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ON TOPOLOGICAL RIGIDITY OF PROJECTIVE

FOLIATIONS

BY A. LINS NETO, P. SAD, B. SCARDUA (*)

ABSTRACT. — Let us denote by X(n) the space of degree n G N foliations of the
complex projective plane CP(2) which leave invariant the line at infinity. We prove
that for each n > 2 there exists an open dense subset Rig(n) C X{n) such that
any topologically trivial analytic deformation {J^t}t^ of an element FQ £ Rig(n),
with J~t € ^{n}, for all t € D, is analytically trivial. This is an improvement of a
remarkable result of Ilyashenko. Other generalizations of these results are given as well
as a description of the class of nonrigid foliations.

RESUME. — SUR LA RIGIDITE TOPOLOGIQUE DES FEUILLETAGES PROJECTIFS.
Nous designons par X(n) Pespace des feuilletages de degre n G N du plan projectif
complexe qui laissent invariante la droite de 1'infini. Nous demontrons que, pour chaque
n > 2, il existe un sous-ensemble ouvert et dense Rig(n) C X(n) tel que toute
deformation analytique et topologiquement triviale {^t}t^B d'un element J^Q 6 Rig(n),
avec Tt € X{n) pour tout t € B, est analytiquement triviale. Cela ameliore un resultat
remarquable de Ilyashenko. On donne aussi d'autres generalisations de ces resultats
ainsi qu'une description de la classe des feuilletages non rigides.

Introduction
Let Fol(M) denote the set of singular (holomorphic) foliations on a

complex manifold M. An analytic deformation of T is an analytic family
{^t}t^Y of foliations on M, with parameters on an analytic space V, such
that there exists a point o G Y with ^o = J-'. For reasons of simplicity we
will only consider deformations where the germ of analytic space (V, 6}
is (D, 0) where D C C is the unitary disk and 0 € C is the origin.
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Work partially supported by PRONEX-Dynamical Systems.
A.L. NETO, P. SAD, B. SCARDUA, Institute de Matematica Pura e Aplicada, Estrada
D. Castorina, 110 Jardim Botanico, Rio de Janeiro, RJ, CEP 22460-320 (Brazil).
E-mail : alcides@impa.br, sad@impa.br, scardua@impa.br.
AMS classification : 32L30.
Keywords : foliation, rigidity, holonomy group, non solvable group of diffeomorphisms,
lamination.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1998/381/$ 5.00
© Societe mathematique de France



382 A.LINS NETO, P. SAD, B. SCARDUA

A topological equivalence (resp. analytical equivalence) between two
foliations T', T\ is a homeomorphism (resp. biholomorphism) (f): M —>• M,
which takes leaves of T onto leaves of T\^ and such that (f){smg^F) =
sing^i. The deformation {^t}teD ls topologically trivial (resp. analyti-
cally trivial) if there exists a continuous map (resp. holomorphic map)
cf): M x D —^ M, such that each map <^ : M —^ M is a topological equi-
valence (respectively an analytical equivalence) between Fi and ^o-

Let C C Fol(M) be a class of foliations on M; {.T^eD is a deformation
in the class C, when .7̂  € C, for all <; e D. A holomorphic foliation T ^C
will be called topologically rigid in the class C if any topologically trivial
deformation in the class C is analytically trivial.

We denote by F(ri) the class of foliations of degree n 6 N of CP(2)
(see [8]). Let us fix an affine space C2 C CP(2) and denote by ^(n), the
space of foliations of T(n) which leave invariant the line at the infinity
Loo == CP(2)\C2. A well-known theorem of Y. Ilyashenko establishes
topological rigidity for a residual class of foliations on the 2-dimensional
complex projective space CP(2), leaving invariant a fixed projective line.

THEOREM (see [14], [5], [9]). — For any n :> 2 there exists a residual
subset I{n) C X(n) whose elements are topologically rigid foliations in the
class X(n}.

In this paper we find an open and dense subset of X{n) of topologically
rigid foliations. In fact, we will work with a weaker notion of trivial
deformation. Instead of following continuously all the leaves of a foliation
along the deformation, our idea is to follow only the leaves in some
subset as small as possible, invariant under topological equivalence, and
see if this control implies analytical triviality. Our choice here is the set
of separatrices of the foliation, and the useful A-lemma from Complex
Analysis permits in general to follow all leaves in its closure. On the other
hand, it can be shown that foliations which belong to a certain open
and dense subset of X(n) have dense separatrices; these foliations will
ultimately have only analytically trivial deformations.

To be more precise, let us denote by St C M, the set of separatrices of
each foliation Fi. The deformation {^^eD ls s-trivial^ when there exists a
continuous family of maps (j>t '. So —> M,t € D such that (J)Q is the inclusion
map, (f)t(So) = St^ and <^ is a continuous injective map from SQ into M.
By continuity we mean that we have fixed a metric d in M (compatible
with the topology of M), such that for any compact set K C M it holds

max {ri(0t(p), 0toh))} —^ 0 as t -^ to.
pEKubo
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TOPOLOGICAL RIGIDITY OF PROJECTIVE FOLIATIONS 383

We have in mind the cases M = CP(2) and M = C2. We introduce the
following terminology :

DEFINITION 1. — Let C C Fol(M) and T e C. Then T is s-rigid in
the class C, when any s-trivial deformation in the class C is analytically
trivial.

We remark that a topologically trivial deformation is also a s-trivial
one. Our main result for CP(2) can be stated as follows :

THEOREM 1.1. — For each n > 2, X(n) contains an open dense subset
Rig(n) such that any foliation in this set is s-rigid in the class X{n).

In particular, the foliations in Rig(n) are topologically rigid. These
foliations are essentially characterized by the properties :

(i) Loo is the only algebraic solution of the foliation;
(ii) the singularities at Loo are hyperbolic.

Now we state the corresponding result for C2 :

THEOREM 1.2. — For n > 2, any deformation in Rig(n) which is s-
trivial in C2 is analytically trivial in CP(2).

As a consequence we have that : any deformation in Rig(n) which is
topologically trivial in C2 is analytically trivial in CP(2). This answers to
a question motivated by the rigidity result of [14].

A similar situation occurs in [II], where deformations of germs of
certain singular foliations are considered : along the divisor introduced
after desingularization the deformation is not topologically rigid a priori.

