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HARDY SPACES AND ANALYTIC CONTINUATION

OF BERGMAN SPACES

BY WOLFGANG BERTRAM AND JOACHIM HILGERT (*)

ABSTRACT. — We introduce a family of weighted Bergman spaces associated to a
compactly causal symmetric space and investigate the relation of the corresponding
Hardy space with the analytic continuation of this family. For an important class
of compactly causal symmetric spaces denned by involutions of Euclidian Jordan
algebras we obtain precise results which are analogous to the corresponding situation
for bounded symmetric domains.

RESUME. — ESPACES DE HARDY ET PROLONGEMENT ANALYTIQUE DES ESPACES
DE BERGMAN. — Nous introduisons une famille d'espaces de Bergman ponderes
associee a un espace symetrique compactement causal, et nous examinons la relation
entre Pespace de Hardy correspondant et Ie prolongement analytique de cette famille.
Pour une classe importante d'espaces symetriques compactement causaux, definie par
des involutions d'algebres de Jordan euclidiennes, nous obtenons des resultats precis qui
sont en analogic avec la situation correspondante pour les domaines bornes symetriques.

0. Introduction

0.1. A family of weighted Bergman spaces.
Let D be a bounded symmetric domain of tube type, realized as

a generalized disc in the complexification Vc of a Euclidian Jordan
algebra V. There is a well known family of Hilbert spaces of holomorphic
functions on D, called weighted Bergman spaces and defined by

(0.1) B^D): ={feO(D)-^
\\f\\l: = c, / ̂ ^(DetB^z^-'dz < 00}

J D )
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436 W. BERTRAM, J. HILGERT

(cf. [FK94, Ch. XIII]). Here the density appearing in the integral is denned
by the Bergman polynomial

(0.2) B(z, w): = idvc -2^ D w + P{z)P{w),

where x D y and P(x) are related to the triple product

T(x, y , z) = x(yz) - y(xz) + (xy)z

associated to the Jordan algebra Vc ^a

T(x, y , z) = (x D y)z and T(x, y , x) = P(x)y,

and the constant c^ is chosen such that, if the norm |[1||^ of the constant
function 1 is finite, then it is equal to one. If V is simple, then the
space B^{D) is not reduced to zero if and only if

^> 1-^
(with n = dimY and r the rank of V; cf. [FK94]; there the parameter
is y = fji • 2n/r). The space B^(D) is the ordinary Bergman space of -D.
The harmonic analysis of the weighted Bergman spaces with respect to
the group G(D) of holomorphic automorphisms of D (or, more generally,
its universal covering G(D)) is well developed. These spaces contribute to
the holomorphic discrete series ofG(D).

In this work we will introduce an additional structure, define a more
general class of weighted Bergman spaces and study some natural pro-
blems in their harmonic analysis. The additional structure is given by
distinguishing an open dense domain

(0.3) 5: = { z e D ' , Uz)^0}

in D^ where a is an involutive automorphism of V and fa the holomorphic
polynomial on V given by

(0.4) Uz): =Det(P(z+a(z))).

For example, if V = V\ x V\ is the direct product of a simple Jordan
algebra with itself and

a{{x,y)} = (y,x),

then 2 is the domain considered by Chadii [Cha98]. Other data lead to
the cases considered by Koufany-0rsted [K097], Molchanov [Mo97], and
Betten-Olafsson [B098].
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HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 437

We now define a family of weighted Bergman spaces depending on two
real parameters /ji and A:

(0.5) B^(S): ={/e0(5);

ll/ll^—^^l/^l'l/a^l'^DetB^^^-^^oc},

where dz is Lebesgue measure, restricted to the open domain 2 C D.
For A = 0, any function from B^^ can be extended to a holomorphic
function on D (Prop. 2.1.1), and thus B^ ̂ (5) ^ B^{D). In the second
parameter, the behavior is "periodic" since clearly for k e N multiplication
^ /<S yields an isomorphism ofJ5^ onto 5^_^. The argument remains
valid for any rational parameter k = p / q such that there exists a
holomorphic function / with f = f^ (i.e. /g = (/a)73); we call such
parameters admissible.

The weighted Bergman spaces are Hilbert spaces such that for all z e 5
the point evalutions / i-̂  f(z) are continuous. Thus there exists a vector
K^ such that f(z) = (f \ K^). The function

K^^ : 5 x 2 —. C, (w, z) ^-> K^ (w)

is called the reproducing kernel of B2 ^(5). We prove (c/. Cor. 2.1.4):
r X

THEOREM 1. — If I J L > 1— — and — is an admissible parameter, then2n 2 ^ ?
^/ie 5pace B^(5) ^5 non-trivial, and its reproducing kernel is given by

K^(z^w) = UZ)^\^B(Z^}Y^UW)^\

where B is given by (0.2) and fa by (0.4). []

Next we explain how harmonic analysis enters into this picture.

0.2. Group actions and spectrum of weighted Bergman spaces.
As is well known, the group G(D) acts transitively on D. The domain

S C D is stable under the action of the subgroup of G(D)

(0.6) G: =G(P)(-^
: ={geG(D)-^ (-a^g: = (-a) og o (-a) = g}^

but this action is not transitive. However, the action of G on the open
dense subset

(0.7) x: = {ues ; faW^o}

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



438 W. BERTRAM, J. HILGERT

of the Shilov boundary

E: ={zeVc^ {zy^z}

of D is transitive. We write X = G / H ^ where H is the stabilizer of the
base point o = ie G X. Then X is a compactly causal symmetric space,
and 5 is the domain in its complexification Xc considered in [H0091]
(cf. [Be98, Th. 3.3.5]). The Go-invariant measure di^(z) on Xc, restricted
to S, is related to the Lebesgue measure dz of Vc v1^

(0.8) d^z) = \Uz)\~1 dz

(cf. [Be98, Prop. 2.4.3]). Thus the Bergman space ofE

^(5): = [f e 0(5); ^ l/^I'd^) < 00}

is equal to the space B^CE). The other spaces corresponding to the
"diagonal" A == IJL have the following interpretation:

THEOREM 2. — If ̂  is an admissible parameter, then the reproducing
kernel of B2^) is given by the function K^^ defined in Theorem 1.
If i/^ is an admissible parameter and p, > 1 — r/(2n), then the space

^(5): ={f€ 0(5); ̂  l.^)!2^1-1)^))1-^) < 00}

is non-trivial and equal to B2 »(5). Its reproducing kernel is

^(/^,AO ^ (I^151^.

The group G acts unitarily on the spaces B^CE) via ordinary translation
of functions. We are interested in describing the decomposition of B^CE)
into irreducible representations. There are two approaches to this problem:
the first describes the representations appearing in the decomposition
as highest weight representations and then determines the corresponding
highest weights; this has been worked out for the group cases and ^ = 1
by Krotz (c/. [Kr97]). The second approach, which we use in this work,
is geometric. We apply an idea that appears in the work of Jakobsen
and Vergne [JV79] to the specific geometric situation given by a bounded
symmetric domain with an involution a: The space

D~ : = [z e D; a{z) = -z} C D
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HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 439

is a bounded symmetric domain in its own right; it is associated to
X = G/H in the sense that D~ = G / K with K maximal compact in G.
It is a special feature of our setup (not predicted by the general theory of
the domain 2 in [H0091]) that D~ belongs to the boundary of 2; this
boundary is in a sense "opposite" to the boundary X C <95. Elements of
B^^(E) (k >_ 0 admissible) have a holomorphic continuation to all of J9;
thus we can restrict them and all their partial derivatives to jD~. These
differential restrictions determine the function entirely, and because G
acts transitively on D~, it is not too difficult to decompose the space
of restrictions thus obtained under the action of G (Theorem 2.3.5).
The interest of this technique lies in the fact that it yields not only
the spectrum, but also exhibits natural intertwining operators of certain
function spaces into the holomorphic discrete series of G.

0.3. Analytic continuation of weighted Bergman spaces and
classical Hardy spaces.

The reproducing kernel of a Hilbert space is a positive kernel, corres-
ponding to the positivity of the scalar product. Conversely, every positive
kernel defines a Hilbert space of functions. For p, > 1 — r/(2n), the func-
tion K^^^w^z) given by the formula in Theorem 1 is the reproducing
kernel of a weighted Bergman space and is thus positive. The set W C R
of parameters p, for which the formula in Theorem 1 defines a positive defi-
nite kernel K^^ (the so called Wallach set) can be determined explicitly,
cf. [FK94, Th.XIII.2.7]:

<»-9' w-{o•W^-n•-l.-M-^[•

It is strictly bigger than the Bergman range ^ > 1 — r/(2n) belonging to
the weighted Bergman spaces. The corresponding "absract" reproducing
kernel spaces will be denoted by B^{D), the superscript 2 being reserved
for IJL in the Bergman range. The question arises whether the Hilbert
spaces B^(D) belonging to parameters outside the Bergman range have
an analytic significance similar to the Bergman spaces. This is in fact true
for the parameter ^ = j: The space B],{D) is the Hardy space H2^) of
holomorphic functions / on D having square integrable boundary values
in the sense that

(0.10) 11 /11^ ) := sup [ \f{ru)\^<j{u)
0<r<lJ-S

is finite, where da is the normalized L^-invariant measure on S (cf. [FK94,
p. 269]). Here U is the stabilizer of 0 in G(D) which is compact and acts
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440 W. BERTRAM, J. HILGERT

transitively on E. The space H^^D) has a reproducing kernel, the Cauchy-
Szego kernel S(z^u), denned by the property

(0.11) f(z)= f S{z^u)f(u)da(u).
JT.

Since H^^D) = Bi(D), we have the explicit formula S = K^^ given
by Theorem 1 for the Cauchy-Szego kernel. Its square is the reproducing
kernel of the classical Bergman space B^(D).

0.4. The Hardy space of 3 and its comparison with the
classical one.

We are now going to explain to what extent the preceding results can
be generalized to the domain 5. The Hardy space H2^) of S is defined
as the space of holomorphic functions / on S having square integrable
boundary values on X in the sense that

(0.12) H/ll^s): = sup / |/(7 • x^dx < oo,
-yerJx

where r is a certain subsemigroup in the complex group Gc such that
5 = T • ie. An explicit formula for the reproducing kernel of H^CS) is
known only in some special cases. Our approach to this problem is trying
to realize the space H2^) as the point belonging to the parameter ^ = ̂
in the analytic continuation of the weighted Bergman spaces B^CS). Note
that because of Theorem 2 the analytic continuation of the spaces B^CE)
is easy to describe: These are just the spaces B^^ (5) corresponding to
the kernel K^^ for admissible parameters fi in the Wallach set W. Our
main results in this context are:

THEOREM 3. — Assume that ^ is an admissible parameter. Then we
have an inclusion of function spaces

(0.13) B^cH2^).

THEOREM 4.—Assume that X is irreducible. Then the inclusion (0.13)
is an equality if and only if the rank of X is equal to its split rank\ this
is the case if and only ifX admits both compact and non-compact Cartan
subspaces. Then the Cauchy-Szego kernel of H2^) is given by K^^\
and its square is the Bergman kernel K^^ of 5.

