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ON THE INFINITESIMAL KERNEL
OF IRREDUCIBLE REPRESENTATIONS
OF NILPOTENT LIE GROUPS

NieLs VIGAND PEDERSEN (*)

RESUME. — Soit G un groupe de Lie nilpotent, connexe et simplement connexe d’algébre
de Lie g. Pour une représentation irréductible = de G, on dénote ker(dr) le noyau de la
différentielle dn de n considérée comme représentation de I'algébre universelle enveloppante
U(gc) de la complexification g de g. Dans cet article nous donnons pour chaque représenta-
tion irréductible © de G une formule explicite de ker(dx) en termes de I'orbite coadjointe
associée par la théorie de Kirillov & n. Ensuite nous donnons un algorithme algébrique
permettant de trouver I'orbite coadjointe associée a une représentation irréductible donnée.
Finalement, nous prouvons, que la C*-algébre C*(G) de G est de trace continue généralisée
par rapport a la *-sous algébre C*(G) de C*(G) (cette notion est définie dans I'article) et
que la suite de composition canonique correspondante est de longueur finie, ainsi améliorant
un résultat de J. Dixmier.

ABSTRACT. — Let G be a connected, simply connected nilpotent Lic group with Lic
algebra g. For an irreducible representation n of G denote by ker(dx) the kernel of the
differential dn of n considered as a representation of the universal enveloping algebra U (g¢)
of the complexification g of g. In this paper we give first for each irreducible representation
= of G an explicit formula for ker (dn) in terms of the coadjoint orbit associated by the
Kirillov theory with =. Next we give an algebraic algorithm for finding the orbit associated
with a given irreducible representation. Finally we show that the group C*-algebra C*(G)
of G is with generalized continuous trace with respect to the *-subalgebra C°(G) of C*(G)
(the meaning of this is defined in the paper), and that the corresponding canonical composi-
tion series is of finite length, thus sharping a result of J. Dixmier.

(*) Texte regu le 10 décembre 1983.
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424 : N. V. PEDERSEN

Introduction

Let G be a connected, simply connected nilpotent Lie group with Lie
algebra g, and let g* denote the dual of the underlying vector space of
g. For a strongly continuous, unitary representation (=‘“a representa-
tion”) ©t of G, let dn denote the differential of n considered as a representa-
tion of U(gc), the universal enveloping algebra of the complexification g
of g. In [3] DxMier showed that if = is an irreducible representation of
G, then the kernel ker (drx) of dr is a selfadjoint primitive ideal in U (g¢),
and that the map n — ker (dn) from the set of equivalence classes. of
irreducible representations of G to the space of selfadjoint primitive ideals
in U(ge) is a bijection. In particular the kernel of dn characterizes
n. The first main result in this paper (Theorem 2.3.2) is an explicit
formula for this kernel of dr in terms of the coadjoint orbit associated by
the Kirillov theory [7] with =. This formula establishes in algebraic terms
a direct link between the coadjoint orbit space g*/G, and the space G of
equivalence classes of irreducible representations of G, and thus it serves
a purpose analogous to the one of the Kirillov character formula ([7],
Theorem 7.4 or [9), § 8, Théoréme, p. 145). Probably our formula should
be viewed as an algebraic counterpart of the latter, and it can presumably
be used to establish the pairing between orbits and representations [or, if
one prefers, between orbits and primitive ideals for e. g. complex nilpotent
Lie algebras ([3], [5])] much like the way the Kirillov character formula
was used to set up this pairing in [9].

We shall briefly describe our formula: Fix a Jordan-Holder sequence

8=GnOGu-1>... D8, 2go={0}

in g, and a basis X,, ..., X, with X;eg;\ g;-,. Let[,...,l, be the
basis in g* dual to the basis X,, . . ., X,,, and denote by &; the coordinate
of leg* with respect to the basis [, ...,1,:§;= <], X;). From [7] or
[10], Lemma 1, p. 264 we extract the following. If O is a coadjoint orbit
there exists a subset e= {j, <... < j,} of {1,...,m} and polynomial
functions P,, ..., P, on g* uniquely determined by the following proper-
ties (identifying g* with R™ via the chosen basis):

(@ P, &y, - - -, 8= k=1,...,d;
(b) P;(&,, . . ., &,) depends only on the variables §; , . . ., §,,,
where k is such that j, <j <ji+y;
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 425

(c) O={I=(,, .. .,&,)|§,=P,(§,, e B 1SjSm}.

Set then Q; (§;, ..., E)=E&;—P; (&, ..., &), let u; be the element in
U(gc) corresponding to the polynomial function I — Q;(—il) on g* via
symmetrization (note that u;, =0), and let © be the irreducible representa-
tion of G corresponding to the orbit O. Our formula for the kernel of
dn then reads

ker (dn)= Z;'“J,l u;. U(gc);

in other words, ker (dr) is the right ideal generated by the elements (u)); .

Our second main result (Section 3) is concerned with the problem
of determining algebraically the coadjoint orbit associated with a given
irreducible representation of G. In this connection, let us recall that
e. g for compact semisimple Lie groups an irreducible representation is
completely determined by its infinitesimal character, but that this is far
from true for nilpotent Lie groups (although it is known, [7], that for
representations corresponding to orbits in general position (in some specific
sense) the infinitesimal characters do determine the representation). We
present here for nilpotent Lie groups an approach —not based on infinitesi-
mal characters, but on the results of Section 2 and certain parts of the
results of [8]—to the solution of the problem. Our method consists of
checking the differential of the given irreducible representation on a finite,
explicitly constructible family of elements in the universal enveloping
algebra of g.. As a corollary we get an algebraic criterion for a representa-
tion © of G to be factorial (i. e. a multiple of an irreducible representation).

In the last part of the paper we consider a question concerning the
continuity of the trace. In [4] Dixmier showed that the group C*-algebra
C*(G) of G is with generalized continuous trace (GCT), and that the
canonical composition series of C*(G) is of finite length (for definitions,
see Section 4.1, cf. [2]). Here we show—using in an essential way the
results of Section 3 —that such a finite composition series can be found
even in the *-algebra CZ (G), the space of infinitely differentiable func-
tions on G with compact support, and not just in C* (G).

1. Preliminaries

Let G be a connected, simply connected nilpotent Lie group with
Lie algebra g, and let g=g,, >g,-; ... 28, ©go= {0} be a Jordan-
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426 N. V. PEDERSEN

Holder sequence for g, i. e. a decreasing sequence of ideals such that
dimg;=j, j=0,...,m.

We let G act in g* via the coadjoint representation. For geg* we have
the skewsymmetric bilinear form B,:g x g — R given by

B, (X, Y)=(g [X, Y]), X Yeg
The radical of B, is equal to the Lie algebra g, of the stabilizer G, of g:
g,= { Xeg|B,(X, Y)=0 forall Yeg}.
1.1. For geg* we define J, to be the set
"g={1<j<mlﬂ‘o$9)—1+9’}-

Let X;eg,\gj-1, j=1,...,m. Then X,,...,X, is a basis in g, and
we have jeJ, <« X;¢g;,_,+ag, ‘

If geg* with J,#QP(eg,#g) and if J,={j, <... <j,}, then
Xj,, - . ., X, is a basis for g(mod g,).
Set&={J,|geg*}, and set, for e,

Q,={geg*| J,=e}.

We have g=U, (£, as a (finite) disjoint union.

If « is an automorphism of g leaving invariant the Jordan-Holder
sequence g=g,, > ... D go= {0}, then clearly J,,=J, for all geg®*, so
Q, is a-invariant for all ee£&. In particular, Q, is G-invariant for all ee&.

Leteed. Ife# withe={j, < ... <j,} we define the skewsymme-
tric d x d-matrix M, (g), geg*, by

M¢ (g)=[B. (X],a Xj,)]l <r, s<d

and let P, (g) denote the Pfaffian of M,(g). If e=(J we set M, (g)=1 and
P,(g)=1.

The map g — P,(g) is a real valued polynomial function on g*. P,(g)
has the property that P, (g)?> =det M, (g).
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 427

Let o be an automorphism of g respecting the given Jordan-Holder
sequence, and let p; be the (mon-zero) real number such that
a(X)=p; X;(modg;_,), j=1,...,m. Foreed, set p.=[],, u:

LemMma 1.1.1. — Let eed. If geQ, then P.(g)#0 and
P,(ag)=u. ! P,(g). In particular P(sg)=P(g) for all seG.

Proof. — Write e={j, < ... <j,} (the case e=(¥ is trivial). Since
X;,,...,X, is a basis for g(modg,) we have that M,(g) is a regular
matrix, hence P, (g)? =det M, (g) #0.

Next, write
a-l(le)=z‘-lanh+cw
where c,eg,, v=1, ...,d. Then a, =0 for u>v, a,=p, ' and

B, (X, X;)= (g [X;, X, )
=<g ! (X;), a™! X1
a8 [, X,]> = CAM, @) A)y. o

X
- P, g=1

where A’is the matrix [a,,]; <. »<s This shows that M, (xg)="AM,(g) A4,
and since det A=p_ ! we find that

P,(xg)=Pf (M,(xg))=Pf (AM,(g) A)=det APf (M. (@)=, "' P.(2).
This ends the proof of the lemma.

