BULLETIN DE LA S. M. F.

CHRISTIAN BERG JESPER LAUB The resolvent for a convolution kernel satisfying the domination principle

Bulletin de la S. M. F., tome 107 (1979), p. 373-384 <<u>http://www.numdam.org/item?id=BSMF_1979_107_373_0></u>

© Bulletin de la S. M. F., 1979, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE RESOLVENT FOR A CONVOLUTION KERNEL SATISFYING THE DOMINATION PRINCIPLE

BY

CHRISTIAN BERG and JESPER LAUB (*) [Københavns Universitet]

ABSTRACT. — Let N be a convolution kernel on a locally compact abelian group. It is shown that if N satisfies the domination principle and is non-singular, then there exists a splitting $N = N_0 + N'$ of N in which N_0 is a resolvent kernel and N' is N-invariant. Furthermore, the singular part N' of N is either N_0 -invariant or a N_0 -potential of a N-invariant measure. These results simplify Theorems of M. Irô.

Résumé. — Soit N un noyau de convolution dans un groupe abélien localement compact. Pour N satisfaisant au principe de domination et étant non singulier, on démontre qu'il existe une partition $N = N_0 + N'$ de N, où N_0 est un noyau à résolvante et N' est N-invariante. De plus, la partie singulière N' de N est ou bien N_0 -invariante ou bien un N_0 -potentiel d'une mesure N-invariante. Ces résultats simplifient des théorèmes de M. Irô.

Introduction

Let G be a locally compact abelian group and N a convolution kernel on G satisfying the domination principle. In [2], Itô introduced a family $(N_p)_{p>0}$ of convolution kernels, which in later papers ([3], [5]) turned out to be the resolvent family for the regular part N_0 of N. Some of the proofs in these papers are complicated, so it is of interest to give a simple and unified treatment of the resolvent and the regular part of N based entirely on the Riesz decomposition theorem, and this is the aim of the present paper.

A complete proof of the Riesz decomposition theorem was given in [7], which will be a prerequisite for the present paper. Less general versions of the Riesz decomposition Theorem appeared in [3] and [4], and the treatment in [3] assumes knowledge of the resolvent and the regular part.

^(*) Texte reçu le 16 octobre 1978.

Christian BERG and Jesper LAUB, Københavns Universitets Matematiske Institut, Universitetsparken 5, DK-2100 København Ø (Danemark).

The idea behind our treatment is as follows:

For each p > 0, we have $p N + \varepsilon_0 \prec N$, so let $N = (p N + \varepsilon_0) \star N_p + \eta_p$ be the Riesz decomposition of N with respect to $p N + \varepsilon_0$ as sum of a $(p N + \varepsilon_0)$ -potential, generated by a measure N_p , and a $(p N + \varepsilon_0)$ -invariant measure η_p . The measures N_p and η_p are uniquely determined, and this leads to the resolvent equation for $(N_p)_{p>0}$. For p tending to zero, N_p increases to the regular part of N.

Preliminaries

In the following, G denotes an arbitrary locally compact abelian group, and N a convolution kernel on G satisfying the domination principle.

A positive measure ξ on G is called *N*-excessive, if N satisfies the relative domination principle with respect to ξ ($N \prec \xi$) (cf. [4], [7]). The set of *N*-excessive measures is a vaguely closed convex cone E(N), which is infimum-stable, and every $\xi \in E(N)$ is the vague limit of an increasing net of N-potentials. For an open subset $\Omega \subseteq G$ and a measure $\xi \in E(N)$, the reduced measure ${}_{N}R_{\xi}^{\Omega}$ of ξ over Ω (with respect to N) is defined (cf. [7]) as

$$_{N}R^{\Omega}_{\xi} = \inf\{\tau \in E(N); \tau \ge \xi \text{ in } \Omega\}.$$

We write R_{ξ}^{Ω} instead of ${}_{N}R_{\xi}^{\Omega}$ when N is clear from the context.

Let \mathscr{V} denote the set of compact neighbourhoods of 0 in G. A measure $\xi \in E(N)$ is called *N*-invariant if $R_{\xi}^{\mathbb{C}V} = \xi$ for all $V \in \mathscr{V}$. The set of *N*-invariant measures is a convex cone I(N), closed under increasing limits.

Definition. – The singular part N' of N is the limit $N' = \lim_{V \uparrow G} R_N^{\mathfrak{l} V}$ of the decreasing net $(R_N^{\mathfrak{l} V})_{V \in \mathscr{V}}$, when $V \in \mathscr{V}$ increases to G.

The regular part N_0 of N is $N_0 = N - N'$. Note that $N_0 \ge 0$.

The convolution kernel N is called *singular* (resp. *non-singular*) if $N_0 = 0$ (resp. $N_0 \neq 0$).

