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EXTREMAL PLURISUBHARMONIC FUNCTIONS
AND INVARIANT PSEUDODISTANCE?

BY

M. KLIMEK (*)

RESUME. — Nous introduisons et etudions une fonction cxtrcmale plunsousharmonique
qui generalise la fonction de Green d'une variable complexe. En utilisant cette fonction,
nous definissons une distance invariantc par rapport aux applications biholomorphes.

ABSTRACT. - An extremal plunsubharmonic function that generalizes Green's function
of one complex variable is introduced and studied. It is used to define a biholomorphically
invariant pseudodistance.

Introduction

In this article we define for any open connected set ft c: C" a plun-
subharmonic function u^ that can be viewed as a counterpart of the
generalized Green's function with pole at a given point. The organization
of the paper is as follows. In the next section we introduce u^ and we
prove that it decreases under holomorphic mappings. This generalizes
the classical Lindelof property of Green's functions of one complex
variable (for other generalizations of the property, see [5]). Then we
establish estimates for u^ in terms of the Caratheodory and Kobayashi
pseudodistances on Q and we prove that u^ satisfies the generalized Mon-
ge-Ampere equation. As regards the terminology related to the Monge-
Ampere operator and used in this section the reader may consult [1] and
[2]. In the last section we define an invariant pseudodistance on 0 using
the function u^ and we study basic properties of the pseudodistance.
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(•) Research supported in pan by the Irish Department of Education.

Maciej KLIMEK, Department of Mathematics, University College. Bclfield, Dublin 4
(Ireland).

1981. Mathematics Subject Classification, Primary 32 F 05. 32 H 15; Secondary 32 H 99

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE - 0037-9484/1985/02 23 1 1 0 1 3.00

© Gauthicr-Villars



232 M. KLIMEK

It should be noted that plurisubharmonic counterparts of generalized
Green's functions with pole at infinity have been known for more than
two decades. They have been very useful in multidimensional complex
analysis, especially in the theory of polynominal approximation (see [13],
[11], [7] for references).

1. Plurisubharmonic counterparts of generalized Green's functions

Throughout this section we will assume that ft is an open and connected
subset of C1.

Fix weQ and define:

Ua(z, w)==sup{u(z)},

where the supremum is taken over all non positive functions U€PSH(O)
(including—oo) such that the function r -^u(0—log | t—w| is bounded
from above in a neighbourhood of w. By p we will denote the Poincare
distance in the unit disc 17. That is if a and b belong to C7.

p (a, b) = arc tanh | <p^ (a) \
where

<Pb(z)=——^ for ze t7.
1—oz

The Caratheodory pseudodistance for 0 is given by the formula

c^(z, w)=sup { p ( /(z), /(w)): /: H -• 17 is holomorphic}.

Since the Poincare metric is invariant with respect to automorphisms of U

c^(z, w)=sup{p(/(z), 0) :/: n-^ U is holomorphic,/(w)=0}.

Now, assuming that inf0= +00, put

Sn(z.w)=inf{pa.n)}

where the infimum is being taken over all !,, r\€U for which there is a
holomorphic mapping /:l/-^ft such that /(y=z and /(T|)=W. The
Kobayashi pseudodistance in ft is defined as the largest pseudometric
on 0 smaller than SQ. In other words

ka(z, H^mf^iM^ ̂ i)»
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EXTREMAL PLURISUBHARMON1C FUNCTIONS 233

where the inf is taken over all chains of points a^ ..., a^^ in 0 such
that fli=z, fl,n-n=w.

The function u^ has the following important property:

THEOREM 1.1. — ///rft-^ft ' is a holomorphic mapping between two
open sets Q and Q' in C" and C"1 respectively, then

Un'(/*(^/(w))^Un(z,w).

/or any z6ft—{w}.

Proof. — If u is a function from the defining family for UQ- then
u°/€PSH(ft), u°/is non positive and

u0^(z))-log|z-w|=u(/•(z))-log|/(2)-/(w)|+logl/(z)~/(w)

Z — W

Thus the function z ->• u ( f (z)) — log | z — w [ is upper bounded in a
neighbourhood of w. Therefore u o /< u^ (., w). Since u was arbitrary,
this proves the estimate in the theorem.

