties of the following items:
differential calculus on infinite dimensional spaces; smoothness classes (^(f^),
C7p^(^) of functions and of (p, g)-forms with m = 0 ,1 , . . . , oo, uj', the (9-complex;
complex manifolds, almost complex manifolds; pseudoconvexity; holomorphic
mappings and integrability of almost complex structures.
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ON THE Q-EQUATION IN A BANACH SPACE 393

Notation
Denote by Bx(a, r) = {x e X ; \\x - a\\ < r} the open ball with center a € X

of radius 0 < r ^ oo in a Banach space (X,||-||). Put Bx(r} = Bx(0,r).
Denote by C^^), C^^) the space of complex functions and of (0, l)-forms
of smoothness class m = 0 ,1 , . . . , oo,c^, and define for u € C^Q), m < oo,
the C^n) norm by

INIc )̂ = ̂  ̂ P II^O^H ^ oo.
fc<m^

where Hn^^)!! is the operator norm of the A;-th Frechet derivative u^ of u.
The C^) norm of / C Co^) is defined by

ll/llc-(Q) = IHIc-(^xBx(l)) < °°'

where ̂ ,0 = /(^ for ^ C ^,$ € Bx(l).

1. Non-solvability
We consider the solvability of

(1.1) 9u=f on ^

where / G (7orn[(^) is a ^-closed (0, l)-form with m = 1, 2 , . . . , oo on a domain f^
in a Banach space X.

Coeure in [C] (see also [M]) gave an / on X = ^ = ^2 of class C1 for
which (1.1) is not solvable on any open set. Lempert in [L2] extended Coeure's
example and produced, with p = 2 ,3 , . . . , a 9-closed form / e C^^p) for
which (1.1) is not solvable on any open set. Based on the mere existence of these
examples, we prove that there is a form / of class C°° on f^ == 5^(1) in, say,
the ^i-sum X of a suitable sequence of ^(C^^) spaces with p > 2 integer, for
which (1.1) is not solvable on any open subset of fL

Let Y be £q, 1 ^ q < oo, or CQ. We define the V-sum X of a sequence of
Banach spaces (X,, ||. || J^i by

X = [x = (Xn) ; Xn € Xn, y = \X C V, ||^|| = |H|y},

where x\ = (||^i||i, ||.r2|l2. • • • )•
Then X is a Banach space and we have inclusions In'-Xn -^ X, In{xn) =

(0 , . . . ,0,^,0,. . .) with Xn at the n-th place and projections TTn'.X -^ X^
/7^n(^) == ^m ^m,n''X -^ X , 7Tm,n{x) = (^), where Zi = Xi if m < i <^ n,
Zi = 0 otherwise; 1 < m ^ n ̂  oo, not both oo. The In are isometrics onto their
image and In, TT^, 7Tm,n have operator norm 1.
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394 I. PATYI

THEOREM 1.1. — For a suitable sequence of integers n(p) ^ 1, p ^ 2, and
for any Y as above, on the Y-sum X of (^(C^))^ there exists a 9-closed
f C C^(Bx(l)) for which (1.1) is not solvable on any Bx(a,r) C ̂ x(l).

REMARK. — For 1 < p < oo regard ^(C71) embedded in £p via

Ju^p^) ——— £p, Jn(x^ . . . ,Xn) = (a;!, . . . , ̂ , 0, . . .),

put Bp(r) = £^(r), Bp^(r) = B^)(r\

Qn^p ——— W1), Qn(x) = On, . . . , Xn, 0, . . .),

and let / G C^Bp^)) be 9-closed and of finite (^(^(l)) norm for some
m ^ 1. Then, for some 0<r<^l,9u=f has a bounded solution u on Bp(r) if
and only if for all n ̂  1 there are solutions of Qun = J^f on Bp^n{r) such that

sup K| ̂  MHJ^/H^^^,^ ^ ^II/HC-(B,(I)).
-Sp,7),(^)

with M independent of the dimension n.

This observation is the pillar of the argument below. Such a reformulation
of the solvability of (1.1) was already given for Hilbert space by Mazet in [M],
Appendix 3, Section 1, Remark 2.