The reader may think of topological triviality instead of s-triviality in
Theorems 1.1 and 1.2; we prefer to work with s-triviality to single out
basic features of the foliations involved.

Although we do not describe the non s-rigid foliations, we are able to
give some information about the non topologically rigid foliations. Let us
denote by Fol(M, S) the subspace of Fol(M) of foliations which leave the
compact analytic curve S C M invariant.

THEOREM 2.1. — Let S C CP(2) be an irreducible algebraic curve and
F G Fol(CP(2), S) be a foliation which satisfies :

(i) the singularities of ̂  along S are hyperbolic.
(ii) any singularity of T has exactly two local transverse separatrices.
If ̂  is non rigid in the class Fol(CP(2), 6') then F is defined by a

logarithmic 1-form (Darboux foliation).

As in [13] we may obtain examples of non rigid Darboux foliations.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^4 A.LINS NETO, P. SAD, B. SCARDUA

THEOREM 2.2. — Let M be a projective surface with a very ample
irreducible algebraic curve S C M. Let F e Fol(M, S) be a foliation
with hyperbolic singularities along S and given by a holomorphic map
of linear bundles a \ L -> TM, where L is a linear bundle such that
(̂M, OM(L)) = 0. Choose a rational 1-form cj which defines T on M.

Then, either T is topologically rigid in the class Fol(M, S) or F admits a
Liouvillian first integral of the form F = f u j / H , where H = exp f T] for
some closed meromorphic 1-form rj with simple poles on M.

When M is simply-connected, Theorem 2.2 can be completed by a
description of the foliations which admit a Liouvillian first integral : they
are defined by closed rational 1-forms or by rational pull-backs of Riccati
equations

W P(x) dy - (y2a(x) + yb(x)) dx = 0

on C x C, where S corresponds to (y = 0) (see [2]).
As a matter of fact, Theorem 2.1 is a particular case of Theorem 2.2 :

conditions (i) and (ii) in its statement prohibit the presence of dicritical
singularities, which appear in pull-backs of Riccati equations (when not
of Darboux type).

In order to make clearer the proofs of these two theorems, we explain
in § 5 how to get a topological rigidity theorem for foliations in Fol(M, S),
where M is a projective surface and S C M is an irreducible algebraic
curve. We point out that some of the steps used to prove such a rigidity
theorem are well-known from several authors [6], [10], [II], [12], [14],
[16], [19].

We are grateful to the referee for many valuable observations, including
a correction in the end of the proof of Theorem 4.

1. Preliminaries
A foliation F e X(n) can be described in C2 by a polynomial vector
\r\field

^=P(^)|^Q(.,,)^

where P(x, y) and Q(x, y) are polynomials of degree < n, with some of
the components of degree n, and without common factors (see [8]).

Let q e U be an isolated singularity of a foliation F defined on an
open subset U C C2. We say that q is nondegenerate if there exists a
holomorphic vector field X tangent to T in a neighborhood of g, such
that DX(q) is nonsingular. In particular q is an isolated singularity of X.

TOME 126 — 1998 — N° 3



TOPOLOGICAL RIGIDITY OF PROJECTIVE FOLIATIONS 385

Let q be a nondegenerate singularity of J-', the characteristic numbers
of q are the quotients A and A~1 of the eigenvalues of DX(q)^ which do
not depend on the vector field X chosen as above. If A ^ Q+ then F
exhibits exactly two (smooth and transverse) local separatrices (see [5] for
a definition) at q say, S^ and Sy , which are tangent to the characteristic
directions of a vector field X as above, and with eigenvalues A4' and A(~
respectively. The characteristic numbers of these local separatrices are
given by

Z(^-)=^ Z(^)=^.
"Q ^'Q

The singularity is hyperbolic if the characteristic numbers are nonreal. We
introduce the following spaces of foliations :

S(n) = {T G ^F(n) / the singularities of T are nondegenerate},

T{n) = {T € S(n) / any characteristic number A of T
satisfies A e C\Q+},

A(n) =T(n)n^(n).
It is well-known that T(n) contains an open and dense subset of ^{n)
(see [8]).

The first step of the proof of Theorem 1.1 is to use the following
theorem :

THEOREM 3. — The space A{n) contains an open dense subset Mi(n),
such that if F € M\ (n) then :

(i) Z/oo is the only algebraic solution ofT'.
(ii) The holonomy group of the leaf Loo\smgJ:r is non solvable.
(iii) sing T H Loo consists of hyperbolic singularities.

Then we adapt the ideas of [14] to our situation. In the proof of
Theorems 2.1 and 2.2 we must consider the case where the holonomy
group of the leaf S \ sing T is solvable. The following result is a particular
case of a more general situation studied in [2] and plays an important
role :

THEOREM. —Lei F be afoliation on a projective surface M and S C M
be a very ample irreducible algebraic curve invariant by F. Assume that
the singularities of T in S are hyperbolic and that the holonomy group of S
is solvable. Then^ given a rational 1-form uj which defines F in M, there
exists a closed rational 1-form rj with simple poles in M, which satisfies

do; = rj A uj.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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2. Proof of Theorem 3
In this section we prove Theorem 3. We begin with a preliminar result :

PROPOSITION 1. — Let TQ € S(n}. Then

# sing^o = n2 + n + 1 = N{n) = N.

Moreover ifsmg^o) = {p^... ,p°^} where p° 7^ p°. ifi ̂  j , then there are
connected neighborhoods Uj 3 p j , pairwise disjoint, and holomorphic maps
< ĵ•, : U C S(n) —f Uj, where U 3 ^o ^ an open neighborhood, such that for
T € U, smg(^7) D Uj = ̂ j(^F) is a nondegenerate singularity. Moreover,
if TQ 6 T{n) then the two local separatrices as well as their associated
eigenvalues depend analytically on F. In particular S (n) is open in ^(n).

This result is proved in [5] as a consequence of the Implicit Function
Theorem for holomorphic mappings. We remark that

^eA(n) =^ #(sing.FnLoo) = n + l and #(sing^'nC2) =n2.