In the situation of Theorem 4, multiplication by f^ is an isomorphism

H\D)=B^D)—.B^(^
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and in this sense H^^D) is realized as a subspace of H2^). The question
whether in this way the classical and the non-classical Hardy spaces
are isomorphic has attracted much interest during the last years, cf. e.g.
[B098], [Cha98], [K097], [0098]. From our point of view, the problem
can the Hardy space be realized as the point with parameter ^ = j
in the analytic continuation of the weighted Bergman spaces? is the
mathematically correct formulation of the question are the classical and
the non-classical Hardy spaces isomorphic? — the trouble being that
"non-canonical" isomorphisms between the two Hardy-spaces may exist,
as shows the compact case (Section 3.4). Moreover, our formulation of
the problem makes sense for any compactly causal symmetric space,
not only for the ones related to Jordan algebras. However, our proof
of Theorem 4 uses the Jordan-structure via the explicit formula for the
Bergman kernel. It would be interesting to have an abstract proof not
involving this formula, either geometric or via highest weight theory. From
a geometric point of view it is remarkable that in the cases where (0.13)
is an equality, the "causal group" G(D) has a unitary and irreducible
representation in H2^).

Contents of the paper

1. Geometric and algebraic preliminaries
2. The spectrum of a family of weighted Bergman spaces
3. Comparison of Hardy spaces
4. Open problems

Section 1 contains the classification (Section 1.5) and some preliminary
results on involutions of (Euclidian) Jordan algebras which are, however,
of interest in their own right (cf. Theorem 1.6.1, Theorem 1.8.2). The
full information provided by Chapter 1 is needed only for the proof of
Theorem 4; in the other parts of Chapters 2 and 3 only the general facts
explained in Sections 1.1-1.4 are used. Finally, the approach to Bergman-
and Hardy spaces presented in this paper leads naturally to some open
problems (Chapter 4) which we will investigate in subsequent work.

We would like to thank M. Chadii and J. Faraut for helpful discussions
and the Mathematics Institute of Jussieu, where part of this work was
done, for the kind hospitality.

The first named author gratefully acknowledges support by the DFG-
grantffl4125-l.
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1. Geometric and algebraic preliminaries

1.1. Euclidian Jordan algebras and associated symmetric
domains.

Let V be a Euclidian Jordan algebra with unit element e and Q, the
associated symmetric cone. The cone f2 can be defined as the component
of e of the set of invertible elements of V. Our basic reference is [FK94];
we follow the notation introduced there. The tube domain

7h = V + i^ C Vc

has, via the Cay ley transform

C:D-^T^ C(z)=i{e+z)(e-z)-\

a bounded realization D = C~1(T^). The Shilov boundary

^={zeVc\ z=z-1}

of D is, via the Cay ley transform, equivalent to the con formal compac-
tification Vc of V introduced in [Be96], and the group G(T^) of biholo-
morphic automorphisms of T^, acting by birational maps on V, is (up to
connected components) the conformed group Co(V) introduced in [Be96].
Its complexification G(T^}c is the conformal group Co(Vc) of Vc; it acts
by complex birational maps on Vc. The stabilizer U of the base point 0
in G(D) is a compact group acting linearly on Vc. Its complexification
is (up to connected components) the structure group Str(Vc) of Vc. The
group U acts transitively on E.

It is well known that the disc D is the connected component of 0 of
the set

{ ^ C V c ; DetB(^)^0},

where B is as in (0.2). The G(D)-invariant measure on D has the density
(DetB(z,z))~1 with respect to the Lebesgue measure of Vc, where the
determinant is taken over C (c/. [FK94]).

1.2. A decomposition of bounded symmetric domains.
Let a be an involution (automorphism of order 2) of the Euclidian

Jordan algebra V and denote by the same letter its C-linear extension
to Vc. Then we have the eigenspace-decompositions V = V~^ ® V~ and
Vc = V^~ 0 V^~ with respect to a. The intersections of the eigenspaces
with the bounded symmetric domain Z),

D+: =Dny^, D~: =DHV^
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are easily seen to be bounded symmetric domains (c/. [Be98, Prop. 3.1.1]),
the former being of tube type (since V^~ is a Euclidian Jordan algebra), the
latter in general not. Their automorphism groups are related to the group
G(D) as follows. Let (/)^(g) : = <^0~1 be the conjugation by an element (j)
of Co(Vc); then G(D) is stable under the involutions o^ and (—a)^, and
we denote the connected fixed point groups of these involutions by

G+:=G(.D)^, G-:=G(D)^.

It is then easily verified that G^~ acts transitively on D~^ and G~ acts
transitively on D~; in other words, we have surjective homomorphisms

p±:G± ——G(D±), g——<^±.

In the "generic case" these homomorphisms are also injective (c/. Remark
1.8.5). The case a = idy is somewhat singular since V~ is then reduced to
a point. Note that in this case G~ is the compact linear group U defined
in Section 1.1, whereas G(D~) should be defined as the trivial group.

1.3. Compactly causal Makarevic spaces.
Let, as above, a be an involution of the Euclidian Jordan algebra V

and G: = G~. Then, according to [Be98, Th. 3.3.6], the group G acts
transitively on the open dense domain

X = { H € S ; UU)^Q}

of the Shilov boundary S. Further, X is a symmetric space with geodesic
symmetry —j with respect to the base point ze, where j(z) = z~1 is the
inverse in the Jordan algebra Vc- The corresponding involution of the
group G is given by

{-3\9 = ( - J ) g ( - J ) '
We thus can write X = G / H with H open in G^-3^.

The space X is a causal symmetric space: The symmetric cone ^l
defines on V a flat causal structure (a constant field of cones obtained
by translating Q to each tangent space of V) which is transported
to the Shilov boundary S via the Cayley-transform C. The structure
on V is invariant under the group Co(V) = G(7h), and therefore the
structure on S is invariant under G(-D); in particular, its restriction to X
is invariant under G. We describe this causal structure on X in more
detail: Let r be the complex conjugation of Vc with respect to V. Then
(-J^)* is a Cartan involution on G (c/. [Be98, Section 2.2]). Denote
by Q = t (D p the corresponding Cartan decomposition of Q. Moreover
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444 W. BERTRAM, J. HILGERT

let Q == t) 0 q be the decomposition associated to the involution (—J%.
These decompositions can be described as spaces of vector fields. We
denote by j^v the homogeneous quadratic vector field (j^v)(x) = —P(x)v
with v € V and by 5tr(Vc) C 0((Vc) ^ne Lie algebra of the structure
group of Vc. Then using the fact that Q is the subalgebra of co(Vc) fixed
under (—a)^ and under (j'r)^, one gets

(1.1)

p={v+^rv^ v e V ^ } ^ V ^ ^
^=^L(v+)^DeJ•(y)a^
q = qeCqp = iL(V^~) © [v + j^v ; z> € y~},

() = ( )e©bp =Der(V)a* Cz{v-j>; v e V~}.

The cone VF in the tangent space ToX ^ q defining the causal structure
on X is given by

(1.2) W: = dG(0)- l^=-{zL(^+)+(^-+J>-) ;
z; e ^i,v = v^ -{-v~,v± e v±}.

In fact, the Cay ley transformed version of the cone W C q is the cone of
vector fields

(1.3) W : = C^W = {v- j^av ; v e ̂ }

in the space of vector fields

(1.4) q': =C*q == { v - j ^ a v ; v G V}

where C^ denotes the forward transport of vector fields by the Cayley
transform C. This cone corresponds to the causal structure considered
in [Be98, Section 3.2].

In particular,

(1.5) W H qe = -i{L(v^) ; v^ C f2 H V-^}

is isomorphic to Q4": = fl,r\V^~. Note that this is just the symmetric cone
associated to V^~ (this holds because ^+ = eL^V+) - e). Thus the causal
structure we consider has the property that PVDq^ 7^ 0; i.e. X is compactly
causal (cf. [H096, Def. 3.1.8]), and moreover it has the special feature that
both W and W D qe are self-dual (w.r.t. suitable scalar products).

Finally, note that the space X appears as an open orbit in a Shilov
boundary. Not all compactly causal symmetric spaces have this property,
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but "most" of them have (see Section 1.5). These are precisely the Maka-
revic spaces (cf. [Be96], [Be98]) among the compactly causal symmetric
spaces.

1.4. The domain S associated to a compactly causal Makarevic
space.

The domain 5 defined by equation (0.3) is related to the holomorphic
action of a complex semigroup as follows. If W C q is the Ad(^)-invariant
cone given by (1.2), we denote by exp(iW) the image of iW C iq C Qc
under the exponential map of Gc. Then, according to [Be98, Th. 3.3.5],

5 = Gexp(W) • ie.

In [H0091] the domain 5 is introduced via an extension of the cone W
to an Ad(G)-invariant cone W in Q: by general results on invariant cones
(cf. [H096]) there exists a G-invariant open convex cone W C g which
satisfies

(-7')*W = -W and W H q = W.

Then (cf. [H0091, Lemma 3.1 and its proof]) Gexp(zTV) is a subsemi-
group of Gc such that 5 = Gexp(iW) • ie. It should be noted here that
the extension W of W with the given properties is in general not unique.
Our results will not depend on the extension W chosen. However, there is
one "biggest" extension which is rather canonical in the given geometric
context and which we will fix in the sequel.

PROPOSITION 1.4.1. — Let S(D): = {g e Co(Vc); g(D) C D} be the
compression semigroup of D and let

r: = Gc n S(D) = {g e Gc; g(D) c D}.
Then F is a semigroup with 5 = F • ze, and it contains Gexp(iW). It is
of the form T = Gexp(zTY), where W is a regular Ad(G) -invariant cone
in Q with

{-J).(W)=-W and W H q = W.
Proof. — From [Be98, Cor. 3.3.3] it follows via Cayley-transform that

Gexp(W) c r. Therefore [Be98, Th. 3.3.5] implies that 5 C F • ie. The
other inclusion follows from the fact that F C (Gc H S{D)) and thus
r . ie C (Xc n D) which is, according to [Be98, Th. 2.1.3 (iv)], equal to 5.

The remaining statements are best proved using the tube realization
7h of D. Then the compression semigroup S(T^) is of the form

5(7h)=GC7h)exp(zG^x)
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446 W. BERTRAM, J. HILGERT

with the maximal invariant cone Cmax C 0(Th) given by

Cn,ax = {X e s(7h); (V^ e V) X(z;) e ̂ }

(see [Cha98, Th. 1.1]). From Equations (1.3) and (1.4) we deduce that

W = q' H Cn,ax.

Moreover, the Cay ley transformed version of the involution (—j)* is
(— id)^, and the description of Cmax given above shows that

(—id)^Cmax = —Cmax•

It follows that the cone W: = Cmax n 0 has all the desired properties.
(Note, however, that we cannot conclude that this cone is maximal
in0.) D

1.5. Classification.
In this section we classify simple pairs (V^a)\ this means that V is

a Euclidian Jordan algebra having no proper ideal invariant under the
involution a. The spaces V and V^ are described as Jordan algebras;
in particular, Sym and Herm denote Jordan algebras of symmetric,
respectively Hermitian, matrices with their natural Jordan product

X - Y = ^(xr+rx),

and R^ x R9 is the space R^9 with the Jordan product

x ' y = b(x, e)y + b(y, e)x - b{x, y)e,

where b is a form of signature (p,(?) and e such that &(e,e) = 1. The
spaces V~ are described as Jordan triple-systems (JTS): they inherit
from V the Jordan triple product

(x, y, z) i—> x(yz) - y(xz) + (xy)z

which defines V~ as non-degenerate JTS in the sense of [Sa80, 1.6]. In
particular, Asym and Aherm denote JTS of skew-symmetric, resp. skew-
Hermitian matrices and Mat(p x ^;F) denotes the JTS o f p x g-matrices
over F. By Hermitian we mean, if there is no other specification: Hermitian
with respect to the canonical involution of the base field (c/. [Be96]). In the
case F is the skew field El of quaternions, we consider also its involution

( p : 1 }—> 1, i \—> —z, j ^—> j, k \—> —k.
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HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 447

Then the Jordan algebra Herm(m, (p, E) is isomorphic to the Jordan triple
system Aherm(m,E), c/. [Be96, 1.2.1]. Finally,

^G i) ^ ^'(t0/.).
where In, or simply I if the size is clear from the context, is the identity
matrix of size n x n.

