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THE RESOLVENT FOR A CONVOLUTION KERNEL
SATISFYING THE DOMINATION PRINCIPLE

CHRISTIAN BERG and JESPER LAUB (*)
[Kobenhavns Universitet]

ABSTRACT. — Let N be a convolution kernel on a locally compact abelian group.
It is shown that if N satisfies the domination principle and is non-singular, then there
exists a splitting N == No + N ' of N in which No is a resolvent kernel and N ' is
A^-invariant. Furthermore, the singular part N ' of N is either M)-invariant or a
Mrpotential of a ^-invariant measure. These results simplify Theorems of M. ITO.

RESUME. — Soit N un noyau de convolution dans un groupe abelien localement
compact. Pour JVsatisfaisant au principe de domination et etant non singulier, on demontre
qu'il existe une partition N = No 4- N ' de N, ou No est un noyau a resolvante et N '
est A^-invariante. De plus, la partie singuliere N ' de Nest ou bien JVo-mvariante oubien
un TVo-potentiel d'une mesure TV-invariante. Ces resultats simplifient des theoremes de
M. ITO.

Introduction

Let G be a locally compact abelian group and N a convolution kernel
on G satisfying the domination principle. In [2], ITO introduced a family
(Np)p>o of convolution kernels, which in later papers ([3], [5]) turned
out to be the resolvent family for the regular part NQ of N. Some of
the proofs in these papers are complicated, so it is of interest to give a
simple and unified treatment of the resolvent and the regular part of N
based entirely on the Riesz decomposition theorem, and this is the aim
of the present paper.

A complete proof of the Riesz decomposition theorem was given in [7],
which will be a prerequisite for the present paper. Less general versions
of the Riesz decomposition Theorem appeared in [3] and [4], and the
treatment in [3] assumes knowledge of the resolvent and the regular part.

(*) Texte recu Ie 16 octobre 1978.
Christian BERG and Jesper LAUB, Kobenhavns Universitets Matematiske Institut,

Universitetsparken 5, DK-2100 Kobenhavn 0 (Danemark).
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374 C. BERG AND J. LAUB

The idea behind our treatment is as follows:
For each p > 0, we have p N+GQ << N, so let N == ( p N+^o) -kNp+r[p

be the Riesz decomposition of N with respect to p N+SQ as sum of a
( p ^+£o)-potential, generated by a measure Np, and a ( p -A^+eo^variant
measure r|p. The measures Np and r|p are uniquely determined, and this
leads to the resolvent equation for (Np)p^Q. F01* P tending to zero, Np
increases to the regular part of N.

Preliminaries

In the following, G denotes an arbitrary locally compact abelian group,
and N a convolution kernel on G satisfying the domination principle.

A positive measure ^ on G is called N-excessive, if N satisfies the relative
domination principle with respect to ^ (N -< ^) (cf. [4], [7]). The set of
Ar-excessive measures is a vaguely closed convex cone E ( N ) , which is
infimum-stable, and every f y e E ( N ) is the vague limit of an increasing
net of TV-potentials. For an open subset Q, s G and a measure ^ e E (N),
the reduced measure ^R^ of ^ over D (with respect to N ) is defined
(cf. [7]) as

^=inf{Te£(JV);T^ in Q}.
We write R^ instead of j^R? when N is clear from the context.

Let 1^ denote the set of compact neighbourhoods of 0 in G. A measure
^ e E ( N ) is called N-invariant if R^ = ̂  for all Fe-T. The set of
A^-invariant measures is a convex cone I(N), closed under increasing limits.

Definition. — The singular part N ' of N is the limit N ' = limy^R^
of the decreasing net (R^)v^^, when Vei^ increases to G.

The regular part No of N is No = N - N ' . Note that NQ ^ 0.
The convolution kernel N is called singular (resp. non-singular) if NQ = 0

(resp. No ^ 0).
The following Riesz decomposition theorem will be essential later

(cf. [7]).

PROPOSITION 1. — Suppose N is non-singular. Every ^ e E ( N ) has a
decomposition

^ = N-k H + TI, where r\el (N).
The invariant part T| is uniquely determined, and the measure ji is

uniquely determined if (and only if) N satisfies the principle of unicity
of mass.
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RESOLVENT FOR A CONVOLUTION KERNEL 375

We shall use some alternative characterizations of -^V-excessive and
TV-invariant measures.