PROPOSITION 1.2. — With the notations of the remark above, the following
statement (Ep) is false for any integer p ^ 2.

( There exist a radius 0 < r < 1, a constant 0 < M < oo such that
for all n = 1 , 2 , . . . and for all 9-closed f C C^(Bp^n(^)) of finite

(E ) (^p~l(Bp^W) norm, the equation Ou = f has a solution on Bp^n{r)
satisfying

^^(r) H ̂  W^CP-^B,, ,(!))•

Proof. — Denote by (Ep) the statement (Ep) with "/ e C^{Bp^(l)Y
replaced by "/ e C^1^^!))". Fix p and suppose for a contradiction
that {Ep) is true. Since the 9 differential operator has constant coefficients,
approximation using convolution shows that (Ep) is also true.

We claim that ( E ' ) implies the solvability on Bp(r) of (1.1) with any en-
closed / € CPo~^(Bp{l)) of finite C^^Bp^l)) norm. Let Un be a solution
of 9un = f\Bp^{r) guaranteed by (Ep). The functions Vn = Q^Un on Bp(r)
satisfy, with a suitable constant N , that |^(rc)|, \(9vn)(x)^\ <^ N for x € Bp(r),
^ e Bp(l).

TOME 128 — 2000 — N° 3



ON THE 9-EQUATION IN A BANACH SPACE 395

It follows from the Cauchy-Pompeiu representation formula [H, Thm. 1.2.1]
applied to 1-dimensional slices that {vn)^° is a locally equicontinuous family
on Bp(r). The Arzela-Ascoli theorem gives a subsequence Vn' —^ v converging
uniformly on compacts in Bp(r). As v is continuous and 9v = f holds restricted
to Bp^n(r) for every n in the distributional sense, it follows by approximation
that 9v = f holds in the distributional sense restricted to any finite dimensional
slice of Bp(r). The "elliptic regularity of the 9 operator" implies that v is a Cp~l

solution of 9v = / on Bp{r). See [L2, Props. 2.3, 2.4].
Now, pull back the form g in Coeure's or Lempert's example for £p by x i-̂  ex

with an e > 0 so small that the resulting form / has finite C^"1^^!)) norm.
Then (1.1) is not solvable on any open subset of £p. This contradiction proves
Proposition 1.2. []

Proof of Theorem 1.1. — We shall use the method of "Condensation
of Singularities." As (Ep) is false for p ^ 2 integer, we have sequences
n(p) ^ 1 of integers, r? -^ +0 of radii, fp € C§°^(Bp^{p)(l)) of (9-closed
forms with \\fp\\cp-i(B (i)) = 1 such that ^ ^u = fp on Bp.n{p)(^p) then
supo , /„ ^ \u > pP^1.

- l•-Dp,n(p)^.rp^ I — J-

Let X be they-sumof^(C n ^) ,p=2 ,3 , . . . . Put

f=f^p-p^
p=2

One checks that / is in C^{Bx{l)) and is 9-closed.
We claim that 9u = f cannot be solved on any open subset of £?x(l).
Indeed, suppose for a contradiction that there are a ball £?jc(a,r) and a

function u with 9u == / on B^(a^ r). Take r so small that

sup \u\ == N < oo.
Bx{a,r)

This can be done as u is continuous at a (even C°°). Choose q ^ 2 so large that
||7rq+i,oo(a)|| < j71- Fix P> q,N so large that r? < jr. Let

V{z) =^(7T2,q(a) -^-Ip{z))

for z 6 Bp^(p)(rp). Then 9v = p~pfp on Bp^p)(rp), so

N > sup H ^ p-PpP^ ==p> N.
^nCp^p)

This contradiction proves Theorem 1.1. []
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396 I. PATYI

Further, we claim that

dimcH^{Bx(l))=oo.

We group the indices p into pairwise disjoint infinite sets P^, n ^ 1. Then for
the V-sum X^ of ^(C^)), p G ?n, we have inclusions Jn:X^ -> X and
projections Qn'.X -^ X(n) both of operator norm 1. Let gn C C§°^B^w(l)) be
a 9-closed nowhere <9-exact form whose existence is guaranteed by the proof of
Theorem 1.1. Then fn = g^g^ are linearly independent in H°^(BxW). Indeed,
suppose that_Ai/i + • • • 4- \nfn = 9u, \i e C. Then by restricting to X^ we see
that \igi is 9-exact, hence \i = 0.