1.5.1 Table of simple pairs (V,a) (cf. [Ma73] and [Be96]).
nI) V = Herm(m,C), Vc = Mat(m x m,C). Co(lQ<, ̂  SU(m,m), - = m.

1) a(Z) = Ip,qZIp,g (p+q= m),
X-V(p,q),
V+ = Herm(p,C) C Herm(g,C), V~ ^ Mat(j? x q;C),
fa(Z) = Det(Z + Ip^ZIp^)2"1.

2) a(Z) = Z*,
X^SO*(2m)/SO(m,C),
V+ = Sym(m,lR), V- = zAsym(m,]R),
^(^)=Det(^+Zt)2m.

3) a{Z) = J^J-1 (m = 2k even),
X^Sp(2k,R)/Sp(k,C),
V+ ̂  Herm(A:,H). V- ^ Aherm(A;,B),
UZ)=Det(Z-JZtJ)4k.

II) V = Sym(m, E), Vc = Sym(m, C), Co(V)a ̂  Sp(m, F' n m+l

r 2
1) a(Z) = Ip,qZI^ (p+q=m),

X^V(p,q)/0{p,q),
V+ = Sym(p, ffi) © Sym(g, R), V- ^ Mat(.p x q-^
UZ) = Det(Z + Ip^I?^1.

2) a(Z) = JZJ-1 (m = 2k even),
X^Sp(k,R),
V+ ̂  Herm(A;,C), V- ^ Sym(fc,C),
fa(Z) - Det(Z - JZJ)2^1.

nIII) V = Herm(m,H), Vc = Sym(J,C), Co(V)o ̂  S0*(4m), - = 2m - 1.
1) a(Z) = Ip,yZIp^ (p + q = m),

X^U(2p,2g)/Sp(p,g),
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V+ ̂  Herm(p,]HI) C Hernia, H), V- ^ Mat(p x g;E),
UZ) = Det(Z + Zp,gZ7^)2—i.

2) a(Z) = y(Z) (i.e., (v(Z))ij = {y(Zij) with y? as above),
X^SO*(2m),
V+ ̂  Herm(m,C), V- '= Asym(m,C),
^(Z)=Det(^+Zt)2m-l.

IV) V = R x R"-1, Vc = C", Co(V)o ̂  S0(2,n), n = n.

1) a = idy,
X ^ S n x S l = (S0(n) x 51)/ S0(n - 1),
^(•^)=(2l+•••+^n)2".

2) o' = Jp^_p, p > 1,
X ̂  (S0(p) x S0(2, n - p)/(SO(p - 1) x S0(l, n - p)),
y+ ^ R x up-1, v- ^ ]R"-P,
/a(^) = ( z i + - - - + Z p - Zp+i - ... - ̂ )2".

3) a=Ji ,«_i ,
X^SO(2,n- l ) /SO(l ,n- l ) ,
^ ^R, V- ^R"-1,
f^^)=^-...-z^2n.

V) V = Herm(3,0), Vc = Herm(3,0c),
Co^^^^^^Q.' ' r
1) a = idy,

^ ^ (^,(-14) X U(l))/^(_2o),

/a(Z) = A(Z)18 (where A is the Jordan determinant).
(The Peirce-involution a(Z) = I^ZI^ leads to the same space
as a = idy.)

2) a(Z) = Z (the non-trivial involution of 0),
X^SU(6,2)/Sp(3,l),
V+ = Herm(3, H)^, V^ ^ Mat(6 x 2;C),
/c«(Z)=A(Z+Z)1 8

CT) (Cayley type): V = Vi x Vi, where Vi is one of the above Euclidian Jor-
dan algebras, Co(V)<, = Co(Vi)., x Co(yi)<,, P((a;,y)) = (plw p0^),
where Pi is the quadratic representation of Vi.
"(O^y)) = (y,x),
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y+ ̂  v- ^ Vi,
fa{(z,w)) =DetP((z+w^+w)) =DetPi(z+w)2 , and
X ^ Co(Vi)/Str(yi). We obtain the following cases:
1) X^SU(n,r i) /(Sl(n,C)xM),

2) X^Sp(n,R)/Gl(n,]R),

3) X ̂  SO*(4n)/(Sl(n,H) x M),

4) X ̂  S0(2, n)/(SO(l, n - 1) x M),

5) X ^ ^7(-25)/(^6(-26) X IR).

REMARK 1.5.2. —The following compactly causal symmetric spaces are
not Makarevic spaces:

• the simple parts of the reductive spaces in the above list {e.g. S\J(p, q)
is the simple part of U(p, 9)),

• the spaces S0(2,p-h q)/(SO(l,p} x S0(l,g)) with min(p^) > 1,
• the group case S0(2,n) and
• some exceptional spaces (cf. [H096, p. 89]).
Conversely, the symmetric spaces X from the above list which are

not irreducible do not appear in the classification [H096, p. 89] although
their causal structure cannot be reduced to direct products (i.e. they are
reducible as symmetric spaces, but irreducible as causal symmetric spaces;
in [H096] this distinction is not made, and a causal symmetric space is
called irreducible if it is so as a symmetric space). These are the spaces
I.-V.l and IV.2. The latter case plays a rather exceptional role. []

REMARK 1.5.3. — In all cases, the Jordan algebra V^ is either simple
or a direct sum of two simple ideals. The latter happens precisely in the
cases where a is a (non-trivial) Peirce-reflection, i.e. a = P(w) for some
w <E V (w -^ e) with w2 = e (cf. [Hw69, Lemma 3]). These are the cases
I.I, 11.1, III.l (always a ̂  idy) and IV.2 (p = 2). Q

REMARK 1.5.4. — The Jordan triple system (JTS) V- is simple in all
cases, but V^ may be a direct sum of two simple JTS's. This happens if
and only if V~ is in fact a complex JTS, and this corresponds exactly to
the cases where X is of group type, i.e.

(i) X = (G x G)/^{G x G) with G = U(p, q) (I.I),
(ii) G=Sp(k,R) (11.2) or

(iii) G= SO* (2m) (III.2).
In these cases, D~ is a direct product of two isomorphic bounded

symmetric domains. []
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REMARK 1.5.5 (Admissible parameters). — Recall that a rational
number k = p / q is called an admissible parameter if there exists a
holomorphic function / on 5 with / = f^. Such a function is again
constant in V~ -direction and is therefore determined by its restriction
to V^. Since the restriction fa\^, generates a one-dimensional space of
functions under the action of St^y"*"), so will do the restriction /|^ .

• If V^ is simple, it follows that /|^ is a power of the Jordan
determinant A+ of V4", i.e.

f(x)=(^(x+ax)Y

with some integer £ (c/. [FK94, Th. XII.2.2]). Thus the lowest admissible
parameter k is given by the condition

f^x)1' =^(x+ax).

Since fa is homogeneous of degree 2n and A+ is homogeneous of degree r^
(the rank of V'1"), we get k = r^-/(2n} for the lowest admissible parameter
if V^~ is simple. (In the Cayley case this reduces to k = r+/(4ri4-). Note
that 2n4-/r+ is always an integer, cf. Section 1.7.)

• If V^~ is not simple (Peirce involutions), we write V~^ as a sum of
two simple algebras and apply the above argument to each term. Again
we obtain that k = r+/(2n) is the lowest admissible parameter. (Note
that here r+ = r.)

We get the following list of admissible parameters in the cases corres-
ponding to Table 1.5.1:

I.I. 1.2. 1.3. 11.1. 11.2. III.l. III.2. IV.l. IV.2. IV.3. V.I. V.2.

2m 2m 8k m + 1 4A; + 2 2m - 1 4m - 2 n n 2n 18 18

Later on it will be important to know whether ^ and ^ are admissible
parameters. This can be read off the preceding table. []

1.6. Split and non-split involutions.
In this section we prove in a classification free way that the involu-

tions a given in the preceding section fall into two classes, called split and
non-split.

Recall that the rank of a Euclidian Jordan algebra is the number
of elements of a complete system of primitive orthogonal idempotents
C i , . . . , Cr, also called a Jordan frame. The space

R: =
i=l
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is a maximal associative subalgebra of V, and the space L(R) is a Cartan
subspace for the Cartan decomposition siv(V) == Der(V) C L(V), i.e. it is
maximal abelian in L{V). We can always find a Cartan subspace which
is stable under a given involution, and correspondingly there is always a
Jordan frame such that a(R) = R for a given involution a of V. Then
we write R = R^ © R~ for the corresponding decomposition of R into
eigenspaces of a.

THEOREM 1.6.1. — Let V be a Euclidian Jordan algebra and a an
involution such that V has no proper a-stable ideal. Then one can find a
Jordan frame in V such that:

(i) a(R) = R,

(ii) the rank of the Euclidian Jordan algebra V^~ is equal to dim R^~,

(iii) either R = R^~ or dim R^~ = dim R~.

Proof. — Let e i , . . . , e^ be a Jordan frame for the Euclidian Jordan
algebra V^. Since ei is an idempotent also in V, the eigenspace

W,: = V{a, 1 ) : = [x e V ; L{a}x = x}

is a subalgebra of V with unit element ei (see [FK94, Prop. IV. 1.1]), and
it inherits from V a positive associative bilinear form, i.e. it is Euclidian.
We claim that either Wi = Rei or Wi has rank two. In fact, Wi is a-stable;
let

W, = W^ ® W,-

be the corresponding decomposition. Since ei is primitive in V^, it follows
from the spectral theorem (see [FK94, Th. III. 1.1]) that V^e,, 1) = W^~
is one-dimensional. By the argument given before stating the theorem,
we know that there exists a frame w i , . . . , w^ in Wi such that the vector
space spanned by the w/s is a-stable. It follows that a permutes the
elements of this frame. If dim Wi > 1, then ei =- ̂  . wj is not a primitive
idempotent, and since W^ == Me,, it follows that no Wj is fixed under a.
On the other hand, wj + a(wj) is an idempotent fixed under a. It follows
that already wi, a(wi) is a frame of Wi, and hence the rank of W, is 2.
We define

fi :=wi.

Next we are going to show that fi is actually primitive in V. To this
end, let e, = ^- XjCj be the spectral decomposition of e, in V with
respect to a Jordan frame c i , . . . , Cr of V (see [FK94, Th. III.1.2.]). Since
Ci is idempotent, it follows that A2 = Xj, whence \j = 1 or \j = 0.
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Because e^Cy = \jCj, this implies that those cj actually appearing in
the decomposition e^ = ^ - A j C j belong to Wi. But then they are also
primitive idempotents in Wi, and since the rank of Wi is at most two,
there are at most two non-vanishing terms in the decomposition of e^.
If there is just one term, then e^ is actually primitive in V. Otherwise we
have Ci = fi + o^(fi) with fi as above, and we conclude that fi is also
primitive in V.

