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NORMAL BUNDLE TO CURVES IN QUADRICS

BY

EDOARDO BALLICO (*)

RESUME. — Dans cet article on dcmontre que Ie fibre normal a une courbe connexe, non
singuliere C d.'une quadratique est ample si et seulement si C n'est pas une droite. On donne aussi
une application aux fonctions rationnelles formelles et done au problemc de la rigidite.

ABSTRACT. — In this paper we prove that the normal bundle to a nonsingular quadric is ample
if and only if C is not a straight line. We give also applications to rational formal functions and
therefore to the rigidity problem.

Introduction

In this paper we prove that the normal bundle NC/Q to a nonsingular curve
C in a nonsingular quadric Q is ample if and only if C does not contain a
straight line as a connected component. Similar results are well-known for a
nonsingular subvariety contained in a projective space P, because the tangent
bundle to P,, is ample. A PAPANTONOPOULOU proved in [9] results of this
kind for curves in grassmannians. In particular he proved this Theorem for
G(l,3), the grassmannian of lines in Pa, which is a nonsingular quadric in
?5. Therefore the Theorem is known if the quadric has dimension 4. His
proof is different from our's.

The ampleness of the normal bundle has many well-known
applications. R. HARTSHORNE proved under this assumptions a vanishing
Theorem on formal schemes ([6], Thm. 4.1), some results on the
cohomological dimension of a projective variety minus a subvariety ([5],
chapt. 7), a Theorem on formal rational functions [5] which has application to
the rigidity problem of embeddings. In PAPANTONOPOLOU'S and our
situation the usual application to formal rational functions and to the rigidity
problem can be strenghted by using the notion of generating subspace and a
Theorem by CHOW [1]. This is done in the second paragraph of this paper.

(*) Tcxte recu Ie 13 mai 1980, revise Ie 29 septcmbre 1980.
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228 E. BALLICO

I want to thank Prof. A. Hirschowitz for many helpful suggestions and
discussions.

1. Let k be an algebraically closed field with ch (k) == 0. In this paragraph
every variety will be defined over k.

We want to prove the following.

THEOREM 1. — Let Qbea nonsingular quadric hypersurface of P, and C a
nonsingular, connected curve contained in Q. The normal bundle NC/Q of C
in Q is ample if and only if C is not a straight line.

Let X <=. Y c: Z be algebraic varieties; Nj^y is the normal sheaf of X in Y and
we have the exact sequence [E.G.A., IV, 16.2.7] :

(1) O^N^y-^/z^Ny/zijr.

If the immersion ofX into Y is regular, then ATy/y is locally free [E.G.A., IV,
19.9.8 (ii)] and the map r is surjective [E.G.A., IV, 16.9.13].

In the proof of the Theorem we distinguish two cases:
(a) C is not contained in a linear space contained in Q,
(b) C is contained in a linear space contained in Q.
{a) Let Q( c P»+1 be an irreducible quadric and P( a hyperplane such that

Qt-\ '' ==Q( n P( is irreducible; we have:

^,/P^i^c,(2) and N^ ,̂,(1).

Let C be a nonsingular curve contained into 61-1- From the exact
sequence (1) we obtain the exact sequence:

(2) 0-N^-N^-^c(2).

LEMMA 1. — ^c/c,_, ls a locally free sheaf and i is an injection of vector
bundles.

Proof. — Nc/p, is a locally free sheaf and therefore -Nc/c,-, is a torsion-free
sheaf; NC/O,., is a locally free sheaf because C is a nonsingular
curve. Furthermore the injection! : NC/Q..^^. has a locally free cokernel
because coker (i) is a subsheaf of Oc (2). Thus i is an injection of vector
bundles. •

LEMMA 2. — Let CczPfbea nonsingular, connected curve of degree d; let E
be a vector bundle on C of rank r and degree h. IfE is a quotient bundle of
TP(|C, then h^rd and ifh^rd, then C is contained in a hyperplane.
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NORMAL BUNDLE 229

Proof. — We choose homogeneous coordinates (ZQ\ ...; 2,) on P,.
We have an exact sequence on P,:

(3) O-^p^p^l^-^TP^O,

where a(/)=(/2o, ...,/2().
From the restriction of (3) to C we obtain a diagram with exact row and

column.

