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Z-FUNCTIONS FOR SYMPLECTIC GROUPS

BY DAVID GINZBURG, STEPHEN RALLIS AND

DAVID SOUDRY (*)

ABSTRACT. — We construct global integrals of Shimura type, which represent the
standard (partial) L- function L8(-TT 0 (T,^), for TT (g) cr, an irreducible, automorphic,
cuspidal and generic representation of Sp^(A) x GL/e(A). We present two different
constructions : one for the case n > k and one for the case n < k. These construc-
tions are, in a certain sense, dual to each other. We also study the (completely ana-
logous) case where TT is a representation of the metaplectic group Sp;^(A). Here we
have to first fix a choice of a non-trivial additive character •0, in order to define the
-L-function L^TT (g) (T,s). The integrals depend on a cusp form of ^r, a theta series
on Sp^(A) (f, = mm(n,k)) and an Eisenstein series on Sp^(A) (or Sp^(A)) induced
from a.

RESUME. — FONCTIONS L POUR GROUPES SYMPLECTIQUES. — On construit des
integrales globales de type de Shimura, qui representent la fonction L standard (par-
tielle) L (TT 0 <T, s) pour une representation TT <3> cr, irreductible, automorphe, cuspidale
et generique de Sp^y^A) x GL^(A). On presente deux constructions differentes : une
pour Ie cas n > k, et une pour Ie cas n < k. Ces constructions sont, dans un certain
sens, duales Pune de Pautre. On etudie de meme^ Ie cas (tout a fait analogue) ou TT
est une representation du groupe metaplectique Sp^y^A). Ici, on doit d'abord fixer Ie
choix d'un caractere additif et non trivial ^, pour definir la fonction L, L8^ (S) cr,s).
Les integrales dependent d'une forme cuspidale de TT, d'une serie theta sur Sp^(A)
{i = min(n, A;)) et d'une serie d'Eisenstein sur Sp2^;(A) (ou Sp^(A)) induite par a.
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182 D. GINZBURG, S. RALLIS, D. SOUDRY

Introduction
We present a global integral of Shimura type, which interpolates the

standard L-function for generic cusp forms on Sp^ x GL/c (resp. on
Sp2n x GLfc, where denotes the metaplectic cover.) The structure of the
global integral has one of two forms, according to whether n >_ k or n < k.
However, these two forms of integrals are dual to each other, in the sense
that the roles of cusp forms and Eisenstein series are interchanged. This
construction for Sp^ x GLn was already done in [GPS]. Let us give some
more details on these global integrals. Let TT (resp. 7r) be an irreducible
automorphic, cuspidal representation of Sp2^(A) (resp. Sp2y,(A) (A - the
adeles of a global field F). We assume that TT (resp. 7r) is generic, i.e. TT
(resp. T?) has a nontrivial Whittaker-Fourier coefficient. Let a be an irredu-
cible, automorphic, cuspidal representation ofGLj^A). Let E(g,fa,s) be
the Siegel-Eisenstein series on Sp^(A) corresponding to a holomorphic
K-fimte section /^ in the representation of Sp^(A) induced from the
Siegel parabolic subgroup and cr_In a similar appropriate fashion, we may
consider the representation of Sp^{A) induced from a (twisted by the
Well symbol), and construct, for a section /o-^, the corresponding Eisen-
stein series E(g, /^s) on Sp2fc(A). Let ^ be a nontrivial character of F\A.

( D\ -̂̂ -̂

Denote by ujy the Well representation of ^(A) • Sp^(A), where Hg is
the corresponding Heisenberg group (of dimension 2^+1). Let O^ be the
corresponding realization by theta series. Assume that n >_ k and let ^ be
a cusp form in the space of TT. Then the global integral for TT x a- has the
form

W = f f ^Wy^gWWdv . E(gJ^)dg.
Sp2fcW\Sp2fc(A) ^n,fc)^n,fc)

y(n,AQ ^g ̂  unipotent radical in Sp^, of the parabolic subgroup preser-
ving a an (n — A:)-dimensional isotropic flag. V^^ has projection v ̂  v1

to the Heisenberg group Hk. ^ ' is a certain character of V^'^ \ V^'^.
Sp^ is embedded in Sp^ in the "middle" 2k x 2k block. For TT on Sp^(A),
we consider, for (p in the space of TT,

w f f ^yg^^gWWdv • E(gj^)dg.
Sp2feW\Sp2fc(A) y^,k)^,k)

In case n < A;, we switch the roles of k and n and of (p (resp. (p) and E
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 183

(resp. E) and consider

W= f ^) f E^f^ey^g^^dvdg^
Sp2n(^)\Sp2n(A) ^c,n)^(fc,rz)

W= [ f>(g) ( E^f^y^g^Wdvdg.
SP2nW\SP2n(A) ^c,n)^,n)

These integrals are of course meromorphic functions of s. We prove, for
decomposable data, that the integrals are Eulerian. The corresponding
local integrals satisfy the expected properties of the associated local theory
(meromorphic continuation, nonvanishing and local functional equation).
When all data is standard unramified at a place p the local integrals at p
give the following quotient

L(7Tp(g)<Tp,g(A;+l) - jAQ
CaseSp^xGL,: ^y^2s(k + 1) - k) ?

Case Sp2^ x GLk :
L^(7Tp^(7p,s(k-{-l) - ^k)

L{ap, s(k + 1) - \ (k - l))L(ap, A2,2s(k + 1) - k)

Here V2 and A2 are respectively the symmetric square and exterior square
representations of GL/(;(C). There is no canonical definition of the local
L- factor for TT? 0 a? (on Sp^(-Fp) 0 GLk(Fp)). We have to first make a
choice of a nontrivial character of Fp. Here we choose ̂ p. The choice of z^p
determines the unramified character rj = 771 0 • « - 0 rjm of the diagonal
subgroup of Sp2^(.F), which corresponds to TT?. See Section 3.1 for our
precise definition. We then have

n

L^(^p0ap,s) = Y^L^p^rji.s)!.^?^^1^).

We obtain these unramified computations, in cases n >_ k^ using
invariant theory in a direct fashion. We do not know how to do this
in case n < k. In this case, we prove, first, a certain identity relating
(up to slight modifications) the local integrals for (Ind -P2n a') x a and

(Ind^271 a) x a ' (resp. (ind^271 cr') x a and (ind^271 a) x a ' ) and
P2n,n P2n,n P2n-n

then we use the unramified calculation of the first case (see [Sl], where
similar identities are obtained for S02n+i x GL/e.)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



184 D. GINZBURG, S. RALLIS, D. SOUDRY

The importance of achieving L-functions via explicit integrals of the
above type is, apart from establishing their meromorphicity, the possibility
of locating their poles and relating their existence to functorial liftings
and nonvanishing of (generalized) periods. We already studied one such
example in case Sp^ x GLi in [GRS1], where we showed that the only
possible pole of the partial L- function L^TT, s) is at s = 1, and this pole
occurs if and only if TT has a nontrivial theta lift to a cuspidal generic
representation of SO^n(A), and in this case a certain (generalized) period
is nontrivial on TT. In forthcoming works [GRS2], [GRS3] we study the
existence of a pole at s = 1, when k > 1, and relate it to (explicit)
functorial lifts between generic representations of Sp2^(A) and of GL2n(A)
and between generic representations of Sp2^(A) and of GL2n+i(A). We
plan to study this explicit functorial lift for the nongeneric case as
well, using a similar theory of L-functions of arbitrary (not necessarily
generic) cuspidal representations of Sp2yJA) (resp. Sp2^(A)), due to the
first two named authors. There "generic" is replaced by the existence
of a certain Fourier-Jacobi model. The advantage of having all these
different constructions is the possibility of relating generic and nongeneric
representations, having the same functorial lift to the appropriate GL^.

1. Notations
/ . l\

1. — Let Jr denote the r x r matrix .' ) . We define
M /

Sp2.={,eGL2.: t,(_^^),=(_^J-)}.

2. —For our construction we will need the following subgroups of Sp^.
For 0 < k <^ r let P^r.k denote the parabolic subgroup of Sp^ which
stabilizes a /c-dimensional isotropic space. Thus

?2r,k = (GL/c X Sp2(^_fe))^2r,fc5

where U^r,k is the unipotent radical of P^r.k- When k = 0 we understand
that P2r,o = ^?2r an^ GLo = U^rft = {!}• In terms of matrices, we
consider the embedding of P^r.k in ^P^r as follows :

/h \
(h,g)\—>( g ^ j , /iC GLfc, g <E ^P^r-k)^

where /i* is such that the above matrix is in Sp^y,, and given g = ( ^ )

( A ^ B \in Sp2(^_/,), then g = 2 j. The group U^k is embedded as all

TOME 126 — 1998 — ?2



L-FUNCTIONS FOR SYMPLECTIC GROUPS 185

matrices in Sp^y. of the form

( I k ! ^
V ^-^J'

where 1^ is the £x£ identity matrix. Let Q^r.k C P^r k denote the parabolic
subgroup of Sp2y, whose Levi part is GL^ x Sp^_^. We shall denote its
unipotent radical by V^r.k-

3. — Let Hn denote the Heisenberg group with 2n + 1 variables. We
shall identify an element h G Hn with a triple (rr, y^ z), where x^ y € Mixyi
and z G M\ x i. We define the following subgroups of Hn :

Xn = {(^0,0) c ^n}, Yn = {(0,^0) e ̂ }, Zn = {(0,0,^) e Jf,}.

The product in Hn is given by

(.ri,2/i,^i)(rr2,2/2^2) = (^i +^2^1 +?/2^i + ^2 + ^(^iJn^ -^/iJn^))-

It is well-known that Hn is isomorphic to ^^+2,1- We shall denote this
isomorphism by r. In coordinates we have

/ I x \y z \

r{h)=r^y^z)= In r ^\'
\ ^M

Here x* and y * are such that the above matrix is in Sp^^. Thus,

?/* = ^JnV1 and a-* = -Jn^.

4. — Let F be a global field and A its ring of adeles. Given a linear
algebraic group G, we shall denote by G(A) the A points of G, etc.
Fix n and k in N. Let TT (resp. a) denote an irreducible automorphic
cuspidal representation of Sp^(A) (resp. GL/c(A)). We shall denote by V^
(resp. Va) its realization in the space of cusp forms. We shall always
assume that TT is generic. We recall this notation. Let ^ denote a nontrivial
additive character of F \ A. Given 1 < £ <^ n we define a character ^
on V^n.i as follows. Let v = (vij) € V^n.i be a matrix realization of V^n,e
as defined in Section 2. If 1 < £ < n we denote

i
^(v) =^(^^4.1^

%=1
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186 D. GINZBURG, S. RALLIS, D. SOUDRY

and we shall also need
n-l

^n(v) =^[]^^+l+ ^n,n+l).
i=l

Let Nk denote the maximal unipotent subgroup of GL/e consisting of upper
triangular matrices. For n = (n^) e Nk we define

k-l

^Nk(n) =^^n^+iy
i=l

We say that TT is generic with respect to ̂  if the space of functions

^(^)= / ^n(vg)^n(v)dv
^V2n,n(^)\V2n,n(A)

is not identically zero. Here (^ ^ K- and g C Sp2^(A). We shall denote this
space of functions by W(TT,^). A similar definition holds for H^TT,^).
Similarly, for a, we denote by W(cr, ̂ J the space of functions of the
form

w^. (h) = ^a (nh)^Nk W d^-
JNk{F)\NkW

for (^^ G Ya and h G GL^(A). By Shalika's well-known theorem, given a-
as above W(a,'0^) ^ 0.

5. — Let Sp2^(A) denote the metaplectic double cover of Sp2^(A).
Given a subgroup G of Sp^ we shall denote by G its full inverse image
in Sp2^. If a subgroup G of Sp^ splits under the cover, we shall view G
as a subgroup of Sp^. Choosing the covering in a suitable way, it is well-
known that the groups Sp^(F) and V2A;,/c(A) split.

For a € A* we let 7^ denote the Well symbol. It depends on the choice
of ^. When we want to mark this dependence, we write 7^. Let 6p^ ^
denote the modular function of P^k^k- As usual, we view it as a function
of P2k,k by composing it with the projection P^,k -^ ?2k,k' For s € C
and a as in Section 4 we denote

I(a, s) = Indl^ (a ® S^ , ® 7-1).
P-2k,kW -'i;'•^ /

By definition, this is the space of all smooth functions fa,s '' SI^A^) -> vo•
satisfying

(1.1) f.AP9} = ̂ 7deL^,J^)^M/^(^)

TOME 126 — 1998 — ?2



^/-FUNCTIONS FOR SYMPLECTIC GROUPS 187

m \ \ ~for all g e Sp^^A), e € {±1} and p = ̂ m ^u^\ c Sp:̂k.ky
where m G GL/,(A) and u e ^2^ (A). Here and henceforth we shall
view elements of Sp^ as pairs (^), where g e Spa^ and E e {±1} with
multiplication as denned, for example, in [BFH]. Let us remark that (1.1)
is well-defined since the subgroup GL^ of Sp^ splits under the cover.
We shall also denote

^^-^^^(^^J.

Here a and s are as before. Thus I (a, s) is the space of all smooth functions
fcr,s '' Sp2fc(A) -^ Va, satisfying

fa,s(pg) = ̂ ,(m)a(m)f^(g)

for all g e Sp2/,(A) and p = mu e P^k^kW, where m e GWA) and
^^2fc,A;(A).

In both cases, we view the functionj^(^) (resp. f^(g)) as complex
valued functions on Sp2^(A) (resp. Sp^{^ which are left ^,/c(A)
invariant, and for fixed g e Sp^(A) (resp. Sp2^(A)) the function m ̂
fa,s{mg) (resp. m ^ fa^mg)), with m e GL^(A), belongs to the
space of cusp forms on GL/,(A) realizing the representation a (g) ̂
(resp. cr0^^ 07'~1)-

Next, we define the Eisenstein series we need. For /^ e J(a, 5) define

E(gJ^s)= ^ /^(^),
<^eP2fc,fc(^)\Sp2fc(^)

where g e Sp2^(A). The above summation converges absolutely for Re(s)
large and admits a meromorphic continuation to the whole complex plane
with at most finitely many poles in Re(s) > j. A similar definition holds
for E(g, fa,s)-t^e Siegel Eisenstein series on Sp2^(A).

