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ON THE BOREL CLASS
OF THE DERIVED SET OPERATOR

BY

DOUGLAS CENZER and R. DANIEL MAULDIN(*)

RESUME. — Soit X une espace topologique metrisable compact, 2X Fespace topologique des
compacts de X avec la topologie de Hausdorff et soit D la derivation de Cantor. Kuratowski a
demontre que D est borelienne et precisement de la deuxieme classe, et a pose Ie probleme de
trouver la classe precise des derives successifs D". Nous demontrons que les classes precises sont
non bornees dans o>i; D" n'est pas de la classe a et si ̂  est un ordinal de scconde espece, alors D^
est precisement de la classe A, + 1.

ABSTRACT. - KURATOWSKI showed that the derived set operator Z), acting on the space 2^ of
closed subsets of a metric space X, is a Borel map of class exactly two and posed the problem of
determining the precise classes of the higher order derivatives 0s. We show that the exact
classes of the higher derivatives D" are unbounded in ©i. In particular, we show that D* is not of
class a and that, for limit ordinals A D^ is of Borel class exactly A + 1. The proof involves the
construction of a sub-lattice ̂  of the space of closed subsets of2jv on which (1) both the union
and intersection maps are continuous lattice homomorphisms, (2) Z) is a lattice homomorphism,
and (3) the derived set order map is a lattice homomorphism, and (3) the derived set order map is a
lattice homomorphism into (Oi.

Introduction

In this paper, we consider the Borel class of the derived set operator D and
its transfinite iterates D°1, acting on the space 2X of closed subsets of a metric
space X. The study of this operator seems to have been initiated by
KURATOWSKI [5]. In section one, we recount his result that the operator D is
exactly of class two. Many years later, KURATOWSKI [8] posed the problem
of determining the precise classes of the operators D9 (also known as the
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358 D. CENZER AND D. MAULDIN

derivatives of higher order). We obtain in section one simple upper bounds
for the classes of these operators.

The remainder of the paper deals primarily with the more difficult problem
of finding some lower bounds on the complexity of these operators. In
section two, we demonstrate that the exact classes of the operators D9 are
unbounded in coi.

In sections four and six, we prove that, for each countable ordinal a, the
iterated derived set operator Z)°1 is not of Borel class a. Combined with
results from section two, this shows that for limit ordinals 'k, D^ is exactly of
class X + 1. Section four contains the finite case and section six the infinite
case; the two cases require slightly different methods.

We actually show, for each a, that the family (2)a)~ l({0}) of closed
subsets F of the Cantor set (2^) such that D^F) = 0 is not both of additive
and multiplicative class a. This follows from the construction, for each
subset A of NN of additive class ex (if a is even) or multiplicative class a (if a is
odd), of a continuous function H mapping N^ into the space of closed subsets
of 2N such that A = H~1((DV)~1({0})). The argument outlined here is
easily accomplished for a = 1. The proof then proceeds by transfmite
induction on a. The induction step requires that the continuous
mappings Hn constructed for sets A,, be nicely "stitched together" into
mappings which will serve for u An and n A^

Difficulties arise both in assuring the continuity of the stitched function H
and in controlling the derived set order of the images H(x). These difficulties
are primarily due to two unfortunate facts : (1) The intersection map from
2X x 2X into 2X is not continuous; (2) The derived set operator D is not a
lattice homomorphism on the lattice of closed subsets of X — — D(F n G)
does not always equal D(F) n D(G}.

To overcome these difficulties, we describe in section five a sublattice ^ of
the space of closed subsets of 2^ where the behavior of various operators is
more cooperative. In particular, both the union and intersection maps will
be continuous lattice homomorphisms, the derived set operator D will be a
lattice homomorphism and the derived set order map will be a lattice
homomorphism from ^r into co^. In addition, a stitching operator from
^rfi into ^V will be defined which is continuous and which commutes
with D. In effect, the stitching operator builds sets of higher derived set
order and the operator D serves to unstitch the set constructed. In section
six, we use this machinery to obtain lower bounds on the Borel classes of the
operators Z)01.
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BOREL CLASS OF DERIVED SET OPERATOR 359

In section four, a slightly different stitching operator with similar properties
is used to obtain better lower bounds on the Borel classes of the finitely
iterated derived set operators £>". The needed machinery is developed in
section three.

Some open problems are stated in section seven.
It should be mentioned that the derived set operator has been studied

recently as an important example of derivation [2, 3], as an inductive
operator [1, p. 61] and as a classical operator [4, 11]. It has also played a
useful role in selection theory [12].

We would like to thank the referee for carefully reading and correcting the
original manuscript.

1. The Borel class of the derived set operator

Let (X, p) be an uncountable compact metric space. The space 2^ of
closed subsets of X, provided with the exponential topology [2, p. 45] has a
subbase of open sets of two types, for any open V a X :

C(V)={F:Fc V]
and I(V) = { F : F n V ^ 0 } .

Note that each C{V) is of the form [jnIW and also each I(V) is of the
form (J^C^y. It is easily seen that the space 2^ is also compact and
metrizable.

The Borel class of a set or mapping may be defined as follows. Open sets
are of additive class zero or ̂ ?; closed sets are of multiplicative class zero or
Y^' For any ordinal ex, a set is of additive class a or ̂ ?+1 if it is a countable
union of sets of Borel class < a; similarly, a set is of multiplicative class a or
f]^ i if it is a countable intersection of sets of class < a. For limit
ordinals ̂  a set is ̂  if it is ̂  for some a < ^. This differs from modern
usage, where ̂  = our ̂ -n. Our notation is designed to agree with the
definition of a map of class a. A mapping H is of Borel class out H ' 1 ^ ) is
^4.1 for any open set V. A set or mapping is Borel class exactly a if it is of
class a but not of any class < a.

The derived set operator D maps 2X into 2^ and is defined by

D(F) = F = {x: xeCl(F - {x}) .
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360 D. CENZER AND D. MAULDIN

Note that D(F) is also { x: F n V is infinite for any open V containing x}. In
this section we recall KuratowskTs theorem [5] that the operator D is of
Borel class exactly two.