LEMMA 2 (ITO [4], LAUB [7]). — Suppose N is non-singular. A positive
measure ^ is N-invariant if (and only if) there exists a net (^a)oceA of positive
measures with compact support such that

N*U^ A.-.O.

In Corollary 6 below the conclusion of Lemma 2 is shown to be valid
also for singular kernels.

The following result is well-known and not difficult to establish.

LEMMA 3. - Let N= l/^^=o<7" be an elementary kernel (a > 0).
Then

(i)^e£(N) ^ a*i;^,

(ii) r\eI(N) o <j*r|=r|.

For c > 0, the convolution kernel N-}-CGQ satisfies the domination
principle and the principle of unicity of mass, where CQ denotes the Dirac
measure at 0. Moreover, it is easily seen that if N << ^ then N +c £o -< ^,
i.e. E ( N ) ^ E(N +ceo). For Fe^, we consequently have

ni;r^ nC^
N^N ^ (N+cso^N+CEof

so that N +CEo is non-singular.
The following Lemma is an extension of [4] (Corollaire 1, p. 340);

the hypothesis of N being non-singular is removed.

LEMMA 4. — For c > 0, we have

J(N)=J(N+c8o).

Proof. — Suppose first that T| e/(W+c8o). By Lemma 2, there exists
a net (^a)aeA °f positive measures such that (N+c So) * ̂  T r! anc^ ^a —> ^•
Therefore, we have T[=\imN-k^ and then r\eE(N). For Vei^,
we find

r! = (N +cso)^r\ ^ N^v\ ^ 'H-
hence T| e I(N).

Suppose next that T| e I ( N ) . Then ^ e E ( N ) ^ E ( N + c 80), and since
N+CSQ is non-singular, rj has a Riesz decomposition

TI =(N+c£o)*v^+r|^,

where T|̂  eI(N+cGo) ^ I(N). We shall prove that v^ = 0.
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376 C. BERG AND J. LAUB

Let Ve ̂ , and choose a net of positive measures (\ia)aeA ̂ h compact
support in [V such that N - k ^ ^ R ^ . Since N-<r[ the net d*^),,^
is increasing and

lim^r|*^^ri.

Now choose (^p)pgB such that 7V*Xp ^ T|, and if TV is non-singular with
the additional property that ̂  —> 0. We then claim that

lim^(N-^)*^=0.

This is true, because if TV is singular then N = R^, and if N is non-singular
then N—Ry has compact support and ^p—^O. We then have

T| = lim^ N * ̂ p = lim^ ̂ ^ * Ap
= Inns (lim^ N * ̂  * Xp) < lim^ r| * ̂ ,

hence T| = lim^ r| * ̂ .
Since r [ ^ e I ( N ) , we similarly find lim^r|^*^ = T|^. If ^y denotes

a vague accumulation point of (n^aeA? we may assume that ^—^cy,
and since -A^*Ha ^ ^ aTl(i ^irvc exists, Deny's convergence Lemma
([I], Lemma 5.2) shows that

l im^^*v^=H^*v^.

If we convolve all terms in the Riesz decomposition of T| with ^ and go
to the limit, we obtain

T| = 1^*^+0^* v,,+î .

Finally, letting V increase to G, Deny's convergence Lemma shows that
H g v * v ^ — > 0 because suppd^y) c [^ and hence

T| ==N'*v^+ri^,

which compared to the original decomposition gives v^. = 0, so we have

ri=r|^(=J(N+cco).

As an application of Lemma 4, we prove the following result which
will not be used in the sequel, but it might be of independent interest.

PROPOSITION 5. — The following conditions about N are equivalent:
(i) N is singular.

(ii) I ( N ) = E ( N ) .
(iii) There exists a net (^a)aeA of positive measures with compact support

such that N-k \ \ N and \ —> 0.
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RESOLVENT FOR A CONVOLUTION KERNEL 377

Proof:
(i)=>(ii): Let u, be a positive measure such that N-k^ exists. By

Lemma 1.8 in [7], the net R^^ decreases to N-k u as V increases to (7,
hence Rj^^ = N-k\i for all Vei^ so that N - k [ i e I ( N ) . Since every
measure ^ e E ( N ) is an increasing limit of potentials Nir\i, we get
E ( N ) £ /(-AO.