The following Riesz decomposition theorem will be essential later (cf. [7]).

PROPOSITION 1. – Suppose N is non-singular. Every $\xi \in E(N)$ has a decomposition

 $\xi = N \star \mu + \eta$, where $\eta \in I(N)$.

The invariant part η is uniquely determined, and the measure μ is uniquely determined if (and only if) N satisfies the principle of unicity of mass.

tome 107 - 1979 - n° 4

We shall use some alternative characterizations of N-excessive and N-invariant measures.

LEMMA 2 (ITÔ [4], LAUB [7]). – Suppose N is non-singular. A positive measure ξ is N-invariant if (and only if) there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures with compact support such that

$$N \star \lambda_{\alpha} \uparrow \xi, \qquad \lambda_{\alpha} \to 0.$$

In Corollary 6 below the conclusion of Lemma 2 is shown to be valid also for singular kernels.

The following result is well-known and not difficult to establish.

LEMMA 3. – Let $N = 1/a \sum_{n=0}^{\infty} \sigma^n$ be an elementary kernel (a > 0). Then

(i) $\xi \in E(N) \Leftrightarrow \sigma \star \xi \leq \xi$,

(ii) $\eta \in I(N) \Leftrightarrow \sigma \star \eta = \eta$.

For c > 0, the convolution kernel $N + c \varepsilon_0$ satisfies the domination principle and the principle of unicity of mass, where ε_0 denotes the Dirac measure at 0. Moreover, it is easily seen that if $N \prec \xi$ then $N + c \varepsilon_0 \prec \xi$, i. e. $E(N) \subseteq E(N + c \varepsilon_0)$. For $V \in \mathscr{V}$, we consequently have

$$_{N}R_{N}^{\mathbf{C}V} \geq {}_{(N+c\varepsilon_{0})}R_{N+c\varepsilon_{0}}^{\mathbf{C}V},$$

so that $N + c \varepsilon_0$ is non-singular.

The following Lemma is an extension of [4] (Corollaire 1, p. 340); the hypothesis of N being non-singular is removed.

LEMMA 4. – For c > 0, we have

$$I(N) = I(N + c \varepsilon_0).$$

Proof. – Suppose first that $\eta \in I(N+c \varepsilon_0)$. By Lemma 2, there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures such that $(N+c \varepsilon_0) \star \lambda_{\alpha} \uparrow \eta$ and $\lambda_{\alpha} \to 0$. Therefore, we have $\eta = \lim N \star \lambda_{\alpha}$ and then $\eta \in E(N)$. For $V \in \mathscr{V}$, we find

$$\eta = {}_{(N+c\varepsilon_0)} R_{\eta}^{\boldsymbol{\mathfrak{l}} \boldsymbol{\mathcal{V}}} \leqslant {}_N R_{\eta}^{\boldsymbol{\mathfrak{l}} \boldsymbol{\mathcal{V}}} \leqslant \eta.$$

hence $\eta \in I(N)$.

Suppose next that $\eta \in I(N)$. Then $\eta \in E(N) \subseteq E(N+c\varepsilon_0)$, and since $N+c\varepsilon_0$ is non-singular, η has a Riesz decomposition

$$\eta = (N + c \varepsilon_0) \star v_c + \eta_c,$$

where $\eta_c \in I(N+c \epsilon_0) \subseteq I(N)$. We shall prove that $\nu_c = 0$.

Let $V \in \mathscr{V}$, and choose a net of positive measures $(\mu_{\alpha})_{\alpha \in A}$ with compact support in $\int V$ such that $N \star \mu_{\alpha} \uparrow R_{N}^{\mathfrak{c}v}$. Since $N \prec \eta$ the net $(\eta \star \mu_{\alpha})_{\alpha \in A}$ is increasing and

$$\lim_{A} \eta \star \mu_{\alpha} \leqslant \eta.$$

Now choose $(\lambda_{\beta})_{\beta \in B}$ such that $N \star \lambda_{\beta} \uparrow \eta$, and if N is non-singular with the additional property that $\lambda_{\beta} \to 0$. We then claim that

$$\lim_{B} (N - R_{N}^{U}) \star \lambda_{\beta} = 0.$$

This is true, because if N is singular then $N = R_N^{\xi \nu}$, and if N is non-singular then $N - R_N^{\xi \nu}$ has compact support and $\lambda_{\beta} \to 0$. We then have

$$\eta = \lim_{B} N \star \lambda_{\beta} = \lim_{B} R_{N}^{\xi V} \star \lambda_{\beta}$$
$$= \lim_{B} (\lim_{A} N \star \mu_{\alpha} \star \lambda_{\beta}) \leq \lim_{A} \eta \star \mu_{\alpha},$$

hence $\eta = \lim_{A} \eta \star \mu_{\alpha}$.