This means that (1) for any open M <= 2X, D^\M} is a G^ set and (2) for
some open M c: 2^, D~\M) is not an Fy set.

To prove part (1), it suffices to consider only subbasic open sets.

LEMMA 1.1.— For any open V <= X, { F: F n V is finite } is an Fy subset of 2X.
Proof. - Since {F: F n V is finite} = \J^ { F: |F n V\ < m }, it is sufficient

to show that { F: \F n V\ ̂  m} is open for each w. Suppose now that
\FQ r\ V\ ̂  m; then are disjoint open subsets V^ ..., V^ of V such that
FQ n V, ̂  0 for each i. Let M be the open set I(V^) n I(V^ n ... n I(Vj;
then FQ ̂  M <=. { F: \F n V\ > w }, proving that the latter set is open. D

Now fix an open subset V of X and, for each n, let

[/„ = {x: p(x, X - F) < t/n} and let
^ ={x:p(^X-F)>; /n} .

Then

D-^V)) = {F: F' <= V} = (J, {F: Fn U^ is finite}

and is an F<y set by Lemma 1.1.

D-^V)) = {F: F'n V ^ 0^ = (J, {F: Fn ̂  is infinite}

and is therefore a G^ set.
This shows that D is of Borel class 2; we next show that D is not of Borel

class one.
First of all, notice that {0} = {F: F c 0} = {F: FnJ!f= 0} is both

open and closed. If D were of Borel class 1 then D~l({0}) would have to be
both Fy and Gg. Now D ~ ̂  {0}) = { F: F is finite} and is therefore an Fy set
by Lemma 1.1. Also, D~~l({0}) is dense (each nonempty C(V) and I(V)
clearly contain finite sets).

Now suppose that X is perfect, that is, D(X) = X. Then

2 ^ - D - 1 ( { 0 } ) = { F : F is infinite}

is also dense (each I(V) contains X and each C(V) contains some closed ball);
this set is Gg. If D ~ l(0) were also G(, then we would have disjoint dense G^
sets, which is impossible in a compact space.
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BOREL CLASS OF DERIVED SET OPERATOR 361

Finally, any uncountable space X = P u S for some perfect P and
countable S. The argument above leads now to disjoint dense 65 sets in the
closed subspace 2^ which is again impossible.

This completes the proof of the following.

THEOREM 1.2. — For any uncountable, compact metric space X, the derived
set operator is of Borel class exactly two.

The yfth iterate D9 of the derived set operator D may be defined
for all ordinals a by letting D^^F)^ D(Da(F)) for all a and
D\F) = n {D^F): a < ^} for limit ordinals X,. (Of course D°(F)
= F.) One direction of Theorem 1.2 has a natural extension to all the
iterates of D.

THEOREM 1.3. — For any finite n and any limit ordinal \:
(a) D" is of Borel class In;
(b) D^ is of class X + 1;
(c) D^" is of class ). + 2n + 1.
Proof. — For n == 1, this is simply part (1) of Theorem 1.2. The remainder

of the proof proceeds by transfmite induction. There are two cases.
(Successor): Let U be an open subset of 2X. For any ordinal a,

(D^I)-I(U) = {D^^D'^U)).

By the (n == 1) case, D'^U) == \J» Qmv^ m) ̂  some open sets V(n, m).
Then (D^1)'"1^) = UnOmW^^ m))- Now if a = n and D" is of
Borel class 2n, then each (DT \V(n, m)) is of Borel class 2n, so (D^1)" ̂ U) is
of Borel class 2(n + 1). Since U was arbitrary, the operator D"+1 is of Borel
class 2(n +1), which completes the proof of part (a). The prof of part (c) is
similarly obtained when a = ^ -h n.

(Limit): Let ^ be a countable limit ordinal. By the induction hypothesis,
we may assume that, for all a < .̂, D9 is of Borel class < 'k. Recall that
D\K)^ r^D^X): a< ^.}, so that for any closed subset K of X and
any open subset U of 2X, K e{D^)~ ̂ U) if and only if n { D^K): a < ^} e C7.
To show that D^ is of Borel class ^ -h 1, it clearly suffices to show that
(J^)-1^)) and (D^-^C^)) are both ^?+i for any open subset F
of X. Now by compactness, (^{P^X): a<X}eC(F) if and only if
D^K) c: V for some a < ̂  So, (Z^)- ̂ CW) = u {(D^-^V)): a < \}
and is of additive Borel class .̂ Let V = (J, M^, where each M^ is
closed.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



362 D. CENZER AND D. MAULDIN

Then
K^D^-^V)) ̂  (3n) D\K) r\M^ 0

<^(3n)(Va<3l) D\K)r\M^^0.

The second equivalence follows from the compactness of X. Restating, we
have

(DY\I(V)) = U" O^WWJ).

Thus, (D^^V)) is of additive Borel class K + 1. Therefore, Z^ is a
mapping of class X -I- 1.

The remainder of this paper is devoted primarily to finding lower for the
Borel classes of the mappings D".

2. The mappings Z)0 are of unboundel Borel class

In this section, we prove that when X is the Polish space 2N there is no
countable ordinal P such that each mapping D" is of Borel class P.

LEMMA 2.1. — (Sierpinski-Mazurkiewicz) For any analytic subset A of a
Polish space X, there is a closed subset M ofX x 2^ such that, for all x, x e A if
and only if M^ is uncountable. (M^ = [y: (x, y)EM].) D

Let A be an analytic of a Polish space X and let the closed subset M of
X x y be given by Lemma 2.1. Define the upper semi-continuous map ̂
from X into the space of closed subsets of2N by ̂ f(x) = Mj, [6, p. 58]. Since
any closed set F is countable if and only if D^F) = 0 for some countable
ordinal a, we now have:

n ^-A^u.^"^)'1^}).
LEMMA 2.2. — The decomposition (*) satisfies the Boundedness Principle,

that is, for any analytic subset E of X — A, there is a countable ordinal P such
that Ec:^-l(D^~l({0}).