Should it turn out (as it is yet unknown) that on the unit ball B of ^2 there
are 9-closed (0, l)-forms of arbitrarily high finite smoothness that are nowhere
9-exact, then the construction in Section 1 with Y = £^ would yield a 9-closed
/ e ^S^iW which is nowhere 9-exact: a non-solvable 9u = f in Hilbert space.

2. Approximation
We consider the following kind of approximation in a Banach space X.

(A)
{For any 0 < r < R, e > 0, and f:Bx{R) -^ C holomorphic, there
\exists an entire function g:X -^ C with \f — g\ < e on B^(r).

THEOREM 2.1. — The statement (A) holds for the i\-sum X of any sequence
of finite dimensional Banach spaces (X^,||-[[ ).

Lempert in [L4] proved (A) for X = ^i. When this manuscript was first
written, Theorem 2.1 was the most general theorem proving (A). Later, however,
(A) was proved in [L6] for any X with a countable unconditional basis, i.e., for
most classical Banach spaces. It is not clear whether all spaces X in Theorem 2.1
have a countable unconditional basis, or even a Schauder basis.

The proof of Theorem 2.1 is a modification and extension of Lempert's method
in [L4]. Lempert's argument is based on the so-called monomial expansion of
functions holomorphic on a ball ||.r|| < R <^ oo of t\ (an analogue of the
power series expansion on a finite dimensional space), and on the use of a
dominating function A(g, z) defined and continuous on C x B^(\\ whose role
in the estimation of monomial series is similar to the role of the geometric series
in estimating power series.

We replace the monomials by so-called multihomogeneous functions but use
the same dominating function A of Lempert.

TOME 128 — 2000 — ?3



ON THE 9-EQUATION IN A BANACH SPACE 397

2.1. Multihomogeneous functions.
Let X be the ^i-sum of a sequence of finite dimensional Banach spaces

(X^IHIJ. For A = (\n) ^ ^oo and x € X put A;r = (AI.Z-I, A 2 ^ 2 , . . . ) ^ X.
In the rest of this Section k denotes a multiindex. A multiindex k = (kn) for us
is a sequence of integers kn > 0 with kn == 0 for n large enough. The support of k
is the set supp k = [n ; kn -^ 0}. We define ||A;|| = ̂  |A:n|, and # A- as the number
of elements of the support of k. For a sequence of complex numbers A = (\n)
we put A^ = A^A^2 • • • € C, a finite product. For a multiindex A;, a holomorphic
function Lp'.B^{R) -^ C is called k-homogeneous if (^(Aa;) = ^^(x) for all
^ e ^x(^), A = (\n) e ^oc with |AJ = l.

A /c-homogeneous function (p is a homogeneous polynomial of degree | [ /> ; [ [
depending only on those finitely many variables Xn e Xn for which n C supp A:.
In particular, ^p extends automatically to an entire function on X, and y(\x) =
A^^a;) holds for all a; € X and A e ^oo-

We define the norm [(^] of a Aj-homogeneous function (p by

[(^] = sup \y(x)\.
11^11<1

The set of all /^-homogeneous functions (^ for a fixed k is a finite dimensional
Banach space with this norm.

PROPOSITION 2.2. — For (̂  k-homogeneous and x G X,

I^^I^MI.r^llfcll1""^.

Prw/. — If a^ = 0 for some i G supp A:, then y(x) = 0 as seen from the
definition. So we may suppose that supp A; = { l , 2 , . . . , n } and Xz ^ 0 for
1 < i < n. Put

_ A^i a"i ^ Xn Q \ -^
?/= NWT""NM7 ?"^ '

Then ||7/|| = 1, so \^\ > \^{y)\ = k^^r^^^^x)^ as claimed. D

2.2. The dominating function of Lempert.
This function is defined by the series

||L.||IIN

^^-E^-I^I^I
for (<7^) G C x B^(l). See [L2, Section 4].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



398 I. PATYI

THEOREM 2.3. — (a) The series for A converges uniformly on compacts in
CxB^( l ) .