Remark 1.1.2. — Our definitions agree with those given by PukaNszkY
in [11], p. 525 ff., cf. also [10] and [8).

1.2. Recall the following facts (cf. [11], Proposition 1.1, p. 513 and
Proposition 4.1, p. 525, cf. also [9], [10)):

Let ee & and write (for e# &) e={j, < ... <js}. There exists func-
tions R;:Q,xR‘ - R, j=1,...,m, such that:

(@) the function x=(x,, . ..,x,) = R{(g, x): R* - R is (for fixed geQ,)
a polynomial function depending only on the variables x,, . . ., x,, where
k is such that j, <j<ji+,;
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428 N. V. PEDERSEN

(b) R;, (g, x)=x, for geQ,, k=1,...,d;
(c) for each geQ, the coadjoint orbit G. g through g is given by

G.g={Y,. R x)||xeR'},

where I, . . ., 1, is the basis in g* dual to X,, . . ., X,

The functions R§: Q, x R » R are characterised by the three properties
(a), (b) and (c), and they have the following further properties:

(d) there exists an integer N such that the function
(8, x) = P, (g) "R (g, x) is the restriction to ©, x R of a polynomial func-
tion on g* x RY;

(€) R;(sg, x)=R;(g, x) for all geQ,, xeR* and seG.

For a=(a,,...,a,) a d-multi-iindex of non-negative integers and
x=(x,,...,x,)€R? we write x*=x%1 ... x3% From the properties above
it then follows that we can write

Ri(g =Y, 4;.(8)x",

where aj ,:Q, — R are G-invariant functions on Q, which are identically
zero, except for finitely many a. The function aj , has the property that
there exists an integer N such that g — P, (g)" aj . (g) is the restriction to
Q, of a polynomial function on g*. :

1.3. In the following we shall make repeated use of the following
facts [S]: There exists an isomorphism @ (the symmetrization map)
between the complex vector space S (g¢) (the symmetric algebra of g¢),
and the complex vector space U(g¢) (the universal enveloping algebra of
gc), characterised by the following property: If Y,,..., Y, are elements
in g¢, then the image of the element Y, .. .Y, in S (g¢) by w is the element

(-p!)_lz;es, Yc(l) s Yc(p)

in U(gc), where S, is the group of permutations of p elements. Moreover
we have the following lemma (cf. [8], Lemma 1.2.1).

LemMa 1.3.1. — If Z is a central element in g¢, then ®(Zu)=2Z ® (v)
Jor all ueS (g¢).
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 429

1.4. Letee& withe#J and writte={j, < ... < j,}. Forlgj<sm
we let r5(g), g€Q,, be the image in U(gc) by @ of the element

Ri@g, —iX,, ..., —iX,)

in S (gc) (what we have done here is that we have replaced the variable x,
in Rj(g, x)=Rj(g, x;,..,x) by —iX,) H e=gF we set
r(®)=<g X;>.1(=o(Rj(g, x)), since R} (g, x)=<g, X;>). Note that
in particular rj, (g)= —i X,

2. A formula for the infinitesimal kernel of the irreducible representations

2.1. Our first result shows the relevance of the elements rj(g)e U(ac)
introduced in Section 1.4.

THEOREM 2.1.1. — Let geQ, and let & be the irreducible representation
of G corresponding to the orbit G.g. Then

dr (X)) =idx (r5(2))

Jor 1<j<m.

Remark 2.1.2. — For j=j,€e the statement of the theorem is empty
since r§, (g)= —i X},

Proof. — The proof is by induction on the dimension of g. Sup-
pose first that dimg=1. Then e=, Ri(g, x)=<g, X;> and
ri(@=<g X, >.1. But dr(X,)=i{g, X, )I=idn(r{(g)) so this shows
the validity of the result in this case.

Suppose then that the result has been proved for all dimensions of the
group less than m>1. Let 3 denote the center of g, and set 3o=kerg|3
which is an ideal in g. We distinguish two cases: case (a): dim 3,)0 and
case (b): dim 3,=0.

Case (a). — Set g=g/3,, and let c: g — g be the quotient map. We let
also ¢ denote the quotient map c: G = G =G/Z,, where Z,=exp3,. There
exists an irreducibje representation % of G such that Toc=mn, and the orbit
of m is determined by the functional ge g* defined by goc=g.

We set I={1<j<m|g;¢g,-,+3}, and write I={i, < ... <i,}
and g;=(g;+30)/3>- Then g=g,> ... >go={0} is a Jordan-Hélder

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



430 N. V. PEDERSEN

sequence in g, and setting X;=c(X;) we have X;eg;\\g;-;. We next
note that 3,cg, and that g;=g,/3o. Moreover, J, I since j¢lI
= X;€08;,_1+30 = X;€8;_,+g, =j¢J,

Writing e=J,={j;<...<j,} and é=J;={j,; <... <j,} we have that
i;.-_-jb k=1, .. .,d-

Let xeR?, and set T=Y"_ R}, x)T, where T,, .. .,T, is the basis in g*

j=1
dualto X,,...,X,. Then setting I=Toc we have

Ri@g 0=<T %> =<1l X,
in particular x, = (|, X;, > = <l, X, ), and this implies that
1=Y" Ri@g %), so Rj(g x)=<l X;),
j=1,...,m. We conclude from this that
R; (g, N=Ri@E x) for 1<j<n,
and therefore c(rfj (g))=rf (8), 1 <j<n, hence, by the induction hypothesis,
dn(x,!)=di(x,)=mi(rf(g))=idu(rf,(g)) for 1<j<n.

Suppose then that j¢I. We can write X1=Z;=1 a;p, X +2Z »where Z,e3,,
since X;,...,X, is a basis in g (mod3,). Let then xeR‘, and set

I=Yr_ Ri(g, x)l, We have Rj(g, x)= (], X;), and since leG.g and
therefore 1|3, =0, we have

Rj(g, x)=Y"_,a;, R (8, x),
so that

r@=3,_,4,r @

But since Z;e3, we have that drn(Z)=0, and therefore
dn(X,)=z:,la,,d1t(X,'). It follows that dn(X))=idn(r$(g)), since we
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 431

have already shown that dn (X;)=idn(r{,(g)) for 1<j<n. This ends case
(a).

Case (b). — In this case we have that dim3=1 and g|3#0, so 3=g,
and (g, X, ) #0. In particular [g, a,]=g,, and therefore g, ¢ g,, hence
2eJ, and j,=2. Note also that g, < h=kerad X, (since otherwise
g,+b=g and therefore

<g’ 91>=<g’ [go X2]>=<9g, X2>=<bg9X2>=0
which is a contradiction). We then claim that we can assume that
Om-1=b=kerad X,.

Proof of claim. — Clearly h=keradX, is an ideal in g of
codimension 1. Set

p=min{1<j<m|X;¢g}.

Then p is well-defined, p>3 and g=h @ RX,. It is easily seen that peJ,
(in fact, if p¢J, then X,eg,+g,-,<g,+bcbh which is a
contradiction). We then define a new basis X,,...,X, in g in the
followxng way: For 1<j<p—1 we set X =X, for p<]<m—l we set
X,—X,+,+c,+1X where the ¢;,, €R are selected such that X,eb (which
is possible since R X, @ h=g), and finally we set X =X, We then define
the linear subspaces g,, j=1,...,m,in g by

gj=RXl e P ® RX‘\].
We have
g;=g; for 1<j<p—1,
and
8+1=8;®RX, for p—1<j<m—1,
implying that

8;=8;+:Nb  for p—I<j<m—1.

This shows that g,, . . ., g,, is a Jordan-Holder sequence for g. By cons-
truction g, _,=Db. We designate the objects associated with this new
Jordan-Holder sequence J,=¢, etc. We write J,= {j; <... <j,}.

For 1<j<p—1 we clearly have that jeJ, <j ef,. Furthermore peJ,
(see above) and meJ, (in fact, if m¢ J,, then X,=X, eq,_,+g,=b+g,=b
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432 N. V. PEDERSEN
which is a contradiction). For p+1<j<m we have ,
jt¢J, = Xeg_,+8, <= X8, ,+RX,+g,

<> X,_leaj_,+ﬂx,+g' < X_leaj-z"'g'
(since g, ch) < j—1¢J,

Therefore, if j,=p we have
fi=j, for 1<r<a-—1,

Jfr+1=l}+1 for a<r<d-1
and f‘=m,

Let then xeR’ and set I=3 ", Rj(g, x)I, We have
j(&x)=<L X;> and x=(LX,).
Now we can also write I=Y"_| Rj(g, %), where 2eR* and
Ri@HD=<LX), %=X
For 1<k<a—1 we have
x=<{L X, =l X5 =x,
and for a<k <d—1 we have |
x=<L X5> =<l Xj41+C41 X,

=<1, Xfl+l+c.'k+lXP> =Xk+1+Cjyy Xw
and :

Xe= L X)) =<L X)) =< X)) =x,
So for 1<j<p—1 we get

R; (g, x)= (L X;> = (I, X,> =Rj (g, %),
and therefore

R;(g, —ile’ e ey "iXJ‘)=R;(g, —inl’ « ooy —in.__l,o, . .,0)
=Ri(g, —iXj,...,—iX;_,0,...,00=Ri(g, —iXj,...,—iX)
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and this implis that r§(g)=r;(g) for 1<j<p—1. For p<j<m—1 we get

Rf(g,f,, .o .,£‘)= (l, Xj) = (’, Xj+l+cj+1 X,)

=Rj1(8 x5, . - s X)+Cpuy X
and therefore

Rjy (8 Xy - - s X)+Cjay X

=R;(g,xp ooy Xgags Xg+1 +C].*1x., . .,x‘+cl‘x.,x‘),

SO
R;-fl (ga _ixjp e sy —ixj‘)-ic.“.l X'
=Ri@ —iX;,...,—iX, _,,—iX,
—icy, X, ..., —iX, —ic, X,, —iX,)
=Ri@g, —iX;, ..., —iX;),

implying that 5, , (g)—ic,+, X, =r4(g), and therefore
Xjn“i’fﬂ (8)=Xj—¢1+1 Xy‘i('f(g)"‘icj-uXp)=x'1—i'§(g))-

We have thus reduced to the case where g,,_, =kerad X,, and proved our
claim.