Proof. - Let T = (E x 2^) n M. Then T is analytic and, for all x, either
Tx= 0 OT Tj,= M, and xeX — A, so that 7^ is closed and countable.
Thus for each x, D^TJ == 0 for some countable ordinal ?„, that is, T, is
scattered. Now by a theorem of the second author (Theorem L of [10]),
there is a countable ordinal P such that D\T^ = 0 for all xeX.
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THEOREM 2.3. — There is no countable ordinal P such that each mapping Z)' 15
of Borel class P.

Proof. — Suppose by way of contradiction that the Borel classes of the
mappings D" were bounded by the countable ordinal P. Let A be an
analytic subset of X =2N x 2N which is universal for the analytic subsets of
2N. Then the sets ^|/"1W1({0}) in the decomposition (*) of X - A
would all be of Borel class P + 1. But this would now imply, since A is
universal, that every Borel subset of 2^ is of Borel class P + 1, which is of
course false. (This argument is given in Theorem 3 of [10]).

3. The first stitching operator

In this section, we study the action of the derived set operator D on the
space Jf of closed subsets of 2^. A needed characterization of the set of
continuous maps from an arbitrary space into ^f is given. A countable
subset S of2N is defined and the action o fDonJfn P(S) is described, where
P(S) is the family of subsets of S. A continuous stitching operator ^) is
defined for sequences of sets from P(S) and it is shown how the derived set
order, of the resulting stitched set may be determined from the orders of the
components. (The derived set order o(K) of a scattered set K is the least
ordinal a such that D^^K) = 0).

Recall that the space 2N has a countable basis of clopen sets of the form
B(s) = { x: (Vi < k) x(i) = e,}, where s = {CQ, e^, ..., e^-1) is a finite
sequence of Os and Is.

Let V be an open subset of 2^ then V = u { B(Sn): n e N } for some sequence
{s^: n e N }. Recall that the space Jf has a subbase of sets of the two forms
C(V) == { F: F c V} and I(V) = { F: F n V ^ 0 }. Now it follows from
compactness that

(3.1) C{V) = u { C(B(so) u B{s,) u . . . u B(s,)): neN }.

Of course it will always be true that

(3.2) I ( V ) = u { I ( B ( s ^ ) : n E N } .

Thus in fact JT has a subbase of sets of the form I(V) and C(V), where V is
clopen. Also, since the sets C{V) and 1(2^ - V) are complements, these
subbasic open sets are actually clopen.

BULLETIN DE LA SOCIElt MATHEMATIQUE DE FRANCE



364 D. CENZER AND D. MAULDIN

Now let V be a clopen subset of 2^ and let
2N-y=B(s,)uB(s2)u...uB(s„).

Since F <= V if and only if Fn(2^ - ̂  == 0, we have C(V) = jf - 7(2^
- FQ. That is,
(3.3) Jf - C(n = J(B(5i)) u ... u J(B(sJ).
Equations (3.1, 2 and 3) can now be combined to yield

LEMMA 3.4. — Let H map the topological space X into Jf. Then H is
continuous if and only ifH ~ ̂ ^(s))) is clopen for every finite sequence s of^ 0 "j
and " 1 " .̂

For any (finite or infinite) sequence xof'O "s and<( 1 "j, let { WQ, WQ + m^
+ 1, Wo -I- Wi -h W2 + 2 , . . . } enumerate {n: x{n) = 1}; then x will be coded
by the sequence Qn(x) = < WQ, w^, ma, ... >. (Slanted brackets "< ... >"
will always indicate such a code.) The coded sequence

u=<u(0),u(l),...>
is said to be a subsequence of v = < i?(0), u(l), ... > if there is an increa-
sing function / mapping the domain of u into the domain of v such that
u(n) = v(f(n)) for all n, this is written u < v.

Define the countable subset S of 2^ to he
{x:(3w)(Vn>w)x(yi)==0}.

Then for x e 2^, Qn(x) is finite if and only if x 6 S. An element of S will usually
be identified with its code. If x(n) = 0 for all n, then Qn(x) = < >; x is also
denoted by 0. For any 5 = < mo, w^, ..., m^-i > and

t = <no, HI, ..., nj-i>, let s*t =st = <mo, ..., m^-i, yio» - • • » ̂ -i >»
the length 1(5) = k. For and F c S and any 5€S, let F[5] = {t: s t e F } .
It should be noted that the subsequence ordering < on 5 does agree with the
usual Kleene-Brouwer order.

The action of the derived set operator on Jf n P(S) is described by the
following.

LEMMA 3.5. — For any closed subset F ofl^ which is included in S, any s, t e S
and any countable ordinal a:

(a) seD(F) ̂  (Vm)(3n > w)F[5 < n >] ̂  0;
(b) steD^F)^ teD^F^s]).
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BOREL CLASS OF DERIVED SET OPERATOR 365

Proof. - Part (a) just restates the definition of the derived set in terms
of 2^. Part (b) is proved induction on a. If a = 0 or is a limit ordinal, (b) is
obvious. Now suppose that (b) holds for a. Then

steD^1 ̂  (Vm)(3n > m) D^^st^n^ ̂  0

^ (Vw)(3n > m) (D^s-]))^ < " >] ̂  0
^reD'-^FCs]).

The first and last equivalences come from part (o); the middle equivalence is
by the induction hypothesis.

For each n e N u { - 1}, there is a canonical subset €„ of S having derived
set order n: C, = {seS: l(s) < n}. It can be seen that, for each n, €„ is
closed, D(C^ +1) = €„ and o(CJ = n. (These last two follow from Lemma 3.7
below.) Also, u { €„: n e N } = S; S of course is not closed, since it is dense
in y.

Notice that, for each n, C^i = { < m > 5 : meN and 5 € C ^ } u { 0 } .
We define the first stitching operator with this in mind.

DEFINITION 3.6. — For any sequence F==(Fo,Fi , . . . ) of sets from
JT n P(5), <D(F) = {0} u { < n >s:seF, and neN].

LEMMA 3.7. - For an^ sequence F = (Fo, F^, ...) of sets from Jf n P(S) and
an^ natural number k:

D^^F}} = J ̂ ^o). ̂ W, ...) ifW(3n > m) D^) ̂  0;
v v // 1 W^CFo). ̂ ^(^i), ...) - {0} otherwise.