(b) For each 0 < 6 < 1 there is an e > 0 such that A is bounded on
Bc(£)xBe,(0).

Proof. — See [L4, Thm. 2.1]. Q

We remark that the norm of a monomial zk on ^i is [z^ = A ^ H A ' I I " ' ' as a
simple calculation shows. So A(g, z} can be written as

^z)=^zk\[zk}~l\qf\

where we add up normalized monomials with a weight counting the number of
variables in the monomials.

2.3. Multihomogeneous expansions.
Let T = (IR/Z)00 = {t = {tn) ; 0 < tn < 1} be the infinite dimensional

torus, a compact topological group with the product topology and with Haar
measure dt of total mass equal to 1.

For a holomorphic function f:Bx(R) —^ C we define the multihomogeneous
expansion of / by / ^ ̂  fk, with

fk(x)= ( f(e27^^tx)e-27^^{k•t)dt,
JteT

where k is any multiindex, e^^x = (e^^i, e27^2^, • . . ) and {k-t) =^kntn,
a finite sum. Then fk is defined, holomorphic and ^-homogeneous on Bx(R)'
We call fk the k-homogeneous component of the function /. Let

S = {a = {(Tn) ; 0 ̂  (7n -^ 0}, S^ = {(7 G S ; 0 ̂  0-n < 1},

a A == {a.r ; .r € A}

for A C X, a e 5' as in [L4, Section 2].

PROPOSITION 2.4. — (a) If f:Bx(R) ̂  C is a holomorphic function, then we
have the estimate

M{a)=svip[fk}o•kRW <oo
k

for all a € 5'i.
(b) If fk is k-homogeneous and M(a) < oo for all a G 5i, ^Aen ^/ie 5erze5

g = ̂  fk converges uniformly on compact subsets of Bx(R)^ g is holomorphic
on Bx{R), and the k-homogeneous component gk of g is equal to fk.
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ON THE ^-EQUATION IN A BANACH SPACE 399

Proof. — We use the following compactness criterion: A subset K C X
is compact if and only if K is closed, bounded, and the tail sums Rn(x) =
Y^y>n 11̂  IL ~^ ° uniformly on K as n —> oo.

We outline the proof. If K is compact, then Rn —^ 0 uniformly on K by
Dint's theorem on monotone convergence of continuous functions on a compact
space to a continuous limit. In the other direction, fix e > 0. We produce a finite
covering of K by s-balls. Fix n so large that Rn < \e on K, and project K onto
the space of the first n coordinates, this is a bounded set in a finite dimensional
space, so it has a finite covering by balls Bx{xi^ ^e). Now, Bx(xi^e) cover K.

This criterion implies, in particular, that any compact K C -Sx(l) is
contained in cr2!?^!) for suitable a e 5'i, and all the sets aB^c(l) for a e S
have compact closure. The utility of such a criterion was already observed by
Ryan [R] in a similar context.

Proof of (a). — The set (jBx{K) being compact,
sup \f((jRx)\ = M < oo.

|M|<i
Thus, (p(x) = f(aRx) for \\x\\ < 1 is bounded by M on ^x(l). So is its k-
homogeneous component (^fc(^) = cr^l^ll fk{x), hence [f^^R^^ < M, or
M(cr) < M < oo.

Proof of (b). — Without loss of generality we may suppose that the given
compact is crL, where L C Bx(r} is compact, a- 6 S\ and r < R. Then putting
x = ay for \y\ < r, y G L, we have that

lAMI^tA]^!!1""^^!^
^[fkm^k^a^y^

^[f^a-^W^^k^k-^y/R^.
Summing on A:, we get

^\fk{x)\ < M(a)A(l,^) ^ M < oo

where z = \y/R\ ranges in a compact subset of £?^(1), and the series for A
converges uniformly by Theorem 2.3 (a).

This concludes the proof of Proposition 2.4. []
PROPOSITION 2.5. — Let fk be k-homogeneous. If for each multiindex k and

for all a ^ S ( ! ) we have s\ipj^[fk} o•kR^k^ < oo, then ̂  fk is an entire function
o n X .