Let us make a definition :
Let F € A(n). We enumerate sing^ = {p i , . - . , p7v} m such a way

that { p i , - - - , p n 2 } C C2 and pj e Loo for all j ^ n2 + 1. We also
enumerate the local separatrices of the singularity pj as S~^ and S^~ for
all j G { 1 , . . . , n2} and denote by 5'° the separatrix of pi transverse to Loo
for all i e {n2 + 1, . . . , N}. We denote by

J(^^), J(^-)

the characteristic numbers associated to the local separatrices S^ S - res-
pectively. Let us choose a neighborhood U of T in F(n) as in Proposition 1
above, in such a way that U 3 F\ ^—>- I(^i, S^~) and U 3 F\ i—> I(T\^ S~)
are holomorphic maps. We denote

S{^) = {S^ S^S^ I j e {1,..., n2}, i 6 {n2 + 1, . . . , N}}

and also denote

S(^={S^S^\je{l^..,n2}}.

DEFINITION 2. — A configuration is a subset (7 C <^(^7). The configu-
ration (7 is finite if we have C7 C <?fin • Given a configuration C we define

J(^C7)= ̂  J(^+)+^ J(^^-)+^ ̂ ^).
^+ec' SJ'ec s(i>^c

TOME 126 — 1998 — ?3
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If C = 0 then we define I(J=-, C) = 0. If S C CP(2) is an invariant
irreducible algebraic curve then we define the configuration of S as the
configuration C{S) defined by the local separatrices of T contained in S,
and put J(^, S) = J(^ C(S)).

Let C be a configuration. Then we can split C in three parts

C = A U B U K,

where
K = { S ° e C } ,
A = {5; e C | ̂ - ^ G} U {5,- e G | 5; i C}^

B={s^ eC\ S^ eC}u {^- c C | ̂ + e C7}.
We also write

a = a(C) = #A, /? = /^(G) = #B, A; = k(C) = #K.

In what follows we will consider configurations C satisfying the follo-
wing properties :

(a) k = #K > 1,

(b) C^W.

PROPOSITION. 2. — Let T € A(n) be as above, and let S ^ L^ an
irreducible invariant algebraic curve. Write C(S) = A U B U K as above.
Then C(S) satisfies properties (a), (b) and the following :

(c) JC^C^))^2-/^!.

Proof. — Part (a) follows from Bezout's Theorem.
In order to prove (c) we recall [8] where it is shown that

0 < I ( J = - , S ) = 3 k - ^ ( S )

where X{S) is the Euler characteristic of the normalization S of the
curve 6'. Since 6' has only nodal singularities, which correspond to local
separatrices in B which meet transversely, it follows from the Hurwitz
formula that

^)=2-2((^M_2)_^)

so that I(^, (7(5')) =k2-/3.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



388 A.LINS NETO, P. SAD, B. SCARDUA

Now we prove (b) : If C(S) = S^) then k = n + I,/? = 2n2, so that
by (c) we have

J(^, C(S)) =(n+ I)2 - 2n2 = -n2 + 2n + 1.

Therefore, J(JF C(S)) = 1 if n = 2, and J(^, C(S)) < 0 if n > 3. On the
other hand, in [8] it is proved that if I(^, C(S)) = 1 then S is a straight
line, which is not possible if C(S) = <S(^). []

DEFINITION 3. — Let n G N, we define the subset

M(n) = {T e A(n) for all configuration C C <S(J^),

such that k(C) ^ 1 and C ̂  S(^)
we have J(^, C) + k(C)2 - (3(C)}.

REMARKS.
(1) If n ^ 2 and ^ e M(n) then JF admits no irreducible algebraic

invariant curve S ^ L^o.
(2) M(n) is open in A(n).
(3) M(l) = 0.
(4) A(n) \ M(n) is an analytic subset of A(n), because it is defined

(locally) by a finite number of equations of the form J(.F, C) = k2 - /3.
We prove the following result :

THEOREM 4. — M(n) is dense in A{n) if n > 2.

Proof. — Since A(n) \ M(n) is an analytic subset of A(n), it suffices to
prove that M(n) ̂  0 (see also [8]). Given n ^ 2 and b e C, we consider
the foliation

^(b) : (aox - y71 + bx^dy - (y - xn + ̂ ^-^d^ = 0

where ao is a root of - — / — = -2 4- \/2. We take
(n2 - l)a

ao = -1 - £ + ^- ̂  + ^a~^3V2,

1 --l-^^2^-^-^^

V2

ao 2

where a = j^2 + 2^, /3 = ^ + £2 and ^ = n2 - 1. Notice that ao < 0. It is
enough to prove the following lemma :

TOME 126 — 1998 — N° 3
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LEMMA 1. — There exists e > 0, such that for an open dense subset
A C {b 6 C I 0 < \b\ < e} we have b G A =^ F(b) 6 M(n).

Proof. — Let us fix the following notation : given any configuration
C C <S(^(6)) we put

l{^{b)^C)=Ic(b).

The configuration C = (7(.7:'(6)) = C(b) depends continuously on b if we
choose b in such a way that ^F(b) is as in Proposition 1, and in this case
Ic(b) depends holomorphically on b. Thus it is enough to show that for any
configuration C satisfying properties (a) and (b) we have Ic{b) ^ k2 — /3.

CLAIM 1. — Let C C <?fin be a finite configuration. Then IcW G Z ?/
and only if either C = 0 and IcW = 0, or C = <Sfin and TC'(O) = —2n2.

Proof. — Let C C 6fin be such that ^c(O) G Z. For b = 0 we have the
following differential equation :

;T(0) x=aox-yn, y = y - xn.

The singularities in C2 are given by :
(1) (0,0) which has characteristic numbers ao,a^1.
(2) The other singularities are given by y71 = OQX and y = X71, that

is, y71 -1 = a^, so that we obtain the roots 2 / 1 , . . . , y^ where £ = n2 — 1,
and Xj = ao~ly^ for j = 1,... ,i. The characteristic numbers are given
by the matrix w<^'=(-:- 'T')
that is, these characterise numbers are the roots of

A+A-^7-!3-00^-^
D -£ao

where T is the trace and D is the determinant of the matrix DX(xj^ yj).
Therefore we obtain

. V2 ^V2 .
\ = — — ± ——i.