Proof. - Let F = (D(F) and note that F[<n>] = F^ for all n. We need to
prove that < n > r e D*+ ̂ F) if and only if t e D*+ ^F^) and that OeD^^F) if
and only if infinitely many D^FJ are nonempty. The first equivalence
follows from Lemma 3.5 (fc), since

< n > teD^ \F) ̂  OeD^^F^ n > r])
OeD^F^])
reD^^FJ.

Restating, we now have

W[^>3=WJ.

BULLETIN DE LA SOCIETEMATHEMAT1QUE DE FRANCE



366 D. CENZER AND D. MAULDIN

The second equivalence now follows from Lemma 3.5 (a), since

OeD^^F) = D(D\F)) ̂  (Vm)(3n > m) D\F)^ n >] ̂  0

^ (Vw)(3w > w) W,,) ̂  0. D

It follows from this lemma that if each F, has finite derived set order and if
FQ cr F^ c F^ c ..., then

o(0(Fo, ̂ i, ...))= sup{o(FJ + 1: neN}.

This fact and the Lemma above could be extended into the transfinite;
however, we are only interested in the finite case.

The continuity of the first stitching operator is given by

LEMMA 3.8. — Let (HQ, Jfi, . . . ) be a sequence of continuous functions
mapping a topological space X into the space of closed subsets of2N such that
each H^(x) c: S. Then the function H, defined by

H(x) = WoW, H,(x\ ...)),
is also continuous.

Proof. — Recall from Lemma 3.4 that H is continuous if and only if
H~l{I{B(s))) is clopen for any finite sequence 5 of Os and Is. Thus we may
assume that each H^ ̂ /(^(s))) is clopen. There are two cases.

(i) If s = 0" for some n, then H-^^s))) = X.
(ii) If s = 0"lt for some n and t, then

H-l(I(B(s)))=H^(I(B(t))}.

It follows that H is continuous.

4. Z)" is not of Bore) class n

Recall from the proof of Theorem 1.2 that for any uncountable compact
metric space X, the family D ~ t { { 0 } ) of finite subsets of X is an Fy but not a
GS subset of the space 2^ of closed subsets of X. If X is the Cantor set 2^
then D - l ( { 0 } ) n 5 = Co, where S and Co are defined above in section
three. In this section, we show that D~l({ 0 }) (and Co) are universal Fy
sets, that is, for any Fy subset B of A^, there is a continuous function H
mapping N^ into Jf such that B == H~1{D~1({0})) - B is said to be

TOME 110 - 1982 - N° 4



BOREL CLASS OF DERIVED SET OPERATOR 367

reducible to D~l({0}). Similarly, we show that every set of additive class
k 4- 1 (if k is even) or multiplicative class k -+- 1 (if k is odd) is reducible to
^c +1^ -1^ 0 ̂  ^ ̂ y] follow from this result that ̂ 4"1 cannot be of Borel
class k + 1.

PROPOSITION 4.1. — For any Fy subset B of N^, there is. a continuous
function H mapping A^ into Jf such that, for all x, xeB if and only ifH(x) is
finite; furthermore, each H(x) a Ci.

Proof. — Suppose that x e B +-> (3w)(Vn) R^(x), with each R^ ,„ clopen; we
assume without loss of generality that each R^n c: ^w-n,n- Let

H(x) = { < 2-3" >: -\ R^(x) and (Vf < n)R^<x)}.

It is clear that H(x) c= C\ and that, for each w, at most one < l"^" > belong
to J^(x). Now suppose first that xeB and choose m such that
(Vn) ̂ ,,.(x). Then for any p ^ w, no < 2^3" > can belong to H(x). It follows
that H(x) contains at most m element and is therefore finite. Suppose now
that x i B\ for each m, let n(m) be the least n such that "~1 R^n(x\ Then
H(x) = {2w3n(w): w 6 N ] and is infinite.

It remains to be seen that H is continuous. Recall from Lemma 3.4
that H is continuous provided that each H~l(I(B(s))) is clopen. There are
three cases. If s = 0^ for some p, then H-^B^s))) = A^. If 5 == 0^1,
where p == 2W3^, then H-Wis))) = ( .̂o ̂  -Rm.i n ... n ̂ .,) - ̂ ,.,
Otherwise, H ~ ̂ (Bis))) = 0. D

Restating the conclusion of Proposition 4.1, we have

B=H-l(D-l({0})).

Now if D were of Borel class one, then, since { 0} is clopen, B would have to
be both Fy and Gg. However, it is well know that there exist subsets B of A^
which are Fy but not Gg (see KURATOWSKI and MOSTOWSKI [9], p. 425). This
is an alternative proof that D is not of Borel class one. More generally, we
need the following from [9].

PROPOSITION 4.2. — For any countable ordinal a, there exists a subset of N^
which is of additive Borel class a but not of multiplicative class a. D

THEOREM 4.3. — For any natural number k and any subset A of N^ which is
S?+ 2 (if ̂  ls ^v^") or |~[j?+ 2 (if ̂  1s odd}, there is a continuous function H
mapping N^ into the space of closed subsets ofl^ such that, for all x,

(a) H{x)^C^^

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



368 D. CENZER AND D. MAULDIN

(b) xeA if and only ifD^^x)) = 0
(c) x^A if and only ifD^^Hix)) = {0}.
Proof. — For k = 0, this is just a restatement of Proposition 4.1. The proof

now proceeds by induction on k. Suppose therefore that the result holds for
k — 1 and that either

(i) k is even and A = U,A,, where each A^ c A^+i and is n?+i» or

(ii) k is odd and A = Q,, A,,, where each A,, =3 A,, +1 and is ̂ +1. In either
case, we have

xeA ̂  {n: x^A,} is finite.

By the induction hypothesis, there are continuous maps H^ such that each
H^(x) <= C\, and

xeA^DWx))=0

xiA^DWx))^{0}.
and

Now let H(x) = <S>((Ho(x), H^ (x), ...)) for all x e N N . It follows from
Definition 3.6 that H(x) <= C^; this implies that D^^Jf^)) is either { 0 }
or 0.