Proof. — If M(a) < oo for all a € S, then M(Acr) < oo for all 0 < A < oo,
a G 5'i, which has the same effect as changing R to XR in Proposition 2.4 (b).
Hence the multihomogeneous series converges on the whole of X. []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



400 I. PATYI

We quote two lemmas from [L4].

PROPOSITION 2.6. — If the numbers 0 ^ Ck < oo are such that

sup c/c ak < oo
A-

/or a^/ a € 5'i, ^/ien /or an^/ Q ̂  1 and a e 5'i ^e estimate sup^ c/g (7kQ^k < oo
/l0^5.

Proo/. — See [L4, Prop. 4.2]. []

PROPOSITION 2.7. — Le^ 0 < 0 < 1 and /C a 5e^ o/ multiindices k. Then if
0 < Ck < oo, A; G /C, satisfy

inf c/c^1^11 > 0 and supc/^ < oo
fc^ fce/c

for all a G 6'i, ^en sup^.^^ c^a^ < oo for all a € 6', ^oo.

Proo/. — See [L4, Prop. 4.3]. Q

Proo/ o/ Theorem 2.1. — Let us expand / in a multihomogeneous series ̂  //e.
Fix a number 0 < 0 < 1 with r < O^R. For any ^ > 0, Q > 1 (to be suitably
chosen below) put

Cfe^A]^", c'k=CkQ*\

iC = {k ; 4^11 = [AK^IlQ^ > 6}, g(x) = ̂  A(.r).E.
fce/c

We claim that this g is an entire function on X.
Indeed, by Proposition 2.5 it is enough to show for all a G 6' that

sup^a^ll^ == supc/,^ < oo.
keic ke)C

As inffceK: c'^O^ > 6 > 0, and for a € 6'i Proposition 2.4 (a) implies that

supt/fcja^1^11 EE supc^a^ < oo,
fce/c A-e/c

so by Prop. 2.6, sup^^^; c^a^ < oo holds for all a G 5'i. Now both conditions
of Prop. 2.7 are verified, hence sup/^^ c/c a^ < sup^.^^ c^, a^ < oo for all a e 5'.
Therefore, by Proposition 2.5, 5? is an entire function.

TOME 128 — 2000 — N° 3



ON THE ^-EQUATION IN A BANACH SPACE 401

For k i 1C we have [A] (6^)11^0^ < 6. We estimate \f(x)-g(x)\. For \\x\\ < r
by Proposition 2.2, we have

|/(^) - g(x)\ ^ ̂ |/^)| ̂  ^[A] ̂ r ̂
fc^/c fc^/c
_ ll^llll^l

^E^"^^)"""" I ̂
fc^/C k

^E^^T^8"^-"), ^./, i/ / ll^,,ll<-'dl|w||<6?fc^/C

as OR > r / 0 and |w| = |fc/r < ^. But the last expression can be made < e by
choosing first Q large enough to make the sup finite by Theorem 2.3 (b), and
then by choosing 6 small enough.

Thus, the proof of the approximation Theorem 2.1 is concluded. Q

Let Y == £q, 1 ̂  q < oo, or Y = CQ. Let e^, 1 ̂  z ^ n, be the standard basis
of ^(C^). Then the V-sum X of any sequence ^(C^) spaces, k ^ 1, has a
countable unconditional basis: e^\, e^, .. . . e^; e;^, .... e^; .... Now,
the approximation theorem of Lempert [L6, Thm.0.1], or in the case Y == ^i,
Theorem 2.1 above, implies by the vanishing theorem [L3, Thm. 0.3] that the
sheaf cohomology groups J^(^,(9) == 0, q ^ 1, on any pseudoconvex open set
^ C X for the sheaf 0 of germs of holomorphic functions on X. So for any V,
the space X of Theorem 1.1 has the property that H°^(fl) ̂  0 (in fact, infinite
dimensional) and H1^, 0) = 0 for any bounded pseudoconvex open set ^ C X:
the Dolbeault isomorphism theorem does not generalize to arbitrary Banach
spaces.

We remark that if the form / is real-analytic and ^l pseudoconvex, then
by [LI, Prop. 3.2] the equation (1.1) has real-analytic local solutions; since
H1^, 0) = 0, we get a global real-analytic solution, too.