Since $\eta_c \in I(N)$, we similarly find $\lim_A \eta_c \star \mu_{\alpha} = \eta_c$. If $\mu_{\mathfrak{c}V}$ denotes a vague accumulation point of $(\mu_{\alpha})_{\alpha \in A}$, we may assume that $\mu_{\alpha} \to \mu_{\mathfrak{c}V}$, and since $N \star \mu_{\alpha} \leq N$ and $N \star v_c$ exists, Deny's convergence Lemma ([1], Lemma 5.2) shows that

$$\lim_{A} \mu_{\alpha} \star \nu_{c} = \mu_{\mathbf{c}\nu} \star \nu_{c} \,.$$

If we convolve all terms in the Riesz decomposition of η with μ_{α} and go to the limit, we obtain

$$\eta = R_N^{\mathbf{U}} \star \mathbf{v}_c + c \,\mu_{\mathbf{U}} \star \mathbf{v}_c + \eta_c.$$

Finally, letting V increase to G, Deny's convergence Lemma shows that $\mu_{\mathbf{f}V} \star v_c \to 0$ because supp $(\mu_{\mathbf{f}V}) \subseteq \overline{\mathbf{f}V}$, and hence

$$\eta = N' \star v_c + \eta_c,$$

which compared to the original decomposition gives $v_c = 0$, so we have

$$\eta = \eta_c \in I(N + c \varepsilon_0).$$

As an application of Lemma 4, we prove the following result which will not be used in the sequel, but it might be of independent interest.

PROPOSITION 5. – The following conditions about N are equivalent:

- (i) N is singular.
- (ii) I(N) = E(N).

(iii) There exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures with compact support such that $N \star \lambda_{\alpha} \uparrow N$ and $\lambda_{\alpha} \to 0$.

томе 107 — 1979 — N° 4

Proof:

(i) \Rightarrow (ii): Let μ be a positive measure such that $N \star \mu$ exists. By Lemma 1.8 in [7], the net $\mathcal{R}_{N\star\mu}^{0\nu}$ decreases to $N\star\mu$ as V increases to G, hence $\mathcal{R}_{N\star\mu}^{0\nu} = N\star\mu$ for all $V \in \mathscr{V}$ so that $N\star\mu \in I(N)$. Since every measure $\xi \in E(N)$ is an increasing limit of potentials $N\star\mu$, we get $E(N) \subseteq I(N)$.

(ii) \Rightarrow (iii): By Lemma 4, we have $N \in I(N + \varepsilon_0)$, so by Lemma 2 there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ such that $(N + \varepsilon_0) \star \lambda_{\alpha} \uparrow N$ and $\lambda_{\alpha} \to 0$. Therefore, $N \star \lambda_{\alpha} \to N$, and $(N \star \lambda_{\alpha})_{\alpha \in A}$ is increasing because $N + \varepsilon_0 \prec N$.

(iii) \Rightarrow (i): Let $V \in \mathscr{V}$, and suppose that $N \star \lambda_{\alpha} \uparrow N$ and $\lambda_{\alpha} \to 0$. Writing λ_{α} as sum of its restrictions $\lambda_{\alpha} \mid W$ and $\lambda_{\alpha} \mid \bigcup W$ to W and $\bigcup W$, where $W \in \mathscr{V}$ is a compact neighbourhood of V, we have $N \star (\lambda_{\alpha} \mid \bigcup W) \to N$. By the domination principle for measures, we find $R_N^{\bigcup V} \ge N \star (\lambda_{\alpha} \mid \bigcup W)$, so taking limits for $\alpha \in A$ we get $N \le R_N^{\bigcup V}$, which proves (i).

COROLLARY 6. — The conclusion of Lemma 2 is valid also for singular convolution kernels satisfying the domination principle.

Proof. — In order to show that a N-invariant measure ξ is the limit of an increasing net $(N \star \lambda_{\alpha})$ for which $\lambda_{\alpha} \to 0$ one proceeds like in (ii) \Rightarrow (iii) above. In order to prove the converse one proceeds like in (iii) \Rightarrow (i).

A family $(N_p)_{p>0}$ of convolution kernels is called a *resolvent* if

$$N_p = N_q + (q-p)N_p \star N_q \quad \text{for} \quad p, q > 0.$$

A convolution kernel N is called a *resolvent kernel* if there exists a resolvent $(N_p)_{p>0}$ such that $N = \lim_{p \to 0} N_p$.