(4) 0 —————— €c———— (Tcdr1 ——:—— TP^c ————— 0

1 6

E

Let P be Soy : OW1 -»E. We write E(s): =E ®^.C?cOO. From P we
obtain a surjective map from €1^1 to £(— 1) and therefore a surjective map
fromA1'^1 to A'(£(-!)).

This implies h==deg E^rd.
Now suppose that we have h = rd. Any section of E (— 1) defines a subline

bundle L of £(-1) with deg L^O. As £(-1) is generated by global
sections, after r — 1 steps we arrive at a line bundle M of degree d and quotient
of£.

Therefore P induces a surjective map g from 0 (l)^x to M and thus a non
zero element of:

F(C, Hom(^(ir1, M)^F(C, M(-l)r1.
As deg M=d=deg C?c(^)> we have

M^Oc (1) and F(C, Hom{0c{\)^\ M)^k^1.
If ^ induces t-h 1 non zero constant flo, ..., a? then C is contained in the
hyperplane ̂  a, z; =0. In fact, let z =(zo, ..., z,) be a point of C. In the
diagram (4) the image of the unitary section of Gc in ^ct1)^1 is

(2o, • . . , z^. As g factors through TP,,c, we obtain:
0=ff((2o» ...,2,)=Efli2..

This proves the Lemma. •
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230 E. BALLICO

Now we suppose that the nonsingular, connected curve Ccg^ is not
contained in the singular locus S of Q^-i; then C n S is a finite set.

Let g , :
NC^Q^NQ^WC^W)

and /,:

^c/p,-^c.-./p.ic^c(2)

be the natural maps; g^ and /, are surjective on C/C n S.
We define M( : ==Jw/, and H( : =Jm ̂ . As in Lemma 1, M( and H, are

locally free sheaves on C because they are torsion-free sheaves. We recall
that every morphism i between locally free sheaves on C which is injective on
C/C n S is injective because otherwise Ker i would be a non zero locally free
sheaf with support contained in C n S. A diagram of maps between locally
free sheaves on C which is commutative on C/C n S is commutative because
C is reduced. Then we have a commutative diagram with exact rows and
columns.

0 0 0

(5) 0 ————^^

—————^ c

———h, ————.

1 1

- /C,- . - • - — J V

-/C. ———————^

LJ ^ /I

C7P, " w

7P..,———————^ ^-»+1 ————-

^(1)

i, - U

M

0 0
From Lemma 1 and the definitions we have

d^deg M^deg M(+i<2d.

Thus we obtain deg ff(=deg M,—deg M,+i -hd.
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NORMAL BUNDLE 231

Therefore deg H^O and deg H( = 0 i. e. H, is not ample if and only if deg
M,==d and degM,+i=2d. From Lemma 2 it follows immediatly the
following.

LEMMA 3. — J/deg M(=d, then C is contained in a hyperplane o/P,. •
We want to prove the following Proposition which in particular proves the

Theorem 1 in case (a):

PROPOSITION 1. — Let C be a nonsingular, connected curve contained in the
irreducible quadric Q <=. ?„ but not contained in a linear space contained in Q;
then the normal bundle N^/o is ample.

Proof. — We have seen in Lemma 1 that N^/Q is a vector bundle. Let P( be
the linear space generated by C in ?„. We define fir-1=6^ P(. By
assumption fi,-1 is irreducible and C is not contained in the singular locus of
e,-r

We take a glance to diagram (5). It follows from Lemma 3 that deg M( > d
because C generates P^. Then deg M^deg M(+, by the diagram
(5). Thus degJfi>0 for r< l<n—l . From the first exact column in
diagram (5) we obtain that N^/g, is ample if and only ifJVc/g^ is ample. In a
finite number of stemps we obtain that Proposition 1 is equivalent to the
following.

LEMMA 4. — NC/Q^ , is an ample vector bundle.
Proof of Lemma 4. — We use a criterion of ampleness proved by

HARTSHORNE ([7], thm. 2.4). Let C be a nonsigular, complete curve and E a
vector bundle over C; E is ample if and only if for every quotient bundle RofE
we have deg R>0.

Let R be a quotient bundle of N^/g^ of rank s > 0. Let R i be the kernel of
the surjective map N^/g^ -^ R, from Lemma 1 it follows that R^ injects as a
vector bundle in N^/p.