2 2
Now, since C is a finite configuration we have

C C {SQ , SQ , *5^ ,6^ ,..., S^ ,5^ },

where S^ are the local separatrices of the singularity (0,0), and Sf are
the local separatrices of (:Cj,^), for j = 1, . . . ,^ . Assume that ( 7 ^ 0 .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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We claim that C f {Sf | j = 1,... ,e}. Indeed, otherwise according to
the characteristic numbers calculated above we have

,- /^ V2 V2 .
Ic(0) = --^-r+ —zs

for some r, s € Z, where r > 0, but this is an absurd. Therefore C must
contain at least one of the local separatrices S^. We consider two cases :

• Case 1 : {S^} c C. In this case

Ic(0) =ao+ 0,1 + ̂  7(J-(0), 5;) + ̂  J(^(o). 5,-)
s^c s^c

=^-^(-f^)^(_^_^
=-2-2e+V2e-(r+s)^-+(r-s)v2i.

But since Ic(0) e Z it follows that r == s and

Ic(0) = -2 - IH + V2£ - rV2 = -2 - 1i + V2(£ - r),

which by its turn implies f, = r, and therefore C = Sfin Finally C = Sn
implies Ic(0) = -2 - 1H = -In1.

* ^ase 2 '• S^ C C and Sy <{. G, or vice-versa. In this case

^(0)=-l-^+^±^-/3^-m^=r+^±v^~^

where r = -1 - ̂ , s = t - 2m and m = #{5; | 5+ c C}. In particular
we have m ̂  £. Assume by contradiction that Jc(0) G Z, say

v2 / ^
^•+s^- ±\/a-f3V2==u e Z.

Then we can write

V2
2

±< /a-/3v/2=y-r-s^2=^,-5^2

for v = u - r. Therefore,

a - /3V2 = v2 - vsV2 + ^s2,
2i

TOME 126 — 1998 — ?3
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which implies (3 = vs and a = v2 + \ s2. Thus we obtain

/? ^ s2

v = -^ a= —, + —
5 52 2

and then 2as2 = 2/32 + 54. Replacing the values

a=3£2+<2£, / 3 = ^ + ^ 2 , ^=^ 2 - ! , r= - l - ^ 5 = ^ - 2 m

on this last equation we obtain
(*) (3^2 + ̂ )(£ - 2m)2 = 2^(1 + t)2 + (^ - 2m)4.

In particular, either i = 2m or £ | (-^ — 2m)4. Notice that ^ = 2m implies
£ = 0 using (*). Therefore ^ = 2m implies m = 0 and n = 1.

We claim that equation (*) has no other solution in Z. Indeed, writting
x = d — 2m equation (*) becomes

4a:4 - 4(3^2 + 4.£)x2 + 8^(1 + ^)2 = 0
or also,

(2a;2 - {U2 + 4^))2 = ̂ 2 + 8^ + 8).
Thus it follows that £2 + 8t + 8 = y2 for some integer ?/ € Z. This can be
written as £2 + 8-̂  + 16 — y2 =8 and therefore as

(^+4-^+4+z/)=8.

Since for any integer a € Z the numbers a + y and a — y have the same
parity, it follows that these integers can only take the values ±2, ±4.
Replacing these values in equation (*) we obtain £ C {—1,—7}. These
values for £ give no solution a* € Z. This ends the proof of Claim 1. []

Now we regard the singularities over the line Z/oo. We consider the
change of coordinates given by u = l/.r, v = y / x . In these coordinates,
^(b) is given by

u = u(-b + V71 - aou71-1), v = v^ - 1 + vu^^l - ao).

In particular Loo '' (u = 0) is invariant, and the singularities over this line
are given by ^n+l — 1 = 0, so that they can be writen as (0, 63) where 6
is a primitive (n + l)-th root of 1, and j G { 0 , 1 , . . . , n}. Let us write

sing ̂ •(6) n Loo = {(0,^) | j = l , . . . , n + l } .
The characteristic numbers are given by(..) .(^)A^^
where (/)(v) = v^1 - 1 (recall that v^ • Vj = 1).

Let C = C(b) C {5?(&), . . . , 5^_i (b)} be a nonempty configuration.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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CLAIM 2. — Ic(b) is not a constant function ofb.

Proof. — In fact, let r = #C. We have

Ic(b)=^l(^S^={n^l)^——
^=i j=i 1 ^7;

^^E^Ee^)
j=l m=l

oo r

=(n+l)r+(n+l)E (E^)^-t^
m=l j=l

Thus, if Jc'(^) was a constant we should have ^ ^m = 0, for all m > 1.
r j=l 3

But for m = n+1 we have ^ ̂ +1 = r, which gives a contradiction. This
proves the claim. \\ J=l

Now we finish the proof of the lemma. Let C be a configuration
satisfying properties (a), (b). Assume that, for b near 0,

I c ( b ) = k 2 - ( 3 ( > 0 ) .

In particular Jc(0) = k2 - /3. Let us split C = A u B U K 8 i s before, with
a = #A, (3 = #B and k = #K. We have

IcW = IA(O) + IB(O) + J^(0) = IAUB(O) + ̂ (0).

It follows from the formula (**) above that Jj<(0) = A;(n+l), and therefore
^Aua(O) e Z. Hence by Claim 1 we have either

AUB=9 or A u B = < S f i n .

We consider these two cases :

Case 1 : A U B = 0. In this case

IcW=k(n+l)=k2-(3=k2

(notice that (3 = #B = 0). Therefore k = n + 1. On the other hand

1Ic(b)=(n+l)^^
^T^

v / v '^1-buj=i

is not constant (Claim 2), so that Ic(b) ̂  k2 - (3.
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Case 2 : A U B = <Sfin. In this case necessarily A = 0 and B = <Sfin, so
that 7^(0) = -2n2 recalling that (in this case) (3 = #B = 2n2. Hence

IcW = k(n + 1) - 2n2 = k2 - (3 = k2 - 2n2

and then k = n + 1 which implies C = <S(J'(0)) and therefore C does not
satisfy property (b). The proof of Theorem 4 is now finished. []

Now we complete the proof of Theorem 3. Let

U(n) = {y e A(n) all the singularities of T in Loo are hyperbolic}

Proof of Theorem 3. — We define

Mi(n) =M(n)n/H(n).