COROLLARY 1.2.

logtanhcn(z, n^UnC2* w) ̂  log tanh &n (z, w).

Proof. — It is easy to see that

logtanhcn(z, w)=sup{log|/(z)|},

where the supremum is taken over all holomorphic functions /: Q -+ U
such that /(w)=0. So the first estimate follows from the definition of
UQ. The second estimate is a direct consequence of the above theorem
and the fact thet u^j coincides with log tanh p.

COROLLARY 1 . 3 . — The function UQ (z, w) 15 plurisubharmonic in Q with
respect to z and u^ (z, w) — log [ z — w | 15 bounded from above in a neigh-
bourhood of w.

Proof. - Let us take r>0 such that the ball

B={z€C":|z-w[<r}c:n.

Then Un(z, w)^u^(z, w)^ log tanh 8^(z, w) according to the above
theorem.
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234 M. KLIMEK

But

logtanh 8^(z, w)==logtanhp(0, j ———Ljsioglz—wl—log r.

If i? is the upper semicontinuous regularization of Un(z, w) with respect to
2, i?(zXlog|z—w[—log r near w and v is a nonpositive plurisubharmonic
function on Q. Thus u = UQ (., w).

As a consequence we are able to prove the following.

COROLLARY 1.4. — //logtanh 80(2, w) is plurisubharmonic m O with
respect to z when w is fixed then Mn(z, w)= logtanh 80(2, w) for all zeft.

Proof. — As in the last proof we can prove that the function
z -^ log tanh 8^ (z, w) belongs to the competing family in the definition
of UQ. Combining this with the above theorem we get the corollary.

The simplest example of the situation when the right-hand side inequality
in Corollary 1.2 is strict, is furnished by 0=C-{0, 1}. In this case,
u^= —oo and k^ is non-trivial {see [8]). It is not difficult to prove that
if Q is an open annulus in the complex plane the left-hand side inequality
in Corollary 1.2 is strict. In order to see this let us recall the formula
for the Caratheodory distance in an annulus. Fix qc(0, 1) and put
A=[zeC:q< H<1}.

For z^O define

H(:-)==^^l(l+^'"lz)(l+^<l'lz"l)•

It is easy to see that H is holomorphic in C-{0} and H^O except at the
simple zeros — q 2 " " 1 for n=0, ± 1, ±2 , . . . It can be proved that H is
equal to JacobFs theta function up to a constant factor. Take pe(q, 1)
and set

F , ( z ) = H ( p - l q z ) ( H ( q ' l p 2 ) ) - l .

Then Fp is a mcromorphic function on C — {0} which is holomorphic in a
neighbourhood of A and has a simple zero at the point —p. Moreover,
Fp does not vanish at other points of A. It follows from the definition
of Fp that | Fp (z) | = 1 when | z | = 1 and | Fy (z) | ^ p / q when | z [ = q.

We have the following formula (see [14])

(*) c^(fl, 5)= arc tanh |/,(fl)|,
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EXTREMAL PLURISUBHARMONIC FUNCTIONS 235

where
a, beA,

/,(z)=zF.(^z)Fp(^z),
a^|fc|-1,

MH
e^-\b\b'\

eis=\a\a-l.

The formula (^) can be also easily derived from a result of
R. M. ROBINSON [12].

Since —i^( . , w) is the Green's function for A with pole at w, we have

i^(z, w)=-Y(w)log|z| +log|F(z)|,

where y(w)log ^==log|w|—log<? and F(z)=F^^(—w~1 |w|z). If w^b
and ^2= —aq\ab\~1 then 7(^1)4-7(^2)= — 1 and hence

log | /„ (z) | = i^ (z, b) 4- i^ (z, w^).

The above equality combined with {*) implies that for any two distinct
points a and b of A

log tanh c^ (fl, fe) < u^ (a, ^)

which proves our claim {see also [12]).
Using Corollary 1.3 we shall prove the following.