A resolvent kernel N satisfies the domination principle, and for every $V \in \mathscr{V}$ there exists a balayaged measure $\varepsilon'_{\mathfrak{c}V}$ of ε_0 on $\int V$ with respect to N such that $R_N^{\mathfrak{c}V} = N \star \varepsilon'_{\mathfrak{c}V}$ (cf. [4], § 3). Since $\operatorname{supp} \varepsilon'_{\mathfrak{c}V} \subseteq \overline{\int V}$, we have $\lim_{V \uparrow G} \varepsilon'_{\mathfrak{c}V} = 0$, and therefore $N' = \lim_{V \uparrow G} R_N^{\mathfrak{c}V} = 0$ because of the dominated convergence property of a resolvent kernel (cf. [4] or [6]).

Suppose now that N is a non-zero resolvent kernel. KISHI showed in [6] that $\lim_{p\to\infty} p N_p$ exists and is the normalized Haar measure ω_K of a compact subgroup K of G. The group K is the periodicity group for N, i. e. $K = \{ x \in G; N \star \varepsilon_x = N \}.$

If μ is a positive measure such that $N \star \mu = N$, it follows that $N_p \star \mu = N_p$ for all p, hence by the convergence Lemma of DENY that $\mu \star \omega_K = \omega_K$.

This shows that μ is a probability measure supported by K. In particular, every pseudo-period of N (i. e. a point $x \in G$ such that $N \star \varepsilon_x$ is proportional to N) is a period for N.

Denoting by \mathscr{V}_K the set of compact neighbourhoods of K we consequently have $N \star \varepsilon'_{\mathfrak{l}V} \neq N$ for any $V \in \mathscr{V}_K$. This implies that the series $\sum_{n=0}^{\infty} (\varepsilon'_{\mathfrak{l}V})^n$ converges and the following formula holds

$$N = (N - N \star \varepsilon'_{\mathsf{L}V}) \star \sum_{n=0}^{\infty} (\varepsilon'_{\mathsf{L}V})^n, \qquad V \in \mathscr{V}_K.$$

Using this notation, the sets E(N) and I(N) can be characterized in the following way:

PROPOSITION 7. – Let N be a non-zero resolvent kernel with resolvent $(N_p)_{p>0}$. Then

(i)
$$\xi \in E(N) \Leftrightarrow \forall p > 0 : p N_p \star \xi \leq \xi$$
.
(ii) $\eta \in I(N) \Leftrightarrow \forall p > 0 (\exists p > 0) : p N_p \star \eta = \eta$.
(iii) $\xi \in E(N) \Leftrightarrow \forall V \in \mathscr{V}_K : \varepsilon'_{\mathsf{C}V} \star \xi \leq \xi \text{ and } \omega_K \star \xi = \xi$.
(iv) $\eta \in I(N) \Leftrightarrow \forall V \in \mathscr{V}_K : \varepsilon'_{\mathsf{C}V} \star \eta = \eta \text{ and } \omega_K \star \eta = \eta$.
The invariant part of $\xi \in E(N)$ is given as $\lim_{p \to 0} p N_p \star \xi$

Proof:

(ii): If N is a resolvent kernel then $N+1/p \varepsilon_0 = 1/p \sum_{n=0}^{\infty} (p N_p)^n$ is an elementary kernel for every p > 0 and hence Lemma 3 and 4 show that

$$\eta \in I(N) \quad \Leftrightarrow \quad \eta \in I\left(N + \frac{1}{p}\varepsilon_0\right) \quad \Leftrightarrow \quad p N_p \star \eta = \eta.$$

"(i) \Rightarrow ": For $\xi \in E(N)$, Proposition 1 shows that $\xi = N \star \mu + \eta$, where $\eta \in I(N)$, and from this Riesz decomposition we obtain

$$pN_p \star \xi = pN_p \star N \star \mu + \eta \leqslant \xi.$$

"(i) \Leftarrow ": From $p N_p \star \xi \leq \xi$ follows by Lemma 3 that $N + (1/p) \varepsilon_0 \prec \xi$. Letting p tend to infinity we find that $N \prec \xi$.

"(iii) \Rightarrow ": The statement holds for N-potentials and hence for every N-excessive measure.

"(iii) \Leftarrow ": Lemma 3 proves that ξ is excessive with respect to the elementary kernel $N_V = \sum_{0}^{\infty} (\varepsilon'_{\zeta V})^n$, so there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures such that $N_V \star \lambda_{\alpha} \uparrow \xi$. Using $N = (N - N \star \varepsilon'_{\zeta V}) \star N_V$, we get

$$N \star \lambda_{\alpha} \uparrow \xi \star (N - N \star \varepsilon_{\mathsf{f}V}'),$$

tome 107 - 1979 - n° 4

so that $\xi \star (N - N \star \varepsilon'_{\mathfrak{g}\nu}) \in E(N)$. Defining $a_{\nu} = (N - N \star \varepsilon'_{\mathfrak{g}\nu})(G)$, we have