From now on we then assume that g,_,=b=keradX,, and set
80=8|8m-1- Set H=exp b. The representation = can be realized as the
induced representation n=indy , %, on the space L2 (G, x,), where &, is
the irreducible representation associated with the H-orbit through g,. For
a differentiable vector peL?(G, n,) and an element ue U(gc) we have
(dr (u) ) () =dny (Ad (s~ u) @ (s).

We designate the objects associated with the Jordan-Holder sequence
h=gn-1 > ... Dgo={0} by J,,=e° etc. Since ¥, =g, ®RX, we
have that

j:)=jr+h r=1,...,d=-2.
Let then 1<j<m—1, xeR’, write I=) " g,(g, x)]; and set lo=1|h. We
can write |=sg with '

s=so exptX,, so€H, teR,
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434 N. V. PEDERSEN

implying that [, is in the H-orbit of expt X, g, Therefore

lo=Y7" . RS’ (expt X8, x°) I,

¢ (g, x)=R;’ (expt X, g0, x°)  for 1<j<m-—1.
Now for 1<r<d-2 we have

X=(LXp>=(LX,, ) =X+
and
x;= <1 X;, ) =<L X, ) =R5 (g, x)=RS’ (expt X, g6, x°)
= (expt X80 X; ) = (8o, X, —t[X,, X5]>,

and therefore t=(< g, [Xw X21>)™* (<2, X3 ) —x,).
The conclusion is that for 1<j<m—1 we have:

{8&X;)—x,

RS(8, Xy, Xz« - 2y Xq_ ,x~)=R=°(exp
T e XL XD

X80 X2 - - .,x,_,).

We then write (cf 1.3) for 1<j<m—1:

R (o X0 =Y, @ne (o) (x7)%,  lo€Qp,

and get
<g’ XZ > —X, ?
Ri(g, x)=Y_ a (exp——-————x_g x2 ... xad-z,
! Zeo oo\ TP g 1 3> 280 )2
Now aj-f),o(lo) has the form P(ly)P,o(l,)"", where P is a polynomial

function on h*, and since P,o is G-invariant (Lemma 1.1.1) we get that

<g’X2>_xlX 0)

¢0
* "“"'°(°"p<g X, X;>

is a polynomial function in x, which we denote T, (x,). We set
P, (x)=x;? ce x}y:,2 and so we get

R5 (@ x)=Y, Tug(x1) Pao(a - - 2 %amy),
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REPRESENTATIONS OF NILPOTENT LIE GROUPE 435

and therefore

Ri(g, —iX;, ..., —iX)=Y, T (—iX;)Py(—iX,,...,—iX, ),

and since X; =X, is central in b we get that
r;(g)=z'ot.o'p.o)

where t,, is the symmetrization of T,,(—iX;,) and p,, is the symmetriza-
tiog of Pp o (—iXj,, ..., —iX;,_ ) (Lemma 1.3.1).

But then
dro (75 (£))= XL, 4o (tag) dRo (Peg) = L, G e (80) dTo (2,,),
and since -
1 €o)= Lo, @eo €0)Prcy
we have showed that
dry (5 (@) =dno (5 (80)),

and using the induction hypothesis we then get that dn, (X)) =idn, (7 (g)).
Applying this to the functional sg, se G, we get

d(smo) (X)) =id (smo) (r (s8)) =id (smo) (75 (£))
so that
dny (Ad(s™1)) X)) =idny (Ad(s™ 1)} (2)),

and therefore finally dn(X))=idn(r{(g)). This ends the proof of the
theorem.

Remark 2.1.3. — Certain points in the reasoning above can be found
already in our previous publication [8). However, for the convenience of
the reader we have repeated them here, since the present context is much
simpler than the one in [8].
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2.2 If geg* and if = is the irreducible representation of G associated
with the orbit 0=Gg, we let I(g) denote the kernel of the differential dn
of n considered as a representation of U (g¢).

For ee& with e# @, let G, denote the linear span in S(gc) of the
elements of the form X3! ... X}, where e= {j; < ... < j,}, and where
a,, . . ., , are non-negative integers, and set F, to be the image in U (g¢)
of G, by the symmetrization map @. Moreover, let E, denote the linear
span in U(gc) of the elements of the form Xj!... X3 If e=g, set
G,=Cl, F,=C1=w(G,), E,=C1.

Set, for ee &, geQ, and 1<j<m, u§(g) to be equal to X;—irf(g) (note
that u§(g)=0if jee).

The following theorem not only gives an explicit finite set of generators
for the ideal I(g), but also an explicit (in fact two) supplementary subspace
(s) of I(g) in U(gc).

THEOREM 2.2.1. — If geQ,, then I(g) is generated by the elements
u5(8))j¢e and )

U@c)=IE)DE.=Ig)DF,
Remark 2.2.2. — M. Duflo has kindly made me aware of the paper [6]

of Godfrey, where it is proved, in the language of enveloping algebras,
that there exists, for a given coadjoint orbit O, polynomial functions

P,,...,P, on g* defining O such that the elements u,, .. .,u, in U(gc)
corresponding by symmetrization to the polynomial functions ! — P;(—il),
j=1,...,n, generate ker (dn), where = is the irreducible representation

associated with O.

Proof. — For simplicity we set Y,=X,, 1<r<d. We denote by E,
the linear span in U(gc) of the elements of the form Y, ... Y,, where
1<r,<d (in other words, E, is the subalgebra spanned by Y,,...,Y),),
and set I, to be the ideal generated by (uj(g));4.. We already know that
I, = 1(g) (Theorem 2.1.1).

Lemma 2.2.3. — U(go)=I,+E..

Proof. — We have uj(g)=X;—irj(g), so X;=uj(g)+irj(g). Let then
ueU(ge). We can write

u=y a, X} ... X%

TOME 112 — 1984 — N° 4



REPRESENTATIONS OF NILPOTENT LIE GROUPE 437

where a, =0 except for finitely many multi-indices a=(a,, . . .,a,).
But then

u=Y,a,(u" @)+ir] 2@Q)" . . . (45, &) +irh @) =1t
+T @ @),

where upel,, Now rf(g)eE, and we have thus shown that
uel,+E, This ends the proof of the lemma.

We next proove the following two lemmas:
Lemma 2.2.4. — E, c I,+E,.

Lemma 2.2.5. — E, c I, +F..

For the proof of these two lemmas we need a little preparation: Let
A be the set of d-multi-indices a=(a,, ..., a,), a,, ..., & being non-
negative integers. We define a total ordering on A in the following way:
Let a=(a,, ...,)anda’ =(ayj, . . ., a;) belong to A with a#a’; then

7’ ’
a<a’ < a,<a,
where:

p=max{1<k<d|o,#a;}.

In this way A is well-ordered.

For a=(a,, ...,0,), let G be the linear span in S (gc) of elements of
the form Y§1...Y%, where B;<a; for 1<j<d, and set F;=w(G)).

Moreover, let E2 be the linear span in U(gc) of elements of the form
Y% ... Y8, where B;<a; for 1<j<d.