Let fcr^s e J(cr, 5). We denote

fw. ,s (9) - / fa,s (ng)^N (n) dn
JN,..(F}\N^(M/Nk(F)\NkW

for g e Sp^(A). Thus, for g G GL^(A), the function fw^s(g) is in
W(cr, ^ N k } ' Similarly we define the function fw, , (g).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



188 D. GINZBURG, S. RALLIS, D. SOUDRY

6. — Let uj^ denote the Weil representation. It is a representation of
the group Hk{^)Sp^(A) and it is realized on the space S(Ak) — the
Schwartz space of A^. The following formulas are well-known (see [P])

(1.2) ^ (((0, ̂  z)(x^ 0,0), 5))<^) = e^z + ̂ Jky^x + Q,

(1.3) ^(((m ^)^))^)=^detm|detm|^(^m),

(1.4) ^(((Jfc ^),e))0(0=^(^TJ^)0(0.

Here 0 € ^(A^), (0,^)(:r,0,0) C ^(A), £ € {±1}, m € GL^(A) and
/ r 'r1 \
( k j. ] C £/2/i;,fc(A). In the above formulas, we view ^ G A^ as a row
vector.

We now define the theta function,

0^hg) = ̂  ̂ (W(0
^Fk

for <^ 6 ^(A^), /i C Hk(A) and ^ € Sp^A). This function is an
automorphic function of Hk(A)Sp^ A; (A) i.e. it is slowly increasing and
invariant under the rational points Hk(F) Sp^(F).

2. The Global Integrals (n > k)
We keep the notations of Section 1. Assume that n > k. In this

section we shall describe the global integral which will represent the tensor
product L-function. Let

WQ

0 Ik
In-k 0

0 In-k
Ik 0

and define j(g) = wogwQ1 for all g € Sp2^(A). The global integral we
consider is

h(^^f^s)= I I I
Sp2fc(^)\Sp2fc(A) Hk{F)\HkW ^2n.n-fc-l(^)\V2n,r.-fc-l(A)

(p(j(vr{h)g))0^(hg)E{g,f^^n-k-i(v)dvdhdg.
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 189

Here (p 6 V^, (f) 6 ^(A^) and fa,s ^ I ( ^ ^ s ) , and ^n-k-i is as defined
in Chapter 1, Section 4. Also g embeds in Sp^ as described in Section 1,
part 2.

A similar construction is valid for irreducible cuspidal representations TT
of Sp2yi(A). Indeed, given (p € V^^ (f) € ^(A^) and /^s € J<r,s we define

l2(^^fa,s)= 1 1 I

Sp2fc(^)\Sp2fc(A) Hk{F)\HkW ^2n,n-fc-l(^)\^2n,n-fc-l(A)

(p(j{vr(h)g))0^(hg)E(g,fa,s)^n-k-i(v)^dhdg.

Let us remark that in both cases the integrals are well denned in the
sense that the functions 0^{hg)E{g^ /cr,s) and f>[j(vr{h)g))0^(hg) are

non-genuine functions of Sp^(A).
Let R C V'2n,n be the unipotent subgroup consisting of all matrices of

the form

J ^ 4 ^ . r ^ ^(n-fc)xn where the I
-tt — \ | 7" * I '| \ k - / bottom row is zero

^ \ I n - k /

We are now ready to prove :
THEOREM 2.1. — The integral Ji(<^,0,/^s) converges absolutely for

all 5, except for those s for which the Eisenstein series has a pole.
For Re(s) large :

Ii^^f^s)= I I f W^{j(rr(x^0)g))

V2k,kW\Sp2kW RW ^fc(A)

^(g)(/){x)fw^s(g)dxdrdg.

Here Wy € >V(TT,^) ^d fw^,s /ls as defined in Chapter 1, Section^.

Proof. — The proof of the absolute convergence follows as in [G]
using the growth conditions of (p. We show the unfolding. Unfolding the
Eisenstein series and the theta series, we obtain that Ji(y?,<^,/o-^) equals

j ^(j{vr(h)g)) ̂  ^(hg)(f)(^fa,s(g)^n-k-i{v)dvdhdg,

p2k,k(F)\sp^m ^Fk

where h and v are integrated as before. From (1.2) it follows that

^(W(0 = ̂ ((^,0,0)^)^(0).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



190 D. GINZBURG, S. RALLIS, D. SOUDRY

Write h e Hk{A) as h = (0,^)(:r,0,0) (see Chapter 1, Section 3).
Changing variables using the left invariant properties of (p and collapsing
the sum over Fk with the integration over Xk(F) \ X/(;(A), Ji (^,0,/as)
equals

y (^T((O, y, z))r{(x^ 0,0))^)) ̂  ((0, y, z){x^ 0,0)^)0(0)

/cr,5 {g)ipn-k-i{v)dvdydz dx dg.

Here ^ is integrated over Yk(F)\Yk(A), z is integrated over Zk (F) \ Zk (A),
a; over X;c(A) and v and g are integrated as before. From (1.2) we obtain

^ ((0, y , z){x, 0,0)^)0(0) = ̂ (z)uj^(g)^(x)

Thus Ji((^, ̂ , fa,s) equals

y ̂ (j(^r((0,2/, z))r((x^ 0,0))^))^(^)^(.r)

/<T,s(^)'0n-A;-i('^)'0(^)dvd2/d^da;d^,

where all variables are integrated as before. We have the following Lemma :

LEMMA 2.2. — For data as above

j ^(j(vr((0,y,z))ug))^n-k-i(v)^{z)dvdydzdu

- I E ^ff ^-k) .}j{rg))dr.
RW SeNk(F}\GLk{F) vv 0 / /

Here u is integrated over U^k^F) \ U^kW, v over V^n-k-i(F) \
V2n,n-fc-i(A), y over Yk{F) \ ̂ (A) and z over Zk(F) \ Z^(A).

The proof of Lemma 2.2 is as the proof of the Lemma in [G, p. 172].
We will give the details later.

Returning to the proof of the theorem, write P^,k = GLk U^k.k and

f - / /
P2k,k(F)\Sp^W GLfe(^)£/2fc,fc(A)\Sp2fc(A) t/2fc,fe(^)\^2fc,fc(A)

TOME 126 — 1998 — N° 2



L-FUNCTIONS FOR SYMPLECTIC GROUPS 191

Using this and Lemma 2.2., Ji(^, 0, /cr,s) equals

/ / / s
GLfc(^)£/2fc,fc(A)\Sp2fc(A) J?(A) Xfc(A) ^Nfc(F)\GLfc(F)

Wy(j{6rr{x^^)g))^(g)(l)(x)f^s(g)dxdrdg,

( 6 \
where j(S) == ( h^n-k) ) . Using the definition of j we see that

\ < $ / .
6 6 Sp2^(F). Hence, conjugating 6 across r and T(a;, 0,0), and a change of
variables in r and x, we may collapse the summation with the integration
over GLk(F)U^k,kW \ Sp2;c(A) to obtain

/ Wy{j(rr(x,0,0)g))uj^(g)(l)(x)f^^(g)dxdrdg,

where g is integrated over Nk(F)U2k,kW\Sp^(A) and all other variables
as before. Write

/ - / / •
Nk{F)U2k,kW\Sp^W NkmU2k,kW\Sp^m Nk(F)\NkW

We have NkU^k k = V'2k,k' After a change of variables in r and x^
Ji((^<^/^) equals

/ Wy{j(rr(x,0,0')g))^(g)(t)(x)^ j f^^{ng)^Nk{ri)dn\ dxdrdg,

Nk(F)\NkW

where g is integrated over V^k fc(A) \ Sp^(A) and r and x as before. From
this the Theorem follows. Q

Proof of Lemma 2.2. — As mentioned before the proof of this lemma
follows the same pattern as the proof of the lemma in [G, p. 173-175]. We
give some details. Let Nn-k-i C Nn be embedded in Nn in the lower right
corner. We define the following two unipotent subgroups of Sp2^(A). First

( / ik t o o \ , ,.
j / In-k 0 0 \ L € ^X(n-fc)

T == \ \ r i i ' such that the first
In-kt I ,7^ / column is zero

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



192 D. GINZBURG, S. RALLIS, D. SOUDRY

and second

r i t ^ I n - k \ ^M^.^k

\ \ In-k : such that the last
I \^ ^ Ik ) row is zero

Notice that L = j{R). We now prove the lemma. By definition

Wy{g) = j (p(vg)^n{v)dv.

V2n,nW\V2n,n(A)

As in [G], and using the references given there we have

E ^J(\n-.) }g\=
6€Nk{F)\GLk{F) i^ / ]

\ / / (p(utng)^n(^u)dudtdn.

Nn-k-l{F)\N^-k-lW T{F)\TW t/2n,n(^)\^2n,n(A)

Here we view n as an Sp^ matrix via the embedding of GLn in Sp^^.
Also ^71 (nn) is defined by restriction. Let Ti C T be defined by

TI = [t € T : all columns of t are zero except the second one}.

Thus Ti ^ Mkxi' Also, let Li C L be defined by

Li = {^ € L : all rows of ^ are zero except the first one}.

Thus I/i c± Mix/c. Following (3.5)-(3.8) in [G] we obtain

/ E ^Jf\n-.) îp]
Li (A) 6eNk{F)\GLk{F) L v / -1

= / / / /
^-fc-l(^)\N,_fc-i(A) Li(^)\Li(A) T(F)ri(A)\T(A) £/2n.n(^)\t/2n,n(A)

(p(ut£^ng)^n('n,u) dudtdf^ dn.
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Here n and u are integrated as before. Continuing this process, (as in [G]),
we obtain

/ E W,\(6!^ )J
L(A) 6eNk{F)\GLk(F) L v ° / J

= / j j ^(u£ng)^n{nu)dud£dn.
^Vn-fc-l(^)\^n-fc-l(A) L(F)\LW t/2n,n(^)\t/2n,n(A)

The lemma follows from the fact that

L^_fc_i[/2^=j(y2n,n-fc-1^2^T(0,y^Zfc)).

Here Nn-k-i is embedded in Sp^^ via the embedding ofA^_^_i c—^ Nn c-^
Sp2n5 where the first embedding is as described in the beginning of the
proof. []

A similar statement holds for ^(^ 4 > - > f a s } '

THEOREM 2.3. — The integral 1^, 0, /^) converges absolutely for all
s except for those s for which the Eisenstein series has a pole. For Re(s)
large :

h{^^f^s)= f f f W^(j(rr{(x^^))g)
V2k,kW\Sp^W RW XkW

^(g)(f)(x)fw^,(g)dxdrdg.

Here W^ e W(TT, ̂ ) and fw^s is as defined in Chapter 1, Section 5. Q

Theorems 2.1 and 2.3 show that both global integrals are Eulerian. In
the next chapter we shall study the local integral obtained from these
global integrals.

3. The Local Theory
In this chapter we shall study the local integral in question. We shall

compute the unramified integrals and prove some nonvanishing results.
Let F Jbe a local field. Let TT, TT, a- be irreducible representations of

^n (F) ^ Sp2n(-^) and GLk(F) resp. As before we shall assume that n > k.
When convenient, we shall write Sp^ for Sp^(F), etc. Let ^ be a non-
trivial additive character of F. We shall denote by W(7r^J, W(7r,^)
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and W(cr, '0A^) the Whittaker space associated with TT, TT and a resp. The
local Weil representation uj^ of the group HkSp^ acts on S(Fk) — the
Schwartz space of F^. We have the local version of Chapter 1, Section 6
of (1.2)-(1.4), for the action of uj^.

Let ( , ) denote the local Hilbert symbol and 7a (a € F*) the local Weil
constant. Let

J(W(a,^vJ,^) = Ind|^(W(a,^vJ 0 6^ 07-1).

Thus a function fw^,s^ or /s in short, in ^(H^a.^vJ,,?) is a smooth
function on the group Sp^ which takes values in W^^J. More
precisely, given g e Sp^ there is a function W^^ C W(<7,^J such that

Jfs((m m*)^) -^.(^hdel^^^).

where m e GL/.; and ( „ ) e P2A;,fc. Similarly we define
\ 777/ /

J(W(<7,^),5) = Ind^(W(a,^J ® ̂  J.

The local integrals we study are

Ji(TV,0,/,)= f f fw(j{rr((x^0))g))

v^\s^ R x, u,^g)^x)Ug)dxdrdg

and

h{W,^f,)= f f [w{j(rr((x^^))g)

V2k,k\sp,, R x, ^{g)(/)(x)f,(g)dxdrdg.

Here W e W(7r,^n), W C W(7r,^),(^ e 5^), /, e J(W(a,^),5)
and/, CJ(W(a,^vJ,5).

If F is a finite place we let p denote a generator of the maximal ideal
in the ring of integers of F. Also \p\ = q~1. For any local field, K(G) will
denote the standard maximal compact subgroup of G. It is well-known
that K(Sp^) splits in Sp^ and we shall identify K(Sp^) with its image
in Sp2^.
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3.1. The Unramified Computations.—Let F be a nonarchimedean
field. Assume all data is unramified. More precisely, we assume that there
are W € W(TT,^), W^ € yV(a,^) and /, € J(W(a,^vJ,5) which
are fixed under the corresponding maximal compact subgroup. In other
words, W(k) = W{e) = 1 for all k <E K(Sp^), and W^(k) = W^(e) = 1
for all k 6 K(GLk) and fs(k) = fs{e) = 1 for all k E K(Sp^). In these
cases '0 is an unramified character of F. Let (f) (E S^F^^) satisfy (f){x) = 1
if x G (9^ and zero otherwise. Here 0 is a ring of integers in F. Similarly,
we assume the existence of W G H^TT, ipn) and /s G 7(W(<7, '0^), ^) with
similar properties.