$$\frac{1}{a_V}(N-N\star\epsilon'_{\mathsf{C}V})\to\omega_K \quad \text{as } V\downarrow K,$$

which implies that

$$\xi = \xi \star \omega_K \in E(N).$$

"(iv) \Rightarrow ": By Lemma 2 there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures such that $N \star \lambda_{\alpha} \uparrow \eta$, $\lambda_{\alpha} \to 0$. Since $N - N \star \varepsilon'_{cv}$ has compact support, we get

$$\eta - \eta \star \varepsilon'_{\boldsymbol{\zeta} V} = \lim_{A} (N - N \star \varepsilon'_{\boldsymbol{\zeta} V}) \star \lambda_{\alpha} = 0.$$

"(iv) \Leftarrow ": By (iii) $\eta \in E(N)$ and hence $\eta = N \star \mu + \zeta$, where $\zeta \in I(N)$, but since $\eta = \eta \star \varepsilon'_{tV} = (N \star \varepsilon'_{tV}) \star \mu + \zeta$, we get $\mu = 0$ and then $\eta \in I(N)$.

If $\xi \in E(N)$ has the Riesz decomposition $\xi = N \star \mu + \eta$, where $\eta \in I(N)$, we find $p N_p \star \xi = (N - N_p) \star \mu + \eta$, hence

$$\eta = \lim_{p \to 0} p N_p \star \xi.$$

Main result

THEOREM 8. – Let N be a non-singular convolution kernel satisfying the domination principle. There exist a non-zero resolvent $(N_p)_{p>0}$ and a positive measure v such that

(1)
$$N = N_p \star (p N + \varepsilon_0 + \nu) \quad for \quad p > 0.$$

The resolvent kernel $\tilde{N} = \lim_{p \to 0} N_p$ exists, and denoting by K the compact periodicity group of \tilde{N} , the measure v can be chosen such that $v \star \varepsilon_x = v$ for all $x \in K$ and $v \in I(N)$.

Proof. – Let p > 0 be fixed. Then $p N + \varepsilon_0$ is a non-singular convolution kernel satisfying the domination principle and $N \in E(p N + \varepsilon_0)$. By Proposition 1, there exist positive measures N_p and η_p such that

$$N = (p N + \varepsilon_p) \star N_p + \eta_p,$$

where $\eta_p \in I(p N + \varepsilon_0) = I(N)$. Furthermore, N_p and η_p are uniquely determined, N_p because $p N + \varepsilon_0$ satisfies the principle of unicity of mass.

For q > p > 0, we have

$$N = (q N + \varepsilon_0) \star N_q + \eta_q = (q - p) N \star N_q + (p N + \varepsilon_0) \star N_q + \eta_q,$$

= $(q - p)((p N + \varepsilon_0) \star N_p + \eta_p) \star N_q + (p N + \varepsilon_0) \star N_q + \eta_q,$
= $(p N + \varepsilon_0) \star (N_q + (q - p) N_p \star N_q) + \eta_q + (q - p) \eta_p \star N_q.$

The measure $\eta_q + (q-p) \eta_p \star N_q$ is N-invariant because both η_p and η_q are so (cf. [7]). By the unicity of the Riesz decomposition with respect to $p N + \varepsilon_0$, we conclude

(2)
$$N_p = N_q + (q-p)N_p \star N_q \quad \text{for } 0
$$\eta_p = \eta_q + (q-p)\eta_p \star N_q \quad \text{for } 0$$$$

This shows that $(N_p)_{p>0}$ is a resolvent family, and since $N_p \leq N$ for all p we get that $\tilde{N} = \lim_{p \to 0} N_p$ exists. The resolvent kernel \tilde{N} is non-zero, because $\tilde{N} = 0$ would imply that $N \in I(p \ N + \varepsilon_0) = I(N)$, hence that N is singular. Moreover $N \geq \eta_p \geq \eta_q$ for p < q so the limit $\eta_0 = \lim_{p \to 0} \eta_p$ exists and belongs to I(N). From (2), we get

(3)
$$\eta_0 = \eta_q + q N_q \star \eta_0 \quad \text{for} \quad q > 0,$$

which by Proposition 7 shows that η_0 is excessive with respect to the resolvent kernel \tilde{N} , but since from (3) $\lim_{q\to 0} q N_q \star \eta_0 = 0$, the \tilde{N} -invariant part of η_0 is 0. There exists consequently a positive measure v such that $\eta_0 = \tilde{N} \star v$. The measure v need not be uniquely determined. In fact, \tilde{N} has a compact periodicity group K, and denoting the normalized Haar measure of K by ω_K , we have as well $\eta_0 = \tilde{N} \star (\omega_K \star v)$, so by replacing v by $\omega_K \star v$, we may and will assume that v is periodic with each $x \in K$ as period. In this case, v is easily seen to be uniquely determined. From (3) follows

$$\eta_q = \tilde{N} \star v - q \, N_q \star \tilde{N} \star v = N_q \star v,$$

which implies (1).