Now we can prove that

{/„ a/,, e, ; 1 ^ i j ^ r+, TkW, = 2, rkW, = 1}

is a frame in V: it is clear from the construction that this is a complete
system of idempotents which are primitive by what we have proved above.
It only remains to be shown that they are orthogonal. But since the ej
are orthogonal, we have for i -^ j Wi = V(ei, 1), Wj C V(ei, 0), and since
V(ei, l)V(e^O) = 0 (see [FK94, Prop. IV.1.1]), it follows that W,Wj = 0.
We know already that fi and a{fi} are orthogonal (if they are distinct).
Together this implies that the idempotents in the system in question are
orthogonal. It is clear that the vector space R spanned by this system is
a-stable, and by construction dimJT^ is the rank of V"1". Thus we have
established properties (i) and (ii).

In order to prove (iii) we assume first that V^~ is simple. Then
Avii(V^~)Q acts transitively on the set of primitive idempotents (see
[FK94, Cor. IV.2.7]). Since the map Aut(Y)^ -^ Aut(y+)o, g ̂  g\y+ is
surjective (cf. Prop. 1.8.1), it follows that any two of the ei are conjugate
under Aut^)0*, and therefore the corresponding Wi are conjugate under
this group. In particular, they have all the same rank. Thus in the frame
of V constructed above, either all idempotents are of the form ej or all
appear in pairs /^^(/i), and this implies (iii).

If V^~ is not simple, then by a result of Helwig (see [Hw69, Lemma 3]),
a is a Peirce-reflection P(w) with respect to an idempotent c of V,
w = 2c - e. Then V^ = Y(c, 1) C V(c, 0) (cf. [FK94, p. 65]), and there is
a frame of V contained in ^+, i.e. R = ^+, and (iii) holds. \\

DEFINITION 1.6.2. — Let a be an involution ofV and R a frame having
properties (i)-(iii) of the preceding theorem. Then, if R = R^~ we say that
a is split (w.r.t. R), and z/dimJ^ = dimR~ we say that a is non-split
(w.r.t.J?). D

REMARK 1.6.3. — We specify which of the involutions from Table 1.5.1
are split and which are non-split. In the matrix cases we choose Jordan
frames c i , . . . , c^ such that R = SI==i ^c^ ls tne respective space of
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diagonal matrices. In the case of rank 2 (Type IV) we choose ci and 02
such that they span the same space as the first two canonical base vectors
of IR71. The involutions a from Table 1.5.1 are either split or non-split
for these Jordan frames. We distinguish further the cases that both V
and y+ are simple and that one of these algebras is not simple. Thus the
involutions a are partitioned into four classes. Using the notation from
Table 1.5.1, this partition looks as follows:

V and V4" simple V or V^ not simple

a split 1.2, III.2, IV.2, V.2 Peirce involutions
and a = idy

a non-split 1.3, 11.2, IV.3 Cayley-type Q

Next we draw some consequences concerning the geometry of the
associated compactly causal space X. Recall that the rank of a symmetric
space X is the dimension of a maximal abelian subspace of q consisting
of semisimple elements. Since our space X is compactly causal, [H096,
Prop. 3.1.11 (3)] together with c-duality shows that there is a compact
Cartan subspace^ i.e. a maximal abelian subspace contained in q^ = q D t.
The split rank of X is defined to be the dimension of a maximal abelian
subspace of q?.

PROPOSITION 1.6.4.
(i) The rank of X is equal to the rank of the Jordan algebra V4, and

the space a: = iL^R^) is a compact Cartan subspace of q.
(ii) If W C q is the invariant cone defined in Section 1.3 and

ei, ... ,ey,+ the Jordan frame in V~^ corresponding to R^~ and a is as in
Part (i), then

Wna=zL({^^; t, <ol).

Proof.
(i) For any Euclidian Jordan algebra, L{R) is a maximal abelian

subspace in L(V). Since by part (ii) of Theorem 1.6.1 L(R^~) is a maximial
abelian subspace of L(V+), it follows that iL(R^) is maximal abelian in
zL(V+) = q, {cf. Eqn. (1.1)).

(ii) We have seen in Section 1.3 that W D qe = -zL(^+). Since ^+ is
the cone of squares in V+, we have ^+ H R~^ = {^ ̂ e,; t, > 0}, and the
claim follows directly from the definition of a in part (i). []

PROPOSITION 1.6.5.—Assume that X is irreducible. Then the following
are equivalent:

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



454 W. BERTRAM, J. HILGERT

(i) a is non-split,

(ii) the rank of X is equal to the split rank of X {i.e. X admits both
compact and non-compact Cartan subspaces).

Proof. — If a is non-split, then ai: == {v + j^v ; v € R~} is a Cartan
subspace contained in q? having the same dimension as a. If a is split,
then one checks, using the classification, that the rank of q? is always
strictly lower than the rank of V^. (According to Remark 1.6.3, these are
the cases 1.2 and III.2 from Table 1.5.1; note that in case IV.2 V+ and V~
have both rank equal to 2, but this case is excluded since in case IV. 2 X
is not simple. In Jordan theoretic terms, the rank of q? is equal to the
rank of the Jordan triple system V~ whose isomorphism class is indicated
in Table 1.5.1.) D

1.7. Peirce decomposition and root structure.
Recall that the space L(R) defined by a Jordan frame c i , . . . , C r is

maximal abelian in L(V). The weight decomposition of V under the
action of the abelian Lie algebra L(R) is given by the Peirce decomposition
(c/. [FK94, Th.IV.2.1])

r

V=(t)Rc,©(t)^,
%=1 i<:j

where Vzj for i -^ j is the intersection of the ^-eigenspaces of L(ci) and
L(cj). In other words, if we denote by c ^ , . . . . c ^ the basis of I/(J?)* dual
to 2y(c i ) , . . . , L(cr), then Vij is the weight space for the weight j(c^ + cj).
For a simple algebra V, all the spaces Vij (z ^ j) have the same dimension
called the genus of V and denoted by d. We then have the relation

n = r + ^dr(r — 1).

1.7.1. Action of an involution on the Peirce spaces.
Assume that a is an involution with a(R) == R. We analyze the beha-

vior of the spaces Vij under a in the cases corresponding to Remark 1.6.3:
• Split case. — It is immediate that all Peirce spaces Vzj are stable

under a. We assume first that V^ is simple and consider the matrix cases
(1.2, III.2, V.2). Then there is a structure of Euclidian Hurwitz algebra on
Vij (see [FK94,Prop. V.3.4]), and a acts on Vij by a conjugation of C, El
or 0 according to the cases d = 2,4 or 8. The Peirce spaces for V~^~ are
the a-fixed parts of the Peirce spaces of V, having half the dimension of
the latter. In the case of rank 2 there remains only Type IV.2 in which X
is not irreducible and which we will not consider.
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If V^ is not simple, then a = P{w) is a Peirce reflection (cf.
Remark 1.5.3) with w = ci + ... 4- Cp (1 < p < r), and then a acts
trivially on Vij for 1 < i,j < p and for p < i,j < r and by —1 on the
other Vij^s.

• Non-split case. — The rank of V is even, r = 2r+, and we order
the idempotents such that Cy^+j = (^(cj). Then the idempotents ej of
V^ are ej = Cj + acj, j = 1,... ,r+. In the matrix cases (1.3 and 11.2)
the Peirce-structure of the Euclidean Jordan algebra V^~ w.r.t. the ei
looks like the Peirce-structure of V, but with d replaced by d+ = 2d.
Let for z, j = 1,. . . , r+

^•: =y(L(e,),^)nV(L(e,),D

be the intersection of the j-eigenspaces of L{ei) and L(ej) in V. Then
Uzj H V"1" for i < j are the Peirce-spaces of V^. On the other hand, we
get from the definition of the Peirce-spaces Vzj of V that

Uij = Vij C ̂ +r+j+r+ 0 (^j+r+ + ̂ ,z+r+),

and thus V = R^Q)^ Uij. Since we know already that dim(^ nV"^) =
d+ = 2d, we conclude that the dimension of Uij D V~ is 2d if % < '̂ and d
if % = ^". In case of rank 2 there remains only Case IV.3: there is just one
Peirce-space in V; it belongs to V~.

Finally, if V is not simple, then we are in the Cayley-type case. Here
y+ ^ y- ^ y^ ̂  ̂  decomposition of V+ and V~ w.r.t. the
idempotents of V^ coincides with the usual Peirce-decomposition in V\.

1.7.2. Root structure.
The complexification of the Lie algebra Q is given by

flc = co^c)^* = Vc~ C^Vc)^ ̂ W.

Since a = ^(R^) is a compact Cartan subspace in q (Prop. 1.6.4), the
adjoint action of ac on the Lie algebra Qc is diagonalizable. Let

A: = A(gc,oc)

be the root system of Qc with respect to ac = L^^c. Since the
action of ac commutes with -idy^, the root spaces are contained in the
homogeneous parts of the graded Lie algebra Qc, and the root system A
decomposes as

A = Ai U Ao U A-i, Ai = A(Y^ ac),

Ao = ̂ {siW^ac)^ A_i = -Ai.
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The roots from Ao are called compact and the roots from Ai U A_i non-
compact All roots are real-valued on the real form a = L(R^) of ac. A
root is called positive if it is positive on the positive Weyl chamber

{^te; 0<^ ... <tr\.

As usual,
1 ^

p = 2 ̂  maa

o;eA+
is the half-sum of the positive roots, weighted by the dimension m^ of the
root spaces.

In Theorem 1.8.3 we will prove that, if X is irreducible and not
of type IV.3, then siv(Vc)^ and siv(V^) are canonically isomorphic.
This permits to describe A^, for k = -1,0,1, in terms of the Peirce
decompositions of V+ and V. The details are given below. For simplicity
of notation, we identify ac with ̂ . Let d, . . . . e^ be the Jordan frame
belonging to J?+ and e * , . . . , e * _ ^ be its dual basis, considered as basis
of a^. Let V be of dimension n, rank r and with genus d and denote by a
lower index + the corresponding constants for V+.

• Case A: X = G/H is simple and not of Type IV. 3. — In this
case V+ is a simple Jordan algebra, and Theorem 1.8.3 shows that
$ii:(V)^ ^5tr(y+). Thus, according to [FK94, p. 212],

Ao=A(5tt(^+),ac)={j(6;-6^;J^^J^=l, . . . ,r+},

A) = p(Ao) = ̂ + ̂ (e* - ej) = ̂ + ̂ (2j - r - l)e,*.
•̂  j

The root system Ai: = A(V-,a) can be determined from the Peirce
decompositions of V and V+: V~ is the sum of the weight spaces of a not
appearing in V+. According to Section 1.7.1 we obtain:

(i) Case A.I: a split, i.e. r+ = r. — Note that for type IV such an
involution does not exist (since we exclude case IV. 2 in which X is not
irreducible). Thus we are in the matrix cases where a acts by a conjugation
on the Euclidian Hurwitz algebra isomorphic to the V^s. Thus

Ai=A(^- ,ac)={^(6;+6*) ;^ ,^=l , . . .^+, j<A;} ,

and the corresponding root space dimensions are d+ = 1 d with d = 2 in
Case 1.2, d = 4 in Case III.2 and d = 8 in Case V2. Therefore

P=Po+Pi=jd(^(e*-eJ)+^(e*+^*))=^^0-l)e;^ 3 ) ' Z_^^k ' ^ j ) j - 4«'^U - ^ ) ^ j '
3<k j<k ji^i<- A^i.
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(ii) Case A.2: a non-split, i.e. r+ = jr. — There are r+ one
dimensional weight spaces in V~ corresponding to R~. In the matrix
cases (1.3 with d = 2, 11.2 with d = 1) there are in addition weight spaces
for the weight j(ej? +e^) (j < A;) with dimension 2d and for the weight e^
with dimension d. Thus

Ai={eJ,j(e;+e^; ̂  = 1 , . . . ,r+, j < k}^

p=po+Pi=^^(4-6,*)+i(d+l)^^+jd^(6;+6^)
J<^ 3 3<k

=^d+l)^e]+d^(j-l)e].
3 3

For the Cayley-type we have d+ = d, n+ = jn, and the decomposition
of V^ ^ V~ with respect to a is the usual Peirce decomposition of V^
with d+ = d:

A i = { e ^ j ( e J + e ^ ) ; j, k = 1,... ,r+, j < /c},

^iEeJ+idE(^-e.*+^+^)=jEeJ+^E^- l)e^
J A;<j j j

Case B: CW IV.3 {X ^ S0(2,n - l)/SO(l,n - 1)). — We have
r+ = ^r = 1; thus ei = ci + 02 is the unit element e and ^+ = Re,
n+ = 1. Clearly Ai = {e*} with weight space V~. Since L(7?+) = Ridy,
we have Ao = A(-$tt(yc)Q^^(-R+)c) = 0, and thus

p= ^(n-l)e*.