Next we describe the L-functions we study. From general theory TT
is a quotient of IndJ^^Q'^JI ), where Bn is the Borel of Sp^ and a
an unramified character of Bn' Thus if t = diag(ti, . . . , ̂ , t ^ 1 , . . . , t^1)
denotes the maximal torus of Sp^ then a(f) = Q /l(^l) • • •Q /^(^), where
ai are unramified characters of -F*. Let

Ap = diag (ai(p),... ,o^(p), l^1^),... ̂ i-1^))

be the semisimple conjugacy class of S02n+i(C) attached to TT. Similarly,
we may associate with a a semisimple conjugacy class in GLfc(C) deno-
ted by

Bp=diag(/3i(p),.. . ,^(p)).

The local tensor product L-function is defined

L(TT (g) <r, s) == del (^(2n+i)A; - Ap (g) Bpq~8) .

We also define the local symmetric square L-function of a by

A;L^v\s)= n (i-A(p)^(p)^)~1.^j=i
We prove

THEOREM 3.1. — For all unramified data and for Re(s) large

T (W ^ f \ ^^^+1)-^)h{W^f.)= ^vWk+l)-k)'

Proof. — Let T denote the maximal torus of GL^. We parametrize T
as follows :

t = diag(ai,a2,...,a/,), a, C F*.
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Let t denote the image of t in Sp^ under the embedding described in
Chapter 1, Section 2. Thus

t = diag(ai,..., dk, a^1 , . . . , aj'1).

It is easy to check that j(t) embeds in Sp^ as

j(t) = diag(ai,..., dk, 1, . . . , 1, a^\. . . , a^1).

Given a split algebraic matrix group G, we shall denote by B(G) its
Borel subgroup consisting of upper triangular matrices. We have

^(Sp^)=|al|2W'^-l)•••M2,

SB(S^)W) = jaii2"!^!2^-1)... H2^1),

6B(G^)(t) = lail^H^3 • • • M-^-1),

6p^(t)=:\al•••ak\k+l.

To compute our integral, we apply the Iwasawa decomposition to obtain
that Ii(W,(j),fs) equals

I I I w(.3{rT((X.O.W)^(t•)<f){x)f^t)6^^(t)dxdrdt.
T R Xk

Using the definition of fs this equals

y'lV(^(rT((^0,0))*))^(f)^)^(()7^^^Jt)^s^)(^^^

Next we use the local version of Chapter 1, Section 6, and a change of
variables in r and x to obtain

f W{j(trr({x, 0,0)))W,(t)4>(x)\ det t\ 2 -("-^
^(^sp^)^^-

Since 0 is supported on Ok we may ignore the x integration. Also, as
in [G, p. 176] we may show that the support of the function r ^-> W(j(tr))
is in R{0). Hence we may ignore the r integration as well to obtain

/ W(J(*))^(t) |det^|^-( r a- f c)^JQ^(£)df.
J T
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Denote

K?} = 6^^{j(t))W(j(t))^ K^t) = 6-^(t)W^t).

Plugging this to the above integral and using the fact that

^(Sp.jO'^))^^^^^^)^!^^!^^^^ = |deU|-^

we obtain
/ K^^K^dett^^-^dt.

JT
From the support properties of the Whittaker function on Sp^ this equals

^ ^(j^1,...,^)^^^1,...^^))^^"^,
?T-i>n2^"" '^^fc^O

where x = ^-s(A;+l)+5/i; and

^^...^"^^diagh711,...,?^),

J(pn\...,pnfc)A=diag(pnl,.•.,Pn^l,...,l,P-n^...,P-nl).

For any k positive numbers m\ > m^ >_ ' ' ' >_ m^ ^ 0 let

t r (mi ,m2 , . . . ,mA; ,0 , . . . 0 | mi, 7722, . . . ,mk)

denote the trace of the irreducible finite dimensional representation of
S02n+i(C) x GLfc(C) applied to a semisimple representative correspon-
ding to TT and cr, whose highest weight is (mi , . . . , m^;, 0 , . . . , 0) in the
SOsn+i component and (mi, . . . ,mfc) in the GLk component. Using the
Casselman-Shalika formula [CS], I^(W^(f)^fs) equals

^ tr(m,... ,n^0,.. .0 | m,... ,n^nl+n2+•••+rlfc.
ni>n2>.-">.nk>.0

Next, we use the Poincare identity

00

L(TT ̂  a, s(k + 1) - ̂ k) = Y^ tr (S\Ap (g) Bp))^.
^=o
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Here S^ denote the symmetric £-th power operation. It follows from [Tl]
that the right-hand-side of the above identity equals

00

^ tr^"^2^)))^
m=0

^ tr(nl,...,nk,0,...,0\nl,...,nk)xnl+•••+nk

ni>--->n/g>0

From this the theorem follows. []

Next we compute ^(H^/s) at unramified places. The definition of
the local L-factor which corresponds to 7T(g)a is not canonical. We have to
first make a choice of a nontrivial additive character ^ ' of F. We use ^ ' to
write the unramified character of the torus of Sp^(F) which corresponds
to TT. Thus, TT is a quotient of the representation induced from Bn and the
character

(diag^i,... ,tn^\... ̂ ),e) —— £T)^) ' . •^(^h^1..^,

where 7 7 1 , . . . , rjn are unramified characters of F*. Let

Cp = diag(77i(p),... ,rjn{p).^\p),... ,^\p)).

We define
L^(7r (g) cr, s) = det(J2nfe - q-'Cp (g) Bp)-1.

Note that
L^a(7T (g) 0, S) = L^(7T (g) ((7 (g) ^a), 5),

where ^a(t) = (^,a), the quadratic character, which corresponds to a.
Note also that

L^ (7f0a,s)=L (6^ (??) (g) a, s),

where (9^/ (??) is the image of TT under the local theta correspondence from
Sp2n(JF) to S02n+i(F), with respect to ^/. This means that TT = 0^(^)
is such that

Hom^^^Tr)^

where ^n(2n+l)) is the Weil representation of

Sp2n(2n+i)(^) and Sp2jF)xS02n+i(F)^Sp^^(F)
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as a dual pair.
We also define the exterior square L function of a

L{a^\s)= n (i-A(p)^h)<rT1
Ki<j<k

and the standard L function of a

L(a,s)=det(Ik-Bpq~s)~l

We prove :

THEOREM 3.2. — For all unramified data and for Re(^) large

r (w ^ f)= ————————^(7^^g(A;+l)-^)_________
2 V ' T)? J s ) L(a, s(k + 1) - j (k - l))L(a, A2,2s(k + 1) - k)

Proof. — Using similar notations as in the proof of Theorem 3.1 we
obtain that I^W\ 0, fs} equals

/ TVO•(^))^(^|det^|^-(n-^^,^)^^
J T.

where 7dett is obtained from the formulas in Chapter 1, Section 6. Denote
kw} = ̂ Lj^^))^^^^^)-

As in Theorem 3.1 we obtain that I^(W\ 0, fs, s) equals

^ K(j{pnl^.^pnkr)K^pnl^.^pn^
n i>n2>- - -^n fc>0 / ^ i + - - - + n f c ^ ^ i + - - - + y i f c

Here we used the relation ^detHdett = (det^det^) and that {e.e) == 1 if
1^:1 = 1. We denote

\{x) = (x,x) = (-l,x).

To prove the Theorem we will follow [BFG, Section 5], using the formula
for K as established in [BFH]. In order to use [BFH] we parametrize TT
as in (1.9) of [BFH], such that On+i-i = l^i(p)- Thus, the unramified
character, corresponding to TT in (1.9) of [BFH] is

(diag(ti,..., tn, t^1,..., t^),e) i—> ^i(^i) • • • ^n(^n)7*i-tn,^-
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Since ̂  = (Uh^ = x(t)%^ it follows that

L^ 0 a, s) = detank - q'^^Cp 0 Bp)~\

where Cp = diag(/^i(p),... ./^(^.^(p),... ./^(p)).
Let A (resp. B) denote the alternator in the group algebra

C^i^1,...,/^)]

(resp. C[/3i(p),...,/^(p)]) corresponding to the Weyl group of Sp2^(C)
(resp. GLfe(C)). As in [BFG, p. 53] we have

XSp(2n)(^ ...,4) = A^^(^+n^+n-l . . . ̂ )

and

XGL(.)(mi,..., m,) = A^B^r1^-1^2^-2 • • • /O

Here

^i ^ ^2 > • • • > 4 > 0, mi > m2 ^ • • • ^ m/, ^ 0,

Asp(2n) :== Xsp(2n) (0 , . . . , 0) and AGL(A;) = XGL(fc) (0 , . . . , 0).

To express our integral in terms of the alternator, we need to use the
formula given in [BFH, Thm 1.2]. We have

(3.1) ^(j^...,^)

= ̂ p^O^r1 • • • ̂  II^1 n(1 - (p^)9-^71)).
i=l j=l

We recall that the difference between the above identity and the one stated
in [BFH, Thm 1.2], is due to a different way of the parametrization of the
semisimple conjugacy class associated with TT.

Next, using the Poincare identity,

00

L(7r ® a ® x, s(k + 1) - \k} = ̂ tr (^(Bp ® Cp))x(pY^,
e=o

using Theorem 2.5 in [T2], the right-hand-side equals

f^tr^A2^)));^^,/^),
m=0
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where

C{^ /?; X) = ^ XGL(A;)(^1, • • • , ̂ )XSp(2n)(^ . . . , Ufc, 0, . . . , 0)

ni^--->nfc^0 , ̂ +...+^^+...+^

We have
fc

(3.2) C{^ ̂  x) = Y[(l - f3,q- ^ x)-1^^

^ XGL(A;)(^l^.-^fc)
77•l^n2^""^^fe^0

fc n

A(^^-l"^n]^^i]^(l-^p)q-12^1))
i=l j=l

•Y(r)}nl^""~^nkXnl^~"'^'nk

Indeed, this is the analog of our case to identity (5.4) in [BFG]. The proo'f
of our formula is exactly the same. We omit the details. Using (3.1) we
see that (3.2) becomes

C(^ ̂  x) = L(a, s(k + 1) - \ (k - 1))

^ K[j(pnl^.^pnk)^K^pn\..^pnk)}
ni>n2>'">nk>0— - - — / ^n-i-^-'-^-nk .v.ni+---+nfe

Here we used the [CS] formula

^(O^1,... ̂ nk)) = XGW^i.. • . , ̂ ).

On the other hand
00

^ tT{Sm{A\Bp)))x2m = L{a,A^2s(k + 1) - A;)
m=0

Hence,

l2(W,^f,)= ^ K^,...,?^)
ni>'-->nfe>0

K^ ((p"1,... ,p"fc))^(p)"l+•••+"^"l+•••+"'E

C(^^x)
£(<7 ,s ( fc+ l ) - i ( fc - l ) )

_ ______L^(n (g) a, s(k + 1) - jfc)______
- £(<7, s(fc + 1) - 5 (fc - l))L(a, A2,2s(A: + 1) - k) ' u
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3.2. A Nonvanishing Result. — Let F be a local field. The main
result in this section is to prove that given SQ e C there is a choice of data
such that our local integrals are nonzero. As in [JS], [Sl] and [S2] we have
the following asymptotic expansion for the Whittaker spaces. Let

t = diag (^ • • • tn,t^ • • • tn, . . . , tn, t~^ . . .)

be a parametrization of the maximal torus Tn of Sp^. We have
LEMMA 3.3. — There is a finite set A of finite functions of (F*)7^ such

that for all W mW(7r,^) and for a e A there is ̂  <E <S(F71 x K{Sp^))
such that

W(tk) = ̂  < î,... ̂  m)a(t^ ..., 4).
o'eA

Here t € T parametrized as above and m € K(Sp^). []

The asymptotic expansion for functions in V^(a^Nk) ls given in [JS].
We use this to prove :

LEMMA 3.4. — For all W in W(7r,^n), ^ in S(Fk) and fs in
I(V^(a^N^),s), the integral I^(W,(f), fs) converges absolutely for Re(s)
large.

Proof. — Let T denote the maximal torus of GL^ parameterized by

t = [ ( t ^ ' - t k ^ ' " t k , . . . , t k ) } .

We let t denote the embedding of t in Sp^/,. Following the same steps as
in the unramified computation (Theorem 3.1), I^{W,(f),fs) equals

f f f t W(j{trr((x^^))m))^(m)(t)(x)
T R Xk ^(SpoJ ~ .

fsitm^dett^^drdxdmdt.

Here o;i e N and a^ e Z. Let R be the subgroup of GLn defined by

^{(^J^6^-^}-
We embed R in Sp^ via the embedding of GLn in Sp^. One can check
that j(Rr(Xk)) = R. Ignoring the compact it is enough to prove the
absolute convergence of

/ Lw^j^^rn-^W^dett^^drdt.
JT JR

Here a^ e N, 04 G Z and r-n-k denotes the last row of r. Notice
that TR C GLn. Now we can proceed as in Proposition 4.2 of [Sl] or
Proposition 7.1 in [JS]. []
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LEMMA 3.5.— With notations as in Lemma 3.4 the integrals I\ (W, 0, fs)
admits a meromorphic continuation to the whole complex plane. Moreover
this continuation is continuous in W, (f) and fs.

Proof. — Using the notations of Lemma 3.4, we consider first the
integral

(3.3) / fw^^^rn^W^dett^^drdt.
JT JR

Let Rn-k-i be the subgroup of R defined by

Rn-k-i = { r e R : r^=0}.

Thus the above integral equals

/ L W^j^W^dett^^drdt,
JTJR^k-i

where
W,(m)= [ W(mrn-kWrn-k)drn-k.