Let E be the quotient bundle of N^/p for the subbundle R^.
We have rank £== 1 +s^2 and:

deg £==deg Nc/p,-deg R, =deg ^c/p.-deg Nc/^.,+deg R^ld+deg R.

From Lemma 2 we have deg R>0.
(b) Now let C be a nonsingular, connected curve contained in a linear

space contained in Q.
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232 E. BALLICO

Let Q be a nonsingular quadric. Every maximal linear subspace of Q
has dimension 5 when dim Q is equal to 2s or 2s 4-1.

PROPOSITION 2. — Let P, fc^ a maximal linear space ofQ. Then if dim Q is
even Np^Q ^ftp^ (2) and if dim Q is odd:

Np^Qp.(2)®ffp.(l).

Proof. — Let Q be a hypersurface of P (V) and Wbe a linear subspace of F
with P, = P (W). Let ^ : V x V -> k a symmetric bilinear form which defines
6. We recall that TP(V)^Hom (Jf, ^/H) where Jf : =6^(-1) is the
tautological bundle. Let x be a point of Q and ^eF/{0} be a point
representing ;c. A vector ve TP (V) ( -1), belongs to TQ ( -1 )^ if and only if
for any element F€ V which represents rwe have ^(v, }0=0.

We define a symmetric bilinear form B : TQ (-1) x TQ (-1) -»• OQ in the
following way: if v, w6TQ(—l)^ and y, w represent v, w we put B(F,
w)=^(i;, u;). B is well-defined; in fact if v\ w' represent iTand w we have
i?'=i?-(-^^, u; /=w+^y for some ^, H in k and ^(i/, w/)=^(l;, w) because
q(v^ y)=q(w, y)ss::q{y, }Q=0. B is non degenerate. In fact, let v be an
element of TQ (— 1), represented by v e V; !^ 0 if and only if v and y are not
collinear i.e. if and only if the hyperplanes L={leV: q{y,l}=0} and
L = { ( e V : q (v, 1) = 0} are different; let w be an element of L which does not
belong to U; for the element w € TQ (— 1), induced by w we have B (v, w) ̂  0.

We consider .the exact sequence:

(6) o-.rp,(-i)-.re,p.(-i)-^Q(-i)-^o.
Obviously TQ, p ( — l ) ^ T Q ( — l ) , p and then B induces a bilinear, symmetric,
non degenerate form B' on TQ^p (—1).

If W.W'EW represent elements of TP,(—1),, then q(w, u/)=0 because
w-hu/ represents a point of Q if it is not zero. Therefore TPJ—l) is a
maximal isotropic subspace of TQ^p^—l) for B' and B' induces a surjective
map

h: Np^(-l)^(rP.(-l))^ftp.(l).
If dim Q is even, then h must be an isomorphism.
If dim Q is odd, Ker (h) must be a trivial line bundle because c^ (Ker (h)) = 0

and the exact sequence induced:
0^(l)-^p^np(2)-.0

splits because H1 (P,, 7'P,(-1))=0. •

TOME 109 - 1981 - N° 2



NORMAL BUNDLE 233

Thus Theorem 1 follows in case (h) from the following.

PROPOSITION 3. — Let C be a nonsingular, connected curve contained in
P,. The vector bundle Qp (2) ,c is ample if and only ifC is not a straight line.

Proof. — We prove this Proposition by induction by on 5.
If s= 1 the thesis is empty. Let s be greater than 1.
From Proposition 2 it follows that f2p (2) is generated by global sections; in

fact the tangent bundle to a nonsingular quadric is generated by global
sections because the quadric is homogeneous. We suppose that Qp (2),c is
not ample.

By a criterion of GIESEKER-HARTSHORNE ([12], Prop. 2.1) 0^ is a quotient
line bundle of ftp (2)ic. Dualizing we obtain an exact sequence:

0-^(2) ̂ TP^^E^O,

where £ is a vector bundle of rank 5—1 and degree (s—l)d. Lemma 1
proves that C is contained in a hyperplane P,_ i c Py The exact sequence:

0^p^(l)^(2),p^Qp^2)-.0

shows, by the inductive hypothesis, that C is a straight line.
If C is a straight line,

deg(I^(2),c)=5-l<rank((^(2),c)

and therefore 12^(2) is not ample.

