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A THEOREM ON POLAMSED PARTITION RELATIONS
FOR SINGULAR CARDINALS

BY

G. CHOODNOWSKY and K. WOLFSDORF (*)

RESUME. - Si % est un nombre cardinal singulaire et une limite des nombres cardinales
mesurable, pour chaque OKX"*' est valide :

n-f")-\ K / W

ABSTRACT. — If x is a measurable limit cardinal then

^Vf^ for any a<^.C;K)
In [EHR], ERDOS, HAJNAL and RADO discussed polarizes partition relations

for cardinal numbers. By an easy counterexample it is shown that for all
AA AA

cardinals x we have ) -M ). So it is a natural question to ask for which\KJ \KJ
cardinals x the following relation is valid:

/ x \ M

PRIKRY proved [PR] that the negation of the partition relation is consistent
for all successor cardinals x. The first auther proved the partition relation

(*) Texie recu Ie 14 avril 1978, version revisee Ie lOjuin 1 9 8 1 .
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350 G. CHOODNOWSKY AND K. WOLFSDORF

/ x \ / x \
( + ) "̂  ( for a11 measurable cardinals in [CH], the second auther proved

the theorem for weakly compact cardinals [WO 2].
For singular cardinals, there is a positive result in [EHR] for cardinals with

cofinality co. Here we want to show the relation for measurable limit
cardinals.

1. 1. Notation.

The set theoretical notations are standard, see [DR]. Small Greek letters
denote ordinals, x, X are infinite cardinals.

An ultrafilter U is x-complete iff for all n. e. sets X c: 17, | X | < x, n X e 17.
The cardinal x is measurable iff there exists a x-complete non-principal

ultrafilter on x; x is a measurable limit cardinal iff there exists a strongly
monotone increasing sequence of cardinals (x^ | v<cfx), such that all x^ are
measurable and lim^rfX^=x.

Let 9 = (P, ^) be a partially ordered set. 9 is a forcing set iff there exists a
Op e P such that for all p e P, Op ̂ p. If/?, q e P and p ̂  q than q is called an
extension of p. A subset D of P is P-dense in ^ iff every /? e P has an
extension in D.

Let ^=(P, ^) be a forcing set, and Q be a family of dense subsets
of ^. A subset G of P is ^-generic iff:

(i) for all/?eG and q^p, qeG\
(ii) for all /?, qeG, p and q have a common extension in G;

(iii) for all dense sets De^, GnD^O.
A subset K of? is an a-cham itT(X, ^ ) is a total ordering and has order

type a.
For ordinals a, P, y a;id 5, the polarised partition relation:

( 1 ) 'm̂
 W

has the following meaning:
(1') Let a x p = / o u /i. Then there exists a subset .4<=a, type(/4)=y and a
subset Bcrp, type (B)=8 and A xBc/o or A xBcr /p
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2. Two simple remarks

Using the axiom of choice we can trivially prove the following:

PROPOSITION 1. - Let ^=(P; ^) be a forcing set and x be an infinite
cardinal. Let jor all ^<x and ^-chain K a p there exists a peP\K such
thatjor all q e K, q ̂ p (^ is closed under unions of chains of length < x). If Q
is a system of P-dense sets and \ Q \ ̂  x, then there exists a Q-generic set G c: P.

The following proposition is also clear:

PROPOSITION 2. — We have:

(^\JA
W W

iff for every family (X^ : v < P) of subsets ofoi, there exists an I <= p, type (I) = 8
such that type (r\e/^v)^7 or type (F^i^-X^y.

3. Our main result is the following theorem, which generalizes results in
[CH] and [WO 1].

THEOREM. — Let x be a singular, measurable limit cardinal. Then for any
a^cfxT .x:

/ x \ /x\(;-K)
Proof. — Let x be a singular measurable limit cardinal, cf x<x and let

(Xy : v<cfx) be a monotonic strictly increasing sequence of measurable
cardinals such that:

and:

cfx<Xo<. . .<x^<. . .<x: v<x;

lim^ x^ < x^ for any v < cf x

lim^<^^x^==x.

Let x= Uv<cfy M^, where M^=x^, for all v<cfx. Let U^ be a x^-complete
non-principal ultrafilter on M^ for any v<cfx and QQ be an uniform
ultrafilter on cf x.