Finally set E® to be the linear span of elements of the form Y, ...Y,

ry®

where Y, appears at most «, times in the product, i. e. such that

#{l1<t<n|r,=k} <o,
SUBLEMMA 2.2.6. — For ae€ A we have
EicL+E+Y, E.
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Proof. — The proof is by transfinite induction. Write a=(a,, ..., a,).
If all a; are zero except possibly for one value of j, then the lemma is
clearly valid. So suppose a is not of this type, and that the result has
been proved for all elements in 4 smaller than «, and let Y, ... Y, eEe

be such that # {t|r,=j} =a, j=1,...,d

Let k be such that a,>0 and a;=0 for j>k. Choose 1<t<n such that
r,=k. We now claim that the element

Y,

TR

Y,...Y,-Y,

r rpcc

Y,...Y, Y,

belongs to I, +Z,<¢ E®. If t=n this is clear, so suppose that t<n. We
can then write

Y, Y...=Y..Y, [Y,'H,Y'] . ¢ z,%a,x,_(a,en)
2,<, a,(u'(g)+:r‘<g»
Y Yom 2 e iari @ =1, 0545 ).
Now since u§(g) €I, and since an element
Y., ni@®Y,,,... Y,

clearly belongs to Euq E® for all j<j, we see that the element
u=Y, ...Y,Y, ...Y, isequal to Y, ...Y, Y, ... Y +vtu,
where veZ’QE, and where uy€el,. Thcrefore, by movmg Y,' one step
to the right in the expression Y, ... Y, ... Y, we have perturbed only
by an element in 10+Zp<. E*. Contmumg like thls in finitely many steps
we see that

Y, ...Y,...Y,—-Y,...Y,...YY,

) B t s ri t
belongs to Io+Y, ., E? and this establishes the validity of our

claim. Now the element u'=Y, ... Y,‘ ... Y, belongs to E¥, where
o' =(a,...,0,—1,0,...,0), and therefore, by the induction hypothesis,

welo+Ex +3, . E?
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Moreover, if an element v belongs to EP, where B'=(B,...,
Bi,0,...,0)<a’, then vY, belongs to EP where B=(B,, ...,
B.+1,0...,0), and clearly B<a. But this shows that

u Y,,EIO+E:+Z’<.E2,

since clearly E¥. Y, = E:. This ends the proof of the sublemma.

SUBCOROLLARY 2.2.7. — For ae€ A we have

E: c I°+ZKGE§.

Proof. — Again by transfinite induction. The result is trivial for the
minimal element. Suppose then that the corollary has been proved for
all elements in A smaller than o. Then by the sublemma

E: < IO+E:+Zp<.Eg’

and the induction hypothesis gives that
Elc1,+Y ,E! for B<a,

and therefore ES = Io+Y,, . E.. This ends the proof of the subcorollary.

Now the validity of Lemma 2.2.4 follows immediately from
Subcorollary 2.2.7. To prove Lemma 2.2.5 we need the following.

SUBLEMMA 2.2.8. — If Y, ... Y, belongs to E, then

1
an te Yr. - ;Z"s,, Y'o(l) tet Y'a(n)

belongs to I, +Y, ., E?.

Proof. — The proof is by transfinite induction. The results is clearly
valid for the minimal element. Suppose we have proved the result for all
elements in A smaller than o, where a is not the minimal element. Let k
be the number such that a;=0 for j>k and a,>1 (so that r,=k). Set,
for 1<p<n, §?= {ceS,|c(p)=n}.
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Suppose that ceS2. Then

‘l
Ve Yreon Yragper: -+ Yroum
=Y Yeegpen Yo -+ Yeew
Yy Wrgpery Yroo) -+ Yrewr

Now we can write
Yrprry Yreod = Ly<i XK1= 2, <5 10,75 @) =2, 345 @)
and since clearly an element of the form
) (PR }",'."_”rj @Y prn - Yrow

for j <jy, belongs to E? with B<a, we see that moving Y, =Y, =Y, one
step to the right in the expression

Y,

u,=Y, ret) " " Y,_(_)

req1)” *

only perturbs u, by an element from Io+2’<_ E®. Continuing like this
in finitely many steps we see that element

Y,

e " " ° Y'-(n) Y'v(p)

Y,

ey Yra* Yrom™ Yray® * *

belongs to Io+2’<.Ef. We conclude from this that

Y,

z"s: Y'c(n R YT T Y'e(-)_.znvsS‘ Y’c(l) ctt Y'c(p) e Y'o(l) Y*

belongs to I+, E? for all 1<p<n.
Now clearly

Z-usk Y'.m s Y’c(’) Tt Yr-m=2a¢s._1 Y'cu) e Y'c(u—l)’
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so we find that

1 1
EZ"‘S~ ) A A o 1)2«“-—! Y Yrow-n Vi

belongs to Io+Y,_ E.. So we just have to show that

1

Y, ...Y, ,Y,— (n— l),Lcs.-x Yo Yreu-n

ri n—1

Y,

belongs to I, +ZB<'E2. But clearly Y,, ... Y, _, belongs to E¥, where
o =(0ty, ..., %1, %—1,0...,0) and o’ <o, and therefore, by the induc-
tions hypothesis,

1

Yoo Y= oo 1)'2'“"‘ Yoo, - Yoouony

belongs to Io+Y,_, E.. So to finish the proof we just have to note
that if ueE* with (B}, ...,B.0,...,0)=Pp'<a’, then uY,eE?, where
B=(B% ..-sBr—1-Bi+1,0...,0),andB<a. This ends the proof of the
sublemma.

Using Sublemma 2.2.6 we get as an immediate corollary:

SUBCOROLLARY 2.2.9. — For a€ A we have

E: < IO+F:+ZQ<.E2

SUBCOROLLARY 2.2.10. — For a€ A we have
E:c 10+2as-Fg

Proof. — We proceed by transfinite induction: The lemma is clearly
valid for the minimal element. So suppose we have proved the lemma
for all elements in 4 smalier than o« Then for P<a we have
E? < I,+} (4 FL, and therefore, using Subcorollary 2.2.9.

E: < Io+n+23<.zy<gn=lo+296-n'
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This proves the subcorollary.

Lemma 2.2.5. now follows immediately from Subcorol-
lary 2.2.10. Combining Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5
we get (since E,, F,c E):

Lemma 2.2.11. — U(ge)=Io+F,=1,+E,=1,+E,.

LEMMA 2.2.12. — The restriction of dr to F, is faithful.

Proof. — The proof is by induction on the dimension of g. The lemma
is clearly valid for dimg=1 (in which case e=C and
F,=E,=C1). Assume then that the lemma has been proved for all
dimensions less than or equal to m—1 and that dimg=m. The case
e= (7 being trivial we can assume that e# &, and write e= {j,; <... <j,}.

Let 3 be the center of g, and let geO. Set 3o=kerg|3. We consider
two cases: case (a): dim 3,>0 and case (b): dim 3, =0.

Case (@) — We use all the notation from the proof of
Theorem 2.1.1. Suppose ueF, and let v=0""'(u). Write

u=z_a,X‘}ll e X;:.
We have
v=c(®)=Y, a,c(X3)...cX¥=Y a, X7 ... X3,

and

o ()= @)=c (@ @)=c W=u

If now dr (u)=0, then dr (z)=0, and therefore, by the induction hypothe-
sis, u=0, hence v=0 and therefore a,=0 for all a. But this shows that
v=0 and therefore u=0. This settles case (a).

Case (b). — Again we use the notation from the proof of
Theorem 2.1.1. Since clearly G,=G; we have that F,=F,;. We have
therefore reduced to the case where g,,_, =kerad X, =h. We assume that
this is the case from now on.

We write again

v=}:_a,x;; . ¢
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and u=o(v). Suppose first that a,0 implies that a,=0, so that we can
write .

v=z\..a(.'.o)X}ll oo X}“_l.

-1

For p=>0 we set
v,=2.oa(,..o_o,x‘;g . X;g::eaeo,

We have v=2,ng,, and setting u,=o(v,) we also have u=Z'X’2’u,

since X, is central in g,_,. For zeC we set v,=) z’v,€G,o, and
u,=0(@)=) z’u,eFpo. :

Setting p= { g, [X,, X,]) we get
d(expt X, n,) (u)=dry(Ad(exp—t X ) u)
=Y, dn, (Ad(exp—t X,) X3) dn,y (Ad (exp—t X,) u,)
=Y, (—int)f d(expt X, o) (u,) =d (eXPt X o) (Uy ).
Now for a differentiable vector @ e L? (G, n,) we have

O=drn (W) p(exptX,)

=dny (Ad (exp—t X, )u) ¢ (expt X,) forall teR,
so

dngy (Ad (exp—t X,)) u)=d (exp t X, ®,) (u)=0 for all teR,
hence, from what we saw above
d(expt X, mo) (u_;,)=0 forall teR.

Now u_; € F,o, and the induction hypothesis applied to the representation
expt X, m, then gives that u_;,,=0 for all t. But this implies that u,=0

for all p=>0, and therefore that u=0. We have thus shown that dx is
faithful on elements u of the special form considered.

Suppose now that u is arbitrary, and define for p>0 the element

”p=2.'.,)x.71‘ .- Xjnt
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so that v=) v,X%. Suppose that there exists p>0 such that v,#0, and
let g be the maximal such p. Then (ad X,)%v=gq!v, and

qo(v)=0((ad X,) v)=(ad X,) *u.

Since dn (u)=0 we also have that

;l;dn ((ad X,) *u) =dn (v,) =9,

hence that v, =0, because v, is of the special form considered above. But
this is a contradiction, so v=v,, and therefore, again appealing to the
special case considered above, u=0. This ends the proof of the lemma.

LeEMMA 2.2.13. — The restriction of dn to E, is faithful.