Suppose now that xeA. Then {n: x t A,} is finite, so that D\H^x)) ̂  0
for only finitely many n. It follows from Lemma 3.7 that

D^WX)) = <D((0, 0, 0, ...)) - {0} = 0.

Suppose next that x t A. Then infinitely many D^Hj^x)) ̂  0, so by
Lemma 3.7

D^Wx))^ 0<(0,0,0, . . . ) = { 0 } .

Finally, Lemma 3.8 implies that the map H is continuous. D

COROLLARY 4.4 — For all finite k > 0, the iterated derived set operator Dk

is not of Borel class k.
Proof. — Suppose that k is odd and let A be a subset of N^ which is ̂ +1

but not n?+r as g^611 ^Y Proposition 4.2. By Theorem 4.3, there is a
continuous H such that

A^-^)-^})).

If Dk were of Borel class k, then A would have to be both ^^ i and
FI^+1. This contradiction establishes the fact that Dk is not of Borel
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BOREL CLASS OF DERIVED SET OPERATOR 369

class k. If k is even, the proof is the same except for replacing A with
NN - A, which is ]"][?+1 but not ̂ i.

Unfortunately, the methods of sections three and four cannot be directly
extended to the transfmite. The proof that D9 is not of Borel class a comes
in section six and depends on techniques developed in section five.

5. Normal sets

In this section, the family ^ of normal subsets of 2^ is defined and
studied. It is shown that ^ is a sublattice of under union and intersection
and that the derived set order map o is a lattice homomorphism from ^
onto ©i. A stitching operator 9 is defined for sequences of normal sets and
it is shown how the derived set order of the resulting stitched set may be
determined from the orders of the components. The sequence of canonical
sets €„ of derived set order n is extended into the transfinite. A
characterization of the set of continuous maps from an arbitrary space
into ̂  is given and is used to show that the union, intersection and stitching
operations are all continuous over ^T.

DEFINITION 5.1. — A subset Fof2N is said to be normal provided that F is
closed, F <= 5 and for all s, teS and all ordinals a:

(1) whenever s < t and teD^F), then seD^F);
(2) whenever s e 0s + ̂ F), then (3m)(Vn > m) s < n > e D^F).
The sets C,, defined in section three are all normal. Note that if F is

normal, then D^F) is normal for all a and OeD^F).

LEMMA 5.2. — If F and G are normal, then F u G and F n G are also normal;
in addition, o(F u G) = max(o(F), o(G)) and o(F n G) = min (o(F), o(G)).

Proof. — Suppose that F and G are normal. Then, in fact, for each
ordinal a, we can show:

D^FuG)=DS(F}uDa(G) and
D^F n G) = D^F) n D^G).

The lemma follows easily from these equalities, which are proven by induction
on a. As usual, the argument is obvious when a = 0 or a is a limit ordinal.
Consider next the case a = 1. Now for any sets F and G in any topological
space, D(F u G) = D(F) u D(G) and D(F n G) c D(F) n D(G). Suppose now
that 5eZ)(F)nZ)(G). Since F and G are normal, there exist m^ and m^
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370 D. CENZER AND D. MAULDIN

such that n > mi implies 5 < n > € F and n > m^ implies s < n > 6 G. Let
w =max(mi, w^); then n>m implies 5 < n > e F n G . It follows that
5eD(FnG).

Finally, consider the successor case. Suppose the desired equalities hold
for the ordinal a. Then

0s + \F n G) = ̂ (D^F n G))

= D(Dol(F) n D^G)) (by the induction hypothesis)
= D^ \F) n D^^G) (by case a = 1).

The union argument here is similar. D
The second stitching operator acts on the infinite sequence

F = (FQ, Pi, F^, . . .) of subsets of S according to

DEFINITION 5.3. - 0(F) = {xe2N:(Vp€N)(V5e5)« p > s < Qn(x)
-^€F,)}.

(It is immediate that ©(F) c: <^(f)for all F.)
Note that 0(=Q(f) for any F, that <w>€9(F) if and only if OeF^ and

that <m,yi>eO(F) if and only if < n > e F ^ and both < m > and < n >
are in 9(F). In general, 9(F) is closed under subsequences and, if
<mo, ..., Wfc-i >ee(F), then OeF^ for all i< fe.

It is easy to see that, for all n, 6((C^ C,, . . . ) )=C,+i . Now let
C,=e((Co,Ci,C2, ...)); then

C<o = {<Wo> • . •» Wk-i >: (Vf < fe) fe - f - 1 ^ m,}.

It will follow from Proposition 5.8 below that Cy, has derived set order co.
We will also show in Proposition 5.8 that if F is a sequence of normal sets,

then 9(F) is also normal. We begin with the following.

LEMMA 5.4. — For any sequence F = (Fo, Fi, ...) of sets from Jf n P(5),
6(F) also belongs tojfn P(S).

Proof, - 0(F)= C}nC}^s-Fn{x: ~}«n>s<Qn(x))}, since, for any (,
[x: t < Qn(x)} is open, 9(F) is the intersection of closed sets and is therefore
closed, even if the F^s are not.

To see that 0(F) c S, suppose by way of contradiction that x60(F)
and 6n(x) = < WQ, Wi, w^, ... > is infinite. Then for all fc,
< W i , m^ ..., w^>eF^; now since F^ is closed, we have
((N'^w^ ^2, W3, ... »eF^. But this contradicts F^ <= 5. D
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The usefulness of the operator 6 lies in its connection with the properties
that the sequence (Fo, Fi, . . . ) possesses "in the limit". This is indicated by
the following.

LEMMA 5.5 — Let F = (Fo, ^i» • • •) be a sequence from Jf n P{s) and
suppose that only finitely many F^ are nonempty.

Then Q(F) is finite, that is, D(Q(P)) = 0.
Proof. — Suppose that F,, is empty for all n ̂  m. Then, for any

5 = < Wo, mi, ..., Wjk -1 > e 9(F), each w, < m (since 0 e F^,). It follows from
Lemma 3.5 (a) that D(Q(f)) =0. D

The next lemma gives us control over 6(F) for more complicated sequences
of normal sets.