Ca^e C: X is not irreducible. — If we discard the case IV.2, we may
assume that a is a Peirce involution: a = P(w), w = c\ + • • ' + Cp, r\ = p,
r_i =q=r-p,d^ = d-i = d, HI = p+jdp(p-1), n_i = q-^ ^ dq(q -1).

Ao^A^y-^a)
= { j (cj - 4); j ̂  k, 1 ̂  j, k < q or q < j, k ^ r},

Ai={j(e,*+e^); K j ^p<A;<r } ,

^=^E(^-^-1)^ +E(^-^- l) e^
j=1 J=P+I

+ E (^*+^)
^3^P<k^r

r

= idE(^-2^- r- l)e^j=i
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1.8. The behavior of the structure group under involutions.
In this subsection a is an involution of an arbitrary semisimple Jordan
algebra V. According to [Sa80,L7.3], the structure algebra siv(V~) of the
non-degenerate JTS V~ is equal to the inner structure algebra

V~ D- V~

generated by v D- w (v^ w G ^-); here v D- w is the restriction to V~ of

v Q w = L{vw) + [L(v), L{w)].

Similarly,
5tr(V+) = V+ D+ V^.

In this subsection we show (in a classification free way) that "generically"
^trfV4") and siv(V~) can be identified. See [Hw69] for similar results.

PROPOSITION 1.8.1. — Let V be a semisimple Jordan algebra and a
an involution ofV. Then the following extension homomorphisms %± and
restriction homomorphisms r± are well defined:

z±: siv^) = V± D± V^ —> si^V)^, v D± w i—> v D w

r±:5tt(y)a* —>siv(V±), X^X\y±.

They satisfy r± o i^ = id^^y^^)' ^n particular^ i^_ is injective and r± is
surjective.

Proof. — Let us show that the formula for z± indeed yields a well
defined map. In fact, the inclusion V± C V is a homomorphism of non-
degenerate JTS, and by a result of Neher {cf. [Sa80, p. 39/40]), such a
homomorphism uniquely extends to a homomorphism of the associated
graded Lie algebras which by restriction to -Sitt^l^) precisely yields z±.
Now, if v^w G V±,

a o (v D w) o a = {av) D {aw) = v D w,

and therefore the image of z± is contained in si^V)0'*.
We now show that the restriction maps are well defined: it is clear that

V+ and V~ are stable under Striy)^ and under siv^V)^. Further, the
restriction o f X e siv^V)0'* to the subspaces V^- belongs to the respective
structure algebras: this follows easily from the decomposition

Qiv(V)^ = DerlV)^ ̂ L^).

Finally, it is clear that r± o i^ = [dg^v±)- D
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We say that V^ and V~ commute if

[i^si^v-^i+wv^^o.

THEOREM 1.8.2. — Assume that V~ is simple and that V~^ and V~
don't commute.

(i) If V^ is simple, then r- is injective and i- is surjective.

(ii) If V^~ is not simple, then a is a Peirce reflection P(w) and r_
has a one dimensional kernel given by RL(w); then r-(-(R-L(w)) is in the
center of siviV^).

(iii) r-(- is injective and i-^. is surjective.

Proof. — By Proposition 1.8.1, z± o r± is a projection onto the image
of %±; therefore

Qivfy)0'* == im z-(- © ker r+ = im %- (B ker r_.

We will now determine the kernel of the homomorphism

r± o z^ :5tt:(y=F) —> 5tt(V±), v D=F w i—^ (v D w)|v±.

Assume first that both V~ and V"1" are simple. Then it is known that
the center of the respective structure algebras is one dimensional, given
by scalar multiples of the identity, and that their derived algebras are
simple. Therefore r+ o %_ and r- o i^. must be inverse isomorphisms of
the derived algebras. In fact, if the intersection of the derived algebras
with the respective kernels were not zero, V^ and V~ would commute.
In particular, we see that Zzp o r=p o %^ = i^_ on the derived algebra.

We now prove that

r± oz=p(idy=F) = idy± .

First, %+(idy+) = z+(L(e)|y+) = idy, therefore r_ o i^(idv+) = idy-.
According to [Sa80, 1.6.1], we can write

idy- = ̂ Ci D- c[
i

where (c^) and {c[) are dual basis of V~ with respect to the trace form
(v^w) i-̂  Tr(v D- w), and similarly for V^~ with a basis (di) of V"^.
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Because V^ and V~ are simple, the respective trace forms are multiples
of the respective restrictions of the trace form of V. Hence

/ dim V^ , dim V~~ , \
\ dimV ^ dimY c j)

is the dual basis of the basis (c^, Cj) of V. One deduces that

4(idy+)+z-(idy-) =^Ci Dc^+^c?, D^ = 2idy.
i i

Since %+(idy+) = idy, we get z-(idy-) = idy. Thus r± o z:p is an
isomorphism on the center and, by what we have seen above, on all
of-strfV^.

We have proved that i-^, and %- have the same image. This implies that
their complements are equal:

ker r+ == ker r-.

But clearly kerr+ D kerr- = 0, and hence r± and z± are isomorphisms.
It remains to consider the case when V~^~ is not simple. According to

Remark 1.5.3, a is then a Peirce reflection P{w). By standard facts on
the Peirce decomposition (c/. [FK94, p. 65]), V4" is then the 0-eigenspace
of L(w) and V~ is the direct sum of the +l-eigenspace V\ and the —1-
eigenspace V-i of I/(w); both are ideals in V^~. We first prove that the
image of i- is contained in the image of z+. In fact, since V~ is assumed
to be simple, the arguments given above still go through. We conclude
that kerr+ C kerr-, and hence kerr+ = 0 since kerr- D kerr+ = 0.
Thus i-^^siv^V^)) = si^V)0'*, and it is then immediately verified that
kerr- = RL(w). Q

PROPOSITION 1.8.3. — IfV is Euclidian and the space X associated to
a is irreducible^ then r-:sit(V)a* —> siv(V~) is bijective.

Proof. —Using the classification of irreducible spaces from Table 1.5.1,
we see that in all cases with the exception of IV.3 V^~ and V~ don't
commute, and in these cases Theorem 1.8.2 implies the claim. In the
remaining case IV.3 we have V^ = R and thus sit(Y^~) ̂  R, and the claim
can be proved by similar arguments as in the proof of Theorem 1.8.2. []

REMARK 1.8.4. — In case IV.2 the statement of Theorem 1.8.2 is false:
indeed, V^ and V~ do commute, and si^V^* contains a direct product of
the simple parts of the non-isomorphic structure groups of V^ and V~. []

TOME 126 — 1998 — ?3



HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 461

REMARK 1.8.5. — The surjective homomorphisms

p^:G±-^G{D±)
(cf. Section 1.2) have discrete kernel if and only if

r^'.si^V)^ —^si^V^)

are bijective. In fact, the kernel of the derived homomorphism of Lie
algebras /?±:s^ —> Q^D^c is contained in the homogeneous part of
degree 1 in g^ which is just siv^Vc)0'*. Thus Theorem 1.8.1 yields a
criterion when p± is essentially injective. []

2. The spectrum of a family of weighted Bergman spaces
In this section we fix an involution a, the corresponding domain 2 C D

and the compactly causal space X = G / H .

2.1. The spaces BJ^(S) (proof of Theorem 1).
We define the weighted Bergman spaces B^(D) and B^ (S) by Equa-

tions (0.1) and (0.5).
PROPOSITION 2.1.1.—A function f € B^o(S) extends to a holomorphic

function on D.

Proof. — This follows from [Pe96, Th. 1.2] since D \ 2 is an analytic
(even algebraic) set m D. []

The map assigning to / 6 B2 o(S) its holomorphic extension onto D is
a unitary bijection of B2 o(5) onto B^D) which we will consider as an
identification.

COROLLARY 2.1.2. — If B2 o(2) is not reduced to zero, then its repro-
ducing kernel is given by

K^^(z,w)={DetB{z,w))~^

with B given by Equation (0.2).

Proof. — The preceding proposition implies that B^ ̂ (E) and B^D)
have the same reproducing kernel. Now the claim follows from [FK94,
Prop. XIII. 1.4]. D

PROPOSITION 2.1.3. — For all admissible parameters k^

A^k:B^{E) — <^(2), / —— 0^ • /

is an isometry onto.

Proof. — This is immediate from the definition of the spaces B2 ^
(Equation (0.5)). D
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COROLLARY 2.1.4. — // B2 o(S) is not reduced to zero and k is an
admissible parameter^ then the reproducing kernel of B2 ̂  (^) 7/s ffiven by

K^^z^w) = /^(DetB(^w)p^(w)^

Proof. —We drop the index /^ and denote by K^ (z, w) the reproducing
kernel corresponding to A. Then

f(z) = (f I ̂ °))o = (^/ I W0^,

(^f)W = (f^f I f^W)2k.

Therefore ___
K^^w) = Uz^K^^z^Uw}1-

with K^ from Corollary 2.1.2. Q

This completes the proof of Theorem 1. It is immediate from the
definition of a positive kernel (c/. [FK94, p. 171]) that, for k admissible,
p[{^W ^g pos^ive if and only if K^^ is. This in turn is the case if and
only if/^ belongs to the Wallach set W given by Equation (0.9) (see [FK94,
Th.XIII.2.7]). We will denote by B^^kC^) the corresponding "abstract"
reproducing kernel space. Then

^,2k ^/x,o(S) ——> B^2fc(S)

as in Proposition 2.1.3 is an isomorphism of reproducing kernel spaces.

2.2. Group and semigroup actions.
The following lemma describes how the group of holomorphic auto-

morphisms of a circled complex domain acts on spaces of holomorphic
functions.