J F k

Here m € Sp^ and we identified the last row of R with F1^. Thus to prove
the meromorphic continuation of (3.3) it is enough to prove it for

(3.4) [ f W^j^W^^dett^^drdt.
JTJR^,k-i

Denote
k

Ln = {in + Y^^em : ^ C F} C GLn .
i=l

The function W is a linear combination of functions of the form

W2= [ (t)W7r{£)W^d£,
JL^

where <f) 6 S(Ln) and W\ € W(7r, ̂ ). This is clear if F is nonarchimedean,
and follows from [DM] if F is archimedean. Here, as before we view Ln
as a subgroup of Sp^ via the embedding of GLn in Sp^n- Thus to prove
the meromorphic continuation of (3.4) we may consider

I L I W^^r^^W^dett^^dCdrdt.
JrJR^-k-i JL^
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Conjugating i to the left this equals

/ L ^0•(^)^0(^-fc-l)Ha(^|det^|als+a2drd^
JTJRr,-k-l

where r-n-k-i denotes the n — k — 1 row of r and (f) the Fourier transform
of (p. Let _

Rn-k-2 = {r C Rn-k-1 : Tn-k-l = 0}.

Hence to prove the meromorphic continuation of the above integral it is
enough to consider

/ L W^^W^dett^^drdt.
JrJR^-k-2

Continuing this process we get rid of the unipotent integration and
reduce to

f W^^W^dett^^dt.
JT

The meromorphic continuation of this integral is obtained by Lemma 3.3.
This establishes the meromorphic continuation of (3.3). Moreover, it
follows from Theorem 2, Section 4, and Lemma 2, Section 5, in [S2]
that (3.3) admits a meromorphic continuation to all s e C which is
continuous in W, Wa and 0. Hence, as in Lemma 1 of [S2] we obtain
the meromorphic continuation of

/ / / / WO'(^T((•^'^o))m)^(m)(?l>(:z;)^^m)d^da;dmd^
T R Xk ^(Sp2fe)

From this the Lemma follows. []

Finally we prove :

PROPOSITION 3.6. — Given SQ e C there is W e W(7r,^), (j) e S{Fk)
and a K(Sp^)-finite function fs G I(V^{a, -^vj, s) such that h(W, <^, fs)
is nonzero at SQ.

Proof. — We construct the following family of sections in J(a, s). Let ^
be an arbitrary smooth function on (P^k^k H K(Sp^)) \ K(Sp^), and
feind^ (W(a,^vJ(g)7-1). We denote

L2k,k

/$(pm)=<()^Jp)/(pm)$(m),
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where p € P^k.k and m G K(Sp^). Thus /^ € J((T, s). Denote

^(^,0,^)= / / / ^O'(^((^0,0))^m))
MAGL. ^ x. ^(gm)(l)(x)6p^(g)dxdrdg.

Then, as can be checked, we have for Re(s) large

(3.5) h(W^Jf^s) = ( I^^s^m^^dm.
^i\X(Sp^)

As in Lemma 3.5 we can show that l}_{W^(f),s;m) which converges for
Re(s) large, admits a meromorphic continuation to the whole complex
plane. Moreover, I^(W, <f)^s\m) is a continuous function in m. Suppose
that Ji(TV,(^,/s) is zero at s == SQ for all choice of data. This implies
that the right-hand-side of (3.5) is zero at 5o. Since <I> is arbitrary
we may deduce that the meromorphic continuation of I^(W,<j),s\m) is
zero at s = SQ for all choice of data. Plugging m = 1 and applying the
definition of / we may deduce that the meromorphic continuation of

f f f W(j{rr((x^^))g))^{g)^x)
NkxGLk R xk W^detg^-^^^dxdrdg

is zero at s == so; fo1' all choice of data. Conjugating g to the left, and
changing variables we may assume that the meromorphic continuation of

(3.6) / / / W(j{grr{(x^0)))^x)
TV,\GL, R x, W^^detg^^dxdrdg

is zero at s = SQ for all choice of data. Here a e N and (3 G Z. Recall that
(j) C <S(F^). Consider, for x € F^

I^W^s'^x) = [ /lTV(J(^T((^,0,0)))^(^)|detp|a^drd^
Nk\GLk R

As before, we can prove that I^(W, Wa^ s', x) converges absolutely for Re(s)
large and admits a meromorphic continuation to the whole complex plane.
Thus (3.6) equals

/ I^W,W^s^x)(l)(x)dx.
JXk
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Hence we may deduce that the meromorphic continuation of the above
integral is zero at s = SQ for all choice of 0 C S^). Thus I^(W, Wa, s\ x)
is zero at s = SQ for all choice of data. Let x = 0, and hence we may
assume that the meromorphic continuation of

/ / W^^W^detg^drdg
JNk\GLk J R

is zero at s = SQ for all W and W^. At this point we will use a similar
process as in the proof of Lemma 3.5.

Using the notations there we may rewrite the above integral as

/ L W{j{g)r)W^g)\detg\as^drdg.
JNk\GLk JRn-k-i

Let (j) e S(L^). Replace W by

/ (/)(£)7r(£)Wd£.
JLn

Thus the above integral equals

I L I W{j{g)rW)W,{g)\ del g\^ d£ dr dg
JNk\GLk ^Rn-k-l ^Ln

- I L ^(J(^)?(^-^-l)^(p)|detp|as+^drdp,
JNk\GLk JRrz-k-i

where ( / ) is the Fourier transform of (j) and Tn-k-i denotes the n — k — 1
row of Rn-k-i' Arguing as before, we may deduce that the meromorphic
continuation of

/ L ^^(g^W^detgr^drdg
JNk\GLk ^Rrz-k-2

is zero at s = SQ for all choice of data. Continuing this process, we may
assume that the meromorphic continuation of

/ W{j(g))W^g)\detgr^dg
JNk\GLk

is zero at s = SQ for all choice of data.
Arguing as in [JS] this implies that W(e)Wa(e) is zero for all W and

Wcr which is a contradiction. []

We have a similar result for I^W^ 0, fs). As in the case of I\{W^ 0, fs)
we may prove that I^(W\0, fs) converges absolutely for Re(s) large and
admits a meromorghic continuation to the whole complex plane, which is
also continuous in W, (f) and fs. From this as in Proposition 3.6 we have :
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PROPOSITION 3.7. — Given SQ C C there is W <E W(7r, ̂ n), 0 C ^(F^)
an^ a K{Sp^)-finite function f, e J(W(a, ̂ vj, 5) 5^ ̂  I^(W, ̂  /,)
z5 nonzero at s = SQ.

4. A Double Coset Decomposition
In this Chapter we shall prove a Lemma and fix some notations needed

lato. We fix n and k with k > n. Denote Q^k-n = Sp^ V^k-n. Clearly
Q^k^k-n is a subgroup of Q2k,k-n' We embed GL/,_^ in Sp^ as

/^ \
^ ̂  ^ ^ , ̂  9 ^ GLk_n

and all subgroups of GLk-n will be embedded in Sp^ via this embedding.
Here ^* is such that the above matrix is in Sp^.

For given 0 < i < k - n denote by M, the maximal parabolic of GLj,-n
defined by

M,={GL,xGLk-n-i)L^

We let MQ = Mk-n = GLk-n. Here L, is the unipotent radical of M, and
we choose it to consist of lower unipotent, that is,

L^={(IAI^^): ^^-n^X.}.

For 0 < i < k - n let W, denote the Weyl group of GL,. We shall
identify Wi with all i x i permutation matrices. Finally for 0 < i < k - n
we set

7i = [ ^(fc-z) ^ ] .
Vz /

Thus 7, is an element of the Weyl group of Sp2.;.

LEMMA 4.1. — A set of representatives for P^,k \ ̂ k/Q^kk-n is

contained in the set of all matrices of the form ̂ w, where 0 <_ i < k^ n
andwe(W,xWk-n-z)\Wk^

Proof. — Clearly P^k-n 3 Q°^ k-n' ^ is not hard to check that 7,
0 < z ^ A; - n is a set of representatives for P^k \ Sp^ /P^k-n. Indeed,
the space P^,k \ Sp^ can be identified with the set of all k dimensional
isotropic subspaces. Hence, we can parametrize the above double cosets
with all possible intersections of k - n dimensional isotropic subspaces
with all k dimensional isotropic subspaces and for these we can choose
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as representatives 7^. Hence every representative of P^k.k \ Sp2A; IQ^k k-n
can be chosen in the set of all elements 7%w, where

W C (^lP2k^i H P'2k,k-n) \ P2k^-n/QQ2k,k-n•

Since 7^-lP2A;,fc7^ H ?2k,k-n ^ ̂  then we may choose a set of representa-
tives for the set

(7^-1^2/c,fc7^ H P-2k,k-n) \ Pik^k-nlQ^k-n

to be contained in the set Mi \ GLk-n/Nk-n' (The group Nk-n is
denned in Chapter 1, Section 4. Clearly, a set of representatives for Mi \
GLk-n /Nk-n can be chosen to be contained in (Wi xWk-n-i)\Wk-n-) D

Next we prove :

LEMMA 4.2.—ForO <i< n—k, each representative of (Wi xWk-n-i)\
Wk-n can be chosen to be a symmetric matrix.

Proof. — Let W i , . . . , Wk-n-i denote the simple reflections of Wk-n so
that W i , . . . , Wi are in Wi and w^+2? • • • 5 ̂ k-n-i are in Wk-n-i- Given
w e Wk-n we shall denote by w(r,j) its (r,j) entry. Let

^(c^)6^—

where

A C Mi^i, B C Mi^^k-n-i)^ C G M^-n-i)xi^ D € M^-n-i) X {k-n-i) •

By multiplying from the left by elements of Wi x Wk-n-i we need to
bring w to a symmetric matrix. Recall that left multiplication is just
changing the rows of w. We claim that by multiplication on the left by Wi
we can bring w to the following form. First if w(r,j) = 1, where r < i
and j <. i then r = j. In other words, all nonzero entries of A are on the
main diagonal. Secondly, suppose that w(ri,j'i) = w^^j^) = 1, where
r-t < r^ < i and i + 1 < j'i,j2 < k — n then ji < j^. In other words B can
be put in row echelon form. Indeed, if w(l,j) = 1, where j < z, we can
use W i , . . . ,w^_i to assume that j = 1 and then proceed by induction.
If w(l,j) = 0 for all j < %, then clearly A contains at most i — 1 ones and
hence B is nonzero. Let

pi = min{w(r,j) = 1 where l < r < z , J ^ ^ + l } .

TOME 126 — 1998 — ?2



L-FUNCTIONS FOR SYMPLECTIC GROUPS 209

Using W i , . . . , Wi-\ we may assume that w(l,pi) = 1. Now we proceed by
induction i.e. using W 2 , . . . ,w^-i we may arrange all rows in w between
two and i in the desired way. Hence we may assume that A and B in w
has the above pattern.

Next, using Wk-n-i we apply similar arguments to C and D. More
precisely, suppose that w(ri,pi) = 1, where 1 <, r\ < z, i + 1 <, pi
and if w(r2,p2) == 1 with 1 < r-2 ^ z and i + 1 < p2 then pi < p2.
This means that w(r,j) = 0 for all 1 < r <, i and z + 1 < j < pi.
Hence, using w^+2^ • • • ̂ k-n-i we may assume that w(r,r) = 1 for all
% + 1 ̂  r < pi. Since w(ri,pi) = 1 then w(ri,r-i) = 0 and hence, from
the fact that all nonzero entries of A are on the diagonal we may assume
that if w(r, ri) = 1 then r > i. But since w(j,j) = 1 for all i + 1 < j < pi
then if w(r,ri) = 1 then r > pi. Hence using W p ^ , . . . ,Wk-n-i we may
assume that w(pi,ri) = 1. Continuing this process we may assume that
if w(r,p) = 1 then w(p, r) = 1 and all nonzero entries of A and D are on
the main diagonal. In particular w is symmetric. []

Let ai, . . . ,ak-n-i denote the simple roots of GLk-n corresponding
to Nk-n- Let Xa(t) denote the one parameter unipotent subgroup of N^-n
corresponding to the root a. Thus,

Xaj (t) = Ik-n + ̂ jj+l-

Here erj denotes the (k — n) x (k — n) matrix whose only nonzero entry
is one in the (r^j) position.

We shall agree that w = e is the representative of the coset Wi x Wk-n-i
in Wk-n'

LEMMA 4.3. — Let w € {Wi x Wk-n-i) \ Wk-n such that w ̂  e. Then
there exists a simple root Qj such that wxo^.(t}w~1 6 Li.

Proof. — Let e ̂  w € (Wi x Wk-n-i) \ Wk-n- We assume that w is as
described in the proof of Lemma 4.2. In other words, if w = ( ^ ^ )
then w is symmetric and all nonzero entries of A and D are on the
main diagonal. Since w ^ e, C -^ 0. Let r\ be the smallest integer such
that w(ri,ji) = 1, where ri > i and 1 < j\ <_ i. If r\ > i + 1 then
w(ri — l,ri — 1) = 1. Hence

wxa^_^(t)w~1 =I+twe^-i^ = I + te^-ij^ eLi.

Hence we may assume that r\ = z+1. Thus w(z+l,j'i) = 1. Let ra > r\ be
the smallest integer such that w (7*2, .72) = 1, where 1 <: j^ < i. Of course
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such an r^ may not exist. However if it does, then arguing as with ri,
we may assume that r^ = i + 2. We claim that j2 = ji + 1. Indeed,
from the shape of w we may deduce that j^ > ji. If j^ 7^ ji + 1, then
w(3l + l^'i + 1) = 1 and hence

wx^ {t)w~1 = I + ̂ we^+iw"1 = J + ̂ +1^+1 e L,.

Thus we may conclude that w has the shape

/ I P \
o is \

W= \ I,
\ Is 0 I

•where p-{-q-\-s = i and k ' = k-p-q-2s. p,q or k ' can be zero but not s,
since w ^- e. If q ^ 0, then w(p + s + l,p + s + 1) = w(z + s,p + s) = 1
and then

^c^, (^^-1 = I + ^wcp+^p+^+iw"1 = I + ^,+^+5+1 e L,.