LEMMA 5.6. — Let F= (Fo, Pi, . . . ) be a sequence of normal sets such
that infinitely many F,, are nonempty. Then D(Q(f)) = 9(D(F)), where
D(F) = (D(Fo), D(F,), ...).

Proof. — There are two directions.
(c:): Suppose teD(Q(F)). Then by Lemma 3.5

(Vm)(9n>m)e(F)[(<n>]^0.

Now by the definition of 9 and its closure under subsequences, there are
infinitely many n such that

(Vp)(Vs65)«p>5<t<M>-.56F^).

Now for any such n, any p and any se5, < p > s < r implies
< p > s < n > < t < M > , which implies s < n > 6 F p . It follows that

(Vp)(V5€5)«p>5<t^seD(F^)).

Thust69(D(F)).
(=>): Suppose te9(D(F)). 'First of all, since infinitely many F^ are

nonempty, infinitely many <n>e6(F), so that OeD(9(F)). Thus we may
assume that t ^ 0. Now by Definition 5.3,

(Vp)(V5€S)«p>5<r-56Z)(F^)).

Then by (2) of Definition 5.1, we obtain

(Vp)(Vs e S)(9w)(Vy2 > m ) « p > 5 < r - . 5 < n > e Fp).

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



372 D. CENZER AND D. MAULDIN

Since there are only finitely many subsequences < p > s of t, we can take the
maximum of the required "w" and obtain

(3m)(Vn > m)(Vp)(VseS) « p>5 < t -. s(n)eFp).

Now fix n, m, p and 5 e S and suppose that < p > s < r < n > . There are two
cases: (This is where t ̂  0 is used.)

(1) s = s ' < n > and < p > 5 ' < t , in which case s = 5 / < n > e F p follows
directly.

(2) < p > s < t, in which case s < n > € Fp, so that 5 e Fp by normality. We
have now shown

(3m)(Vn > m)(Vp)(VseS) « p > s < t < n > -^ 5<=F,,).

By Definition 5.3, this implies

(3m)(Vn>m)r<n>e9(F)

Finally, by Lemma 3.5, this implies that teD(Q(f)). Q

LEMMA 5.7. — Let F=(Fo,Fi, . . . ) be a sequence of normal sets
and let y = lim^-.^ ^Pm>n (o(Fm) + 1). Then for all ordinals a ̂  y:
D^F)) = Q(D\f)). Furthermore, D^^f)) = 0.

Proof. — The proof is by induction on a. There are three cases.
(a = I): Y ^ 1 implies that infinitely many F,, are nonempty; thus

Lemma 5.6 applies.
(a + I): Suppose that D^f)) = ^DW) and that a + 1 ̂  y.
Then infinitely many D^F^) are nonempty, so by Lemma 5.6

^ZWF))) = ZWD^F))),

which equals DB+1(0(F)) by the induction hypothesis.
(limit): Suppose that X. is a limit ordinal ^ y and that the equality holds for

all a < 'k. There are two directions.
(=»): Suppose te6(D\f)). Now for all a < ,̂ D^f) =5 D\f), so that

t e 9(Da(F)). Then, by the induction hypothesis, t e Z)a(e(F)) for all a < .̂ It
follows that reD^F)).

(c:): Suppose t e D\9(P)). Then for all a < K, t e D^F)) by the induction
hypothesis. By Definition 5.3, this means

(Va < ?i)(Vp)(V5€S) « p>5 < t -^ seD^F^)).
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But then
(Vp)(V565) « p > 5 < t ^ seD\F,)).

It follows that 16 9(D\F)).
Finally, notice that only finitely many o(F^) ̂  y, so that only finitely many

D^FJ ^ 0. By Lemma 5.5, (^(F)) is finite. But we have just shown that
9(Z)Y(7=)) = D^F)). It follows that D^ ̂ (F)) = 0 as desired. D

PROPOSITION 5.8. — Let F = (FQ, Pi, . . .) be a sequence of normal sets and
let y == lim^^ sup^>^ (o(FJ + 1). Then Q(F) is normal and o(6(F)) = y.

PTW/ — By Definition 5.3, two things are required for 6(F) to be normal:
for all r, t e S and all ordinals a:

(1) whenever r < t and teD^f)), then reD^F));
(2) whenever reD^^F)), then (3w)(Vn > w) ^<n>eZ)B(9(F)).
By Lemma 5.7, it suffices to prove these for a = 0.
(1) Suppose r < t€6(F). By Definition 5.3, we have

(Vp)(Vs6S)«p>5<r-5eF,).

But < p > s < r implies < p > s < t, so the same statement is true with "r" in
place of T'. Against by Definition 5.3, re9(F).

(2) Suppose reD(9(F)). It follows from Lemma 5.5 that infinitely
many F^ are nonempty. Then, by Lemma 5.6, teQ(D(F)). The desired
conclusion now follows as in the proof of the second inclusion (=>) of
Lemma 5.6. D

We can now extend the family of canonical sets €„ of derived set order n
into the transfmite. Recall that C^ = 9((Co, C\, €2, ...)). Now fix for
each countable limit ordinal ^ > CD an increasing sequence {a,,: n e N ] with
sup {a^ : n e N ] = 'k and each a^ > co. The sets €3 can now be defined
uniformly by

DEFINITION 5.9. - (a) C-i = 0;
(b) for any a, C^, = 9((C», C., C,, .. .));
(c) for any limit ordinal X,C^ = 9((C,p, C,,, C^, .. .)),w^r^(ao, a^, .. .)is

the fixed sequence corresponding to X.
The exact composition of the sets Cg depends on the particular family of

sequences (oco, ai, . . .) . However, the important properties of these sets do
not so depend. The following is an easy application of Proposition 5.8.
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PROPOSITION 5.10. - For all countable ordinals a, C, is normal and
o(C^ = a. D

We next consider the continuity of mappings into ̂ .

LEMMA 5.11. ~ Let H map the topological space X into the family ^ of
normal subsets of2N. Then H is continuous if and only if, for all teS,
{ x: t e H(x) ] is clopen.