THEOREM 1 . 5 . — J/M==UQ(., w)eL^{fi—{w}) then u satisfies the homo-
geneous Monge-Ampere equation (dclcu)H=0 in Q—{H'} .

Proof. — Take a ball B contained together with its closure in
Q—{w} . Let (u^) be a decreasing sequence of functions which are pluri-
subharmonic and smooth in a neighbourhood of B and such that
lim^^g, "m"^- I" vlew °^ Theorem D in [1] for every m there is a
function v^ that is continuous on B, coincides with u^ on SB, is pluri-
subharmonic in B and satisfies the equation (^fu.J"=0 in B. Put
i?=Hm^ _ „ i;̂ . By Theorem 2 . 1 in (2] {dcfvY=Q in B. Sinve r^u in B
and r=u on SB the function u^ equal to u outside B and equal to r
in B is plurisubharmonic in 0. Moreover, Corollary 1 . 3 implies that u,
belongs to the competing family in the definition of u. Thus u=u,
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236 M. KLIMEK

in Q. In particular, (ddcu)H==0 in B because u=r there. Since B was
arbitrarily chosen, this completes the proof.

In one complex variable, if 50 has positive logarithmic capacity,
—MQ(Z, w) coincides with the generalized Green's function of 0 with pole
at w, and the Monge-Ampere equation reduces to the Laplace
equation. In addition, if 8SI is regular with respect to the Dirichlet
problem for the Laplace equation, Q has the classical Green's
function. Thus in this case, u = UQ ( . , w) has the following properties

u is harmonic o n f t — { w ) ;
(I) u (z) -»• 0 if 2 approaches a boundary point of Q;

u(2)—log[2—w|=0( l ) when 2-^ w.

Since the Monge-Ampere operator plays in several complex variables a
similar role to that played by the Laplacian in the plane, it is natural to
consider the following generalized Dirichlet problem (see also [9]).

(II)

uePSH(0)nL^(0-{w});
{ddcuY^Q in n-{w);

u (z) -»• 0 if 2 approaches a boundary point of Q;
u (2 )—log |2—w[==0( l ) when z-^w.

It turns out that under certain assumptions about 0 the function
u(2)==Un(2, w) is a solution of (II). Namely we have:

PROPOSITION 1.6. — Let 0 be a bounded open subset of C". J/0 is
either convex or pseudoconvex with y1 -boundary then u = = U n ( . , w) solves
the generalized Dirichlet problem (II).

Proof, — Since £2 is bounded there is a positive constant M such that
log^-wl-Af^Mn^ w)- Thus "€Li°^(0-{w}) and Theorem 1.5
implies that (dffuY^Q in 0-{w}.

If tl is convex and p€^0 then by the Hahn-Banach theorem there
exists an R-linear functional A r C - ^ R such that h<h(p) in ft. Hence
/(2)=exp(/i(2)—i7i(i2)—A(p)) is an entire function such that [ /| </(?)= 1
on ft. Therefore the function v (z) = log | (/ (w)) -/ (2))/( 1 -/(w) / (^)) |
satisfies the conditions in the definition of u so that u^u
in Q. Consequently lim, ^ ^ u (2) s= 0.
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EXTREMAL PLURISUBHARMONIC FUNCTIONS 237

If ft is pseudoconvex with ^-boundary, a result of Kerzman and
Rosay [6] implies that there is a ^"-strictly plurisubharmonic negative
function r on ft such that r (z) -» 0 as z ->• 5ft. Let s be a real valued
^"-function with compact support in ft, such that 5= 1 in a neighbourhood
of w. Define

y(z)=s(z)log|z—w[+Ar(z) where A>Q.

If .4 is large enough, i?ePSH(ft) and hence v^u. This implies that
u (z) -^ 0 as z -»• 5ft.

Lempert has proved in [10] that if ft is a bounded convex open set in
C" then Cn=8n=fcn. Combining this with Proposition 1.6, we obtain:

COROLLARY 1.7. — J/ft 15 bounded and convex, weft and:

u (z) = log tanh Cn (z, w) = log tanh fen (z, w),

then u solves (II).
This can be viewed as a slight generalization of Theorem 4 in [9].
We would like to conclude this section with a few remarks about other

properties of UQ.
Remark 1.8. — Suppose that the set C^—ft is pluripolar (i.e. there

exists a function i?6PSH(C"), y^-oo and Cn-Clc:{v= -oo}.) Then
u^=—oo. Indeed, in this case Un(. , w) can be extended to a pluri-
subharmonic function on C" which is bounded from above by zero. So
it must be equal to — oo.