Proof. — We prove by transfinite induction on a € A that the restriction
of dn to E; is faithful. The result is clearly valid for the minimal
element. So suppose we have proved the lemma for all elements in A
smaller than o. For Be 4, let u, denote the element X51 ... X% in U(g),
let vy be the element X531 ... X% in S(gc), and set up=0w(vy). Let uekEy,
and write u=z, <o 9p Up and suppose that dn(u)=0. If a,=0 there exists
o’<a such that ue E¥, so u=0 by the induction hypothesis. Assume
therefore that a,#0. It follows from Sublemma2.2.8 and
Subcorollary 2.2. 10 that u,~u,elo+Y,,_ F&. Therefore we can write
u=uo+u, where u=a,u,+), _, ayup and where uo €,

Now dn (4)=0, and ue F,, so u=0 by Lemma 2.2.10. But then it follows
that a, =0, since the system (up)y . 4 is linearly independent in U(gc). This
is a contradiction and ends the proof of the lemma.

We can now end the proof of the theorem: From Lemma 2.2.11 we
get that U(go)=Io+F,=I,+E, and actually the sums are direct by
Lemma 2.2.12 and 2.2.13. But since I, = I(g) we must have I,=1(g),
and the theorem is proved.

2.3. We set I,(g), 1 <k<m, to be the kernel of the restriction of dn to
U((g)c) i- e L (@=1@)NU((g)c)- Moreover, we set

e(k)={j;<...<je} where d’'=max{1<r<d]|j,<k}.
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Let G,y F.ap E.a) have the obvious meaning (v. the beginning of
Section 2.2). Then using Subcorollary 2.2.7 and 2.2. 10 we can prove
the following result just like the way we proved Theorem 2.2.1:

ProrosiTioN 2.3.1. — If geQ,, then I, (g) is generated by the elements
(5 ®))j=1, 540 and

U((gk)c)=lk(g)®Ee(k)=lk(g)epc(k)'

We now claim that we have
@)=Y}, ;. @U@, k=1,....m.

- We prove this by induction on k. First we note that by
Proposition 2.3.1 I, (g) is the set of finite linear combinations of elements

uuj (g)v, where u, ve U((g))¢) and 1<j<k.

Now uf (g)=X,—i{g, X, ), and X, is central, so it follows immediately
that uui (g) v=u{ (g) wv so I, (g)=ui (8) U((8,)o)-

Suppose then that we have proved the result for all inte-
gers<k(<m). Since we clearly have that

L+ (®)> :::.)-1 u; @) U((8k+1)c)
it suffices to show that
Xu @)€Y, ) w@U(G+1)o)

for all Xeg, ., 1<j<k+1.

But Xuj(g)=uj(g) X+[X, uj(g)] and uj(g)=X;—irj(g), so
[X, uf @))=I[X, X;]—iad X(r](2)),

from which we see that [X, uj(g)] belongs to U((g:)c)- But obviously
dn ([X, u(g)]=0, so by the induction hypothesis

X u @eh@=1",. ., 4@ Ul

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



446 N. V. PEDERSEN

and therefore
Xuj@=uj@X+[X, u;@)eX;},. .., 5@ U(G+1)0-

This ends the proof of the claim.
In particular for k=m we get:

THEOREM 2.3.2. — The ideal 1(g) coincides with the right (or left) ideal
generated by (u}(g))]=1, j¢ & i- €. we have the formula

I@=X7,. -1 4 @U@0
This is the formula alluded to in the heading of Section 2.

2.4. We end Section 2 by showing how one in principle can find in
terms of a given irreducible representation n the element ee & such that
the orbit O associated with = is contained in Q,.

ProPoSITION 2.4.1. — If g€, and if & is the irreducible representation
of G associated with the orbit O=G g, then

e={1<j<m|drn(X))¢dn(U((g;-,)0) }-

Proof. — Suppose that dx (X))edn(U((g;-1)c))- Then dn (X))=dn (u)
where ueE, ;_,, by Proposition 2.3.1. But then X;—uel(g), so if jee
this implies that X;—u=0, since then also X;—ueE, (Theorem 2.2.1). It
follows that X;=u, and this contradicts the fact that ue U((g;-,)c). We
have thus shown that j¢e. Suppose conversely that j¢e. Then

dr (X)) =idr (7% 2)) € dx (U (8- 1)0))-

This ends the proof of the proposition.

3. An algebraic method for finding the orbit associated with a given
irreducible representation

3.1. Given an irreducible representation n of G, how does one find the
orbit associated with n? Using the results of Section 2 we shall in this
section give a solution to this problem in algebraic terms (analytically one
would, of course, use the Kirillov character formula).

We use all the notation from the Preliminaries (Section 1). In the
following we shall often identify geg* with its coordinates (E,, .. .,E,)
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with respect to the basis l;, .. ., I, in g* dual to X,, ..., X,;g=3 " &1,

We start by noting that the function g — Rj(g, x):Q, = R (for fixed
x€R’) only depends on the restriction of g to g; (in fact, the G-orbit in
g} through g;=g|g; is given by

Gg={Y!. R x)l,|xeR*}).

Moreover, since [g, g;] < g;-,, the function Rj(g, x) for jee actually has
the form
R;(gs x)=§j+ V;@a X),

where V5:Q,xR‘— R is such that the function g - V5(g, x) (for fixed
xeR% only depends on the restriction of g to g;_,. We write this
symbolically:

R;(g’x)=R;(§1’ . ',gp x)=§j+ V;(gl’ L -’gj-—l’ x)
for jé¢e.
For jée, let vj(g)=v;(&,, . . .,§;-,) be the element in U(g¢) correspon-

ding by symmetrization to the element Vj(g, —iX;, ..., —iX,)in S (g¢),
so that

ri (@) =E&;+vj(g),
and set for j¢e

tj(8)=X;—ivj(g),
or

t;(é.m . .,§1_1)=Xj-—iv;(5_,1, oo ey g]—l)'
With this notation we derive the following result from Theorem 2.1.1.

THeOREM 3.1.1. — Let neG, and suppose that the corresponding
coadjoint orbit O is contained in Q,. We can determine an element
g=(&,, . ..,&, in O inductively as follows:

(1) ik, I=dn(X,), 2) if we have determined &,, ... E;(j<m), then, if
j+1ee we can make an arbitrary choice of §;,, (e. g. &;+,=0), and if
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j+1¢e we have
i%4y I=dn(t5,, &, - - -5 &)

Now the problem of determining, for a given irreducible representation
=, the element ee & such that O < Q, is solved by Proposition 2.4.1. The
answer given there is, however, not of the same algorithmic nature as the
one given in Theorem 3.1.1 and is therefore less satisfactory. In the
following we shall remedy this situation. Our final goal is
Theorem 3.4.6. First, however, a digression.

3.2. THE MAPS a,, AND 4,

In this section g denotes a Lie algebra over C. For ne N we define the
map a,:gX ... xg(2n factors) — S (g) by

1 .
G,,(X‘, .. -9X2n)= ‘2',—"—'2,.32.318‘15[Xo(1pxc(2)] L [Xo(Zu-l)’Xa(Zu)]’

It is immediately seen that a, is an alternating 2n-linear map from
g X ... xg(2n factors) to S (g).

An element in S(g) corresponds to an element in the algebra Pol(g*)
of complex valued polynomial functions on g*. The polynomial function
P corresponding to a, (X, ..., X,,)eS(g) is

1
2"n!

P()=

Z“ShSignc(l,[X,m,X,,(z,]) X. oo X LLIXg gn-1p Xo 2wl Vs

leg*, so we see that P ()= Pf (M (I)), the Pfaffian of the skewsymmetric
matrix :

MO =<} X, X]))i<r.sc2m l€G™

In particular P (I)>=det M ().
Let C=[c,]; <,.s<20 b€ @ 21 x 2n-matrix, and set X;=Y>" ¢, X, Then
we have (the proof is immediate):

LemMa 3.2.1. — o, (X}, ..., X5,)=detCa,(X,, ..., X;,)
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LemmAa 3.2.2. — Suppose that X, commutes with all
Xy .. .5 X50—1. Then

o (X, .. XD =[X,, Xp ] 0y (Xa, - . -5 Xopey).
Proof. — The matrix M (l), leg®*, (v. above) has the form

0 0...0 <L Xy, XD
0
: M°()
0
| = <L Xy, Xo00 B— 0

Pf(M(D)= <, [X,, X5,] > Pf (M, (D)),
and therefore

oty (X, - - Xp)=[X), X3y (X, - .., Xppey).

CoroLLARY 3.2.3. — If X, commutes with all X,,...,X,, then
G-(Xl, .. .,qu)=0.
For ne N .we define the map A4,:g x . . . x g(n factors) — U(g) by

A Xy, .. X)=Y, s Sign0 X, ). .. Xpq

It is immediately seen that A4, is an alternating n-linear map from
g x ... xg(n factors) to U (g).