According to Theorem 4 and Proposition 1, Mi(n) is open and dense
in A(n) (recall that 1-C{n) contains an open and dense subset of Af(n),
see [5]). We obtain (i) from Theorem 4. We proceed to prove (ii). Let
F G Mi(n) and assume by contradiction that the holonomy group
of Loo \ sing F is solvable. Let us fix a polynomial 1-form uj which defines
y\c2' According to [2] we can construct a rational closed 1-form with
simple poles rj which satisfies duj = rj A uj (by the hypothesis sing ̂ H Loo
consists of only hyperbolic singularities so that [2] applies). We give an
idea of this fact : we assume that the holonomy group G = Hol(^',Loo)
is nonabelian (for the abelian case we refer to [1]). According to [4] there
exists an analytic embedding

G c H, := {^ e Diff(C,o) | (^ = ̂ ^ ̂  e C*,^ e c}

for some A; C N. Using the fact that Hol(^,Loo) contains linearizable
nonperiodic elements, we conclude that there exists an open covering of
a neighborhood of Loo by a collection (L^eA of open connected subsets
ofCP(2) with holomorphic coordinates (x^Va) in Ua such that [15] :

( 1 ) D n ^ = { ^ = 0 } ;
(2) for any a C A such that Ua Using JF = 0, J='^ is given by dy^ = 0

and for any (p e Hol(JF, Loo, S0') where

^={x.=pc.). ^(^=——^;
1 + a^z/g

it follows that, if Ua n U^f / (f) and singJF H (^ U U^) = (f), then
y^ = H^{y^) for some H^ e Hi;
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(3) If ̂  = U^ H singJF ̂  (f) then ̂  n sing.F = {q^} is a single point,
Xa(qa) =Va(qa) =0 and '̂1^ is given by the normal form

Xa dy^ - \aVa dx^ =0, AQ C C \ R.

Moreover, if U^U^ ^ 0, then ̂  n sing^ = 0 and ̂  n U^ is simply
connected.

We take the covering {(x^Va) € (^a)}aeA above. If ̂  n singJT = ^
we write

^\u^ =gadyo,
and define

^(^l)^^.
2/a ^Q

Whenever ̂ H^ ^ (^ and (^U^)nsingJF = ^ we have ̂  = ^a/3(^)
for some H^(z) = \af3Z/(l + a^z) € Hi, so we conclude that

dya _ dy^
fcTT - \——fcTT and ^ = ̂  in ̂  n Uft.yoc ^Q/sVft

Clearly 771^ := 77^ defines a closed meromorphic 1-form 77 in a neighbo-
rhood of Loo \ sing JFH Loo. We remark that 77 extends meromorphically
to sing .^D Loo. Indeed, given a singularity qo e sing ̂ n Loo HL^ we have
that qo is a linearizable singularity of the form

^a dya - \aya dx^ =0, \a e C \ R.

We define

^ := ( f c+ l ) c ^+( l -A^) d ^+ d ^ ,
2/0' a^a No-

where g^ is defined by

^\U^ = 9^ • (Xady^ - XaVadXa).

The local coordinate (defined on a transverse section S : (x = 1) at
q C Loo \ sing^o) y^ = y^x^ linearizes the local holonomy of Loo
around qo. We may write

^|£7, = 9a(Xady^ - XaVadx^) = ̂ ad^,

where g^ is a meromorphic function, ̂  = gaX^^. We define

^ o ^ ^ + ^ ^ + ^ ^ ^ + ^ ^ + ^ - A ^ ^ + d ^ .
t/Q! ^Q ^ .Tc, g^
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The difference rj — rfq^ satisfies

(7? - ̂ qo) A a; = do; - dec; = 0,

so that it can be written rj — rjq^ = hq^ ' uj, for some meromorphic
function hq^ defined over {xa ^ 0) and which satisfies

d(hq, ' a;) = 0.

Clearly the poles of hq^ are contained in Loo (notice that the forms rj and
^oKa^o) have simple poles contained in the divisor Loo). On the other
hand, since Res^ rj = Res^ ^go, it follows that hq^ ' uj is holomorphic
along Loo and therefore hq^ ' uj is a closed holomorphic 1-form which
defines ^F in (xa 7^ 0). Since \a ^ Q it follows that hqy - uj = 0. In
fact, as it follows from [15], if we have

d/ A {xdy - Xydx) =0, A ^ Q,

for some holomorphic function / defined on (x ^ 0), then / must
be constant (work with Laurent series for f{x^y)). Therefore we have
constructed T] in a neighborhood of Loo m CP(2). According to Levi's
Extension Theorem [17] the 1-form rj extends as a closed rational 1-form
on CP(2), with the announced properties. According to the construction
above, the local separatrices of the singularities at Loo (and a fortiori the
separatrices of ^F) are contained in the polar divisor of 77, which is an
algebraic curve. This is impossible since T € M\ (n). \\

3. Holonomy and Rigidity
Let Diff(C, 0) be the set of germs of holomorphic diffeomorphisms

at 0 G C, fixing the origin. We will rely heavily on the work of
A. A Scherbakov [16] and I. Nakai [12] concerning the dynamics of non
solvable subgroups of Diff(C,0). A basic fact is that a non solvable sub-
group r C Diff(C,0), either has all orbits dense in small neighborhoods
of 0 C C, (dense orbits property^ D.O.P. for short), or else there exists
a germ of real analytic curve at 0 e C (holomorphically equivalent to
Im z1 = 0 for some £ € N), which is invariant under the action of F.

Here we deal with the holonomy group Hoi (^r, Loo), of a foliation
T € Mi(n), relative to Loo (which is a non solvable group). We define
forJFeMi(n)

ord(^) = mm{k C N | k ̂  2, 3g{z) = ̂ +a^+- • • 6 Hol(^,Lcx>), a ̂  0}.
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LEMMA 2. — The function M^(n) 3 T ^-> ord(J) e Z is upper
semicontinuous.

Proof. — We take Jo e Mi(n) and let ko = ord(Jb); there exists
go(z) = z-{-aozko+' • ' e Hol(Jo, Loo). We select some singularity po c Loo
of Jo, and denote by

/o(^) ^(^+•••01101(^00),

the local holonomy map of Jo? relative to Lo, around po ^ Loo', we
have |Ao| 7^ 1- We consider

hQ{z) '= 9o1 ° fo1 0 9o ° /o(^)

= z + a o ( A S O - l - l ) ^ o + • • •
=^+6o^°+-- -eHol (^b^oo) .