(ii) => (hi): By Lemma 4, we have TVe/C/V+So)? so by Lemma 2 there
exists a net (^)aeA such that (A^+eo)*^ T N and ^->0. Therefore,
N - k ' k ^ — > N , and C^V*^)aeA ^s increasing because N+EQ -< N.

(in) ==> (i): Let F e -T, and suppose that N-k ̂  f N and ̂  -^ 0. Writing
^ as sum of its restrictions ^ | ̂  and ^ | [ F^ to W and [ F ,̂ where
W^V is a compact neighbourhood of F, we have N-k (^\[W)—>N.
By the domination principle for measures, we find R^ ^ N^(\y,\^W\
so taking limits for a e A we get N ^ jR^7, which proves (i).

COROLLARY 6. — The conclusion of Lemma 2 is valid also for singular
convolution kernels satisfying the domination principle.

Proof. — In order to show that a ^V-invariant measure ^ is the limit
of an increasing net (-A^*^) for which ^a—^0 one proceeds like in
(ii) => (iii) above. In order to prove the converse one proceeds like
in (iii) ==> (i).

A family (Np)p>Q of convolution kernels is called a resolvent if

Np==N,+(q-p)NpicN^ for p, q > 0.

A convolution kernel N is called a resolvent kernel if there exists a
resolvent (Np)p>o such that N = lim^o N p .

A resolvent kernel N satisfies the domination principle, and for every
Vei^ there exists a balayaged measure cj^ of So on [V with respect
to N such that R^ = N-k^y (cf. [4], § 3). Since supply c ( p, we
have limyi.G 8^ = °» and therefore A^ = lim^^ R^ = 0 because of the
dominated convergence property of a resolvent kernel (cf. [4] or [6]).

Suppose now that N is a non-zero resolvent kernel. KISHI showed
in [6] that \imp,,^pNp exists and is the normalized Haar measure co^
of a compact subgroup K of G. The group ^ is the periodicity group
for N, i. e. K = { x e G; A^* c^ = ^ }.

If u is a positive measure such that N-k u = N, it follows that N p ^ ^ i == Np
for all /?, hence by the convergence Lemma of DENY that |^*(o^ = co^.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



378 C. BERG AND J. LAUB

This shows that p, is a probability measure supported by K. In particular,
every pseudo-period of N (i.e. a point xeG such that TV*£^ is
proportional to N ) is a period for N.

Denoting by i^^ Ae set of compact neighbourhoods of Kwe consequently
have N-ks^y ^ N for any Vei^^' This implies that the series
Zw°=o (Ec^)n converges and the following formula holds

N=(iV-N*8^)*^o(£c^ V^K'

Using this notation, the sets E ( N ) and I ( N ) can be characterized
in the following way:

PROPOSITION 7. — Let N be a non-zero resolvent kernel with resolvent
Wp>o. Then

(i) ^ e E ( N ) o ^ p > 0 : p N ^ ^ ^ ^ .
(ii) r [ e I ( N ) o ^ p > 0(3p > 0) : p N p i r r \ = TI.

(iii) ^ e^ (TV)^VFe^ :£^*^ ̂  ctnd co^ = ̂
(iv) T| e /(TV) <^> V Fe ̂  : s^y * T| = T| ^rf G)^ * TI = T|.
The invariant part o f ^ e E ( N ) is given as Imip-^oj? Np-k^.
Proof:
(ii): If TV is a resolvent kernel then N+l/p So = I//? ̂ °=o (^ ^p)" is an

elementary kernel for every p > 0 and hence Lemma 3 and 4 show that

r\eI(N) o r [ e l { N + - C o } <^> pNp*r|=r|.
\ P /

" (^ r^ 9 5 : For ^eE(N\ Proposition 1 shows that ^ = N-k\x+^,
where r|e7(^), and from this Riesz decomposition we obtain

p N p ^ ^ = p N p - k N - k [ i + ^ ̂ .

(< (i) <= ": From p N p - k S , ^ ^ follows by Lemma 3 that N+(l/p) £o -< ^.
Letting /? tend to infinity we find that N -< ^.

"(iii)^ ": The statement holds for ^-potentials and hence for every
TV-excessive measure.