Remark 1.9. — If ft eft' and ft'—ft is pluripolar then UQ=U^' on
ft x ft. It follows again from the fact that pluripolar sets are removable
singularities for upperbounded plurisubharmonic functions.

Remark 1.10. — If ftc=C, then u^ is symmetric, i.e. Un(z, W)=MQ(H\ z)
for any z and w, z ̂  w. Indeed, in the one-dimensional case, either-u^ is
identically oo or it is equal to the generalized Green's function of ft with
pole at w and the conclusion follows from the symmetry of Green's
functions (see e. g. [4]).

Remark 1.11. — If ftcC" and for any two points z and w in ft there
is an automorphism/ of ft such that /(z)==w and /(w)=z then u is
symmetric. It follows immediately from Theorem 1.1.
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238 M. KLIMEK

2. An invariant distance

The extremal function u^ can be used to define an invariant pseudo-
distance.

Let ft be an open connected subset of C". Put

<^(^ w)=max{p(expun(z, w), 0), p(expUn(w, z), 0)}.

Of course, if 0 is such that UQ is symmetric, <7^==p(exp u^ 0) (Comp.
Remarks 1.10, 1.11). In fact we could take any other symmetrization
of p(expUn(z, w), 0) as a^. Now define

^n (^ w) = inf EJL i a^ ̂ -lt a^

where the infimum is taken over all systems of points OQ, .. ., a^ in ft such
that flo"^ an(^ fln.^^- Obviously, On is a pseudodistance. Moreover, it
is the largest pseudodistance on Q smaller than a^.

As an immediate consequence of Theorem 1.1 and the fact that the
function p(t, 0) increases in [0, 1) we obtain:

THEOREM 2 . 1 . — Iff: Q -»0' is a holomorphic mapping:

On'(/(^/(w))^n(^w).

In particular, every automorphism o/Q is a a^-isometry.
It is well known that k^ is the largest pseudodistance on Q for which

every holomorphic mapping f:U-^Q, is a contraction. The
Caratheodory pseudodistance CQ is the smallest pseudodistance on ft for
which every holomorphic mapping/: ft -^ 17 is a contraction. Combining
these properties with Theorem 2.1 we get:

COROLLARY 2.2. — CQ^On^n.
This corollary yields the following:

COROLLARY 2.3. — <Jn: ft x ft -• JR ^ is continuous.
Proof. — By the triangle inequality

I^Q^O. Wo)-0n(z, w)|^On(Zo, z)^o^(w^ w).

So the result follows from Corollary 2.2 and the continuity of k^ {see
c.g.[3]).
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EXTREMAL PLURISUBHARMONIC FUNCTIONS 239

COROLLARY 2.4. — IfSl is bounded a^ is a distance.
Proof. — If CTn(z, w)=0, then c^(z, w)=0 and the corollary is a conse-

quence of the corresponding property of CQ.
It is easy to find examples of open sets D such that On^kn. For

instance, if Q=C{0, 1}, 0^=0 and k^O. In general, a^ is different
from the Bergmann metric b^ because the latter does not have the property
described in Theorem 2.1. The simplest example is furnished by

fi^UxU and f(z^ z,)=(zp r,).

Then fcn(0. (^p z^)^[2(3irc tanh^zj-harc tanh2^ \)]1'2. Thus i f z ^ O ,
fc^(0, /(z, 0))>6n(0, (z, 0)). It is not clear, however, what is the relation
of CTQ and CQ. We have already proved that if D is an annulus in the
plane then:

Cn<o^

It remains an open question whether this is true for o^ instead of CT^.
Finally, notice that if ft is a bounded convex subset of C" then in view

of a result of Lempert [10] and Corollary 2.2, Cn=0n=^n.
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