LEMMA 2.2.1. — Let M = G(M)/U C E be a circled bounded
symmetric domain in a finite dimensional complex vector space E, where
G(M) = Aut(M)o und U is the stabilizer of the base point OE- If (pVp)
is a finite dimensional representation ofUc, then the formula

(^(ff)/)^):^^-1^))-1..^-^)
defines a linear action of G(M) on the space 0(M ^Vp) of holomorphic
Vp-valued functions on M. The same formula defines a linear action of
the semigroup 5'(M)~1, where

S(M): ={ge G(M)c ; g(M) c M}.
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Proof.—It is known that, whenever dg~l(z) exists for g € G(M)c and
z C M, it is an element of Uc (cf. [Lo77, 8.15] or [Sa80, Lemma 11.5.3]).
Thus the term on the right hand side is well defined. Using the chain rule
one easily verifies that TTp(gh) = TTp(g)7rp(K) . []

REMARK 2.2.2. —The representation TT? is equivalent to the subspace of
the induced representation Ind^^ p given by holomorphic sections of the
associated bundle over G(M)/U = M with fiber Vp (cf. [F095, p. 25]). Q

REMARK 2.2.3. — We want to apply the preceding lemma to the
representation pq(u) = (Det^)9 for q a rational number, the case q = -
being of particular interest. If V is a simple Jordan algebra, then pq is
a well defined representation of U if and only if q is a multiple of -L. (In
fact, the equation A(gz) = Det^^A^) for all z € Vc, 9 e Str(Vc)
shows that g ^ Det^)^ is a well defined character of Str(Vc). The
converse is deduced from the fact that every relative invariant, i.e. a
function on ^l transforming according to a character, is a power of the
Jordan determinant A; cf. Remark 1.5.5.) In order to be able to apply a
version of Lemma 2.2.1, we construct explicitly an m-fold covering group
ofG(M) (cf. [K097, Section 5, "Principle 1"] for more details).

Since M is simply connected, for any g e G(M) the nowhere vanishing
polynomial \g(z) = det(dg~1 (z))~1 has m holomorphic m-th roots. Thus
the first projection of

G(M)m: = { ( g ^ F ) c G(M) x 0(M) ; \/z e M:F{z)rn = ^g(z)}

defines an m-fold covering

pm:G{M)^——G(M).

If, in this definition, we replace the term F{z)rn by e^^\ then we obtain
a covering

p^:G(M)^ ——G(M)

of infinite order. We assume from now on that m e Nu{oo}. The following
product defines a group structure on G(M)rn'-

(g, F) . (</, F ' ) = (gg^ F"), F^z) = F{g'z)F\z).

Since a root of \g is determined by its value at the base point 0, G{M)m
may topologically also be described as

G{M)^ = { ( g ^ z ) € G(M) x C; zm = ̂ (0)}.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



464 W. BERTRAM, J. HILGERT

If Um = P^(U), then the second projection Um -> C, (u,z) ̂  z is a
character whose m-th power is the character Del; therefore we denote it
by Det17771.

All definitions go through for G(M) replaced by the semigroup 5(M);
we thus define m-th order covering semigroups S(M)rn- D

Now we return to the setup from Section 2.1 with M : = D. Note that
G C G(D) and Gexp(iW) C S(D), where W C q is the cone defined
in Section 1.3. Note that

s = gex.p(iX) i—> 5* = exp(iX)g~1

defines an anti-holomorphic involution on S(D) and similarly for the cove-
ring semigroups. Recall the concept of a Hermitian representation of an
involutive semigroup S on a pre-Hilbert space ̂ ° from [Ne98, Def. 11.3.3]:
The vector space Bo(^°) of linear operators A: ̂ ° -^ ^° for which a formal
adjoint exists is an involutive semigroup, and a Hermitian representation
of S on ^° is a semigroup homomorphism TT: S —^ £?o(-Q°) preserving the
involutions, i.e. 7r(5*) = 7r(5)*.

PROPOSITION 2.2.4. — The formula

M<7)/)(^): = (Defd^-1^))^-1^)

defines a unitary representation ofG(D)^ and a Hermitian holomorphic
contractive representation of the semigroup S(D)^ in B^{D).

Proof.—Because of the construction of the covering (semi-)group and of
Lemma 2.2.1, TT^ is an action on the space of holomorphic functions on D.
We have to show that it preserves (resp. contracts) the norm of B^(D).

The relation

B ( g ' z , g - w ) = dg(z)B(z,w)(dg(w)Y

for g e G(D) (cf. [Be98, 1.3.(9)] or [Sa80, p. 65]) yields

(2.1) K^g ' z , g • w) = (Del dg(z))~^K^z,w)Det(dg(w))-^

which is equivalent to

(2-2) ^(9) ' K^ = Det(dg(w))-^K^.
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Since B^{D) is spanned by the Kw, the space is stable under TT^. Further,
(2.1) and (2.2) together imply that

(Tr^g)K^ [ 7r^g)K^^ = K(z^w) = (K^ \ K,\

and therefore TT^ is a unitary representation of G(P) co-
Analytic extension of (2.1) in the (7-variable yields

(2.1') (Del ds(z)~l)~^K^s • z,w) = K^z, 5* • w)Det(d5*(w)-1)-^.

But then [Ne98, Prop. 11.4.3] implies that S{D)~1 acts on B^{D) via a
Hermitian representation and the action of S{D)^~ clearly is holomorphic.

It remains to show that any g € S(D)^1 acts by a contraction. We
prove this first for ^ = 1: then Bp, = B2 is the classical Bergman space,
and a change of variables yields immediately

IkiWll; = ! \M\^z ̂  I \f(z)fdz = |i/||^
Jg-lD JD

since g~lD C D. From this we deduce the result for general p, using
Th. 11.4.4 of [Ne98] which states that, in the situation we consider, for
a l l g € S ( D ) ^ ,

||7r,(ff)||2 =s^{\DetDg-l(z)\^K^gz) ; z e D, K,(z,z)>o}.
v ^ ^v^? / J ) )

In fact, we have just seen that for fi = 1 the right hand side is bounded
by 1, and since K^ = K^, it is bounded by 1 for all positive ^. []

Note that if p, is rational, the previous proposition holds with G(P)co
replaced by some G(D)m with finite m, and if ^ = j one may choose
m = 4. In the following we assume that m e N U {00} is suitably chosen.
Now let k be an admissible parameter (c/. Section 2.1). Then we can push
forward the unitary action of G(D)m by the isomorphism w4^o,2fc and
obtain a unitary action Tr^^fe of G{D)rn o11 B^^^CE) by

(2.3) (^,2fc(ff)/)(^) = /a(^(Det dg-\z)f(f^ • f^z).

The same formula describes the pushforward of the holomorphic contrac-
tive action of the semigroup S^D)^. Let Gm C G{D)rn be the prei-
mage of G C G{D) under the canonical projection G{D)rn —> G(D) and
Sm C S{D)m the preimage of S : = Gc Ft S(D) C S(D).
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PROPOSITION 2.2.5. — Let k he an admissible parameter.
(i) For allgeGm,

{^k(g)f)(z) = {Deidg-l(z)f~2kf(g-lz).

In particular,
(^2k(g)f)(z)=f{g-lz).

By holomorphic extension, the same formulas hold for g C Sm-

(ii) The kernel K^^ is a Gm-invariant function: for all g e Gm
and z,w € D,

K^k-2k\gz,gw)=K^2k\z,w).

Proof.
(i) We prove first the following transformation law: for all g e G and

x, y where the following expressions are defined, we have

P(g(x) 4- ag{y)) = dg{x)P(x + ay)jadg{y)~lja.

In fact, this follows from the corresponding transformation property of B^
(see [Be98, 1.3. (9)]) by a calculation similar to [Be98, 2.1.2]. We observe
further that jadg(y)~lja is just the transposed of dg(y) with respect to
the form Tr L(xay) (c/. [Be98]) and therefore has the same determinant
as dg(y)', we deduce that for g e Gyn,

Ug-lz)=(Detdg-l(z))2Uz).

Now the claim follows using this transformation law in the expression
for 7T^2fc.

(ii) This can be verified directly from the transformation properties of
fa just proved, or it can be seen as an easy consequence of (i). []

2.3. The differential restriction operators.
If a = idy, then G is the compact linear group £/, and the decom-

position of B^(D) with respect to this group is described in [FK94,
Th. XIII.2.7]. We want to obtain a similar decomposition of this space
under the action of G (resp. Gm) for general a. Recall that

D~ == D H V^

is a bounded symmetric domain on which G acts transitively, and
D~ = G / K (Section 1.2). The basic idea, due to Jakobsen and Vergne

TOME 126 — 1998 — ?3



HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 467

(see [JV79]), is to decompose B^(D) as a G-module by restricting func-
tions and their transversal derivatives to D~. For a smooth function
/: E D Y —)• F defined on a domain Y in a vector space E with values
in a vector space -F, we denote by

d/:y—^Hom(F,F)

its ordinary total differential, and by

d^/.-V—>liom(SkE,F)

its k-ih total differential; here SkE is the A;-th symmetric power of E. If
furthermore / is holomorphic and scalar-valued, then dkf is a, holomor-
phic function with values in (5^)*; we write dkf € 0(Y, (5^)*).

Let / be a holomorphic function D —> F. The restriction of the linear
function

dkf(z):SkVc —>F
to the subspace SkV(^' will be called the V^~ -transversal k-th derivative off
at z and is denoted by d^/(^). We now define the restriction operators

n^:0{D^F)—O(D-^F)^ f——/!„-,

TZ^ : ke^TZ^) —— O^-.HomC^^)), / —— d+/|^-,

U^ : ker(n^~^) —> (9(^-,Hom(5'fc^^F)), / ̂  d^/|^-.

PROPOSITION 2.3.1. — If F is a Km-module, then the maps

n^:0(D,F) D ker(n^-^) -. 0(D-, Hom(^y^-,F)), / ̂  ^f\D-

are Gm-^Quivariant maps with respect to the actions of Gm defined by
Lemma 2.2.1.

Proof. — The claim is verified by a direct computation: for k = 0 it is
immediate. For k = 1 we differentiate

d(^/)(^) = d{p(dg-1^-1) • (/o<T1))^)
=d(p(dg-l^-l))(z)•f(g-l{z))

+p(dg-l(z))~l•(df(g-\z))odg-l{z)).

We evaluate for / 6 kerTZ^ and z € D~: then /(^-l(^)) = 0 since g
preserves D~\ therefore the first term vanishes, and the remaining term
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(considered as operator on V^~) is just (g- df)(z). For k > 1 we differentiate
the above expression k—1 times, using chain and Leibnitz rule, and obtain
a sum of multilinear terms containing differentials of / of order 0,1,. . . . k.
The terms containing differentials of / of order less than k vanish when
we evaluate for / € ker%^~1^ and z G D~, and only one term remains,
namely

p(dg-\z))-1. (d'7(<r1^)) o (^d<r1^))),

and this is precisely (g • ^k f)[z) (when restricted to S^V^). []

Now let 7i C 0(D,F) be a G-invariant Hilbert subspace (i.e. a
subspace with a structure of Hilbert space for which the point evaluations
are continuous und such that G acts unitarily in 7Y). Let K-^ be the
restriction of U^ to U.

LEMMA 2.3.2. — For all k > 0, the kernels ker 7^ are closed subspaces
(k\ofH, and the restriction operators W^ are continuous.

Proof. — It follows from the Cauchy inequalities (c/. [ChabQO, p. 30])
that the maps

dk:0(D,F) —^(D.Hon^Vc^)), f ̂ —> ̂ f

are continuous with respect to the topologies of uniform convergence on
compact sets. Therefore these maps and hence the differential restriction
operators are continuous on 7^, and their kernels are closed. []

For k > 1 we let 1~ik be the orthocomplement of ker 7^ in ker 7^ - ,
and let Ho be the orthocomplement of kerT^^ in "H. Since G acts
unitarily, it follows from Proposition 2.3.1 that Tik is a G'-submodule of H.
Therefore

n^-.Uk —> O^D-.Kom^V^.F))

is a G- isomorphism onto the image of T^/ .