Using $p N_p \star \tilde{N} \leq \tilde{N}$ and that $\tilde{N} \star v$ exists, the convergence Lemma of DENY implies that $\lim_{p\to\infty} p \eta_p = \omega_K \star v = v$, so $v \in E(N)$. Since $\eta_0 = \tilde{N} \star v \in I(N)$, it is easy to see that $v \in I(N)$, (cf. [7], Corollary 2.4).

LEMMA 9. – Let N_1 and N_2 be non-zero convolution kernels satisfying the domination principle and $N_1 \prec N_2$. Then

$$I(N_1) \cap E(N_2) \subseteq I(N_2).$$

Proof. – The relation \prec being transitive (cf. [4]), it follows that $E(N_2) \subseteq E(N_1)$. For $\eta \in I(N_1) \cap E(N_2)$ and $V \in \mathscr{V}$, we then have

$$\eta = {}_{N_1} R_{\eta}^{\boldsymbol{\mathsf{G}} \boldsymbol{\mathsf{V}}} \leqslant {}_{N_2} R_{\eta}^{\boldsymbol{\mathsf{G}} \boldsymbol{\mathsf{V}}} \leqslant \eta,$$

which proves that $\eta \in I(N_2)$.

томе 107 — 1979 — N° 4

THEOREM 10. – Let N be a non-singular convolution kernel satisfying the domination principle, and let $(N_p)_{p>0}$ and v be as in Theorem 8.

Then we have $\lim_{p\to 0} N_p = N_0$ and $N_0 \prec N$, where N_0 is the regular part of N. The Riesz decomposition of N with respect to N_0 is

(4)
$$N = N_0 \star (\varepsilon_0 + v) + N^i$$

and

$$N^i \in I(N_0) \cap I(N)$$

The singular part N' of N is N-invariant and given as

$$(5) N' = N_0 \star v + N^i.$$

Proof. – From Theorem 8 we know that the resolvent kernel $\tilde{N} = \lim_{p \to 0} N_p$ exists, and also that $p N_p \star N \leq N$, hence $\tilde{N} \prec N$. Furthermore, N has the \tilde{N} -invariant part $N^i = \lim_{p \to 0} p N_p \star N$, so by Lemma 9 N^i is also N-invariant. Letting $p \to 0$ in (1), we find

(6)
$$N = N \star (\varepsilon_0 + \nu) + N^i.$$

Since $\eta_0 = \tilde{N} \star v \in I(N)$, we have $\tilde{N} \star v + N^i \in I(N)$, so for $V \in \mathscr{V}$:

$$\tilde{N} \star v + N^{i} = {}_{N} R^{\boldsymbol{\zeta} V}_{\tilde{N} \star v + N^{i}} \leq {}_{N} R^{\boldsymbol{\zeta} V}_{N},$$

which implies

(7)
$$N \star v + N^i \leq N'$$

where N' is the singular part of N.

For $V \in \mathscr{V}_{K}$, let $\varepsilon'_{\mathfrak{C}V}$ be a \tilde{N} -balayaged measure of ε_{0} on $\mathfrak{C}V$. Then

$$\xi_{\mathcal{V}} = N \star \varepsilon_{\mathfrak{C}\mathcal{V}}' + (N - N \star \varepsilon_{\mathfrak{C}\mathcal{V}}') \star \mathbf{v} \in E(N),$$

and using (6) and $\varepsilon'_{\mathbf{t}V} \star N^i = N^i$, we find

$$\xi_{V} = \tilde{N} \star \varepsilon_{CV}' + \tilde{N} \star v + N^{i}.$$

In $\int V$, we have $\tilde{N} \star \varepsilon'_{tV} = \tilde{N}$, hence $\xi_V = N$ in $\int V$, so by the definition of reduced measure, we get ${}_N R_N^{tV} \leq \xi_V$. Letting V increase to G, we find using $\lim_{v \neq G} \tilde{N} \star \varepsilon'_{tV} = 0$ that

$$N' = \lim_{V \uparrow G N} R_N^{\mathfrak{l}V} \leqslant \lim_{V \uparrow G} \xi_V = \tilde{N} \star v + N^i,$$

which combined with (7) yields $N' = \tilde{N} \star v + N^i$ and hence $N_0 = \tilde{N}$.

With the notation as in Theorem 8 and 10, we further have the following proposition.

PROPOSITION 11. – If $N' = N_0 \star v + N^i$ is the Riesz decomposition of the singular part N' of N with respect to the regular part N_0 of N, then either v or N^i is zero.