Let C=lc,J];<,,s<» be an nxn-matrix and set X;=3Y"_ c,X, Then
we have

LEMMA 3.2.4. — 4,(X}, ..., X])=detCA,(X,, ..., X).
The maps a, and A,, are connected in the following way:

ProposITION 3.2.5. — For X,, ..., X,,€g we have

0 Xy, Xa) =~ Ana KiK.
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Proof. — Writting, for c€S,,, Y7 =[X, 2 ;-1p X, 5] We have
o (o, (X, ..., X;,)

1 )
= '2-—,,12"31-3’3“ 00 ([X, 1p Xo2)] - - - [Xo(20-10 Xo2m))

1

= mznshsigno(o(}'} ... YO

Now
1
O)(Yl “ee Y‘)= ;iz"sl YP“) cee Yp(.),
and defining for pe S, the permutation

c,=(c 2p()-1),062p (1), ..., o (2p ()-1),
c2p () ..., 0(2p(M-1), c 2p (M),

we have that the map o — o, is a bijection of S,, onto itself with
sign o, =sign o, and

Y 0 =[Xe 2o 0-19 Xo 2o I =[Xe, 25~ 19 Xo, 2] = Yis

SO
1
o(Yy... Y‘;)=;l-!z”s_Y';v. .. Y3,
and therefore
o (o, (X,, ..., X3,)

l .
= 2'(n!)2Z’¢s-Z¢eSz.SIgn o, Yir... Yo

a¥

1 .
= WZ"SI’L‘&.S]@GY;’ e

1
2"n!

Vs, SiBNOYY ... Y7
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We next note that

Y;=[Xo(2]-l)’xc(2]l] -
= o(z;-x)xem)“ o(ZJ)Xe(zl-l)

=Xo(21-1)X-(z»+3i8nf.:x.u,(z;-:)X.u,mv
2i_ .
where T, is the transposition J . ! 2j
. 2j 2j—-1
ec{l,...,2n} and permutation c€S,, define then the permutation o*
by o*=0c°[],.. 1. In this way 6 »0c*:S,,—S,, is a bijection, and

J&e

]. For each subset

signo Yy ... Yi=) signo® Xye ) Xoe(a) - - - Xoe2n-1) Xat 2 up

)
oo, (X, ..., X5,))
1 .
= 2.n!222u.s,,s‘gnc‘xo‘u) v Xor gy
1

2.n!2421lsz.8i8noxo(‘) e XG(‘)

1
n

Y esSiB00 X0 - - - Xom

1
= —'Azl(xl, P .,Xz‘).
n!

This ends the proof of the proposition.

COROLLARY 3.2.6. — Suppose that X, and [X,, X,,] commute with all
X, ...,X3,-4- Then

Ay (Xy, .- . Xp)=n[X,, X3,]Az0-1)( X, - - -5 Xop- 1)

Proof. — This follows from Lemma 3.2.2, Proposition 3.2.5 and
Lemma 1.3.1. .

CoroLLARY 3.2.7. — If X, commutes with all X,,...,X,, then
Az.(Xl, .o .,Xz.)=0.

3.3. We now return to the situation described in the Preliminaries
(Section 1). If ee& with e#Q and if e= {j, <... <j,} we define the
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element v, in U(gc) by

_
(@/2)!
If e=@ we set v,=1. Note that according to Proposition 3.2.5 the

element v, corresponds via symmetrization to the polynomial function

1= (=)**P,(]) on g*.

THEOREM 3.3.1. — If geQ, and if n is the irreducible representation of
G corresponding to the orbit O=Gg, then

dn(v,)=P,.(2) L

Remark 3.3.2. — This was actually proved (in a slightly different form)
in [8] (Proposition 2.2.1) in a considerably greater generality. For the
convenience of the reader we give here the much simpler proof pertaining
to the present special case.

o, AX, - - X))

Proof. — The proof is by induction on the dimension of g. The
theorem is clearly valid for dimg=1 (in which case e=@, P,=1 and
v,=1. Assume then that the theorem has been proved for all dimensions
less than or equal to m—1 and that dimg=m. The case e=(J being
trivial we can assume that e# &, and write e= {j, <... <j,}.

Let 3 be the center of g, and set 3,=kerg|3. We distinguish two cases:
case (a): dim 3,>0 and case (b): dim 3, =0.

Case (a). — We use all the notation from the proof of Theorem 2.1.1,
and get

(=i
2

C(A‘(Xj‘, .. -,Xj‘))

_ (_ i)d/z

T @R
(—i)*?

T @)

c(v)=

Ay (X‘Tx)’ .. .,c(X;L))

A‘(X;‘, .. .,X;‘)=v;

and therefore also P,(Toc)=P:(l) for Teg*. By the induction hypothesis
we have dn (v =P=(g) I, and therefore

dr(v,)=dr (c(v,))=dr (v)=P:(€)I=P.(g) ],
and this settles case (a).
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Case (b). — Again we use the notation from the proof of
Theorem 2.1.1. We have

X=X, for 1<h<a-],

X;‘=XJ.+1+CJ.+]XJ‘ fOl‘ a&hSd— 1, Xf‘=x".,
so if we let C=[c,,]; <,. <« be the d x d-matrix:

1 7

C= Chug-++€ |1

where the empty entries are zero, we have X-,=Z:_ 1 € X;,, and therefore
M;()='CM,(I)C. Now detC=(—1)% so

P; ()=Pf (M; (D)=det C Pf (M, () =(-1)* P, (D),

and therefore v;=(—1)*v,. The conclusion is then that we can assume
that g,,_, =b, and this assumption will be in effect from now on.

Now recalling that j, =2, and j,=m, and that X, is central in h we get
using Lemma 3.2.2:

g2 (X5 - - 5 X3 ) =X Xy J a1 Xy -, X))
=[X2, X-] a‘lz_l (X.IY’ “sey Xﬂ_z),

and therefore P, ()= <l, [X,, X,]) P.o(l,), where l,=1|b, and similarly
v,= —i[X,, X, Jv,c (Corollary 3.2.6). By the induction hypothesis we
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get that dr, (v,0)=P,o0(g,) I, and therefore

dny (v,)= —idmo ([X, X)) dro (l".“)b= —i.i{& [X3 X,])> Po(g0) I=P.(g) ]

Now applying the above to the functional sg, se G, we have sgeQ, and
therefore .

d(smo)(v))=P,(sg)I=P.(g)] (Lemma 1.1.1),

i. e. dng(Ad(s~Y)v,)=P,(g)I for all seG, and from this it follows that
dr(v,)=P.(g)l. This ends the proof of the theorem.

3.4. Let 2=9, designate the set of all subsets of the set
{1,...,m}. We define an irreflexive total ordering < on 9 in the
following way:

(a) & is the maximal element:

bife,e#Fande={j,<...<j},e={ji< ... <js}, then e<e’ if
either

(1) d’<d and j,=j, for all r<d’

or

(2) there exists r<min {d, d’} such that j,#j, and j; <j;, where

k=min { 1<r<min{d,d'}|j,#j,}.

We let 25°" denote the set of elements in 2,, containing an even number
of elements. For ee 25" withe* @ ande= {j,<... <j, } welet M, ()
designate the d x d-matrix ’

[KLIX, XD hicracar  leg®
and set P,()=Pf (M_,()) (cf. Section 1). We set

(=p*
e = -_(ElzTA‘(XJP . ‘9Xj‘)'
If e=@ we set M,()=1, P,(D=1, v,=1. This is consistent with our
earlier notation (Section 1 and 3. 3).
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LEMMA 3.4.1. — Let ec 2% and let geQ,, with e<e’. Then
P, (g)=0.

Proof. — Since e<e’ we have e#@, so we can write
e={j,<...<js}. Ife=0 we have that g,=g, and therefore M, (g)=0,
hence P,(g)=0. Suppose that e’# ¥, and write &'={ j1<... <jz}. If
Jr=jyforallr<min{d, d'} and d>d’, then X, , . . ., X, are linearly depen-
dent (mod g,), since X , . . ., X}, is a basis in g(mod g,). But this implies
that M, (g) is singular, hence P,(g)=0. If j,<j; for k<min{d, d'} and
r<k=j,=j, we have that X,eRX, &...®RX;+g, so
X, - . ., X, are linearly dependent (mod g,) and again we find that M, (g)
is singular. This proves the lemma.

COROLLARY 3.4.2. — For all ee & we have:

Q= {geg‘

Proof. — Ihxs follows from Lemma 1.1.1 and 3.4.1.

P,(g)#0andP,.(g)=0
foralle’ e & withe'<e |~

Remark 3.4.3. — In [11], p. 525 was introcuced a total ordering <on
&* and this ordering was used also in [8]. The ordering introduced here
is different from the one from [11] (and [8]).

THEOREM 3.4.4. — Let ee D3*", and let nt be an irreducible representa-
tion of G corresponding to a coadjoint orbit 0 contained in Q,., e'€&. If
e<e’, then dn (v,)=0.

Proof. — The proof is by induction on the dimension of g. If dimg=1
there is nothing to prove, since ¢’= @ and 27*"= { & }.

Assume then that the theorem has been proved for all dimensions less
than or equal to m—1 and that dimg=m(=>3). Since e<e’ X we have
that e#Qf and we can write e={j, <...<j,}. Suppose first that
e¢=(. Then = is a unitary character, and all dn (X)), . . ., dn(X,,) com-

mute, so

(=i

A,dr(X,), . . .,d=(X,))=0
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(Corollary 3.2.7), and this settles the case e'=&5. We can then assume
that e’ # ¥, and write ¢'= {ji<... <j} }.