This element can be analytically followed in a small neighborhood of
TQ eMi(n) :

h^(z) = z + • • • + b^z^ + • • • € Hol(^, Loo)

for JF close enough to JFo; we have by ^- 0, since 60 ^ 0- Therefore
ord(^) < ord(Jb). D

Let M^(n) C M^(n) be the set of foliations such that the holonomy
group at Loo has the D.O.P.

LEMMA 3. — For all n > 2, M^(n) contains an open and dense subset
Rig(n) ofM^(n).

Proof. — We start by considering

M[{n) = {Jo € Mi(n) | ord(J) = ord(Jb) for J in a
neighborhood of Jo in Mi(n)}.

The set M[{n) is clearly open in Mi(n). Let V be an open subset of
Mi(n); we choose Ji € V, such that

ord(Ji) = min{ord(J) | J G V}.

It follows from Lemma 2 that Ji e M{(?2), so that M[(n) is dense
in Mi(n).
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Let us fix an open connected subset V C M[(n) and TQ € V \ M^(n)
(if it exists). We know that there exists a germ of analytic curve S at 0 G C,
which is invariant under the action of Holf^o; Loo)- L^t

£ = ord(^o) and ho(z) = z + az^ + • • • e Hol(^b, Loo)(a ̂  0).

The sectors around 0 6 C determined by -S, that is, the connected
components of U \ 5', where U is a small neighborhood of 0 G C, are
fixed under the action of the elements of Hol^o? Loo) which are tangent
to the identity map at 0 € C; let U\ be one of these sectors. The two
half-lines L\^L^ which are tangent to QU\ at 0 e C satisfy Ima^"1 = 0.

Let po C Loo be a singularity of^b and fo(z) = \QZ-{-' • ' e Hol^o? Loo)
be the local holonomy map of TQ at po € Loo 5 relative to Loo. Since

/o~1 ohoo fo(z) = z + aA^-1^ + • • • e Hol(^b, Loo).

we conclude that also
lm{aX^~lz£~l)=0

when ^ 6 Z/i U L^. It follows that A^~1 € R. The same is true in a
neighborhood W of FQ^ namely, we follow /o as / ^ ( z ) = ̂ FZ + • • • and,
if T ^ M^{n), one has A^~1 G M. Therefore M^(n) H TV is open and
dense in W. Lemma 3 follows then easily. []

We proceed now to study deformations of elements of Rig(n), which
are -s-trivial. Let then {^Ft}teB, ^b ^ Rig(^) be 5-trivial. We select a
singularity p(t) and consider some separatrix S^ (7^ Loo)'-, from D.O.P.
and the fact that S} is not algebraic, we have that S^ = CP(2).

LEMMA 4. — Uk|<e ̂  lls a ^oca^ lamination in CP(2) x Dg, away from
its singular points^ for e small.

Proof. — Proposition 1 implies that IJk^e^hoc is, for e > 0 small, a
holomorphic embedded surface, where (S^)ioc is the local separatrix that
passes through p(t) which has S} as satured set. Let us consider a regular
point go ^ CP(2) of TQ, qo e S C CP(2) a small transverse disk to J='o
and W D S an open set where ^FQ is trivial. Let Ao be the component of
5'o which passes through g c S , A o C l V ; i f g e S C S i s close enough
to qo and e > 0 is small, one has

J <MAo) C |j W x {t}
\t\<e \t\<e
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(0t_is the continuous family of maps given by the definition of 5-triviality).
If AQ is any other component, clearly

|j <MAo)n |j <MAo)=0
M<e |t|<e

(these sets^ will be the laminae of the lamination). Let us prove that
U|t|<e ̂ (Ao) is a holomorphic surface; it is enough to prove that

c(^)=^(Ao)n(SxD,)

is a holomorphic curve (for simplicity, we may assume that c(t} = ̂ (q),
for all |^| < 6). We join q e Ao to a point q e (^loc by a simple path 4
along 5^,jind take a section S 3 q transverse to ̂ o. Again, we may assume
(/>t(q) € S x {^}. There exists a holonomy map associated to £o from E
to S; it sends q e S to q C S, and can be extended to the holonomy
maps ̂  associated to ^ = <^o), ^(<M^)) = <M<7), for e small enough.
The map ^ defined as <^ for each |^| < e, is holomorphic (since J^ is a
holomorphic family), and t ̂  ^{q) is holomorphic, so is c(t) as well.

We have then proved that (J\t\<e s^ laminates a neighborhood of qo in
CP(2) x De. The lemma follows from the density of S^ in CP(2). Q

We add to the lamination the set L^ x Dg. A priori this lamination
might not be transversely continuous, but surprisingly enough it can be
extended to a holomorphic foliation of CP(2) x D^, with singularities :

LEMMA 5. — There exists a codimension one holomorphic foliation f
on CP(2) x De such that:

(i) sing^ := U(,|<Jsing^ x {t})

(ii) The leaves of ̂  are the intersections of the leaves of F with
CP(2) x {t}, for each \t\ < e.

Proof. — Let us keep the same notation as in the proof of the last
lemma. We have then a lamination in the neighborhood (W x S') x De
of qo_e S, and denote by Ao(q) the component of S^ which passes through
^ C S ' C S . Let

^)=0,(Ao(g))n(Sx{t});

the curve D, 3 t ̂  q{t) € I; x {t} is a holomorphic curve, and the map
^(q) '•= q(t) is an injective map defined in a dense subset of S', and
by the A-lemma [18] it can be extended to all points ofS'. The foliation
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T is defined in (W x E') x Dg as follows : given q e S', we take the
curve q{t) as before and ^ as the leaf of ̂  restricted to (W x E') x Dg
passing through q(t}; then Uk|<6 ̂  win 1:)e a lea^ of ^ (which is of course
holomorphic). This method can be carried to any regular point of TQ,
yielding the foliation f', which is completed by the curves of singularities,
obtained following the singularities of ^o (see Proposition 1).