We define a product ultrafilter Q on x:

®={Xcx : ̂ cfx^nM.el/^e^o}-
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352 G. CHOODNOWSKY AND K. WOLFSDORF

Let (Zp : p<x + ) be an arbitrary family of subsets of x. According to
Proposition 2 it is necessary to show that there exists such an JCTX^
type(J)=a that:

ir\,/xj=x or ir\<E/(x\^)=x.
As Q is an ultrafilter on x; we can suppose without loss of generality that:

EQSS[^<^ : A^e^} has power x'''.

Thus for any ^€£o» <^= {y<cf x : X^ r\ My<= U^} e^o and so C^ has power
cfx for any ^ e £o. Because 2^ < x, there exists such E^ <= E^, | £J = x + that
forall^,^e£i:

C^=C^=C, |C|=cfx.

We denote for simplicity ̂ U^c^ and r^^nAfor ^e£i. Without
loss of generality we can suppose that C=cf x. Thus:»>

(2) ^-Up^.M,
and for all pe£i
(3) Y^A and ^ n M,€ 17, for all v<cfx, where IEJ^X^

Let w £ A and w £ Uv<n My ̂ r some p < cf x. We denote:
r,=Ke£,:u^y,}

and call w exceptional (symbolically, we Ex), if |TJ ^x. Since x is a
strong limit cardinal, ̂ a^^x, the number of all sets WS^J^^M^ for
some )i<cf x, is at most x.

Thus for:
E2=E,\U^T^

we have:
l^l-^.

We can assume without loss of generality that:

E^K\
In particular, if w^A and u- is bounded in x and ii'S V^ for some ^ < x ^ ,
then u' is not exceptional and | { T| <x+ : u'^ Y^ ] | =x+ .

Now we define a forcing set ^=(P; ^). Let P be the set of all pairs
T==(C; D)such that:

(i) there exists such ^<cfx, that ^>1:

(4) CcU^M,
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PARTITION RELATIONS FOR SINGULAR CARDINALS 353

and:
(5) |CnMJ=x^ for all H<^;

(ii) PCX-";
("o csn;.z>y;;
(iv) |D|^|C|;
(v) Mon Yo^C andOeD.

Because M^n YoGl/o, |Mon YQ\ =XQ, C is infinite. By (iii) and (v),
Cc YQ, so if(C; D)€P, then C is not exceptional.

For T,=(C,: D,)eP we put TO<TI iff Co^Ci, D^D^. Then
^==(P; ^) is a forcing set with a minimal element (Mo n Vo; { 0 } )e P.

LEMMA 3. — The set 3P is closed under union of chains of length <cfx.
Proof of lemma 3. — Let { x ^ : v < ^ } b e a chain in y oflenght i;, ̂  < cfx, i. e.

T,^T,, for v^V2<^.
Case 1: ^= r (+ l . So T^=(C: D) is the greatest element in the

chain. There exists such an p<cf%, l^p , that ^ £ U p < p A ^ p and
| C n M^ | =x^ for all n< p and Cs p,^^ y^. As C is not exceptional by
definition of ^ and |D|<x, there exists such a^o€K+\D, that
Ccy^. Then (C; D u { ^ o } ) is an element of P and (C ;D)^ (C;Du{^o})»
where (C ;D)^ (C;Du{^o}) .

Case 2: ^ is a limit ordinal. If T^=(C^; Z \ ) :v<^ , then
(Uv<.C,.; Uv<^v) belongs to P as |Uv<^vl<^ for |Z)J<x : v<^ and
£<cfx. For all ^i<^,T^(Uv<&^ Uv<£^v) an(^ Lemma 3 is proved. D

We shall now define a family of dense subsets of ^ in order to apply
Proposition 1.

We put for ^<cfx:

A,={(C;D)eP:|CnMj=^}.