3. Almost complex manifolds
Theorem 1.1 verifies the hypothesis of Theorem 3.1 below in a case.

THEOREM 3J. — Let X be a Banach space and suppose that on B = Bjc(l)
there exists a 9-closed f € C^(B) that is not 9-exact on any open subset. Then
on M = B x C a C°°-smooth integrable almost complex structure Mf can be
constructed in such a way that no open subset of Mf is biholomorphic to an
open subset of a Banach space.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



402 I. PATYI

As the referee has kindly pointed it out, the method of this section is analogous
to one used earlier to construct nonrealizable CR hypersurfaces by Jacobowitz
in [J].

We recall the definition of almost complex structure. An almost complex
structure on a C^-smooth manifold M is a splitting of the complexified tangent
bundle C 0 TM = T1'0 eT°^_mto the direct sum of two complex vector bundles
of class C171-1 with T°'1 = T1'0, m = 1,..., oo, uj and m - 1 = m for m = oo, uj.
An almost complex structure is called formally integrable (or just integrable) if
m ^ 2 and the Lie bracket of two (1,0) vector fields of class C1 is also a (1,0)
vector field; here (1,0) can be changed to (0,1).

The proof of Theorem 3.1 requires a few steps.

3.1. Construction of the almost complex structure on M.
The construction will be described in a setting more general than that of

Theorem 3.1, namely, in the context of principal bundles.
Denote by C1'0, C°'1 the (l.O)-part, (0, l)-part of a complex tangent vector C

to an almost complex manifold. Let B be a complex Banach manifold, G a finite
dimensional complex Lie group with Lie algebra Q = T^G, f <E C§°^(B,Q1^) a
(0, l)-form with values in g1'0, and L^'.G —> G the left translation Z^(s) = zs,
z , s € G. Define the holomorphic Maurer-Cartan form ^ e C^G.Q110) by

.̂) = (dL,)-V'° = ((dL,)-1^)1'0

for v e C^T^G. Recall the holomorphic Maurer-Cartan formula d/^+-[^, p] = 0,
which can be proved similarly to or deduced from the usual Maurer-Cartan
formula. Define on any complex Banach manifold N the Lie bracket [^, ̂ ] <E
^o^^S150) of forms y, ̂  € G^(N,^°) by the usual formula

[^KC^) = [^(cu(0] - [^(aw)]
for C, ( f e C 0 T^N, where the brackets on the right hand side are taken in the
Lie algebra 01'0. In particular, [/, /]«, CQ = 2 [/(C), /(C7)].

We define an almost complex structure Mf on M = B x G by putting
(C, ^) € C (g) T^^M = C 0 T^B C C (S) T,G in T^M if and only if

(3.1) C=C° ' 1 and /^) = /(Q.

In the setting of Theorem 3.1 we identify G = C and g1'0 = C via the
correspondence G 3 s ~ s9/{9z)\^o e s1'0? where z is the usual coordinate
on C.
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We verify below the following: Definition (3.1) gives an almost complex struc-
ture Mf on M and makes it into an almost complex principal G bundle; M is
formally integrable if and only if 9f + j [/, /] = 0 holds; if Mf is locally bihol-
omorphic to a Banach space, then Du = /, where u'.B —^ G is defined locally,
and D is defined by

Du((:) = /x((MC°-1))

for C e T^B. In the setting of Theorem 3.1 this Du reduces to the usual 9u.

3.2. Verification.
To verify that (3.1) defines an almost complex structure on M, we need to

check conditions 1)-2).
1) If V = (C, v\ V = (C, v) are in T^M, then V = 0.

We have 0 = C°'1 = C°'1 = C1^ or C = 0. Similarly /^) = /^(z/) = 0 implies
^1,0 ^ ^1,0 ^ o, or v = 0.

2) Given V = (C, v\ decompose it as V = Vi + V^ with Vi, Vs € T^M. One
checks that

Vi = (C°'1, dL, /(C) - dL, 7(0+^°'1),

^ = (C110, dL, /(O - dL, /(C) + i/1-0)

is the unique way of decomposition.