Proof. — Recall from Lemma 3.4 that H is continuous if and only if
H'^^s))) is clopen for every finite sequence 5 of "(T5 and "Fs. Let
r = (^o» ^i, ..., 4-1, 0, 0, . . . ) be a typical element of S and let
5 == (^ t!^ • • • » 4-i)- We claim that, for any normal set F,

teF ̂  FnB(s)^0.

The direction (-^) is immediate, since teB(s). For the other direction,
suppose reFnB(s); then t < r, so teF by normality. It follows that
{F:(eF}=J(B(5)) and therefore {x: teH(x)} = H^\I(B(s)). Thus the
family of sets of the form {x: teH(x)~^ and the family of sets of the form
H~l(I(B(s)) are identical, which completes the proof. D

For any compact metric space X, Kuratowski showed that the union map
from 2X x 2X into 2X is continuous [6; p. 166] and that the intersection map
is upper semicontinuous [6; p. 180].

LEMMA 5.12. — The intersection map from ̂  x ^ into ^V is continuous.
Proof. - By Lemma 5.11, it suffices to show that {(F, G): r e F n G ] is

clopen for all teS. But this set equals ({F: reF] x ^T)n(^r x {F: t e F } )
and is clopen by Lemma 5.11. Q

LEMMA 5.13. — The stitching operator 6 from ^rN into ̂  is continuous.
Proof. — By Lemma 5.11, it suffices to show that

{F=(Fo,F,, ...):ree(F)}

is clopen. But, by Definition 5.3, this set is the finite intersection over those
p e N and seS such that < p > s < t of the clopen sets {F: s e F p } .

Some remarks are probably in orders as to the necessity of different
methods of proof for the finite and infinite iterations of the derived set
operator.

First of all, we can show that the results of section four cannot be obtained
using normal sets. In fact, as we will now demonstrate, even Proposition 4.1
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fails if we require H to map into the family of normal sets. To see this,
consider S = {x: (3w)(Vn > m) x(n) = 0} as a subset of A '̂ and suppose
that H maps N^ continuously into ^r such that x e S if and only if H(x) is
finite. Now XQ = 0 e 5, so H{xo) is finite; choose po so that < po ) ls not m

H(xo). Then H(xo) c 2^ — { < po >}; by continuity, there is some HQ such
that Bo = 8(0"°) c: H~\C(y - { < po >})); let x, = < n^ >. Suppose now
that we have constructed x,, = <no» ^i? • • • » ^-i) and found
Po < Pi < • • • < Pk-i such that

B^Ky1! ... o^-1) c= JTTO^ - {< po >, < pi X ..., < p.-i > }))•
Once again Xj, e 5, so that H(x^ is finite; choose pk> Pk-i such that < p& > is
not in H(^). By continuity, there is some ̂  such that B^IO"1! . . . O^)
= B, c: JT ̂ C^ - { < po >, < Pi >, . . . , < Pk >})). Finally, let x
= lim^oo (Xfc); by construction x is not in S and therefore H(x) is infinite and
so nonempty. Since H(x) is normal, it follows that 0 e D{H{x) and that all but
finitely many < p > belong to H{x). On the other hand, for all k, x e Bj, and
therefore < pk > is not in H(x). This contradiction establishes the original
claim.

Here is an illustration of the difficulties which arise if one tries to apply the
methods of sections three and four to infinite iterations of the derived set
operator. Let Ao, A^, . . . be an increasing sequence of subsets of N^ and
let F = (FQ, Pi, F^, . . . ) be a sequence of closed subsets of 2N such that, for
all n, x e A^ if an only if o(FJ = k and o(Fn) = (o otherwise. Then

o(0(F)) =

^+1 , if (Vy i )xeA^
co+1, if (Vw)(3n>w)^A,,
co, otherwise.

Thus, if xe u { A^: neN }, then o(0(F)) could be either k or co. This and
other dichotomies prevent the easy extension of Theorem 4.3 into the
transfmite. Thus we are led to the family of normal sets and the methods of
this section.

6. The universality of the mapping Z)01; the infinite case

In this section, we extend results (4.3) and (4.4) to infinite iterations of the
derived set operator. This requires that only normal sets be used in the
range of the continuous function H. As noted in section five, this leads to a
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weaker result for the finite levels. However, some improvements are also
gained.

THEOREM 6.1. — For any natural number k, any ordinal P > k and any
subset A ofNN which is ̂  or f]?, there is a continuous function H
mapping N^ into the space of closed subsets of ̂  such that, for all x,

(a) H(x) cr Cp;
(b) H(x) is normal;
(c) XEA if and only ifo(H(x)) = k - 1;
(d) x t A if and only if o(H(x)) = ?.
Proof. - The proof is by induction on k. There are two cases, (k = 0)

Given a clopen set A and an ordinal a, let

{C« if xeA;
H(x) = p

0 if x^A.

H has the desired properties by Proposition 5.10: H is continuous since, for
any family V of closed subsets of 2N, H~\V) is either 0, A,NN - A or N^.

(k -h 1). Suppose that the result holds for k and that either
(i) A = \JnA^ where each A,, c A^+i and is F[?, or
(ii) A = Hn^ where each A,, => A,+i and is ^?.
In either event, we have

x 6 A ̂  { n: x ̂  A^} is finite.
There are two sub-cases.

(P a successor). In this sub-case, there are continuous maps H^ such that
each H^(x) is normal and a subset of Cp-1 and such that o(H»(x)) = k - 1 if
xeA^ and o(H^(x)) = P - 1 if x^A^. Let H be defined by

(llt) ^W = Q((Ho(x), H,(x\ H^x), ...).

H is continuous by Proposition 5.13; each H{x) is included in Cp by
Definition 5.9 and is normal by Proposition 5.8. Suppose now that x e A.
Then {n: x i A^} is finite, so that o(H^{x)) = k - 1 for all but finitely many n.
It follows that lim^ sup^>, (o(H^(x)) + 1) = k. Thus o(H(x)) = k by
Proposition 5.8. Suppose on the other hand that x^A. It follows that
lim^ sup^ (o(Hn(x)) -h 1) = P, so that o(^M) = P.