Let 3 be the center of g, and let geO. Set 3o=kerg|3. We consider
two cases: case (a): dim 3,>0 and case (b): dim 3, =0.

Case (@) — We use all the notation from the proof of
Theorem 2.1.1. We first reduce to the case where e = I: We can write

Xh=2‘=1 a'kXi'+Z"

where Z, €3, and where a,,=0if i,>j,. Since the Z, are central in g we
have

(=i
D¢= Td/z—)-'—A‘(le, .. "Xj‘)
(—i)‘/z n -
= @ lel. vrg=1Gr1e a,‘,A,,(X,'l, .. .,X"‘).

-

Now a necessary condition for the non-vanishing of the term in this sum
corresponding to the multi-index (ry, . . .,r)) is: i,, <j,, . . ., ,,<js and the
set {i,,...,i,,} contains d clements. Suppose then that (r,,...,r,) is
such a multi-index, and write {i,,..., i, }={j;<...<j,}=e. Itis

then immediate that e<e. The conclusion is that we can write v, as a

linear combination of elements v, where E§e-<e’, and where ecl. So
we just have to show that if e<e’ and if e < I then dn (v,)=0. So assume
that e<e’ and e c I, write e= {j, <... <j;} = {ij;;<... <ij;,}, and set
e={ji<...<j} €D We have e={is<...<ij}, where
{fi<...<je}=J;=&, and clearly é<&. As in the proof of
Theorem 2.1.1 we see that c(v,)=v;, and therefore, using the induction
hypothesis, 0=dn (v;))=dn (v,). This settles case (a).

Case (b). — Apgain we use the notation from the proof of
Theorem 2.1.1. We have that j;=2, so, since e<e’, either j,=1 or
Jji=2. Ifj,=1, then v,=0, since X, is central. We can therefore assume
that j, =2.
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Set p=min {1<j j<m|X,¢h}. We then construct the Jordan-Hélder
basis X,,...,X,, and we sec that pee’, so we can write p=j, with
2<a’'<d’. We then distinguish two subcases: case (b1): pee and case
(b2): pée.

Case (b 1). — Write p=j, 2<a<d. As in the proof of Theorem 3.3.1
We have U;m 1) ve, where e= (1 <- - - <Ja}» Ju being defined by j,=j, for
1<h<a—1, jy=j,+;—1 for a<h<d—1 and j,=m. Setting
e—J—{Jl . <ju}, we see as in the proof of Theorem 3.3.1 that
Jw=js for 1<h<a—l fo=jis1—1 for a’<h<d’'—1 and jo=m. It is
easily seen that e<e’. (In fact, suppose first that d>d’ and j,=j for all
r<d’; then a=a’, and j,=j’ for all r<d’—1, while

Je=jer1—1<m—1<m=j,, so e<e'

Suppose next that k<min{d, d’'}, that j, <j; and that r<k =j, =j,. If
k <a, and if also k<a’ we clearly have e<e’, and if k>a’ we actually
have k=a’, since k >a 1mphes that p= Jir =jo <Jx <jo=p which is a contra-
diction so, r <a’ = j,=j, =j,=j, while j,. =ji. . ; — 12j; =p=j,>jq- s0 again
e<e. If k>a, then j,=ji,...,jo—1=j.o1<p and p=ja<j,, implying
that j,=p, and therefore that k >a, and that a=a’. But then we clearly
have j,=j, for r<k—2, ji_,>ji—y, S0 again e<e’.) We have thus reduced
- to the case where g,,_,=bh and j,=m. We shall then assume that this is
the case from now on. We get as in the proof of Theorem 3.3.1 that
v.= —i[X,, X,Jv., where

e={}<...<ji-2} ={j2<... <Ja-r}-
Now clearly e®<e’®, where
={j’<...<j@f-2}={i2<... <Je-1}

(v. proof of Theorem 3.3.1). (In fact we cannot have that d>d’ and
J,=Jj, for all r<d’, since j;,=m. Therefore there exists k such that j, <ji
and r<k = j,=j,. Clearly 2<k<d’'—1, and therefore j°=j/° for all
r<k—1andj_, <ji%,, so e®<e®.) By the induction hypothesis we then
get that dn, (v,0)=0 and therefore that dr, (v,)=0.

Applying this to the functional sg, seG, we get similarly that
d(smy) (v,) =0, i. e. that drny(Ad(s™!)v,)=0 for all seG, and therefore,
as in the proof of Theorem 3.1.1, we get that dn(v,)=0. This settles
case (b1).
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Case (b2). — Here p¢e. Suppose that d>d’ and that j,=j, for all
r<d'. This would imply that pee which is a contradiction. So there
exists k<min {d, d’} such that r<k = j,=j; and j,<ji. Suppose that
k>o’. Then o’'<min{d, d’} and j,=j,=p which is again a con-
tradiction. So k < a’. Therefore j, <ji <j.=p. Set

a = min{1<r<d|X; ¢b}.
Then j,_, <p<j, and k<o

Define é= {j,<... <j;}, where j,=j, for 1<h<a-—1, j,=j,—1 for

a<h<d.
Then
X,=X, for 1<h<a-l,

X,=Xj—c, X, for a<h<d
(in fact, X,=X, for 1<j<p—1 and X,=X,+,+c,“ X, for pgj<m—1,

so X=X, for 1<j<p—1 and X;=X,,,+¢,;,, X, for p<j<m—1, so

X,=Xj_, —c,X’_ for p+1<j<m, and from this the relations follow), and
therefore

(=i
b= 44K K K+ X)
_(=*

= @ A‘(X’;l, .. "Xf-—v X;.—c,-x., .. .,X;‘—cj‘}?_).
For a<t<d, define the element e e 25** by

b= (i< <fomr<...<Jfe<. .. <fo<m}

(={fi<...<ji}). Since 4, is alternating we then get
(=i
”¢=WAJ(Xf1""’Xf.-1'Xf ...,Xf‘)
(=" < . ‘ .
+—— —c, A%, ..., X X . X, L X,
(d/Z)! =a Je ‘(111 fj.-l 1. T-’ 11‘)
1 a—1 [ L 4 d

d
=v,-+z'_.(— 1! CjeVss
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Now since e < {1,...,m—1} and since X, =X, is central in h we get
that v;=0 (Corollary 3.2.7). We then claim that ¢, <e¢ for all
a<t<d. Infact, forr<k we havej‘,‘,=f, (since k Sa—1)=j,=j,=j, (since
k<a’), and ji =j, (since k <a—1)=j, <ji<f} (“=" if k<o, and if k=a,
then j,=p<ji,,—1=j). This shows our claim.

It now follows from case (b1) that dx(v;)=0, for all a<t<d, and
therefore we finally get that dn(v,)=0. This settles case (b2), and ends
the proof of the theorem.

CoRroLLARY 3.4.5. — If geQ,., if & is the irreducible representation of

G corresponding to the orbit O=Gg and if ee D™ with eX¢’, then
dr(v,)=P,(g) I

Proof. — This follows from Corollary 3.4.2, Theorem 3.3.1 and
3.4.4

Let, for eeé&, E, denote the set of irreducible representations x of G
whose associated coadjoint orbit is contained in €, Using
Corollary 3.4.5 and 3.4.2 we get.

THEOREM 3.4.6. — For all ee & we have

dr(v,)#0and dr (v,)=0
foralle e & withe’ <e |

We can now give a satisfactory answer to the question posed in the
beginning of this section: Given an irreducible representation n of G we
use Theorem 3.4.6 to find the ee& such that the coadjoint orbit O
associated with n is contained in Q, and then proceed using
Theorem 3.1.1 to find the orbit O itself. In an obvious way we also get
an algebraic way of chechking whether a given representation of G is
factorial, and, if so, of finding the orbit associated with it.
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4. An application concerning the continuity of the trace

Let A be aC*-algebra.

4.1. First we recall what it means that A is with generalized continuous
trace: Set n=n(A) to be the set of elements x in A4 such that the
map x — Tr(r(x* x)) is finite and continuous on A. n(A) is a selfadjoint
ideal in A. Furthermore set m=m(A4)=n?. m is a heriditary ideal in 4
contained in n, and it has the same closure in A as n. Set J(A)=
m (A)=n(A) which is a closed ideal in 4 (cf. [2], p. 240).

There exists an ordinal a=a(A) and an increasing family of closed
ideals (Jp)o<p<o Such that (a)Jo= {0}, J(4/J)={0}, () if P<a is
a limit ordinal, then J; is the closure of Up <pJp, (c) if B<a, then
Jp+1/Jp=J(A/Jg)# {0}. Furthermore o and the family (Jp)o<p<q are
uniquely determined by these properties ([2], p. 242).

The C*-algebra A is said to be with generalized continuous trace (GCT)
if J,=A (2], Définition 4, p. 243).

4.2. Suppose that B is a dense *-subalgebra in 4. We now define
what it means that A is GCT with respect to B: We set n,(B)=n(4) N B,
and we set m,(B)=n,(B)>. Then n,(B) and m,(B) are twosided *-
ideals in B. We set J,(B) to be the closure of m,(B) in A. Then J,(B)
is a closed ideal in A.