( < (iii) <= ": Lemma 3 proves that ^ is excessive with respect to the
elementary kernel Ny == ̂  (s'cr)"' so ̂ ^ exlsts a net (^a)agA of positive
measures such that TVy*^U. Using N = (N-N *£'^)* A^, we get

^*^tS*(N-N*E^),
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RESOLVENT FOR A CONVOLUTION KERNEL 379

so that ^ * (N- N * E^) e E (N). Defining ^ = (N- N * c^) (G\ we
have

-^-(N-N * e^) -^ 0)^ as V i X,
^

which implies that
^==^*c^e£(N).

< ( (iv) => ": By Lemma 2 there exists a net (^a)aeA °^ positive measures
such that 7V*^tr|, ^-^0. Since N-N-k^y has compact support,
we get

T|-T| *Scv==lim^(N-N*8pv)*^=0.

« (iv) <= ": By (iii) T| e E ( N ) and hence T| = 7^*|i+^, where ^ e I ( N ) ,
but since T| = T| * c'̂  = (N-k s'̂ ) * n +^ we get \i = 0 and then T| e 7 (TV).

I f^e-EC^) has the Riesz decomposition ^ = ^* ̂ I+TI, where T| e I ( N ) ,
we find p Npir^ = (N- Np) *4i +T|, hence

T| ==111^^0?^*^
Main result

THEOREM 8. — Let N be a non-singular convolution kernel satisfying
the domination principle. There exist a non-zero resolvent (Np)p>Q and a
positive measure v such that

(1) N=Np*(pN+£o+v) for p > 0.

The resolvent kernel N = lim^o N? exists, and denoting by K the
compact periodicity group of N, the measure v can be chosen such that
v * s^ = v for all x e K and v e I (N).

proof. — Letp > 0 be fixed. Then p N+SQ is a non-singular convolution
kernel satisfying the domination principle and Ne E ( p A^+£o). By
Proposition 1, there exist positive measures Np and r[p such that

iV=Cp^T+ep)*Np+T^,

where r\pG I ( p N+^o) = I ( N ) . Furthermore, Np and r\p are uniquely
determined, Np because p N-\-GQ satisfies the principle of unicity of mass.

For q > p > 0, we have
^^=(g^^+6o)*N,+^=(^-p)N*^+(^^^+8o)*N,+^^,,

=(^-P)((P^+eo)*^+^^p)*^+(PA^+£o)*^+rl^
=(pN+Eo)*(iV,+(^-j?)N^*N,)+r|,+(^-p)T^*N,.
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380 C. BERG AND J. LAUB

The measure r[q+(q—p) r[pirNq is TV-invariant because both r\p and r\q
are so {cf. [7]). By the unicity of the Riesz decomposition with respect
to pN+Go-^ we conclude

(2)
N p = N ^ ( q - p ) N p - k N q for 0 < p < q,
^p =^+(q-P)^p*Nq for 0<p<q.

This shows that (Np)p>Q is a resolvent family, and since Np ^ N for all p
^ M

we get that N = linip^o ^p exists. The resolvent kernel N is non-zero,M/
because N == 0 would imply that N e l ( p N+^o) == I ( N ) , hence that N
is singular. Moreover N ^ T|̂  ^ T|̂  for/? < ^ so the limit r|o = lim^o r|p
exists and belongs to I ( N ) . From (2), we get

(3) T1o=^+^*T|o for g>0,

which by Proposition 7 shows that r|o is excessive with respect to the
resolvent kernel N, but since from (3) lim^-,o q Nq * r|o = 0, the ^-invariant
part of T|o is 0. There exists consequently a positive measure v such
that r|o = 7V*v. The measure v need not be uniquely determined. In
fact, N has a compact periodicity group K, and denoting the normalized
Haar measure of K by o)^, we have as well r|o = Nic (cojc*^? so by
replacing v by CO^'A'V, we may and will assume that v is periodic with
each x e K as period. In this case, v is easily seen to be uniquely
determined. From (3) follows

T|̂  = N - k v — q N q i r N - k v = Nq-kv,
which implies (1).

Using p NpifN ^ N and that N-kv exists, the convergence Lemma of
DENY implies that \m^^p r\p = co^*v = v, so v e E ( N ) . Since
T^o = N - k v e I ( N ) , it is easy to see that ve7(AO, (c/. [7], Corollary 2.4).