If q = 0 then wx^(t)w~1 G L,. We are done. []

5. The Global Integrals {k > n)
In this chapter, we introduce the global integrals which will represent

the tensor product L-function in the case when k > n. These integrals
are "dual" to the ones introduced in Chapter 2 in the sense that the cusp
form and the Eisenstein series are interchanged. We define

Jl(^,0,/^)= I I I

SP2n(^)\Sp2n(A) H^(F)\HrzW ^2fc,fc-n-1 (^)\V2fc,fc-n-1 (A)

^g)0ME(vr(h)g)^-n-i(v)dvdhdg.

Here (p C V^, 0 e <S(A71) and fa,s ^ I(o-, s). We have the covering version,

W^, f^s)= I f I

Sp2nW\Sp2n(A) H^F)\H^W V^,k-rz-1 (^)\^2fc,fc-n-l (A)

^)^(^)^(^(^)^)^n-/c-l(^)d^d/ld5r.

Here ^ e V^ and /^,s e J(cr, s). In the next Theorem we shall show that
these integrals are Eulerian.
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First, let

( 0 In 0 0
0 0 0 -h-n

I ~ Ik-n 0 0 0
0 0 In 0

We shall also need to consider the following unipotent subgroup of V^k^-n-
Let

{ /Jfc-n 0 t 0 \ ^
^ ^ 7n o r 1 . t e M^-n)xn such that the
\ In - ° / bottom row of t is zero
\ ^-n/ ^

and let ^o = (O? • • • ? 1) ^ ^n- Due to the embedding of Hn in Sp^ as
described in Chapter 1 Section (3), we need to change the character ^Nk-
More precisely, let ^^ be the character of Nk defined by

n-l k-1

^NkW = ̂ (^^^+1 +2nn,n+l + ^ ^,z+l).
z=l i=n+l

Here n = (n^ ) € A^;. Since a is a cuspidal representation of GL^

W(a,^)=W(^^J.

As in Chapter 1, Section 5 we denote for fas^ I(°'^ s)^

( ~ - - - _
fw^,A9) = / fa,s(ng)^NkWdn.

JNk{F)\NkW

A similar definition applies to f^,s € I (a, s).
We have :

THEOREM 5.1. — The integral Ji((^<^, /a,s) converges absolutely for
all s except for those s for which the Eisenstein series has a pole. For
Re(^) large :

Jl(^^fa,s)= I I I
^2n,n(A)\Sp^(A) r,(A)\^(A) rfc-n(A)M^(A)\V2fc,fc-n-l(A)

Wy(g)uj^(hg)(l)^o)fw^,s(^vr(h)g)^v(ih({g.

Here Wy € H^Tr,^) (^^^ ^5 always we view Nk-n as a subgroup ofSp^^
via the embedding of GLk-n ^ ̂ P2k'
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Proof. —We prove that Ji(^, 0, fa,s) is Eulerian. Unfolding the Eisent-
stein series and interchanging summation with integration we obtain that
Ji(^,0,/^s) equals

(5J) E / / /
6 Sp^)\Sp^(A) H^F)\Hr,W V^^_^F)\V2k,k-n-iW

^(g)0<f>(hg)fa^(6vr{h)g)^k-n-i(v)dvdhdg,

where 6 G P-2k,k{F) \ Sp'2kW/Q^k k-n an^ where, for a given group
G C Sp2^,

G^S^P^kSnG and H^ = r^^P^ nr(Hn)).

Recall that Q^-n = Sp2n '^(^n)^2/c,A;-n-i. From Lemma 4.1 we may
choose 8 = 7^w, where 0 <, i < k — n and w € (H^ x Wk-n-i) \ Wk-n'
Let 6 = 7^w with 0 < z < A; — n — 1 and w 7^ e as above. It follows
from Lemma 4.3 that there exists a simple root aj of GLk-n such that
'^^Qj^)'^"1 ^ ^- (See Chapter 4 for notations.) It is easy to check
that 7^L^~1 C U'2k,k- However f^,s is left invariant under elements in
U2k,kW' Thus %wxaj(t){^iw)~1 € U^k,kW' Since ^fe-n-i restricted
to a:Q;̂ . (^) is nonzero we end up with fp\^ ̂ (t) dt as an inner integral. Hence
the contribution of such 6 to Ji(^,0,/cr^) is zero. Assume 6 = '7^ with
0 ^ % < A;—n—l . It is not hard to check that ̂ ir(Zn)^1 = r(Zn) C U^.k-
However ^((0,0, z)hg) = ^(z)0^(hg) for all z e ^n(A). Hence, once
again we get f^^^{z)dz as an inner integral. Hence in (5.1) we are left
with 6 = 7A;-n- Since we may change ^fk-n on the left with any Weyl
element of GL/e, we may replace 7fc-n by 7. Simple matrix multiplication
shows that

Sp^n = ̂ 2n,n; H^ = Y^; ^k,k-n-l = ̂ k-nTk-n-

Indeed, recall that ifg=^ n) e ^P2n? [ts embedding in Sp^ is

( I k \
^l ^J-

and after conjugating with 7, the image of the element above is

( A B\
^ rI 1k I\c k o )
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such an element lies in P'2k,k if and only if C = 0, and hence Sp^ == P2n,n-
The other identities follow similarly. Hence Ji(<^,<^/<r,s) equals

/ ^(g)0^(hg)f^s{^r(h)g)^k-n-i(v)dvdhdg.

Here g is integrated over P^n.n^F) \ Sp^(A), h is integrated over Yn(F) \
Hn(A) and v over Tk-n{F)Nk-n(F) \ ̂ -n-i(A).

Let M^_i C GLyi denote the mirabolic subgroup of GL^. Thus

^.'{QO601-"}-
Using Lemma 4.3.2 in [GPS] we have

0^(hg) = c^(W(0) + ^ ^(6hg)(f)^o),
6eM^_^{F)\GLn(F)

where we recall that ^o = (0; • • • 5 O? 1) ^ ^n- We plug this expansion in
the above integral. We consider the contribution of each summand. The
first term contributes

(5.2) [^(g)^(hg)(/)Wfa,s{7vr(h)g)^k-n-i(v)dvdhdg.

We claim that this integral is zero. Indeed, let P^n.n = GLn U^n^n- Write

! - S 1 •
P2n,n(^)\Sp^(A) GL^)£/2n,n(A)\Sp^(A) U^,n W\t/2n,n (A)

Thus we obtain as an inner integral to (5.2)

^ (p(ug)^(hug)(/)(0)fa,s (^vr(h)ug)^k-n-i (v)dudhdv,

where u is integrated over U^n,n{F) \ U'2n,nW and v and h as before.
Conjugating u to the left, using the left invariant properties of uj^ and f^,s
and changing variables, we obtain

/ (p(ug)du
^2n,n(^)\^2n,n(A)
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as an inner integral, which is zero by cuspidality. Hence Ji((^,^), fa,s)
equals

/ ^(9) ^ ^{6hg)(t)^o)fa,s('jvr{h)g)^k-n-i(v)^vdhdg.
6eM^_,{F)\GL^F)

Collapsing the summation with the integration this equals

j (p(g)^(hg)(/)^o)f^s(^vr(h)g)^k-n-i(v)dvdhdg,

where g is integrated over M^_^(F)U-2n,n(F) \ Sp2^(A). Write

/ - / / •
M^_,(^)£/2n,n(^)\Sp2n(A) M^_ , (^)C/2n,n (A)\Sp2, (A) £/2n,n (^)\^2n,n (A)

Thus Ji((^,^,/^s) equals

y (p(ug)^(hug)(l)(^o)fa,s(^vr(h)ug)^k-n-i(v)dvdhdudg.

Here ^ is integrated over M^_i(F)£/2n,n(A) \ Sp2^(A), n over U^n,n(F) \
^2n,n(A) and /i and v as before. We have, using Chapter 1, Section 6,
formula (1.4),

^{uhg)(j){£,o} == ^n(u)uj^{hg)(f)^o), u G ^2n,n(A).

Here ipn is as defined in Chapter 1, Section 4. Conjugating u to the left,
changing variables in v and h the above integral equals

/ ( / ^(^)^n(n)dn)^(^)^(^o)/^s(7^(^)^)^-n-i(v)dvd/id^.

Let GLyi-i C GLn be embedded as

9^(9 J, ^ G G L ^ _ i .

As in [PS] we have

f ^ug)^n{u)du= ^ W^Sg).
«^2n.n(^)\^2n,n(A) ^CN^-i (^)\GL,_ i (2^)
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From the definition of M°^_^ we may collapse the summation with
integration to obtain that Ji((^,^,/cr^) equals

j Wy(g)^(hg)(t)(^)f^s{^vr(h)g)^k-n-i(v)dvdhdg,

where g is integrated over 7V^(jF)^/2n,n(A)\Sp2^(A) and v and h as before.
Write

I -! I •JYr,{F)\Hr,W ^Yr,W\Hr,m ̂ n^WA)

Let y = (^ / i , . . . ^yn) € Yn' It follows from Chapter 1, Section 6,
formula (1.2) that

a^((0,2/,0)/^)^o) = ̂ (y^uj^(hg)(/)((,o).

Write (recall that V^n = NnU^n)

I ,! ! .
J N^F)U2^m\Sp2rzW ^2n,n(A)\Sp^(A) ^N,(^)\N^(A)

We have Wy(ng) = '^~^{n)W^(g) for all n e Nn' Also, write

/
Tk-r,{F)Nk-n{F)\V2k,k-rz-lW

f S
Tk-r.WNk-nW\V2k,k-n-lW Tk-n (F)Nk-rz (^)\Tfc-^ (A)Nfc-n (A)

Combining aU this, we obtain as an inner integration

/l/a,.(7^((0,^/,0))^T(^)^^-l(^^(n)^(2/l)d^;/d^

Here v ' is integrated over Tk-n{F)Nk-n(F) \ Tfe_^(A)^-n(A), y over
Yn(F) \ Yn(A) and n over Nn(F) \ A^n(A). It follows from matrix multi-
plication that

^Tk-nNk-nT{Yn)N^-1 = Nj,

and that if 7'?/r(0, y , O)^"1 = rik E Nk then

^-n-l^Q^N,^)^^!) = ̂ Vfc(^).

Hence the above integral equals to fw^,s(^vr(K)g). From this the Theorem
follows. []

We also have the same Theorem for the integral J^^p, (f), fa,s)'
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THEOREM 5.2. — The J2(^ 07 fa s) converges absolutely for all s except
for those s for which the Eisenstein series has a pole. For Re(s) large,

J2^^fa,s)= S S !
V2n,n(A)\Sp2jA) Vn(A)\J^(A) Tfc_, (A)Nfc_, (A)\V2fc,fc-r.-l (A)

W^(g)^{hg)(l)(^)fw^s{^vr(h)g)dvdhdg,

where W- € W(TT, ̂ )-

6. The Local Theory (k > n)
In this section we shall study the local integrals in the case where

k > n. The approach here will be based on the method developed in [Sl]
and [JPSS]. We shall keep the notations introduced in Section 3. The local
integrals to be studied are the ones which come from the factorization of
the global integrals introduced in Section 5. More precisely, define

J,(W^J,)= I f f
V2n.n\Sp2n ^n\^n Tk-^Nk-rz \V2fc,fc-r^-1

W(g)^(hg)(t)^o)fw^, (^vr(h)g) dvdhdg.

Here W C W(7r,^), (f) C S(Fn) and fw^,, € J(W(a,^-1), s). We have a
similar integral for the covering case. That is, let

J2(W^Js)= I I j

V2n,n\Sp2, Vn\^ Tfc_,Nfc_, \V2fc,fc-r.-1

W(g)^(hg)(f)^o)fw^,s(^vr(hg) dvdhdg,

where now W C W(7r, '0) and fw^,s e ̂ (^(^ '0-l)5 t5)- As before we shall
write fa,s fo1' fwas^ e^c' Section 6.1, which follows, is presented in the
formal level (i.e. ignoring convergence issues.) All justifications and basic
properties of the local integrals are deferred to Section 6.3.

6.1. — We start our local analysis by proving a formal identity. This
identity is analogous to the one proved in [Sl, Section 11.4] and is based
on similar ideas. We start with a few assumptions and notations.
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Let P2n,n denote the opposite parabolic to P^n.n- We shall assume that

.=lnd^(.^4^),

where a ' is an admissible generic representation of GL^. We shall denote
its central character by c^cr'. Given ^ a ' ^ € Ind -P2n (H^o-7,^) 0 62- )

-^2n,T^ ^2n,n
we set

(6.1) W(g) = (pa'^^ug^nWdu.
^£/2n,n

Here ^ e Sp2^. The integral converges for Re(C) large and as in [Sl] it has
an analytic continuation to the whole ^ plane and hence W 6 W(TT,^).
Also, given W 6 W(7r,^) there is a function ^pa'ft such that (6.1) holds
in the sense of analytic continuation. Recall that

J(W(a,^-1)^) =Ind^ (m^"1)^^,^"1).

Another induced space we need is

W^ ̂  X^~1)^) = Ind ̂ (W(^ ̂  X^~1) ̂  6^^ 7~1),

where ^( * ) = (det TTZ, det 771) and ( , ) denotes the local Hilbert
\ Tib /

symbol. Due to the relation 'J^m ' (del 772, del m) = 7detm?

^(m^^X^'^^^-Ind^JW^.^-^^^^^.

Given a function fw^.s ^ ^(^(o','^'"1),^) we associate to it a function
fw^s,x e ^(^(cr 0 x^"1)^) satisfying

fw^s^171 ^*)^] -X^)/^,.^).

We shall write /cr,s,^ for /iv^ ^ . We shall denote

( 0 -2In
I ~In \ . 1 1 - ^-n 0Wn = [ . ) and let WQ == 0 4-^
Y^n / i

-jjn 0

Also, given g € Sp2^ we set j ' { g ) = wogwo~1. Finally we shall denote
by 7(0 x a^s^~1) the gamma factor attached to a and a ' as defined
in [JPSSj. We shall prove :
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PROPOSITION 6.1. — With the above notations let W{g) be given
by (6.1). We have

^/(-^^-^(axa^^+l^-^+lK-i^^-1)^^^/^)

= j (^^(w^)^(^(2a;)

fa,s,x(wkuj\rT({x^^))9)^o)^k{u)dudxdrdg.