PROPOSITION 2.3.3. — We have the following orthogonal G-invariant
decomposition:

•H=(^-Hk.
k=0

Proof. — It only remains to show that the sum @^Hk is dense in H: in
fact, if / e ((Bk^k)^, then f\o- == 0 since / € U^ = kerTZ^. Further,
all partial derivatives of / in V^-direction vanish on D~, and therefore
the Taylor series of / at any point of D~ is zero, implying that / = 0 by
analyticity. []
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We transport the Hilbert structure of Tik via the isomorphism 7^
onto its image. This defines a Hilbert subspace (denoted by 7W, k) of
0(D~ .Kom^V^.F))', in fact, the point evaluations of this space are
continuous since they are given by differentials on D which have the
continuity property described in Lemma 2.3.2.

Since G acts transitively on D~~, we can apply a theorem due to
S.Kobayashi (c/. [Ko68] for the square integrable version and [BH97,
Th. 2.5] for the abstract kernel version) in order to decompose the space
T^Hk into irreducible submodules. In our situation the theorem implies: a
G-invariant Hilbert subspace ̂  of 0{D~ ^ E) is irreducible under G if and
only if -f)(0): = {/(O) | / 6 -Q} is irreducible under K = G D [7, where U
is the maximal compact subgroup of G(D) defined in Section 1.1. Put in
another way: given an irreducible JC-module EQ, there is at most one G-
invariant Hilbert subspace f) C 0{D~', U) with -Q(O) = EQ. If it exists, we
denote it by "H(D~ ,£'o); by KobayashFs theorem, it is irreducible. (Using
the mean value property of holomorphic functions, one can show that
H{D~, Eo) is the G-module generated by all constant functions D~ —^ £o;
cf. [Ach96, Section 2].)

THEOREM 2.3.4. —Let 1-i C 0(D,F) be a G-invariant Hilbert subspace.
For k= 0 ,1 ,2 , . . . let

^kW=Q)Wk,i

be the decomposition into irreducible K-modules. Then /H(D~ ^Wk i) is
irreducible, and

n^^n^D-^i)
i.k

is the decomposition into irreducible G-modules.

Proof. — Since by Proposition 2.3.3 U ^ ©^7^, we have to
decompose W~ik mto irreducible G-modules. If 7W.k == © • Ej is this
decomposition, then one direction of KobayashFs theorem tells us that
^^fc(0) = © -Ej(O) is a decomposition into irreducible J^-modules, and
by the unicity statement we have Ej = 1~i{D~ ,£^(0)). This implies the
claim. []

In the case where F is one dimensional and H = B^(D\ we have the
following, more precise, result:

THEOREM 2.3.5. — Let C^ be the space C with the action of Koo by
(DeU)"^, let Pol(V^~,C^) be the space of holomorphic polynomials on
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V^ with the action of Koo by k ' p = (DetA;)"^ • (po A;~1), and let

PoW^)=Q)W,
3^J

be its decomposition into irreducible Koo -modules. Then for p, > ̂  — -^

B^D)=Q)H(D-^)
jeJ

is the decomposition into irreducible G-modules.

Proof. —We apply the preceding theorem for F = Cp, and 7Y = B^{D).
By [FK94, Th.XIII.2.7], B^{D) (^ > j - ̂ ) contains all holomorphic
polynomials; one deduces that

mikW = Hom^y^^)'
In fact, if q:D~ —> (fi^l^")*, z i—> go is a constant function, then one
may find a holomorphic polynomial p such that d^_p(z) = q(z) = QQ and
d^p^z) = 0 for all z € D-, namely p{z) = (I/A:!) go(|> (^ + Oiz)).) Now
we can apply the preceding theorem, using the natural identification

00

PoW^-QHom^^.F). D
k=0

REMARK 2.3.6.—In [Ko97] T. Kobayashi announces a branching law for
unitary highest weight representations with respect to certain reductive
subgroups which generalizes Theorem 2.3.5. []

2.4. Spectrum of B^(D) in terms of highest weights.
We can make Theorem 2.3.5 still more specific by describing the highest

weights of the representations appearing there. Note that K is a compact
real form of the group Kc == St^Vc)01* • The homomorphism

(2.4) (Kc)o = Str(Vc)^ —^ Str^),, g ̂  g\y^

is surjective since the map r+ considered in Proposition 1.8.1 is surjective.
Thus the decomposition of Pol(V^~,C^) under Kc (or under one of its
covering groups) can be treated as a problem in the Jordan algebra V~^~.

Now let VQ be any Euclidian Jordan algebra (later we take VQ = V"1").
If VQ is simple, then according to [FK94, Th.XI.2.4] the space Pol(Vo)
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of polynomials on VQ decomposes under the standard action of Str(Vo)o
by 9 ' P = P ° 9~1 as

Pol(Vo) = Q Pm.
m>0

Here m = (mi , . . . , 77^) is a multi-integer (r the rank of Vo) with
mi > . . . > rrir > 0, and Pm is a (Aut(Vo)o-spherical) irreducible module
of polynomials having highest weight {cf. [FK94, p. 227])

-^m,c;,
%=i

with respect to the Cartan subspace a = (D[^IRZ/(ci) of L(Vo) given by
a Jordan frame c i , . . . , Cr and to the order induced by the ordered basis
(L(ci) , . . . , L(cr)) of a. We denote the dual basis of a* by ( c ^ , . . . , c^).

The module P(I,...,I) is one dimensional and generated by the Jordan
determinant A of VQ. We have the relations

A^)2^ =DetP(x),

Del P(gx) = (Del g)2 Det P(aQ,,

A(gx)=(Detg)r/nW

for g e Str(Vo)5 where P is the quadratic representation of VQ. The
function A is positive on the symmetric cone f^ of VQ, and therefore we
can define A* as a positive function on ^ for all t G M. In the following,
we will often identify a real parameter t with ( t , . . . , t) C W. If m is a
multi-integer, we let

P^^A^.p; pGPm};

for general t 6 IR, this is a space of functions on the symmetric cone f2,
and it is a Str(Vo)o-module of highest weight

(HW) _^(^+^*.
i

For t G N it is a space of polynomials coinciding with the space of
polynomials defined previously.
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THEOREM 2.4.1. — Assume a be such that X = G/H is irreducible.
Then for all p, e IR we have the following decomposition into irreducible
Koo-modules:

Poi(y+,c^-(3)P^,/^,
m^O

(where notation is as above with VQ = V^ and r+ = rkV4", n = dimY).
For ji > ^ — ^, we have the following decomposition into irreducible
Goo-modules:

W) ̂  (f) -H(D- ,Pm+^^)-

m>0

The highest weight of the Goo-module /^(^-,Pm+^n/r-^) ^ the same as
the one of the Koo-module Pm+/m/r+^ namely

-]^(m,+/m/r+).

Proof. — We denote by Det the holomorphic character

Det : Kc —> C*, g i—> Del g .

We also consider the characters

Det± :Kc —> C*, pi—> Det(p|^±);

then Det = Det-(--Det_. Now Kc is connected with one dimensional
center; in fact, ^c is the complexification of six{V)0'* which is (according
to Proposition 1.8.3) isomorphic to Qi^(V~)\ moreover V~ is simple
(cf. loc. cit.), whence sii:(V~) has a one dimensional center. Thus the
center of ^c consists only of the multiples of the identity which then acts
by the same scalar on V^~ and V~. Therefore

Det = Det^^ = (Det^7^)-^

so that we can calculate,

poi(y+,c^)=poi(y+)0C^
^ ^Pm^Det-^

m>0

= 9 Pm 0 (Det^-)-^ = Q P^n/r.
m>_Q m.>_0

is the decomposition under Str(y+)o, under Str(V)^ (because of the
surjectivity of (2.4)), and thus also under Kc and K.

TOME 126 — 1998 — ?3



HARDY SPACES AND ANALYTIC CONTINUATION OF BERGMAN SPACES 473

The statement about the decomposition of B^{D) now follows from
Theorem 2.3.5, and the formula for the highest weight w.r.t. Koo is an
immediate consequence of formula (HW) above. The remaining statement
about the corresponding highest weights w.r.t. Goo is a general fact
on holomorphically induced representations, using the fact that dc is a
Cartan subspace both in tc and in Qc (c/. [Ach96,Th. 3.7]). []

REMARKS 2.4.2.
77 2y? 77 77

(i) Note that — = — if a is split and — == — if a is non-split.
r+ r r+ r

(ii) If a is a Peirce involution, then V^ = V\ © V-\ is a direct sum of two
simple algebras, and the preceding theorem cannot be applied. In fact,
for the explicit decomposition ofPol(yiCV-i) ^ Pol(yi)(g)Pol(y_i) in
terms of the ones of Pol(yi) and Pol(y-i) one needs a Clebsch-Gordan
formula. Then one could apply similar arguments as in the preceding
proof. \\

3. Comparison of Hardy spaces

3.1. The Hardy space associated to 3.
We keep the notation and hypotheses from Section 2. Following

[H0091], we define a Hardy space H2^) associated to the compactly
causal Makarevic space X as the space of holomorphic functions / on 5
having finite Hardy space norm

(3.i) 1 1 / 1 1 ^ ( = ) ^ = sup h-/lli^,
7er-1

where r = Gc n S(D) C Gc is the semigroup introduced in Proposi-
tion 1.4.1; it acts on the space of holomorphic functions /:5 —^ C by
7 • /: = f o 7~1. Since 7 • / is holomorphic on a neighborhood of 5, it is
continuous on X, and

h-/lliw= / l/^-^I'drr
J XX

is defined. We recall the following general results on Jf2^) from [H0091]:

THEOREM 3.1.1.
(i) Equation (3.1) defines a Hilbert space norm on H2^).

(ii) The semigroup F~1 acts by contractions on H2^) via (7,/) '—> 7'/.
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(iii) There is a G-equivariant isometry b = b^'.H2^) —> L^^X)
defined by b^(f) = lim(7^ • /) for any sequence 7 -̂ e r~1 converging
to 1 € G. Here the action of G on L^^X) is the left regular one.

(iv) Set WQ: = —W and suppose that X 6 iWo. Then X acts
on b^H2^)) via the regular representation as a negative operator.
Conversely, ifH C I^^X) is a closed subspace on which all the X e iWo
act as negative operators^ i.e. "H is WQ-dissipative^ then "H C ̂ (.^(S)).

(v) The Hilbert space ft2 (5) admits a reproducing kernel K: 5x5 —» C
which is holomorphic in the first and antiholomorphic in the second
variable. []

Since the Hardy space 7:f2(5) is defined by integration over X , we will
need the following result about the (7-invariant measure on X. Let us
denote by da the [/-invariant normalized measure on S.

PROPOSITION 3.1.2. — The density of the G-invariant measure on the
open dense set X C S with respect to da is given by the function

\Uu)\~^ uex.

Proof. — We use the corresponding result for the Cayley transformed
realization: by [Be98, Cor. 2.4.2], the invariant measure on the space
j^(-a) ^ ̂ (j^ ^g g^n by

|DetB-^aOr^ dA

(where dA is Lebesgue measure on V) and the invariant measure on
yc^^(-idv) ̂

\DetB-;d(x,x)\~^ dA.

In both formulas, Del A denotes the determinant of an endomorphism A
of y; it is the same as the determinant of its C-linear extension AC taken
over C (since both have the same matrix). By Cayley transform, the
density we are looking for is given by

\DetB^{Cx,Cx)\-^

\DetB-^(Cx,Cx)\~^

The calculation given in the proof of [Be98, Th. 2.1.1] together with the
fact that | Det P(u)\ = 1 for all u € S shows that the quotient equals

\DeiP(z+az)\~^ z = C(x) e C(X). D
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3.2. Embedding of H2(D) into ^(S) (proof of Theorem 3).
Recall the definition of the Hardy space H^^D) and its reproducing

kernel from Equations (0.10) and (0.11). We are now ready to give a
precise formulation for Theorem 3.