LEMMA 9. — Let N^ and N^ be non-zero convolution kernels satisfying
the domination principle and N^ -< N^. Then

J(N,)n£(iV,)c:J(N,).

Proof. — The relation ^ being transitive (cf. [4]), it follows that
E(N^) c E(N^). For T| e 7(7Vi) n E(N^) and Ve 'T, we then have

T1 = iV^^ ̂  N^ ^ ̂

which proves that ^ e I ^ N ^ ) .
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RESOLVENT FOR A CONVOLUTION KERNEL 381

THEOREM 10. — Let N be a non-singular convolution kernel satisfying
the domination principle, and let (Np)p>o and v be as in Theorem 8.

Then we have limp_o Np =-- NQ and NQ << N, where NQ is the regular
part of N. The Riesz decomposition of N with respect to NQ is

(4) N=No*(£o+v)+N1

and
N ' e I ^ N Q ^ K ^ N ) .

The singular part N ' of N is N-invariant and given as

(5) N'=No*v+N1.

Proof, — From Theorem 8 we know that the resolvent kernel
N = lim.p_o ^p exists, and also that p N p - k N ^ N, hence N ^ N.
Furthermore, N has the TV-invariant part N1 = \imp^Qp N p - k N , so by
Lemma 9 N1 is also TV-invariant. Letting / ?—>0 in (1), we find

(6) N=:N*(eo+v)+N1.

Since rio = N-kv eI(N), we have N-kv+N1 eI(N), so for VGV:

N*v+^=^^^r,
which implies

(7) N i r v + N ' ^ N ' ,

where N ' is the singular part of N.
IV

For Vei^K^ 1̂  ^py ^e a TV-balayaged measure of SQ on [K Then

^=iV*£;;y+(N-N*£^)*ve£(N),

and using (6) and s^y-kN1 == N\ we find

^==iv*£^+N*v+N1.

In [V, we have N-kG^y = N, hence t,y = N in (F, so by the definition
of reduced measure, we get j^R^ ^ ^y. Letting V increase to G, we
find using \imy^N-k^y == 0 that

N1 = limy^N^ ^ ̂ V\G^V = N*v+N1,

which combined with (7) yields N ' = Nicv+N1 and hence NQ = N.
With the notation as in Theorem 8 and 10, we further have the following

proposition.
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382 C. BERG AND J. LAUB

PROPOSITION 11. - If N ' == No-kv+N1 is the Riesz decomposition of
the singular part N ' of N with respect to the regular part NQ of N, then
either v or N1 is zero.

Proof. — Suppose that v ^ 0. Since v e E ( N ) there exists a net
(^a)aeA °^ positive measures such that N-k^ f v, and since No-kv exists,
this shows that also N^NQ exists. Finally, since N1 ^ N also N ' ^ N Q
exists. Using N ^ I ^ N o ) , it follows that

N ^ p N p - k N ^ p N o ^ N 1 f o r a l l j ? > 0 ,

and hence N1'' = 0.

PROPOSITION 12 — Let N be a non-singular convolution kernel with
regular part NQ. Then N and NQ have the same pseudo-periods. In
particular, the group of pseudo-periods for a non-singular convolution
kernel is compact.

Proof. — Suppose that N o ' k £ y = c N o . Since NQ << N, it follows
that N i r ^ = = c N . Conversely, if N - k G ^ = c N , then N f - k G ^ = c N /

because N << N ' . Using N = N o + N ' , we get A^o*^ = c NQ.
Let V e i^ be fixed. For every open relatively compact set co c G such

that V ^ co, let j^y be a balayaged measure of 80 on CD\^ with respect
to N such that ^R^ == Nir^^y' With this notation, we have the
following result.

PROPOSITION 13.
(i) Every accumulation point for the net (\Ji^\y)<a as 0) increases to G is

a balayaged measure of SQ on (V with respect to NQ .
(ii)^<=^<+^.
(iii) If N satisfies the principle of unicity of mass lim^ ̂ \y exists

and N^Vo = ^o*l™<oTGH<o\^
Proof. — Since N-k\i^v ^ N, the net (|io)\y)© ^ vaguely bounded.