Proof. – Suppose that $v \neq 0$. Since $v \in E(N)$ there exists a net $(\lambda_{\alpha})_{\alpha \in A}$ of positive measures such that $N \star \lambda_{\alpha} \uparrow v$, and since $N_0 \star v$ exists, this shows that also $N \star N_0$ exists. Finally, since $N^i \leq N$ also $N^i \star N_0$ exists. Using $N^i \in I(N_0)$, it follows that

$$N^{i} = p N_{p} \star N^{i} \leq p N_{0} \star N^{i} \quad \text{for all } p > 0,$$

and hence $N^i = 0$.

PROPOSITION 12. – Let N be a non-singular convolution kernel with regular part N_0 . Then N and N_0 have the same pseudo-periods. In particular, the group of pseudo-periods for a non-singular convolution kernel is compact.

Proof. – Suppose that $N_0 \star \varepsilon_x = c N_0$. Since $N_0 \prec N$, it follows that $N \star \varepsilon_x = c N$. Conversely, if $N \star \varepsilon_x = c N$, then $N' \star \varepsilon_x = c N'$ because $N \prec N'$. Using $N = N_0 + N'$, we get $N_0 \star \varepsilon_x = c N_0$.

Let $V \in \mathscr{V}$ be fixed. For every open relatively compact set $\omega \subseteq G$ such that $V \subseteq \omega$, let $\mu_{\omega \setminus V}$ be a balayaged measure of ε_0 on $\omega \setminus V$ with respect to N such that ${}_N R_N^{\omega \setminus V} = N \star \mu_{\omega \setminus V}$. With this notation, we have the following result.

PROPOSITION 13.

(i) Every accumulation point for the net $(\mu_{\omega\setminus V})_{\omega}$ as ω increases to G is a balayaged measure of ε_0 on [V] with respect to N_0 .

(ii) $_{N}R_{N}^{\mathbf{C}V} = {}_{N_{0}}R_{N_{0}}^{\mathbf{C}V} + N'.$

(iii) If N satisfies the principle of unicity of mass $\lim_{\omega \uparrow G} \mu_{\omega \setminus V}$ exists and $\sum_{N_0} R_{N_0}^{\mathbb{C}V} = N_0 \star \lim_{\omega \uparrow G} \mu_{\omega \setminus V}$.

Proof. – Since $N \star \mu_{\omega \setminus V} \leq N$, the net $(\mu_{\omega \setminus V})_{\omega}$ is vaguely bounded. Let $\mu_{\mathfrak{c}V}$ be an accumulation point and assume that $\mu_{\omega \setminus V} \to \mu_{\mathfrak{c}V}$ (For notational simplicity we do not write the subnet). From (1) follows

(8)
$$N \star \mu_{\omega \setminus V} = p N_p \star N \star \mu_{\omega \setminus V} + N_p \star \mu_{\omega \setminus V} + v \star N_p \star \mu_{\omega \setminus V}.$$

We have $N \star \mu_{\omega \setminus V} = {}_{N} R_{N}^{\omega \setminus V} \uparrow {}_{N} R_{N}^{\mathfrak{l} V}$ so the first term on the right-hand side increases to $p N_{p} \star {}_{N} R_{N}^{\mathfrak{l} V}$. Since $N_{p} \star N$ exists, Deny's convergence Lemma implies that

$$\lim_{\omega} N_p \star \mu_{\omega \setminus V} = N_p \star \mu_{\mathfrak{c}V}.$$

tome $107 - 1979 - n^{\circ} 4$

Finally, since $v \star N_p \in I(N)$, we have as in the proof of Lemma 4 that $\lim_{\omega} v \star N_p \star \mu_{\omega \setminus V} = v \star N_p$ so (8) leads to

(9)
$${}_{N}R_{N}^{\boldsymbol{\zeta} V} = p N_{p} \star_{N} R_{N}^{\boldsymbol{\zeta} V} + N_{p} \star (\mu_{\boldsymbol{\zeta} V} + \nu).$$

This shows that ${}_{N}R_{N}^{\mathfrak{l}_{N}} \in E(N_{0})$, and since $N' \leq {}_{N}R_{N}^{\mathfrak{l}_{N}} \leq N$ the N_{0} -invariant part of ${}_{N}R_{N}^{\mathfrak{l}_{N}}$ is equal to N^{i} which is the N_{0} -invariant part of N' as well as of N. Letting $p \to 0$ in (9), we get

$${}_{N}R_{N}^{\boldsymbol{\mathfrak{c}}\nu} = N_{0} \star (\mu_{\boldsymbol{\mathfrak{c}}\nu} + \nu) + N^{i} = N_{0} \star \mu_{\boldsymbol{\mathfrak{c}}\nu} + N',$$

so it is clear that μ_{cV} is a balayaged measure of ε_0 on $\int V$ with respect to N_0 .