3) Condition of formal integrability: If V = (C,^), V = (C^) are C00

sections ofT^^M over an open subset of M, then their Lie bracket [V, V'} is
also a section ofT°^M.

Denote by £z the Lie derivative along a complex vector field Z. We can
write [V, V ' } as

[V, V'} = (C*^*) = ([C, C'] + ̂  - /:.<, [^ y1} + C^ - C^Y

We work out below the condition of formal integrability for Mf in terms of /.
(a) The first component ^* is (0,1) because so are [C^C'L ^C^ ^^C since B

is a complex manifold.
(b) Taking the /^, fLy Lie derivatives of the identity /^(^/) — /(CO = 0 ^d

reversing the roles of V, V we find the equations

^v') - ̂ (/(O) = o, c^) - f(c^) = o,
^u) - £c/(/(C)) = o, c^(^) - /(/:,<) = o,
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whose alternating sum is

{/^* - /(€*)} + {^(^/) - ̂ (^) - ̂  v})}
-{/:c(/(0)-/:c/(/(0)-/([C,C /])}=o.

Hence, by Cartan's formula for exterior derivatives, the condition of formal
integrability is that

(d^.z/^d/KC.C^O.

Since ^(y) = /(C)^ /^(z//) == /(CO we g^ by the holomorphic Maurer-Cartan
formula that

-^[ /J] (C,C') - (d/ ) (C,C / )=o
for all (0,1) vector fields <^ ^/ on B. Hence the almost complex manifold Mf is
formally integrable if and only if

9/+^[ /J ]=0,

which condition reduces to 9f = 0 when G is commutative as in Theorem 3.1.

3.3. Geometric properties of M.
To check that M is a principal G bundle we need to verify that TT:M =

B x G —^ £?, 7r{x,z) = x is holomorphic and that G has a simply transitive
action on the fibers of M. Indeed, TV is holomorphic as d7r(^, ^) = C takes
(0, l)-vectors to (0, l)-vectors. The action of w C G on M is given by the left
translation -^(rr, z) = (.r, wz) in the fiber direction. This is holomorphic because
(d^)(C,^) = (C, dL^ i/) and ^(dL^ z/) = ^(^).

In the setting of Theorem 3.1 a direct verification shows that ^:Mj -^ Mg^
^>(x^z) == ( x ^ z -}- u(x)) is a bundle biholomorphism, where ^ = f -\- Qu and
i6 € C^i;?) is any function. Hence the bundle biholomorphism type of Mf
depends only on the Dolbeault cohomology class of /.

We return now to the general setting.

PROPOSITION 3.2. — If po = (xo.zo) C Mf has a neighborhood that is C^-
biholomorphic^ m = 1,2, ... ,oo, to an open set in a Banach space^ then there
are a neighborhood Uo C B of XQ and u € C^^UQ.G) such that Du = f on UQ.

Proof. — The Banach space T051 == T^M has a natural splitting as a direct
sum T°'1 = y°'1 © H011 of vertical and horizontal closed subspaces

y<u={(0^)6T°-1 ; ^er°^G},
^•^{(C^er0-1; ^er^G}.
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Suppose now that ^:U -^ V is biholomorphism of a neighborhood U of po
in Mf onto a neighborhood V of 0 in a Banach space W. Then the splitting
T0'1 = V0'1 e ̂ °'1 induces via (d^)(po) a splitting

T^W = W — V0'1 ffi 770'1-LQ \\ — ^i/ — i/^y y^ -^2VV '

Since N == ^(V n J^1) is an almost complex C^-submanifold of M passing
through po transversely to V011, hence to {xo} x G, N is the image near
po of a holomorphic section S:UQ -^ G on a neighborhood ?7o of XQ. Then
writing s(:r) = (a;,^)) and applying (3.1) we_obtain that ^(dn(C)) = /(C)
for all C e r^^/o, but this is the same as saying Du = f on UQ\ thus concluding
the proof of Proposition 3.2 and hence that of Theorem 3.1. []

We have seen that the Newlander-Nirenberg theorem does not generalize
to arbitrary integrable almost complex Banach manifolds. It is unknown if it
generalizes to Hilbert manifolds.
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