Let \ji^y be an accumulation point and assume that \i^\y—> ̂ v (F01'
notational simplicity we do not write the subnet). From (1) follows

(8) N * p^v = p N p * N * Ho^v+Np * ji^y+v * N p * ̂ ^.

We have N * [i^y = N^!^ T N^^ so tl]e ^lrst ternl orl Ae right-hand
side increases to p N y - k ^ R ^ . Since NpirN exists, Deny's convergence
Lemma implies that

lim<, N p * |v^ =Np*Hcv.
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RESOLVENT FOR A CONVOLUTION KERNEL 383

Finally, since v i c N p e I ( N ) , we have as in the proof of Lemma 4 that
linio v * Np * \i^y = v ^ N p so (8) leads to

(9) ^v = pN^^+N^^y+v).

This shows that ^R^ e £' (No), and since A^ ^ ^{^ < ^the A^o-invariant
part of ^R^ is equal to N1 which is the A^-invariant part of N ' as well
as of N. Letting p —> 0 in (9), we get

^=No*(^y+v)+^l=^o*^+iv/'

so it is clear that jigy is a balayaged measure of8o on [ V with respect to No.
Let Spy be a balayaged measure of 80 on [ V with respect to No such

that No^/o = M)*8'^' ^en M)*8^ ^ ^o*^c^ anc^ wlt^ t^e notatlon

from the proof of Theorem 10, we have

^y<^=No*£c^+N / '
hence
(10) ^ = No * i^y + N' > No * £cv + N ' > ̂ F.

We shall finally prove (iii). When N satisfies the principle of unicity
of mass, N and hence also No have no pseudo-periods, so No is a
Hunt kernel. Therefore e^ is uniquely determined by the formula
No^o = ^o*8^' and ^^y accumulation point \i^y of ((^)\v)o> is equal
to s^. Therefore lim^ \i^y = Cgy.

^^wor^
1° The singular part of N+c^o is equal to the singular part N ' of N.
In fact, for FeV, we have observed that

nV.V ^ TftV
N^N ^ N + CEO^N + CEO ?

hence N ' ^ (N+c So)'. Since N ' e I ( N ) = I(N+c Go), we also have

^/ = N+CEQ^N' ^ JV+cso^N+ceo »

which shows that A" ^ (^+080)'.
2° Suppose that -A^ = No^v where v 7^ 0. If ^ is shift-bounded

(i. e. the set { 7V*£^; xe G} is vaguely bounded) then No (G) < oo.
In fact, since v e E ( N ) there exists a non-zero measure 'k ^ 0 such

that A^ * X ̂  v and then
No*N*^^No*v=N'^N.

The shift-boundedness of ^implies that No^^(G) ^ 1, hence A^o (G) < oo.
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384 C. BERG AND J. LAUB

If N ' == NQ-kv with v 7^ 0, and N is not shift-bounded, NQ need not
be of finite mass as the following example shows:

G= R,7V-=(l^,oo((^)+^)^

The regular part of N is the Heaviside kernel l ^ o o f an(^ N ' == v = ex.
If N is shift-bounded and NQ (G) < oo, then N ' is a A^o-potential,

because I (No) does not contain any shift-bounded non-zero measures.

REFERENCES

[1] DENY (J.). — Noyaux de convolution de Hunt et noyaux associes a une famille
fondamentale, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 643-667.

[2] ITO (M.). — Sur Ie principe de domination pour les noyaux de convolution, Nagoya
math. J., t. 50, 1973, p. 149-173.

[3] ITO (M.). — Caracterisation du principe de domination pour les noyaux de convo-
lution non-bornes, Nagoya math. J., t. 57, 1975, p. 167-197.

[4] ITO (M.). — Sur Ie principe relatif de domination pour les noyaux de convolution,
Hiroshima math. J., t. 5, 1975, p. 293-350.

[5] ITO (M.). — Une caracterisation du principe de domination pour les noyaux de convo-
lution, Japan. J. Math., t. 1, 1975, p. 5-35.

[6] KISHI (M.). — Positive idempotents on a locally compact abelian group, Kodai math.
Sem. Rep., t. 27, 1976, p. 181-187.

[7] LAUB (J.). — On unicity of the Riesz decomposition of an excessive measure. Math.
Scand. t. 43, 1978, p. 141-156.

TOME 107 - 1979 - N° 4