Let $\varepsilon'_{\boldsymbol{\zeta} V}$ be a balayaged measure of ε_0 on $\int V$ with respect to N_0 such that $N_0 \mathcal{R}_{N_0}^{\boldsymbol{\zeta} V} = N_0 \star \varepsilon'_{\boldsymbol{\zeta} V}$. Then $N_0 \star \varepsilon'_{\boldsymbol{\zeta} V} \leq N_0 \star \mu_{\boldsymbol{\zeta} V}$ and with the notation from the proof of Theorem 10, we have

$${}_{N}R_{N}^{\boldsymbol{\complement}V} \leqslant \xi_{V} = N_{0} \star \varepsilon_{\boldsymbol{\complement}V}' + N',$$

hence

(10)
$${}_{N}R_{N}^{\boldsymbol{C}\boldsymbol{V}} = N_{0} \star \boldsymbol{\mu}_{\boldsymbol{c}\boldsymbol{V}} + N' \ge N_{0} \star \boldsymbol{\varepsilon}_{\boldsymbol{c}\boldsymbol{V}}' + N' \ge {}_{N}R_{N}^{\boldsymbol{c}\boldsymbol{V}}.$$

We shall finally prove (iii). When N satisfies the principle of unicity of mass, N and hence also N_0 have no pseudo-periods, so N_0 is a Hunt kernel. Therefore ε'_{tV} is uniquely determined by the formula $N_0 R_{N_0}^{tV} = N_0 \star \varepsilon'_{tV}$, and every accumulation point μ_{tV} of $(\mu_{\omega \setminus V})_{\omega}$ is equal to ε'_{tV} . Therefore $\lim_{\omega} \mu_{\omega \setminus V} = \varepsilon'_{tV}$.

Remarks

1° The singular part of $N+c \varepsilon_0$ is equal to the singular part N' of N. In fact, for $V \in \mathscr{V}$, we have observed that

$$_{N}R_{N}^{\mathbf{G}V} \geq _{N+c\varepsilon_{0}}R_{N+c\varepsilon_{0}}^{\mathbf{G}V}$$

hence $N' \ge (N + c \varepsilon_0)'$. Since $N' \in I(N) = I(N + c \varepsilon_0)$, we also have $N' = {}_{N + c\varepsilon_0} R_{N'}^{\boldsymbol{c}\nu} \le {}_{N + c\varepsilon_0} R_{N + c\varepsilon_0}^{\boldsymbol{c}\nu}$,

which shows that $N' \leq (N+c \varepsilon_0)'$.

2° Suppose that $N' = N_0 \star v$ where $v \neq 0$. If N is shift-bounded (i. e. the set $\{N \star \varepsilon_x; x \in G\}$ is vaguely bounded) then $N_0(G) < \infty$.

In fact, since $v \in E(N)$ there exists a non-zero measure $\lambda \ge 0$ such that $N \star \lambda \le v$ and then

$$N_0 \star N \star \lambda \leqslant N_0 \star \nu = N' \leqslant N.$$

The shift-boundedness of N implies that $N_0 \star \lambda(G) \leq 1$, hence $N_0(G) < \infty$.

If $N' = N_0 \star v$ with $v \neq 0$, and N is not shift-bounded, N_0 need not be of finite mass as the following example shows:

$$G = \mathbf{R}, N = (1_{0,\infty}(x) + e^x) dx.$$

The regular part of N is the Heaviside kernel $1_{0,\infty}$ and $N' = v = e^x$.

If N is shift-bounded and $N_0(G) < \infty$, then N' is a N₀-potential, because $I(N_0)$ does not contain any shift-bounded non-zero measures.

REFERENCES

- DENY (J.). Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 643-667.
- [2] Irô (M.). Sur le principe de domination pour les noyaux de convolution, Nagoya math. J., t. 50, 1973, p. 149-173.
- [3] Irô (M.). Caractérisation du principe de domination pour les noyaux de convolution non-bornés, Nagoya math. J., t. 57, 1975, p. 167-197.
- [4] Irô (M.). Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima math. J., t. 5, 1975, p. 293-350.
- [5] Irô (M.). Une caractérisation du principe de domination pour les noyaux de convolution, Japan. J. Math., t. 1, 1975, p. 5-35.
- [6] KISHI (M.). Positive idempotents on a locally compact abelian group, Kodai math. Sem. Rep., t. 27, 1976, p. 181-187.
- [7] LAUB (J.). On unicity of the Riesz decomposition of an excessive measure, Math. Scand. t. 43, 1978, p. 141-156.

томе 107 — 1979 — N° 4

384