LEMMA 4. — For any S;<cfx, A^ is dense in ^.
Proof of lemma 4. - Let To==(C; D)eP and (C; Z))^A^. Then

there exists an T|^ such that C^\J^^M^ and since
|D|^ |C | , !D|^^<^x^<x. Because y ;nMp€ C/pfor all ^eD, r|^p^
and all L/^, are x^-complete and uniform on Mp : T|^ p^ ^, we have:

rW^nMp)6L/p, Tt^p^^,

n:,p(y;nMp)|=Xp for r|^p^.
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354 G. CHOODNOWSKY AND K. WOLFSDORF

Thus Ti=(Cu(n^D^^(U^p^Mp)) ,Z)) belongs to P and T ^ e A ^ by
construction. Also T()==(C; D)^Ti and A^ is dense. D

Let's take a sequence (o^ : X < x +) such that a^ e { x ^ : v < cfx} and each x^
has x"^ many appearences in the sequence (o^ : 'k<^).

LEMMAS. — There exists a sequencer : 'k <y.^) of elements^, such that
the sets:

V,={(C;D)eP:|Dn{^:^^<^}|5^}

flr^ af^w^ w ^/or a// 5KX'1'.

Proof of lemma 5. - Let ^(^^-be arbitrary. We shall construct the
sequence (^ : 'k<K+) by induction.

Suppose that we have constructed (^ : X<5) for Soc'^ such that all
V^ : ̂ <8 are dense in ^. Let us suppose however that there are no ^g+ i
such that Vg is dense in ^. Then for any P>^&, POC^, there is
^p=(Cp; Dp)eP such that ip is not extended by a menber ofV&, where (in
definition of V§) we put ^g+1 = P.

For each C p : ^<P<x + there exists an r\ < cfx with
Cp c Up<n MH. Because x is a strong limit, ̂ a<x 2"1 ̂  x, we can find E c: x +,
l E j s x - ^ with:

(6) Cp^=C^=C for all Pi, PseE.

Case 1: Let [Cl^o^. Since C is not an exceptional set (by (6) and
definition ofP), | { ^ > ^ : C £V^} | ̂ "^ Let us take M £ x4' with:

M<={i;>^: Ccy^} and |M|=a6.

Then we take P e £ such that P > M, i. e. for any i; 6 M, P > ̂ . We obtain by
ICI^ag:

|DpuM|<|Cp|+a6=|C|-ha8=|C|;

and by our choice of M:

^^^"^(DpuM) ^>

In other words. ( C D p u M ) e P . Further, for Cp=C : pe£, we have
Tp^(C; D p u A ^ ) . But(C; D p u M ) 6 V 5 , w h e r e w e p u t ^ + i = P , a n d s o w e
come to a contradiction.
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Case 2: | C | < o^, where a^ = x^. Let p be the least ordinal with | C | < Xp;
p^v.

Let Po€£ be arbitrary; since |DpJ:$|C| and Cc:u,<pA^,
ID^ I ̂  Zn<p ^M < ̂ p- Consequently, if:

Ci^Up^vn^M.nyj.
then C u Ci is not exceptional as C u Ci = Cp^ u C\ e V^ for any
^eDp^. From this it follows that:

\{^>^:CuC^Y^}\^',

we choose Ms {^>^ : Cu C^c y^}; |M| =x^=a& and P€£ with P>M.

From | Dp | ^ | C | it follows | Dp | <x? and Pi^^(M^ n y^)6 U^ for all H,
p ̂  [i ̂  v. Then by definition of C\, (M^ nC^el/^p^p^v. We put:

^2 = ̂ p ̂  M; C^Cu Up^v H^D, (M^ n V^ n Ci).

In these notations, I D^ | ^ x^ ̂  | C^ I and C^c Pi^ez), ;̂ an(!
(Cp; Dp) ̂ (€2; D2). But I D2 n { ^ : ̂  ̂ ^ < P} | =x^ and this contradicts the
construction ofTp=(Cp; Dp). Lemma 5 1st proved. D
Now we can prove our theorem. Let a < (cfx)+ . x; then there is a sequence
^"^e/^a.

We consider the following family:

^={A , : ^<c fx }u {VJzeJ } ,

of cf x dense subsets of^.
By Proposition 1 there exists a ^-generic set G<=P. We put:

7=UrgG=U{D:(C;D)eG};

J=Udom G=U{C :(C;D)eG}.

Then Jcx^, typ (/)>a; J<=x, |J |=x and
by Proposition 2, the theorem is proved.
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