We have now to prove that F is a holomorphic foliation (up to now, it is
a continuous foliation with holomorphic leaves). Let us remark firstly that
Loo x Dg is a leaf of T ; in order to prove that T is transversely holomorphic
along Loo x Dg, it is enough toguarantee that each map ht: S' —^ E x {t}
is holomorphic. Consider q e S 'HS^ and some /o ^ Hol(^ ^oo) (we may
assume that /o corresponds to the local holonomy around a singularity
of J^Q in Loo). This map can be holomorphically followed as ft along the
deformation ̂ , and since we have 5-triviality :

M/o(<?)) = ft(hi{q)}

From the D.O.P. we get then

ht ° fo = ft ° ht

in S'. Therefore hi conjugates Hol(^o^oo) and Hol(^^oo); we invoke
the Topological Rigidity Theorem of [12], [16] to conclude that ht is a
holomorphic map (here is where we use strongly the fact that the folia-
tions Tt have non solvable holonomy groups associated to the leaf Loo).
Finally, since the leaves of each ̂  accumulate on Loo x {t} (Maximum
Principle), we conclude that F is transversely holomorphic (outside its
singular set), and therefore holomorphic {T extends holomorphically to
the singular set as a consequence of Hartogs' Theorem [17], because this
set has codimension 2). \\

4. Proofs of Theorems 1.1 and 1.2
In this section Theorems 1.1 and 1.2 are proved. The first is proved as

in [14]. Let T e Rig(n) C Mi(n) be given (where Rig (n) is defined as
in Lemma 3), with n > 2, and consider an analytic deformation {^}<eD
of T = .Fch which is 5-trivial. Let T be the holomorphic foliation in
CP(2) x Dg given by Lemma 5. Let us choose a polynomial 1-form

^ = p ( x , y ) d y - q ( x , y ) d x ,
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with isolated singularities and which defines F in C2. The foliation T can
therefore be given by a holomorphic 1-form

^ = P{x, y , t) dy - Q(x, y , t) dx 4- R(x, y , t) dt

in the coordinate system (x, y , t) e C2 x D,, where P(x, y , t), Q(x, y , t ) and
R(x,y,t) are polynomials in the variables (x,y). We state a preliminar
result based on Noether's Theorem :

LEMMA 6 (see [5], [14]). — Under the hypothesis of Theorem 1.1 there
exists a complete holomorphic vector field X on CP(2) x D^ which is
tangent to F (that is, ^ • X = 0 ). Moreover X is of the form

^,^)=-^^^+^^,)^^

where a(x,y,t) and b(x,y,t) are (degree one) polynomials on the affine
variables ( x ^ y ) .

Proof of Theorem 1.1. — Thejocal flow Xf of the vector field X
given by Lemma 6 is such that^(^,0) C C2 x {t}, is defined for
all t (E D,, and the curve t ^ Xt(x,y,0) is contained in the leaf of :F
through (x,y,0), because ^ • X == 0. Moreover, the maps ̂  : C2 -> C2,
defined by ^t(x,y) = Xt(x,y,0) are affine maps, so that they extend to
biholomorphisms of CP(2), which provide the analytical trivialization of
the family {J^CD. • In order to finish the proof of Theorem 1.1 it suffices
to use the fact that the set Rig(Ti) of foliations is open and dense in X(n)
(cf. Theorem 3 and Lemma 3). Q

Proof of Theorem 1.2.— We have to construct the same holomorphic
foliation in CP(2) x D, as before. We keep the same notations introduced
in Lemmas 4 and 5. We start by considering the continuous foliation f
with holomorphic leaves in C2 x D, (outside the singular locus) given by
those lemmas applied to the separatnx of some singularity in C2. The
problem here is that the triviality of T in the box U|^<, W x {t}, when
qo C L^_is a regular point of J^o^s not evident : we can not guarantee
that <^(Ao) C W x {1} for all sets AQ and \t\ < e. We have then to change
the description of the leaves of F in |j|,|<, [(W \ L^) x {t}]. Let

W = U ̂ o)
W<^
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for q e 5onS. From the 5-triviality, if we fix a compact subset K C S\{0},
we may suppose that Ao(q) C {J\t\<e^/r x W W1[len q ^ K C\ SQ. This
compact set K is chosen so that K x {t} contains fundamental domains
for the generators /o,t? • • • 5 fn,t of Hol^i, Z/oo); for the moment we work
with one of these generators, say fo^, and put Fo(q,t) = (fo,t(q)^t).
If ^ foW e K, again 5-triviality implies that

Fo(Ao(g))=Ao(/o(9)).

Now, if</ € S\{0}, there exists n(q1) e N such that q" = fo^^W 6 K ;
define

Ao^-Fo^W)),

and this definition independs on the choice of n{q').

We have then a lamination C = {Ao(g)}geEn-5o an(^ we ^^Y ac^
(LOQ D W) x Dg as a lamina. This lamination extends to a continuous
foliation C in Uk|<e ̂  x W ^Y ^e ^-l^mma, and the relation

ht ° fo = ft ° ht

holds. We claim that C and F\ u e^xW ^ncide. In fact, through a point
q' G S n So passes a leaf of C which coincides with Ao(qf) when g' G K\
by ^-triviality, we propagate this property to any point of E D 5'o, perhaps
taking e e D smaller depending on the point. Since the leaf and Ao(</)
are holomorphic surfaces, they have to coincide throughout. We have then
extended F as a continuous foliation by including (Loo D W) x Dg as a leaf,
and verifying ht o /o = ft ° ̂ - Finally, the construction does not depend
on the choice of the generator, because we end up with an extension of ̂ ,
which is unique. Consequently, ht o fj = /^ o ht for 0 < j < n, and this
allows us (as in Lemma 5), to prove that F is a holomorphic foliation. \\

5. Rigidity in projective surfaces
Throughout this section M is a projective complex surface, 5' C M an

irreducible algebraic curve and the spaces Fol(M) and Fol(M, S) are the
ones introduced in the beginning of the paper. Any foliation T € Fol(M)
can be described by a holomorphic map of fibre bundles a : L —> TM,
where L is a line bundle over M. The topological type of L is given
by its Chern class in H2 (M, Z) which replaces the notion of degree of a
foliation. We denote by Fol(M, n) the space offoliations in M with a given
degree n G H2(M,rE). It is known that Fol(M,n) is a complex variety of
finite dimension (see [6]).
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Again we are led to consider the following situation : F C Fol(M),
S C M is a compact analytic solution and Ft is an analytic deformation in
the class Fol(M, S) C Fol(M), that is, 6' is a solution of F^ for all t € D.
We assume that the_family Ft is topologically trivial. We introduce a
continuous foliation F on M x ID) by saying that its leaves are the sets

L := \J 0,(L) x {t},
t€B

where (f)t is the continuous family of equivalences given by the topological
triviality, and L is a leaf of F. The singular set is defined by

sing,? := (J sing^ x {^}.
t€©

The next proposition is proved in the same spirit of [14]. The basic idea
of using the results of [10], [19] can be found in [11].