Here g is integrated over V^n.n \ Sp2y^ x over F^, u over U^k.k 0'nd r
over R (see Chapter 2 for the definition of R). Each integral converges in
some [5, ̂ ) domain and admit a meromorphic continuation to all values
of (5,C). The above equality is understood in the analytic continuation
sense.

Proof. — At this point we shall ignore convergence issues and prove
formally the above identity. The convergence properties will be dealt with
in Section 6.3. As can be seen, we may identify the product of the groups
Tk-nNk-n \ V^k.k-n-i Btid ^(^n \ Hn) with the group for all matrices in
Sp^/c of the form

( Ik-n A 0 B \
( A 0 B)— In ° °^A,U,^ .- Jn A* p

I k - r . )
where A e M^-n)xn, and B e M^-n)xk-n) satisfying BtJk-n = Jk-nB.
Also, A* = —JnAtJk-n' Under the above identification (a*, 0,0) in Hn is
identified with the last row of A and (0,0, z) is identified with bk-n,k-n-
Hence we can write

J^W^J^s) = [w{g)^((x^^)g)^o)f^{^^B)g)dAdBdg.

Here g is integrated over V2n,n\Sp2^ and A and B as above. Plugging (6.1)
in the above integral and collapsing integrations, Ji(W, <^, fa- s) equals

/l^/^(^)^((^0,^)^o)7^(7(A,0,B)^)dAdBd^,

where now g is integrated over Nn \ Sp^. Proposition 6.8 says that the
last integral converges absolutely in a domain of the form

( (n + 1) Re(<4- \) +C < [k + 1) Re{s),

(A;+l)Re(5) < ( l + £ o ) ( n + l ) R e ( C + j ) + Q ,

R < Re(C),
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where Q,C,R,CO are constants which depend on {a.a^k.n) and eo > 0.
We continue the calculation in this domain. See, also, the remark prior
to Proposition 6.8.

Factor

/ '/ / •^Nrz\Sp^ JGLrz \ Sp^ JN^\GL^

Hence Ji(W,(f),f^^) equals

/^r^)^^^"^)^^)^^)
/.,, (7(A,0,B)( k~nm^ ]g\ dAdBdmdg,

\ \ Ik-nJ )

where m is integrated over Nn \ GLn and g over GL» \ Sp^. We have

^(^^Idetml-^1).

From the definition of (p^^ we can write

^'•<((m m*)^) =i^rn\-(n+l^W^^(m),

where W<r',g,c € WCo-',^). We also have

^((^O,^"1 ^*)ff)^o) = \detm[^detm^((xm,0,z)g)<p(^m).

Finally conjugating m to the left in /^ and changing variables in A,
Ji(W,(p,f^^) equals

y ^'^^(^^((^^O.^^^^om)

- //m \ \
f^[[ h(k-n) .7(A,0,B)ff

\\ m / /

7detm|detm|-^+ l)<+^n-A; dAdBdmdg

where all the integration remains as before. <?,From the definition of ^ „
there is a function F G W(a, ̂ ) such that

~ // rm sk \ \

^(l 0 m*)'") = ̂ ^^^F^m),
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where m C GLjc and h € Sp^. To simplify notations, we shall write
/^(/i;m) for F^(m). Thus, J^W,(f),f^s) equals

(6.2) /> l̂ /^(m)o;v, ((^ 0, ̂ )(^om)

/^^(A.O,^;^ ))
\ \ ^k—n / /

\detm\^n~k^k^s~{n^lKdmdAdBdg,

where the integrations are as before. To proceed let Wa(h) G W(cr,'0),
and given <^i G ^(F71) define

r / / I n e* 0 \\
(a(^)W^(h)= W^(h( l 0 ^i(e)de.

JF71 \ \ Jfc-n-l//

^ r ^
We also denote <^(0 = / ^l(e)^(2^et)de and hence 0i(Q = ^i(-0.

7^"
We have

(6.3) ( W^im^a^W^^ , )|detmrdm
J V -ik—ln /

Nn\GL,

= { W^m)f ^W^ , )(In^oo )1
JNr,\GLr, JF1- L^ lk-n/\ Ik-n-1 ) \

I detTTil^dedm

= /* ^/M^f771 Wetml0 /* (^(e^^e^dedm
JNn\GLn lk-n f JFTI

= ( W^^W^171 )^l(-^m)|detm|adm.
JNrz\GL^ ' ^k-n/

In the above equalities Wyi € W(cr/'0), H^ € W(o'^) and a C C with
Re(a) large. Recall that

WM^ y }h\=^{2y^-n)W^h)
L\ Ik-n^ -I

which explains the reason for the presence of the number 2. In (6.2)
changing variables m i—^ —m, we obtain as an inner integration

c^(-l) / W^^^{m)(l)^-^m)f^^h\ ( m y. y^ldetm^dm,
JN^\GL^ v v ^fc-n//
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where 0i == ^{{x, 0, z)g)(f) and /^ = 70 (A, 0, B)g. Here

( 0 -Jn 0 o \
- - o o o -4_,70 ~ 4-n o o o

o o -in o )

and a = \n - k + {k + l)s - (n + 1)C. Using the equalities in (6.3) the
above integral equals

c^(-l) / W^^m)^)^)^^171 - ^Idetml-dm.
^n\GLn ' / \ V Ik-n^ '

Next we shall use the local functional equation for GLj, x GLn. We shall
apply it as in [Sl, p. 70]. We have

^(-l^-^axa7^^-1)

/ ^^{m)^)^)^^ . ))
JN^\GL^ ' ' V V I k - n ^ I

\detm\f3~^k~n^dm

f ( - ~ / / ° i o \ \
= / / ^,cM(^i)/^) ^ o o /,_,_, ))
N^M^i.^ \ \m0 y ^

\detm\(3~^k-{-n^ndydm.

Here /3 = (k + 1)^ - {n + 1)C - JA;. Multiplying (6.2) by

^(-l)^^ x a', (k + 1)5 - (n + 1)C - ^ A;, ̂ -1),

using the definition of (o-(0i)/^), we obtain first formally that

^(-l^-^ x a', (A; + 1)5 - (n + 1)C - ̂ -l)Jl(Ty, 0J^)

equals

y ^^^C^)^ ((^, 0, ̂ )^(e)

~ / / 0 1 0 \ / In e* \\
/.,. 7o(A,0,B)^; 0 OJ,_,_i ( i ))

\ \m0 y / \ 4-n-l//

|detm|^+l)5-(n+l)<-fc+^d2/dedAdBdmd^
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Here e is integrated over F71, y over Mnx{k-n-i) ana tne other variables
as before. Recall that

^((m m*)9) = Idetml-^1)^)^,,,^).

The interpretation of this passage is as in [Sl, 11.8]. We first prove, in
Proposition 6.9, that the last integral converges absolutely in a certain
domain (see (6.39)). Next we note that in this domain, the last integral
must be proportional to Ji, and actually is a rational function in q~8. The
reason is that they both satisfy certain equi variance conditions, which hold
uniquely up to scalars for almost all values of q~8. In Proposition 6.10,
we use a special substitution to calculate the proportionality factor which
indeed is

^/(-l^-2^ x a', (k + 1)5 - (n + 1)C - ̂ k^-1).

Write
/ 0 1 0 \ / 0 1 0 \ /In 0 m^y \

0 0 Ik-n-1 = 0 0 Ik-n-1 1 0
\m0 y } \m0 0 )\ Ik-n-l /

Changing variables y i—> my^ the above integral equals

/^^((^ ^*)p)^((^o^)p)^(e)
~ / / 0 1 0 \ /Inet y ^
f^ 7o(A, 0, B)g-^ 0 0 Ik-n-i l 0

\ \m0 0 / \ Ik-n-i^

|detm|(fc+l)s-^ dydedAdBdmdg.

It will be convenient to write C = (e*, y). Thus C is an n x (k — n) matrix
whose first column is e*. Given an n x (k — n) matrix D we shall denote

/Ik-n 0 -D* 0
(r\ Tt f\\ . \ In 0 D(0,^,0) .= ^ o

\ Ik-r

where D* == —Jk-n^Jn- Thus the above integral equals

^a/^{(m ^}9)^{(x,0,z)g)(f)(e)

^(,o(0,C7,0)(A,0,B)p;(^J7)(m^))

\detm\(w)s~^dAdBdcdmdg.
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Next we bring the m across to obtain

j ^C^ ^c))^{{xm^,z)g)(f)(etm~l)

f^o^c^A^B)^ ^;(^ Ik-n))
|detm|~^7detmdAdBdGdmdp.

Here we also performed a change of variables in A and C which explains
the presence of xm and e • ^m-1 in ^(xm,0,z)g)(/)(e ' tm~l). Also, the
factor 7detm appears from the definition of f^ 5. Let

-Ik-r
-In 07i = 0 -/n

.Ik-r

We also have

^((a-m^O^^^e^m-^^^ff Jn}{xm^,z)g\(|)(2e'tm~l'}
L\~^n / J

-.[(-./̂ C'1 ^.J^o-)^^).]^^-1)

=|detm|^dot^[(_^ •^(a-A^f7" ^)ff]^(2e).

Plugging this in the above integral, we obtain

/^r ̂ M-./̂ Mr ^)^(2o
^,s(7l(0,C',0)(A.O,B)(m ^)ff)(detm,detm)dAd5dC7dmdff,

where we used the identity 7detm7detm = (detm,detm). Recall that g is
integrated over GL» \ Sp^ and m over N^ \ GLn. Hence we may collapse
the two integrations to obtain

y^',c(ff)a;^,[(_^ ^(a-A^j^e)

/<7,s,x(7i(0, C, 0)(A, 0, B)ff)dAd5dC'dg,
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where now g is integrated over Nn. \ Spg^. We have

^[(-J ^)M^]^(2e)=c^[(0,-a;.7^)(_^ Jn)g\4>('2e)

=^-2e^)^[(_^ ^j^e).

Plug this to the above integral and also conjugate (0, (7,0) across (A, 0, B)
we obtain

/^c(^[(-j,l7n)^26)
/a,.,x(7i(A,0,B)(0,G,0)^(^-^fc-^)dAdBdC7d^.

Here we changed variables in B and we remind the reader that by our
notations bk-n,k-n was z. Write ( _ , ^ ^ ( ^ r l^n11 Changing

\ J-n ^ ^ ^n ^
variables g —^ WnQ we obtain

^ ^a/,c(w^)^(^)0(2eJn)

^fc-r

/,,̂  7i(A,0,B)(0,G,0) ^ -I771 ^

Denote

'72 = 2' l orI —^in

^In

Ik-r^

^{bk-n,k-n)dAdBdCdg.

-Ik-n \

\Ik-.

Then, conjugating the Weyl element to the left the above integral equals

/ ^^(^^^teW2617^)

/^,x(72(0,-iA*,5)(-2G*,0,0)^)^(^-^-,)dAdBdGd^.

Recall that g is integrated over Nn \ ̂ p^n' Write

^\Sp2, ^V2n,n\Sp2, ^2n,n
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We have

^[(Jn ^g^eJn) =^(26^^)^)0(26^).
L v -••n / -1

Also, one can check that conjugating the matrix
/ I k - n \

I r 1T \ln 21

In
\ I k - n /

across (-2G*,0,0), bk-n,k-n is changed to bk-n^k-n + 2eJ,jY. Hence,
after a change of variables, we obtain

/ ^a'^ng^^g^^eJn)

/ I k - n ^

f.^ |72(0,-JA*,B) In f ](-2(7*,0,0)^

V V n I.-J .
^(bk-n,k-n)dAdBdCdTdg,

where now g is integrated over V^n \ Sp^ and T over all n x n matrices
satisfying rVy, = J^T. Now ̂  = Wk ' WQ. Conjugate WQ to the right. It
is not hard to check that the groups of all matrices of the form

/ I k - n ^
u=wo(0,-^A^B)[ In ^

1 / T Irp \- 1 . 4 * ml ln 2^ ^i
In I

\ In T\ Ik-n

equals U^k and that ^(bk-n^k-n) = ^k(u). Recall that C = (e*. y). Using
the definition of the group R and changing variables e—> eJn, we obtain

j ^^c(wn^)^(^)0(2e)/^,x(^^(^T((e,0,0))^)wo)^(^)d^dedrd^.

Here g is integrated over V2n,n\Sp^ r over R, u over U^.k and e over F71.
From this the proposition follows. \\

A similar identity holds for ^(^,0,/s). More precisely, we shall
assume that _

Ti^Ind^271 (a'0^ 07-1),

where a' is an admissible generic representation of GLy,. Given (p^ ^ in
Ind^2- (W^,^)^^2^ ^-nweget

^2n,n 12n,n '

w{9)= \ ^,c(^)^n(^)du.
Ju^rz

We have :
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PROPOSITION 6.2. — With W(g) as above, we have :

^(-1)^(0- x a , (k + l)s - (n + 1)C - \ k^-^J^W, 0J^)

= y ipaf^wn9)^{g)^(^)f^s,x(wkuf(rr{(x,0,0))g)wo)

ipk{u)dudxdrdg.

Here all variables are integrated as in Proposition 6.1. Each integral
converges in some (s, Q domain and admits a meromorphic continuation
to all values of (s^). The above equality is understood in the analytic
continuation sense. []

6.2 The Unramified Computations {k > n). —We keep the nota-
tions of Section 3.1. Following [Sl], we shall use the identities established
in Section 6.1 to compute the local unramified integrals.