Using transfinite induction we get a result analogous to the one
above: There exists an ordinal a=a,(B) and an increasing family
(Jpospsa Of closed ideals in A such that:

(@) Jo={0},J 4, (B+J/J)= {0}, (b) if P<a is a limit ordinal, then
Jp is the closure of Uy <p Jg:, (€) if p<a, then

Jos1lp=J sy (B+Jp/Jg)# {0}.

Furthermore a and the family ( Jp)o <p<. are uniquely determined by these
properties.

We say that A is with generalized continuous trace with respect to B if
J,=A. Clearly, if A is with generalized continuous trace with respect to
B, then A is with generalized continuous trace, and a(4)=a,(4)<a,(B).
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For 0<B<a not a limit ordinal we set #,(B) to be the inverse image
in 4 by the quotient map of m,,, (B+Jy_/Jy_), where p— is the
immediate predecessor of B, and we set #,(B)=0.

4.3. Let G be a connected, simply connected nilpotent Lie group with
Lic algebra g, and set A=C*(G). In [4] Dxmier showed ([4], 8.
Théoréme, p. 117):

THEOREM 4. 3. 1. (Dixmier). — A is GCT, and a=a(A) is finite.

Set B=CX (G) which is a dense *-subalgebra of A. In the next section
we use the results of Section 3 to prove the following.

THEOREM 4.3.2. — A is GCT with_respect to B, a=a,(B) is finite and
F.(B)=B.

4.4 Let g=g,>O8p-12 ... D28, Dgo={0} be a Jordan-Holder
sequence for g, and retain the notation from the Preliminaries
(Section 1). Write &= {e,; < ... <e,=J}, set So={0} and set for
1<j<n

F1=Y,¢,C=(G) %02, %v,, % C= (G).

Then S, 0<j<m, is a two-sided *-ideal in C°(G), and since v, =1 we
have a finite composition series

C:,(G)=Jn3-’-1:... D"l DJ0={0}.

Set #, 0<j<n, to be the norm closure of f;in C*(G). Each #; is a
closed ideal in C*(G) and gives rise to an open subset % of G (namely:
F={neG|n| 5,#0}). SetF=V, We then have a finite composition
series

G=V,oV,_,>...5V,o2V,=0,

into open subsets.
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Let us then note that the restriction of = to v, * C® (G) is zero if and
only if dr(v,)=0. Therefore we get from theorem 3.4.6:

LEMMA 4.4.1;

E,,={xeG|x|S5,#0 and n| £, =0 for all j <j}.
COROLLARY 4.4.2:

E¢]= Vj\ Vj—l alld V1=Ur“'s‘r.

ProposITION 4.4.3. — If pe S, 1<j<n, then n— Tr(n(9)) is conti-
nuous on [ V;_;=U,<; E,,-

Proof. — Let m, be a sequence in [ V;_, such that n, »neG. We
have to prove that Tr(x,(@)) = Tr(n(9)). We can clearly assume that
all the x, belong to one E,, for j'>j, and since each [V is closed we
have that neE,, for j">j. Now if j*>j'>j we have that n(¢p)=0 and
n,(p)=0 (Lemma 4.4.1) for all n, so this situation is trivial. Suppose
then that all =, are in E,, so that neE,, with j'=j. It is no loss of
generality to assume that ¢=@, *v7 *v, *@, where ¢,,9,€C”(G).
But =, (¢)=|P,,8)|*x.(p; * @), where g, is a functional in the orbit
0, of m, (Theorem 3.3.1), and similarly n(@)=|P, (g)[>x(e,* @),
where g is a functional in the orbit O of n (Corollary 3.4.5). We can
assume that g, and g have been selected such that g, —» g [1]. Suppose
first that j’>j. Then P,J(g)=0, since geﬂ,], (Lemma 3.4.1), and we
therefore have to prove that Tr(xn,(p)) =0 for n - 0. Now using e. g.
the formula on p. 12 in (8] specialized to the nilpotent case we find

1
| P, (g.) I O'Wdﬂo, U]

S(ZR)—‘IZM(d"'l) e M(Z)(= 1—3——l(d—i-)-) < + 00,
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where ||1|*=37_,|<LX,> [ leg® By, is the canonical measure of the
orbit O, and where

+ o l
Mk)= —_—dx fi k>0.
® L 1+ o

Since @, * @,cexp is a C™-function on g with compact support, its
Fourier transform

(¢, * @, oexp) ‘(I)= J-g% * @, (expX)e <+ X>dx

is a Schwartz function on g*, hence there is a constant K such that
(1+ [ 272 | (o, * @5 0exp) " (D] <K,

for all Ieg*. But then using the Kirillov character formula and the result
from above we get

| Tr (. (@) | = | P, @) || Tr (s (5 * 92)) |

=|P, ()’ II (@, * @ °exp) (DdBo, ()
o,

K
< IP.,(g.)I’_[

o T TPy o0

<|P,@)|KQm) ™ *M@+1)... M(2)—>0

for n— oo, since P,I(g,)—bP,J(g)=0. This settles the case j'>j. The
case j'=j is handled by the following lemma:

LemMMa 4.4.4. — The function n — Tr(n(9)), @€ CZ (G),is continuous
on each of the subsets E,, ec 8.

Proof. — First, find a constant K> 0 such that
(14 ||1]H“* 2 (@oexp) () <K for all Ieg*.
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Let g,, 80€Q, with g, — g, and let &, n, be the associated irreducible
representations. Set

Va(X)=(poexp) (L., Ri (. x)]), xeR%, n>0.

Then ¥, is a Schwartz function on R‘ and {, converges to Y, uniformly
on compact subsets. Now

| Tt (=, (@))—Tr (x (9)) |

J‘ ((poexp) (2131 Re(gm x) l])dx

P

P (go)J‘ (q, cxp) (Zjﬂl (go’x)lj)dxl

(P (g_)w.( 0= (go)""’("’)""

<|
t-c.cr

Vo (x)|dx

P(g.) ”'P . 20)

‘|
R4\ [-c.cr

where C>0. But the last integral is smaller than

‘l’o (X) dx,

P(gu)‘l’.( )— c(go)

K 1
dx
P,.(g) re\ t-c.cr(1 +ZT=1|R5(8,., x)|2)““' 1)/2
+ - : dx
P.(80) Jai \ -c.cp (1 +Z;'___l | R:(g, x)l 2y@+1)72

K 1

< dx, ...dx
P,(g,) Jri\ (~c.cf(1+xi+. .. +xPe+ni 1 7]

K 1 »
P,(go) Jwi\ (-c.cr(1 +x3+.. +x2)(d+1)/2 &
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Now chosing for a given €>0 the number C>0 such that the last expres-
sion is smaller than &/2 for all n (which is clearly possible) we get that

1 1 €
h—(gs‘l’. (x)— P. @0 Vo (x)|dx+ 3

|Tr (x, (@)~ Tr (n(®)) | < j
-c,cr

for all n. But this shows that Tr(=, (o)) — Tr(n(9)) since {, converges
to Y, uniformly on compact subsets.

COROLLARY 4.4.5. — Theorem 4.3.2 is true.

Proof. — Setting

&, = {9€C®(G)|n - Tr(n(¢* * ¢)) is continuous }

we have that #,(B)=R}, and since v, *C?(G) =K, (Proposi-
tion 4.4.3) we have that .$, c #,(B). But this shows that £ = J, (B),
hence [ J,(B) <[V, Set

K, = {9eC?(G)|n = Tr(n(¢* * ¢)) is continuous on { J, (B) }.

Then, since [ J,(B) [V, we have by Proposition4.4.3 that
v,*C(G) and v,*C?(G) are contained in &,  hence
S, c /2= _¢,(B). Continuing like this we see that the sequence ¢, (B),
F2(B), ... stops at C®(G) in finitely many steps. This ends the proof
of the corollary.

Remark 4.4.6. — By Dixmier’s result (Theorem 4.3.1) we have a
canonical composition series of A=C*(G):

C‘(G)=J¢:J¢—l 2., DJl DJ°= {0}

by a finite sequence of closed two-sided ideals. By our result (Theorem
4.3.2) we have a canonical composition series of B=C2 (G):

CC@)=Ss> Ip-1>... > 4,2 5,={0}
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by a finite sequence of two-sided *-ideals in C®(G): In connexion with
these two composition series we would like to raise the following problems:

(1) is a=p (clearly a<B, ¢f. above)?
(2) if so, is #, dense in J, (clearly #, < J)?
Let I; be the two-sided *-ideal in U(g¢) defined by
L={ueU(gd |C2(G)*uxC>(G)e f,}.
We then have a canonical composition series of U (g¢):
UGd=loIly_;>... o1, 21,={0}
by finitely many two-sided *-ideals.
(3) is C2(G)*I;* C> (G) dense in ¥ (clearly
CPG)*1;*C>(G)c f)?
Of course the answer to the questions posed above will be affirmative
if it is true that whenever = is an irreducible representation of G such that
dn vanishes on I, then = [considered as a representation of C*(G)] vanishes

on J; (it is clear that if x vanishes on J; then dn vanishes on I).

(4) is there an algebraic characterisation of the ideals I;?
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