PROPOSITION 4. — Assume that:
(i) The holonomy group Hol̂ ,*?) is non solvable'^
(ii) M\5' is a Stein manifold'^

(111) sing F H S consists of hyperbolic singularities.

Then F is a holomorphic foliation on M x D.

Proof. — The proof is divided in three parts. First we consider the
nonsingular foliation F ' = f\M\smsy anc^ prove that its leaves are
analytic submanifolds of (M x D^sing^". Then we prove that F is
holomorphic in a neighborhood of S x {0} C M x D. Finally we use
the fact that M \ S is a Stein manifold, in order to conclude that F is
holomorphic in all M x D. Let us denote by

{ p , { t ) \ j = l ^ . . ^ N }

the set of singular points sing^D S', where N = N{n). Since FQ has
hyperbolic singularities, there are holomorphic maps D 3 11—> pj(t) € M,
for j = 1, . . . , N such that

sing(^)n^={^),...,^)}

(see [7]). We fix a local transverse section E ^ D, E D Loo = {?} so that
S x {t} is also transverse to Fi if i € ID is small enough. We denote by Gf
the subgroup of the holonomy group Hol^, S, S x {t}), generated by the
holonomy maps fj^ associated to the singularities pj(t}. We know that
these generators of Gt depend holomorphically on the parameter t. We
use the following fixed-point result :
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THEOREM (see [9], [16]). — Let G be a nonsolvable subgroup of
DifF(C,0). There exists an open neighborhood fl, ofO C C, where G has a
dense subset of hyperbolic fixed points.

Take a point qo C S, which is a hyperbolic fixed point for some word
fo ^ Go. Then, following the same word in Gt and using the fact that the
generators of Gt depend analytically on t, we obtain a holomorphic family
of diffeomorphisms ft € Diff(C,0), whose maps ft have hyperbolic fixed
points qt C Sf for t small enough, describing a germ of analytic curve.
This implies that the leaf

L^ = |j ̂ (L,J x {t}
t(ED

of F through (qo, 0) is analytic along the transverse cut S x D C M x ED
in a neighborhood of the point ((70 5 0) ^ ^- This implies that Lqy is
holomorphic. Now, we use the fact that the set of such hyperbolic fixed
points is dense in a neighborhood fl of the point p G So? m order to
conclude that each leaf L is in fact a uniform limit of holomorphic Jeave^
in a neighborhood of S x {0} in M x D. This implies that each leaf L of F
is in fact holomorphic, that is, the foliation T has holomorphic leaves in
a neighborhood of S x {0} in M x D.

It remains to conclude that T is transversely holomorphic. This is
done as follows : the deformation ^ is topologically trivial. We may
therefore use the construction in the proof of Lemma 3 in order to obtain
a continuous family {^}<eD,o of homeomorphisms ht '. (C,0) —> (C,0)
which conjugate GQ and G^, for all t G (ID^O). Since Go is non-solvable it
follows from the Topological Rigidity Theorem of [16], [12] that z ^—> ht(z)
is holomorphic for each fixed t € (D, 0). This implies that F is transversely
holomorphic outside the set of separatrices. For each t e D we denote by
sep FI the germ of analytic subset of the local separatrices of Fi through
the singularities sing*^ Fl S, defined in a neighborhood of S in M. We
consider the set _

sep^= |̂ J sepJf.
AC©

Then, since Fi depends analytically on t C Dg and since sing F^S consists
ofnondegenerate singularities it follows that sep F is a codimension 1 germ
of analytic subset of S x D in a neighborhood of S x D.

Using the fact that the foliation F ' extends continuously to sep^7

which has codimension 1, it follows that F is a holomorphic foliation
in a neighborhood of S x {0} C M. Since (M x D) \ (S x D) is a Stein
manifold, it follows that F is in fact a holomorphic foliation on M x D. \\
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Using now the techniques of [6] we get then :

PROPOSITION 5. — Let F G Fol(M, S) where M is a projective surface
and S C M be an algebraic very ample curve. Assume that

(i) T is given by a holomorphic bundle map a : LQ —^ TM^ where LQ
satisfies ̂ (M, OM^)) = 0 ;

(ii) Hol(̂ ', 5') is non solvable;
(iii) sing F H S consists of hyperbolic singularities.
Then any F is topologically rigid in the class Fol(M, 5').

We may then proceed proving Theorems 2.1 and 2.2.

Proof of Theorem 2.1. — If F G Fol(CP(2), S) is not rigid, then each
local separatrix of T through a singularity q C singf D S, is contained
in some algebraic leaf of F (otherwise Hol(.^, S) would be non solvable
and Proposition 4 applies). Let us denote by C D S the algebraic curve
obtained as the union of the algebraic leaves of T passing through some
singularity q € sing T^S. By the hypothesis of transversality on the local
separatrices of T in CP(2), C is a nodal curve. We claim that

deg(C7) = deg(^) + 2.

To prove this fact, we consider a meromorphic vector field Xy with
poles at Loo which defines F (by a projective change of coordinates, Loo
can be supposed without singularities of F and non invariant). This vector
field has now Loo as its line of poles with order deg(f) — 1. Let 6s be
the number of nodal points of <?, and £ e N the number of the remaining
singularities of F along S ; it follows that

£=deg(^S)'deg(S).

According to the Poincare-Hopf Theorem (see [3]) applied to Xy\g (or
rather to a normalization of S) :

26s + £ - [deg(^) - 1] . deg(S) = 2 - 2^),

where g(S) is the genus of 5'. But

g(S) = \ (deg S - l)(deg S - 2) - ̂ .

Combining these two expressions we prove the claim.
From [3] we may conclude that T is given by a logarithmic 1-form. This

ends the proof. \\
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Proof of Theorem 2.2. — Theorem 2.2 follows from Proposition 5 : if
Hol(.F, S) is a solvable group, we may find a closed meromorphic 1-form
r] with simple poles such that do; = 77 A a;, in the same way we did in
the proof of Theorem 3. It follows that F = f u j / H is a Liouvillian first
integral for uj, where H = exp f rj. []
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