THEOREM 6.3. — Let p be an odd prime. For all unramified data and
for Re(^) large

. . L ( 7 T 0 ^ s ( k + l ) - ^ k )
W^5) = L^V^2s(k+l)-k)'

Proof. — We may assume that TT = Ind -P271^' 0 62- ) and <j' is a
-^^•n, -'^•n^n.

generic unramified representation of GLyi. To use Proposition 6.1 we first
need to normalize identity (6.1). It follows from [GS], Section 2.3 that

( ^^(u)^n(u)du = L(a^ ( j + C)(n + 1) - \ {n - 1))~1

L ( a ' , A2, (1 + 2C)(n + 1) - n)~1

Here a ' denotes the contragredient representation of a ' . Hence we can
write

lV(^)=L(a^(j+C)(n+l)-j(n-l))L((7 /,A2,(l+2C)(n+l)-n)

/ ^a'^ug)^n(u)du
^2n,n

and with this normalization W (e) = 1. Note that we obtain the L
functions of a ' since we induce from a lower parabolic. In a similar way
the integral

(6.4) / /^5^(wfcU/z)^(u)dn, /ieSp2fc,
JU2k,k
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defines a Whittaker functional for the induced space J(>V(cr(g)^, ̂ -1), s).
Again, it follows as in [GS], Section 2.3 that the normalizing factor for (6.4)
is L{a, V2,2s(k + 1) - k)~1. Thus the function

W^s,xW = ̂ (^2,25(/c+ 1) - k) I f^s^kuh^kWdu
Ju^,k

is the normalized unramified vector in J(>V(cr 0 ^,<0-l),.s). Applying
Proposition 6.1 we have,

7(axa / , (A;+l)5-(n+l)C-iA;,^- l)J l ( lV,0,^, , )

= L{a^ ( j + C)(n + 1) - i (n - l))^, A2, (1 + 2C)(n + 1) - n)

j ^/^(w^)^(^)0(2^)/^5^(wfc^/(rT((al,0,0))^)wo)

ipk{u)dudrdxdg,

where the domain of integration is as in Proposition 6.1. Since fa,s^
is unramified we may ignore WQ and using Iwasa decomposition for
V2n,n\Sp2n, we may replace j ' by j and replace ^)(2a;) by (f)(x). Multiplying
the above identity by L(cr, V2,2s{k + 1) — k) we obtain

(6.5) 7^ x ̂  (^ + 1)^ - (n + 1)C - j ̂  ̂ -1)^ W ̂  7^)
^ L(y, (^ + C)(^ + 1) - j (n - l))^, A2, (1 + 2C)(n 4-1) - n)

L^y^^+i) -A;)
/ ^^c(wn^)^(^)^(^)Ty^5,x(J(rT((tr^o^o))^)da;drd^.

where r, a; and ^ are integrated as before. Notice that

Fa'^Q} = ̂ ^ng) e ind^ (P 0 4^)'
Hence the above integral equals I^Wa.s^^^^^,^ + ^). Applying
Theorem 3.2 for the representations a ' and

^ = ̂ ^J^ < ,̂. ® X ® ̂ -el)

the above integral equals

L^-z (Ind ̂  (a ® ̂ ,, ® x ® ̂ de't) ® ̂ > (» + 1)( i + 0 - J ")

= £(<r ® ̂  ® o>, (n + 1)( \ + C) - j n)

x £(a ® ̂ +^ ® <?, (n + 1)( j + C) - j n)

x£(<7>,(n+l)( j+C)-4(n- l ) r 1

xL(^ ,A 2 ,2 (7^+l) ( i+C)-") - l •
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Plugging this to (6.5) we obtain

7(axa^(A;+l)5-(n+l)C-^^- l)^lW0J^)

-^y^^+D-^^^-^^^^^^^-^)
x L{a 0 a ' , -(k + l)s + (n + 1)C + j A; + l).

It follows from [JPSS] that for a C C

, , i ^ (axor ' . l -a )
7 ( axa , a , ^ ) =——7———,—r—L{a x cr',a)

Hence

JlW0j.)

-^y^^+D-^^^^^^^^^^^-^)
x L(a 0 a', (A; + l)s - (n + 1)C - \ k)

-L^y^^+i)-.)^0-^^^^^-^)
x L(cr (g) a' (g) ̂  , (k + l)s - |- A;)

- t 2 T ^ , T ^

_ L(7r 0 a, (fe + l)g - jfe)
= L^^^s^+l)-^) ^

In a similar way, using Proposition 6.2 and Theorem 3.1, we prove :

THEOREM 6.4. — Let p be an odd prime. For all unramified data and
for Re(s) large

j (W 6 f }= _______^(7r0a^(fc+l)-^)_______2 V ' " —^ L((T, s(k + 1) - j (k - l))L(a, A2,2s(k + 1) - k ) '

6.3. Justifications (for Section 6.1). — We first establish the
convergence, in a right half plane, of the integrals Ji,</2- Since their
structure is similar, it is enough to consider one family of integrals, say Ji.

PROPOSITION 6.5. — The integrals J\(W^<f)^ fa,s) converge absolutely in
a right half plane Re{s) > SQ.
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Proof. — Let us write J\ in explicit coordinates (performing already
the conjugation ^vr(h)^~1}

(6.5) Ji(TV^J^) = f I W(g)^(g)^o+Uk-n)
^2n,n\Sp2^ J X k , r .

f^( ouIkvn 4 W -̂n,i)d ,̂
\ \ 0 ^ Q I n ) )

where

_ f /Jn \ 1
(6>6-) x^ = { x = (°n ̂  1^ ^ Sp,, .

t \ 0 U' 0 In ) )

Assume, first, that the local field F is non-archimedean. Using the Iwasawa
decomposition in Sp^(F), it is enough to establish the convergence of

(6.7) j j ^(a)^(a)^(a)0(^o+^-n)/a,s(^7^)^(^-n,i)d^d^.

An Xk,rz

Here An is the diagonal subgroup of Sp^ and x is the element appearing
in (6.6). Bn is the standard Borel subgroup of Sp^' Write a = ( - , ),
where b G GLn(F) is diagonal. Then (6.7) equals

(6-8) / j ^ bW ^)^o+ufc-ra^(^(' j._J)
{F^Xk,r.

|det6|^l)s+n-fc+^(^_^l)d^d6.

In general, we have (as in [Sl, p. 22, Lemma 4.4.])

(6.9) f^u^ ^)r) ^ {detb^^^c^t)

for u € V^k^k, r € K(Sp^). Here t is diagonal in GLn(F) and lies in the
support of a gauge on GLn(F), which is independent of^and r. The rjj are
positive quasi-characters which depend on a. Thus, (6.8) is majorized by

(6.10) c^c,,, f ^•$(\,)ldet6|(fe+l)Re(SH"-fc+5^.(fr)d&

(Ft)" / ff(^)(fc+l)Re(s)£J•(x)d^.

•^k,n
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Here $ is a gauge on Sp^(F), which majorizes W. c^ is a bound for 0,
and H and Ej are defined on Sp^{F) as follows. In the notation of (6.9)

(6.11) H^ ^)r)=|deU|,

(6.12) E^ ^)r)=n,{t).

The d^-integral in (6.10) converges for Re{s) > 0 (as in [Sl, Lemma 4.5]).
Each d^-integral in (6.10) is a linear combination of integrals of the form

(6.13) ( ^i , . . . ,Mxi(&i)--Xn(M

^)n |Mi.•<P+l)Re(s)d*(^,..A

where (j) e Sf(Fn) (is positive) and ^i , . . . , \n are positive quasi-characters
of F* (depending on 7r,a). The integrals (6.13) converge in a right half
plane (which depends on ^ i , . . . , ̂ , k).

Now assume that F is archimedean. The absolute convergence in a right
half plane is obtained similarly, only that in the Iwasawa decomposition,
which leads to (6.7), we get rid of the compact integration, not by K-
finiteness, which we do not assume here, but rather by the majorizations

(6.14) \W{a. K)\ < $(a), a € A,, h e ^(Sp^),

(6.15) f^u^ ^)r) < c.ldetti^1)^)!^^)! . ||^4||^.

In (6.14), ^ is a gauge on Sp^(F). In (6.15), Cs is a constant which depends
on s. Here t has the form diag(^2 • • -tn^ • • . ̂ , . .., tn-itn) and ̂  is
the central character of cr. The integer N depends on a. Finally,

n-l n-1

||diag(ai, 0 2 , . . . , an-i,l)|| = 1 + ̂  |a,|2 + ̂  |a,|~2.
1=1 i=i

With these majorizations the proof now continues as before without
change. []

Next, we show that the integrals Ji, J^ can be made to be identically 1
(for all 5), for a choice of data (W, (f), f^s) in case F is non-archimedean.
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PROPOSITION 6.6. — Let F be non-archimedean. There is a choice of
W C W(TT^), (/) C S'(F71) and a section /^, such that

Ji(W^J^)=l^ V^eC.

(A similar proposition holds for ̂  with exactly the same proof.)
Proof. — Write the integral (6.5) as follows

(6.16) Ji(H^,/^)= f [ W(az)6^(a)^{az)^+Uk-n)
A.X^.nXfc.2n,n ^k,n

( ( I n \ \
^'s ( | °u \~" Ik-n P^ ^Vk-n,i)dxdadz.

o u' o" /„ / 7

Here

-{-Ql?;)eSp„^(;...^GL„}.^?a,.,,.={^=f2„l ^ )eSp, , , i i=^ • . , ^eGL»} .

Write again a = ( ), ^-diagonal. Then (6.16) equals

(6.17) fw((^ ̂ )(^ J)^ ^)|det.|^)^)———..

^ { n T ) ^(^0^1+^-n)^(^-n,l)\ Y ^n /

//Jn \ z.- \. [ [ 0 Jfc_, \ (bz^ \\^l^ ;' vJ751 ^r^^
Choose the right 7-translate of fa,s to have support in P^.k '^, where f2 is
a small neighbourhood of ̂  such that fa,s(^', m) == W^m), for ^ € ^.
W is a given function in the Whittaker model of a. With this choice
(u, v, y) in (6.17) must lie in a small neighbourhood V of zero, and we can
choose ^ so small that cc^( n )^ == ( / ) and TV^f771 )) = W(g),

^ y -^n ^ \ \ y In / /
for 2/, such that (u,v,y) lies in V. Up to a constant, (6.17) becomes

(6.18) JW^1 ̂ )^(\*)<^-i)

Idet^'^f621 - )d^idfr.
'< •'A-l /
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Here s' = (k + l)Re(.s) + n - k + j. Also 2; above is so small that
(f)(^+Uk-n) = </>(0, if {u, v, y) e V. Now, it is easy to choose data in (6.18),
to make it constant. We can simply choose W, such that the function
(&, z-t) i-» W ' [ 1 ) is the characteristic function of any given small

v -^k—n -/

neighbourhood of (In, In)- D

PROPOSITION 6.7. — Assume that F is archimedean. For each com-
plex number SQ, there are choices of data (Wj,(j)j, f^), such that
^Ji(Wj,(j)j,fa^) is meromorphic and nonzero at SQ. (Similar proposi-

3
tion for J^).

Proof. — Write Ji in_the form (6.16). Let the right 7-translate of f^s
have support in P'zk,k ' U^k,k and assume

/^(^(m ^)^e) =7-l(detm)|detm|^+l)s^(^)ly/(em),

where v ^U^k^k, u e U^k^k (the opposite to U^k); e,m e GLn(F), and
(p C C^(U^k)- With this choice

(6.19) W^-j^^C;^}

"^,(I° , )^(fa'>2l+«t-nM«,»,!/)(B,;(''',.)v y ^n / \ o /

W^ ^_J^(^-n,l)|det6|^+l)s+7l-/c+^d(...).

Notation being as in Proposition 6.6. (p(u, v, y) is short for

/ I n \
A ^-rr \ U V Ik-n I
\ V U' I n /

Choose (p of the form (p(u,v,y) = ^i(u)^(y)^(y}. The d-y-integration
in (6.19) is carried separately and gives a constant ^^('^(^-n^d'y.
Consider the dzy-integration

/^(^J^^J^.
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This is a convolution of (ps against W 0 (f) € W(TT^ '0) 0 ̂ . By [DM], this
represents, up to linear combinations, a general element of W(TT, '0) (g) c<;^.
Thus, a suitable linear combination of integrals of the form (6.19) gives

(6.20) (w^ ^)0(^i+^-n)^)

W1^1 ̂  )^(6 ^)|det6|dnd6dzi.

Here 5' = {k + l)s + n - k + |. Again, by [DM],

y ^l(H)0(^+Hfc-n)dn

represents, up to linear combinations, a general element of S^.F71). Thus,
a suitable linear combination of integrals of the form (6.20) becomes

'W(^ ....W'f621 - Wn^i)^1^ .^IdetftI8' " -/^(^1 y-z^'^1 ^_^)^o^l)^(\*)ldet6|s'd6d^.