THEOREM 3.2.1. — Assume that \ is an admissible parameter^ i.e. fa
has a holomorphic fourth root.

(i) We have a norm preserving inclusion of function spaces

B^^CH2^).

(ii) The map

H\D) = B^(D) -^ 5^(5) c H2^), f ̂  fS • f
is an isometric and G-equivariant imbedding.

Proof.
(i) Proposition 2.2.4 shows that F"1 acts by contractions in B]_{D)

and thus, by G-isoinorphy, also in the space Bi^i(5). Recall further that
the classical Hardy space H^^D) also admits an isometric embedding
bu: H2(D) -^ L2^), / ̂  lim^i t-1 id •/ (c/. [FK94, p. 270]). Using this
and Proposition 3.1.2, we have for all / e £?i^i(2)

11/l lBi i(2) = SUp ||7. f\\B,_ ^(2)2'? ^er-1 2 ' 2

=^pj|/^(7./)||^^

= sup ||^z(7</)||^2(p)
7er

=lim( sup ll^id-a,^'/))!!^))
t^i ^er-1 v /

= sup |^ z(7•/) | |^2(s)
/ 7er-1

= SUp | |7-/1|L2(X) = 11/11^2(2).
7er-1

This proves part (i). Part (ii) follows by combining part (i) and Proposi-
tion 2.1.3. D

3.3. Criterion for equality (proof of Theorem 4).
Recall the description of the spectrum of ^(S) in terms of highest

weight representations from [H0091, Th. 3.3 and Th. 3.4] and [0091,
Th.5.2].
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THEOREM 3.3.1. — Suppose that X is irreducible.
(i) H2^) is a multiplicity free direct sum of unitary highest weight

modules.
(ii) The highest weight representations occurring in H2^) admit H-

invariant distribution vectors so that the minimal K-types are K D H-
spherical and the corresponding highest weights can be viewed as elements
ofa\

(hi) An element of A € %a* occurs as a highest weight of an irredu-
cible subrepresentation of H^^S) if and only the following conditions are
satisfied:

(1) the K-module with highest weight X is K D H-spherical,
(2) \{iX) < 0 for all X € W H a = -Wo H a,
(3) (A + p | f3) < 0 for all 0 6 Ai. D

The generalization of the Cartan-Helgason theorem given by Takeuchi
in [Ta73, Th. 2.4] allows a characterization of the property of the K-
module with highest weight A to be K D 7:f-spherical. The integrality
condition on A given in that theorem refers to the lattice

L: = [Z e a ; exp(Z)ie = ie}

If 61 , . . . , e^ is a Jordan frame in V^, then
r+

L=2m^ZL(e
j=i

- 3 ) 1

this is immediate from the equation exp(L(^ aj6j))ze = i^.eajej.
If now

^
x=^m3e^

J'=l

the integrality condition from Takeuchi's Cartan-Helgason theorem simply
is

rrij €Z , V j = l , . . . , r + .

Of course the corresponding dominance condition depends on the choices
of A^~ made in Section 1.7.

THEOREM 3.3.2. — Assume that X is irreducible and that ^ is an
admissible parameter.

(i) If a is non-split^ then Bi^i(2) == H2(E). These are the cases 1.3
(Sp(2fc,lR)/Sp(A;,C)), 11.2 (Sp^M2)), IV.3 [Hyperboloids) and Cayley type
from the classification in Table 1.5.1.
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(ii) If a is split, then Bi^i(2) is a proper subspace of H2^), and
the quotient H2CS)/B^^(S) decomposes as a direct sum of irreducible
G-modules with highest weights X = — Y ^ ' i m3e^ as follows:

, n n d-\-1
m i ^ - - - > m ^ m , € Z , — > rrir > — - ———

2r 2r 2

These are the cases 1.2 (SO*(2m)/SO(m,C); d = 2), III.2 (S0*(2m);
d = 4 ) andV.2 (d=8).

Proof. — We have to specify the conditions of Theorem 3.3.1 (iii) in
terms of the Jordan data from Section 1.7. If we let

'r+
\= -^m,e,*,

1=1

then the description of A^~ shows that condition (1) from Theorem 3.3.1
can be written

^1 >. ' • • ^ ^T5 7n^ ^ Z-

Since a H W == — ̂ ^i IK'^e^ the cone admissibility condition (2) can be
written

^
A=-^m,e,*, Vz, m^ > 0.

%=i

The conditions (1) and (2) together have been written earlier in the form
m >_ 0. The Harish-Chandra condition (3) has to be made explicit by
using the structural data from Section 1.7.

• a split. — The condition (p — m | (3) < 0 for all f3 e Ai is equivalent
to

mj + rrik > pj 4- pk Vj ̂  k,

where p = ̂  Pj6]- Since mj + m^ > 2mr and pj -\- pk < pr + Pr-i =
\d(2r — 3), this condition is equivalent to

d n d+1
rrir > -(2r - 3) = — - ———'

2' / 2r 2

• a non-split. — The condition (p — m \ /?) < 0 for all (3 € Ai is
equivalent to

m -̂ > pj Vj.
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In the Cayley-type case the Harish-Chandra condition is equivalent to

I d , . n+ 1 n 1
T O ^ > ^ = 2 + 2 ( 7 + - 1 ) = 77 -2 = 7 -2 •

Since n/r is either an integer or a half-integer, this is equivalent to
m^ > n / r .

In the matrix cases the Harish-Chandra condition is equivalent to

. d+1 d ( r - l ) 1 n 1
' r .>^ = ^- l ) + -2- = ——2—— + 2 = 7-2•

m

As above, this is seen to be equivalent to m^_ > n / r .
In the case of Type IV.3 we have p = j(n — l)e*; thus the Harish-

Chandra condition is equivalent to

n — 1 n 1
nr, > Pr.

2 r 2

and again this is equivalent to m^ ^ n / r .
Now we can compare conditions (1)-(3) of Theorem 3.3.1 (iii) with the

description of the spectrum of £?i^i(S) ^ B]_{D} (Theorem 2.4.1): the
spectrum of B^{D) is given by the condition m >_ 0 and mr >. n/(2r+).
In the non-split case the last condition is equivalent to mr > n / r . Since
the Harish-Chandra condition was also equivalent to this condition, the
spectra of Bi^i(5) and H2^) are the same, and since according to
Th. 3.3.1 (i) we have multiplicity one in H2 (2), both spaces are actually
equal. In the split case the spectrum of Bi. (D) is given by the conditions
m >, 0 and mr > n/(2r). Since in these cases d > 2, this does not coincide
with the conditions (1)-(3) given above, the difference of both conditions
being precisely the set of parameters given in the theorem. []

REMARK 3.3.3. — If a is a Peirce involution, it is more difficult to
get precise results. However, going through the arguments leading to
Theorem 3.3.2, one gets rough estimates indicating that in these cases
again B^^(D) is a proper subspace of .^(S). []

3.4. The compact case.
We consider the case a = idy: X = S is the Shilov boundary of D, and

2 = {z € D; detz ^ 0} = D H ^c. Note that Theorem 3.3.2 does not
apply in this case since X is not irreducible. The following result, due to
Lassalle (see [La85, Th. 8]), replaces Theorem 3.3.2 in the compact case.
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PROPOSITION 3.4.1. —— H2^) = ̂ {D).

Proof.
Part "D". — Clearly a function holomorphic on D is holomorphic on

5, and an element of H2{D) satisfies also the Hardy condition of H2^]
because according to Proposition 2.2.4, S(D)~1 acts by contractions
on H\D).

Part "C". — It suffices to show that elements of H^CS) are actually
holomorphic on D for then the Hardy condition of H2^) clearly implies
the one of H2^). (The supremum is taken over the semigroup ]0,1[ C
r(G) = {g C Str(yc); ^(2) C 5}.) According to [FK94, Ch.XII], every
holomorphic function / on 5 can be developped in a Laurent series

f^) = ̂  ^mPm(^),
m€Z^

where pm belongs to the space Pm defined in [FK94], p. 245. The elements
of this space are certain rational functions which are homogeous of
degree ^[=i^r Since

I'da^)^ sup r^) / \prrz(ru)\2sup / \prn(ru)\2 da{u) = ( sup r^1) / \pm(ru)[
0<r<lJE 0<r<l JE0<r<l7E' 0<r<l JE

is finite if and only if ^m^ >, 0, only terms satisfying this condition
appear in the Laurent series of / which is thus actually a Taylor series
converging on D. []

COROLLARY 3.4.2. — The reproducing kernel of ̂ (S) is given by
K(z,w) =DetB{z,w)-^. D

COROLLARY 3.4.3.—In the compact case^ the inclusion Bi(5) C H2^)
is strict^ and the Bergman kernel associated to 5 is not the square of the
Cauchy kernel.

Proof. —The first statement follows from the second, and this is proved
by remarking that the Bergman kernel for 5 is given by

K^^ (z, w) = Del P(z)^ Del B(z, w)~1 Del P(w) ̂

which is not the square of K. []
The results of the last corollary make appear the equality in Pro-

position 3.4.1 rather "non-canonical". It is difficult to give a reasonable
interpretation of this equality. It can be proved that for any a the inclu-
sion H2^) C H^^D) holds; thus the space ./^(D) appears as an "upper
bound" which is reached in the compact case.
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4. Open problems
At this stage there are two classes of open problems:

PROBLEM 4.1.—A more conceptual definition of the spaces B2 ^(2) has
to be made in the framework of Hilbert spaces of sections of vector bundles',
then the spaces B^^E) for various admissible parameters k are all
interpreted as spaces of sections of the same line bundle. The groundwork
for such a theory is laid in the note [BH97]. However, the definition of
Hardy spaces as spaces of sections of line bundles (of half-forms, to be more
precise) is more delicate than the definition of Bergman spaces of sections.
For example, topological problems come in, related to the problem of
existence of holomorphic fourth roots of fa. But only in this way it is
possible to get an interpretation of the "inclusion" of the classical Hardy
space in the non-classical one as a natural inclusion of invariantly defined
Hardy spaces^ and at the same time to make definitions independent of
the special realization chosen. The desire for having such an invariant
description arises already in the case of the classical Hardy spaces: in
fact, the classical Hardy space H2^) and the Hardy space H2^^) of
the tube 7h equivalent to D (see [FK94, p. 178]) are isomorphic, but this
is not at all clear from the definitions (it can be deduced by comparing
the reproducing kernels). Therefore one would like to understand H^^D)
and ^(Jh) as different aspects of one invariantly defined object. Then,
as shows the present work, the invariantly defined Hardy space of 5
sometimes is equal to the one of Z>, but sometimes it is strictly bigger.
One would like to have a geometric understanding of Theorem 4 in this
context. []

PROBLEM 4.2. — One wants to find a formula for the Cauchy-Szego
kernel in the remaining cases, where one does not have equality of classical
and non-commutative Hardy spaces. There is one case in which this is
easy, namely the compact case; cf. Section 3.4. In the intermediate cases
it seems to be rather difficult to find a "simple" formula for the Cauchy-
Szego kernel (cf. [K096] for the case X = U(l, 1)). Moreover, there are
a few compactly causal spaces which cannot be realized using Jordan
algebras (c/. Remark 1.5.2), and for these literally nothing seems to be
known. Q
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