2. In general the ampleness of the normal bundle of a subvariety has many
interesting consequences:

(a) a Theorem about finiteness ofcohomology on formal schemes ([6], thm.
4.1);

(b) cohomological dimension ofaprojective variety minus a subvariety [5];
(c) a Theorem on formal rational functions which has applications to the

rigidity problem [5].
In our situation the usual consequences on formal rational and the rigidity

problem can be strenghted by using the notion of generating subspace and a
Theorem by CHOW [1].

In this paragraph we work over the field of complex numbers. We recall
some definitions. Let X be a reduced and irreducible variety and Y a closed,
reduced subvariety of X. The formal completion T\X of Y in X is the
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234 E. BALLICO

ringed 5pace (V, Qy^x) with:

0^: ^nvlimC^/./^iy

where ^ is the ideal sheaf of Y in .Y.
The set of formal rational functions K (Y\X) is the set of global sections of

the sheaf of total quotients ofOy^y; it is a field if Vis connected ([8], Lemma
1.4). K (X), the field of rational functions ofX, is in a natural way a subfield
of K (Y\X). We say [8] that Y is G - 2 in X if K (Y\X) is a finite module
over K (X). We say [8] that Yis G - 3 in X if the natural injection ofK (X) in
K (Y\X) is surjective. Now we suppose that X is nonsingular, Y complete,
connected, of positive dimension and a locally complete intersection in X; if
the normal bundle of Y in X is ample, then Y is G-2 in X([5], Cor. 6.8).

Let X be a projective variety which is homogeneous under the action of an
algebraic group G; let Y be a closed subvariety of X, let p be a point of V.

We put G^ y= { ^ e G : gp e Y}. The subgroup Gy of G generated by
Gp > does not depend upon the choice of the point p.

We say [1] that Y is a generating subspace of X if Gy= G.
We want to prove the following.

THEOREM 2. — Let Y be a connected subvariety of a nonsingular
homogeneous, projective variety X. If Y is a generating subspace ofX and if
G-2 in X; then Y is G-3 in X.

Proof. - For a Theorem of GIESEKER ([3], thm. 4.3), since Y is G - 2 in X,
there exists an etale neighborhood (V, W) of( V, X) (i. e. an immersion of Yin
a variety ^Fand a regular map p : W-^ X which is etale at every point of Y
and induces the identity on Y) such that Y is G — 3 in W.

Let / be an element of K (Y\X)', it induces an element /i of of K (Y\W)
because p induces an isomorphism between V\^ and Y\X ([2], Lemma
4.5); as Y is G—3 in W, f^ is induced by a rational function f^ on W\ in
particular f^ induces a meromorphic function on every complex
neighborhood of Y in W, As p is etale on a neighborhood of Y and induces
the identity on V,.there exist complex open neighborhoods U and V of Yin
W and X such that p maps 17 biholomorphically on [7\ Therefore ^
induces a meromorphic function ̂  on U ' . As V is a generating subspace of
X, from a Theorem by CHOW ([I], Thm. 2) it follows that ^3 is induced by a
rational function geK(X].

It is obvious that g induces /. •
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NORMAL BUNDLE 235

COROLLARY. — Every connected subspace of a nonsingular quadric Q which
contains a nonsingular curve which is not a straight line, is G — 3 in Q. In
particular every connected nonsingular subvariety of dimension at least two of
Q is G-3 in Q.

Proof. — If CcQ is G — 3 in Q, then any connected subspace of Q, V,
containing C, is G — 3 in Q. Therefore it is sufficient to prove that every
connected nonsingular curve which is not a straight line is G — 3 in Q. Such a
curve is a generating subspace of 0; therefore the thesis follows from
Theorem 1, the quoted Theorem of HARTSHORNE ([5], Cor. 6.8) and
Theorem 2. •

As any subspace of positive dimension of a grassmannian is a generating
subspace, from PAPANTONOPOULOU'S Theorem it follows a similar Corollary
for a grassmannian.

It is well-known the rigidity of embeddings of G—3 subvarieties (c/. [2],
Lemma 4.6, for example). Let X and Whe reduced and irreducible varieties
and V and Z G - 3 subvarieties respectively of X and W. Let / be a formal
isomorphism between the formal completion of Y in X and the formal
completion of Z in W. Then there exist Zariski open neighborhoods U and
V of Y and Z and an isomorphism of U with V which induces /.
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