Note that since 6~j^(b „) = ^^(b^detb}-^1^ the last integral
becomes

(6.21) / ^(m W^ Wo^ldetml^-^dm
JNr,\GLr, v m / v lk-n//^\GL, v m / v ^^-n-

and for
/' / ^n 2/ \

IV"= /a(^ l Ty'dT/,
J \ Ik-n-1 /

where a is a (7^°-function,

(6.22) W i " 1 )=a^m)W'(m ).
\ •i-k—n / \ ^-k—n /

Choosing ^, such that 0 = S, we see that (6.21) becomes

/ W^ ^W11^ , ^Idetml^-^^dm.
7^\GL. v m I v 4-n^' 1

Now, as in [S2, Section 4], this last integral is meromorphic in 5. Fix now
s = SQ. If the integral (6.20) is identically zero for all data, then, since 0
is arbitrary, it follows that the following integral is identically zero(̂ , /^^'\„>(t\.„J\.,.)v ^-—^

^ \ Idet&l^'dftd^,
\ &*.
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/1 \
where b = diag(&i,. . . , bn-i) and z = • . . e GLn-i. Replace W by

\* l7
r ( Irz-i y \

W" = / a(y)a I l ) dy, where a is a C^-function. As in (6.22),
J \ Ik-n )

^"(m i )=a^m)W'(m . ).
V ^-n+1/ \ Ik-n-^1^

Thus
bz \

w[ \ \W'(bz )aW^1 ^i l^C'^.JW
J \ y^ v -4-n+l^

^ ^ |det&| s 'd6d2=0.
\ y I

Since a is arbitrary, we conclude that

fw^U ^W'i^ VB'C ^ )|det&|s/d^=0,
J \ &*^* / ^ ^-n+2/ " V &*/

e^c. Finally we get that W{I^n)W{In) is identically zero, which is
absurd. []

REMARK. — In case F is nonarchimedean, with residue field having q
elements, the integrals J\,J^ are rational functions in q~8. They satisfy
certain equivariance properties for trilinear forms which guarantee their
uniqueness up to scalar multiples for almost all values of ^-s. This will
appear in greater generality in a work of Baruch and Rallis (compare
[Sl, Sec. 8]). A general principle of Bernstein implies the rationality of
Ji,J2 (See [GPS, 1.2.3]). Here is a description of these equivariance
properties.
^Let TT be an irreducible, ^-generic representation of Sp^(F) (resp.
^nW) ^d o- an irreducible, generic representation of GLfc(F). The
integral Ji (resp. J^) belongs to the space E of trilinear forms J on
^(TT,^) x 5(F71) x Vi^ (resp. W^^n) x 5(F71) x l̂ ), which
satisfy

J(W^ 0, J(a, s){v)f^) = ̂ \_,{v)W ̂  f^s),

J(W^^h)^I(^s)(r(h))f^) = J(TV,^,/^),

J(7r(^)TV, ̂ (g)^ J(<T, s)(g)f^) = J(TY, ̂  fa,s)
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for We W(7r^n). (resp. W € W(^^n)}. <t> e S(Fn)^ ^ e Vj^
(resp. /^ e J(a,5)), ^ e yfc-n-i(F), h C 7^(F) and ^ G ̂ J^) (resp.
^ ^ ^271 (F))- we m^y also replace TT by a representation fully induced
from a parabolic subgroup and an irreducible (generic) representation of
the Levi part. The proof of the one-dimensionality of the space of E, for
almost all values of q~8, follows closely the proof of Theorem 5.1.

The following three propositions justify the formal steps taken in
Proposition 6.1. From now on, F is assumed to be non-archimedean.

PROPOSITION 6.8. — The integral

(6.24) f j ^,c(^((^ 0, z)g)^o)f^ (7(A, 0, B)g) dAdBdg
^n\Sp2n

converges absolutely in a domain of the form

(6.25)

' (n + 1) Re(C + j) + C < (k + 1) Re(s),

(A; + 1) ReO?) < (1 + £o)(rz + 1) Re(C + j) + Q,

J?<Re(C),

where Q,C,R, £Q are constants which depend on a.a^n.k and EQ
positive.

is

Proof. — Using the Iwasawa decomposition in Sp^(F) (and K-
finiteness). It is enough to consider

(6.26) f^(\.)\^(\.)

•((^•^JCf))^
' I k - .

f... ^(A,0,B) (';,J(\.) dAdBdbdy.
Ik-r,

(Recall that Bk-n,k-n = ^ A/c-n = x). Here b is integrated over the
diagonal subgroup of GL(n, F). We have

^,c(\*)=|det6|-^l)(C+j)^,(&),
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where W^ € W(a1\^). Thus (6.26) has the form

(6.27) [\W^(b)\. Idet^-^oW ̂ (In , Wo&+^)j v y ^n /

ff Ik-n
J^ \ I A B Ik-r.

V A' In
Ik-n

dAdBdbdy,

where C' == (n+1) Re(C+ j), s/ = (fc+1) Re(5) and ^o is a certain positive
quasi-character (obtained from 6 and change of variable) f'y g is the right
7-translate of /^s. Write the Iwasawa decomposition

/ti

In

A
y

Ik-n
B
A'

\
Ik-n

In /

)».

\

tk

^

' ' ^ 1

(6.28)

where v € V^n, k e K{Sp^). As in [Sl, p. 81], we have

\Z\~23 < tj < \Z\23 l — 1 k 1I [z! -^ , -^ pj 5 J — i, . . . , /C — 1,
(6.29) ^ ^+1

[z]-k^\dett\<[z]-\

where ^ = ( , ) and [z\ == max{l, ||z||}, where \\z\\ is the sup-norm of

the coordinates of z. As in (6.9), we have a majorization

(6.30) /"((^M\J)1
S|dettr'^a,,,((''^J()

where t = diag(^i,... ,^) and ^ are positive quasi-characters and,

moreover, ( n lies in the support of a gauge on GLfc(F). Assume
that s ' > 0. Then^by (6.29)

(6.31) \dett\sf ^{z}-8'
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(if 5' < 0, then, by (6.29), | del 1s' < [z]-^). Inequalities (6.29) also
implies that there is an integer K\^ such that

(6.32) ^)<[^, Vj.

Since ( n lies in the support of a gauge, then, writing
V ^-k—n ^

b = diag(6i&2 • • • bn,b^ ' • • bn,..., bn-ibn, bn),

there are positive constants cj, such that

b^
^ C j , J = l , . . . , f c - l ,

^'+1

and hence

(6.33) ^.|<c,|^l|^,[^
"J

(put bn+i = • • • = bk = 1). Using (6.30)-(6.33) (for s ' > 0) we get a
majorization

f6-34' ^((^M^JM^1-
Let ^/ be a gauge on GL^(F), majorizing W^i. Thus (6.27) is majorized
by a sum of constant multiples of integrals of the form

(6.35) / ^(^det^-^)
^|^|<Cn[^271

(^ ^W+x^-^^dbdz.^( n

^\y ^n

(Recall that z = ( . , ) , and Ak-n = x). \ is of the form ^o^j. We
used (6.33) and (6.34). Now write the Iwasawa decomposition

(In \ ̂ ( I n T\(my \
\y I n ) \ In)\ m^r^

where Ty € K(Sp^) and my € GL^(F). As in (6.29), we find

(6.36) [y}~n^\detmy\^[y}-l^l.
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From (1.3) and (1.4)

^ ^ In)^ =\^my^ ' 1^(^)<^-^/)| < \^(ry)(t){umy)

Thus there is a bound c^, such that ^ ( In } (f)(u) < c^, for all y\ y ^n /
and u, and hence (6.35) is majorized by a constant multiple of

(6^) / ^(b)\ del b^-^^z}-8'^ dbdz.
J\br.\<C^[z}^

This integral is considered in [Sl, p. 86] and converges in the indicated
domain. \\

PROPOSITION 6.9. — The integral.

(6.38) j ̂ (^ m)c^((^ 0, z)g)(f)(e)

\ I n e ° \\
~ / / 0 1 0
fa,s 70(A,0,^; 0 OIk-n-1

\ \m 0 y
1 0

7 \ Ik-n-l ) )

|detm|^+l)s-(n+l)«+^-^ded2/dmd(A^)d^
converges absolutely in a domain of the form

f (1 - e^)(n + 1) Re(C + j) + E < (k + 1) Re(s),
(6-39) ^ (k + 1) Re(^) < (n + 1) Re(C + j) + D,

[ M < Re(C),

where D,E,M,e^ are constants which depend on (a.a^k.n) and e^ is
positive. In (6.38), g is integrated over GLn \ Sp^, where GLn is identified
with the Levi part of P^n' The variable m is integrated over Nn \ GLn.

Proof. — Using the Iwasawa decomposition for g , in (6.38), it is enough
to take g of the form ( ̂  j ) • Also, using the Iwasawa decomposition
for m, in (6.38), it is enough to take m of the form b-r, where b is diagonal
and r e K(GLn). As before, let ̂  be a gauge majorizing ^^(J;m).
Thus, it is enough to consider

(6.40) f^(b) ̂ ((x^z)g(1^ ^ ^(^I^WIdet&l^-^

d(...).
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Here (3o is a certain fixed positive quasi-character and f^. g is the right
7o-translate of fa^s- We have

c^H^U, ((x^z)g^ ^))^e)=^z-2x^e)^(^ ^{e)

and hence

((X'0^(I: zj)^^ [x, U, ^(( I n , )^
\ U In) '

We have

^ J^6)
=^((-./n)(J:^J)^)
,^^-^^)(_^.^^

= ^(-^ Jn)w =^e)•
Here ^ is a positive Schwartz function. Thus (6.40) becomes

(6.41)/'^(^))/3o(6)|det6|s'-<'|^(e)|

// lie \ ( ° 1 °

^ (w 7- )' ° "^-"-l' \V ̂  4 / \ fcr 0 y

d<»d(W,e,y)dr.

'l-n. *e 0/ ^n *e 0 \
"Move" e' = l 0 in (6.41) to the left in ̂ , and conjugate it

V Ik-n-1/

via (w jj-13611^

( e'Jd^ Ik){ e'*) =(w f c / 4)
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and change variable W i-s- W {dW = dW). Then (6.41) becomes

(6.42) /'^(^oWldet^'-^e)

^((^ ! , ) ( ' ' e'O'C^-r)) (i6we'y)dr•

Since (f) is a linear combination of characteristic functions of small neigh-
bourhoods, it is enough to consider, instead of (6.44), integrals of the
form

(6.43) fCaWoWldet^-^

^((^ 4);(!o^4-l))d6w?/)dr•

Change variable y ̂  by (this changes f3o(b) to /3i(6), by a fixed power of
|det6|). We have

/ 0 1 0 \ . r v / l \ / 1 \
(OOI^)=(k~\)( 4-n-i ) ( 4-^).
\br0 by ) V O / ^ y In } \r )

/ I \
Denote r' = ( ^_,_i j . In (6.43), "move" r ' to the left in /^, z.e.

(6:44) ^^{l^-1])
-f" (( Ik V^ \.(1^ \(\ ^
-^^^^/-i l,)[ r ' * ) - [ b)[ Ik-;-1 i j ) -

Change variable r'*Wr'~1 ̂  W. Now, it suffices to consider the integral
of the form (we use the A'-finiteness of /^g)

(6.45) /'^(6)/3i(&)|det6|5'-^'

^((^zJ^^JC^-;-1^))^^^
Write the Iwasawa decomposition

(6.46) /1 ^^fc-n-l
V I n .

= v ' t 1 .r",
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where v € Nk, t'y = diag%,... ,^), r" € K{GLk). As before, by
"moving" r" back, changing variable r"*Wr"~1i-> W " , etc. It is enough
to consider

(6.47) (^Wi^ldeUI8'-^

M^J-^)^^)-
As in (6.30) and (6.31) we have, for s ' > 0, the estimate

(6-48) M(̂  4)' (Ik-n oNI< ̂ -s'^((Ik-n J^w).
where ̂  is a gauge on GL^(F) (majorizing the Whittaker functions in
cr, m ̂  /^(p;m) for ;? e ^(Sp2fc)). The matrix ̂  is obtained from the
Iwasawa decomposition

c5-49) ^iX'-t-y
u € Vzk,k, tw = diag(^i,. . . , tk], p € K(Sp^). So now consider

(6.50) f^W^b^detb^-^^W}-8'^^-71 J^)d&d(lY^).

Clearly, in (6.46), we have t[ == 1. Now, we are at the situation of the proof
of Proposition 11.16 (11.16.1) of [Sl]. We conclude that the integral (6.38)
converges absolutely in a domain of the form (6.39). []

PROPOSITION 6.10.— The integral (6.38) is equal (in the domain (6.39))
to

^(-l^-^^xa'.^+l^-^+lX-^,^-1)^^^/^)

(and hence the analytic continuations of (6.38) and Ji are related by the
same functional equation.)

Proof. — By the remark following Proposition (6.7) we know that the
integral (6.38) and Ji(TV, 0, f^) are proportional (in the domain (6.39)).
(The equivariance properties, mentioned in the remark, which guarantee
the proportionality are easily seen to be satisfied since (6.38) is obtained
from Ji by formal manipulations.)
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We will find the proportionality factor by a special substitution of data.
Choose (p^^ to have support in P2n,n • ^, where ^ is a small neighbour-
hood of J2n, and such that ̂ ^, (f) and /^ are right ^-invariant. Let

^((m m*)^) = Idetml-^1)^)^,^).

Then, using the form (6.2) of Ji, we get (for this substitution)

(6.51) Ji(W^Ja,s) = cW /^(m)^771 Wom+^)
J V ^ -^n ^

'̂<—-,>("•-)
| det ̂ +i).-(n+i)c+jn-^ ̂ ^^^ ̂ ^ ̂ ^

Here m is integrated over Nn \ GLn, c(Q) = c is the measure of f2. Recall
that Ak-n = x and ^-n,i = 2;. Next choose f^s so that its right a-
translate has support in P^,k •^i, and is also right ^i-invariant, where ̂
is a small neighbourhood of ̂  Denote fa,s(r^) = W^{r). Take ^i so
small that

/ /"^ \ ^(^JJ^=^
A B/" ̂ r" / e "1 ̂  ' <^(e + a-) = <^, ^(^ = 1^ U /± in /

. (X = Ak-n, Z = Bk-n,l)'

We get from (6.51) (and this substitution) that

(6.52) Ji(W,(/)J^) = cic^(-l) / W^{m)a{(j))
JN^\GL^

W^171 , Wetmp+^-^+^+^-^dm.
v •'-k—n ^

Here W^ = a (^ n ^ ^ ^ W^ and ci = c(^i) is the measure of ^i. Apply

now the same substitutions to the integral (6.38). We get

(6.53) cy^m^^O^771 ^ ))0(e)
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|detm|(fc+l)s-("+l)c-fc+5"

(/In , \ / 0 1 0 \

f^ A B I. P; ° °^-"-i
V u A' I ] vmo y )\ U t\ in /

/ I n t e \ ( - I n \\
( 1 ( 1 ) d(...)
V Ik-n-1 ) \ Ik-n-1 ) )

r ^ / o i o \
=cci / W^{m)aWW^( 0 0 I^-i

JNr,\GLrz \m0 y )

\detm\^s-^l^n-kdm.

The integrals in (6.52) and (6.53) are related by the local functional
equation of [JPSS] by the stated gamma factor. []
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