(P a limit) First of all, let (ao, o^, . . . ) be the fixed sequence of ordinals with
supremum P. For a^ s$ k, let H^x} = 0 for all x. For each a» > fc, there is
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a continuous map H^ such that each H^(x) is normal and included in C^ and
such that o(Hn(x)) = k if xeA^ and o(H»(x)) = a, if JC^A,,. Once again
the map H is defined by (*). For x e A, the argument is the same. For x i A,
it follows that o(H^(x)) = a^ for all but finitely many n. Thus o(H(x))
= sup (a^ + 1) = P. D

We turn now to the infinite analogue of the preceding theorem, which
returns to the alternating form of Theorem 4.3.

THEOREM 6.2. — For any countable limit ordinal X, any natural number k, any
countable ordinal P > ^ + k and any subset A ofNN which is ^?+k+1 (ifk is
even) or ]~[S?+k +1 ( tf^ls odd), there is a continuous function H mapping N^ into
the space of closed subsets of2N such that, for all x,

(a) H(x) c= Cp;
(b) H(x) is normal;
(c) xeA if and only ifo(H(x)) < ̂  + k;
(d) xiA if and only ifo(H{x)) = P.
Proof. — The proof is by induction on X 4- k. There are three cases: k = 0

and 'k = co, k = 0 and 'k > co and k a successor. The proof of the successor
case is virtually identical with the proof of that case in Theorem 6.1. The
details are left to the reader. We now present the proofs of the other two
cases.

('k = co). Suppose now that A is ^S-n and that P > co. Then, without
loss of generality, A = \JnA^ where, for each n, A^ is Y[^ an^ ^n c ^ n + i -
As in Theorem 6.1, there are two subcases.

Suppose first that P is a successor. Then by Theorem 6.1 there are
continuous maps H^ such that each H^(x) is normal and a subset o f C p _ i and
such that

f n — 1 if x e A-
o{H,(x)} =

P - l if xiA^.
For each n, let

w=n^n^w
and let

HOc)=e((/oOcUiOc), ...)).

It follows from results (5.12) and (5.13) that H is continuous. Each H{x) is
included in Cp by Definition 5.9 and is normal by results (5.2) and (5.8).
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Suppose now that xeA and let m be the least integer such that
xeA^. Then, using Lemma 5.2, o(In(x)) = m — 1 for all n ̂  w. It follows
from Proposition 5.8 that o(H(x)) = m < CD.

Suppose on the other hand that x^A. Then, again using Lemma 5.2,
o(J,(x)) = P - 1 for all n, so that o(H(x)) = P.

Now suppose that (3 is a limit and let (Po, Pi, . . .) be the fixed sequence of
ordinals with supremum P; recall that each ?„ > CD. Let Hn be given by the
successor argument so that

{ m if m is least such that xeA...
o(H»(x)) =

?„+! ifxtA.

Let H{x) == Q((Ho(x), H^x), ...)). As above, H is continuous and each H(x)
is a normal subset of Cp. For x 6 A, o(HnM) = m f01"all but finitely many n,
where m is least such that xeA^; thus o(H(x)) = w 4- 1. For x^A, each
o(H»(x)) = Pn + 1, so that o(H(x)) == P. This completes the proof for the case
(?i = (o).

(X. > co). Suppose that P > X > CD, that A is ̂ ?+1, and that the theorem is
true for all ̂  -h k < 'k. Let (oco, o^, . . . ) be the fixed sequence of ordinals
with supremum .̂ Then, without loss of generality, A == (Jn A,, where each
An is ^+1 (if a^ is even) or fISn-n (^ ̂  ls °dd)- Again there are two
subcases. When P is a successor, the proof is the same as for 'k •==• CD, except
that "n — 1" becomes "a,,", "m — 1" becomes "a^" and "o(H{x)) = m < CD"
becomes ^(^(x)) = a^ < ^".

Suppose now that P is a limit and let (Po, Pi, . . . ) be the fixed sequence with
supremum P. Since P > ^, there is some k such that ?„ > a^ for all
n > k. For n ̂  /c, let ̂ (x) = 0 for all x. For n > ^, let H^ be given by the
successor argument so that

f a-, if m is least such that x e A-,;
o(H,{x)) = <

U + l i fx^A.

Once again H(x) = 9((Ho(x), Hi(x), ...)), H is continuous and each H(x) is a
normal subset of Cp. For xeA, let w be leastsuch that xeA^. Then
o(H^(x)) = a^ for all but finitely many n, so that o(H(x)) = a^ + 1 < ^. For
x^A, each o{H^{x)) = ? „ + ! , so that o(H(x}) = sup (?„ + 2) = P. This
completes the proof of Theorem 6.2. Q

COROLLARY 6.3. — For any ordinal a > 0, the iterated derived set operator D9

is not of Borel class a.
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Proof. - For finite a, this is given by Corollary 4.4. For infinite a, let
a = ^ + fe, where 'k is a limit and k is finite and let P = a -h 1. Suppose k is
even and let A be a subset of A^ which is ̂  i but not n?+i. as given by
Proposition 4.2. By Theorem 6.2, there is a continuous H such that

A=H-W-\0)\

The rest of the proof follows that of Corollary 4.4.
Combining this result with Theorem 1.3, we have the following.

COROLLARY 6.4. — For all limit ordinals \, the iterated derived set operator D
is of Borel class exactly ^ + 1.

7. Some open questions

We would like to leave the reader with two problems connected with the
above results.

PROBLEM 1. — (Kurato\vski). What is the exact class of the iterated
derived set operator Z)°1 when a > 1 and is not a limit?

PROBLEM 2. — I s there a Borel operator D on the space of closed subsets of2N

such that
(1) D(F) c ¥ for all F;
(2) for each F, there is a countable ordinal a such that D'^E) = D^F);
(3) for each countable a, there is an F such that D^^F) ̂  D^F);
(4) the iterated operators D01 are of bounded Borel class?
Note that (2) follows from (1).

Added in proof. We have recently refined the methods of this paper to
show that D" is of Borel class exactly 2" and that Z)^" is of class exactly
^ 4 - 2 " + 1.
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